van der Lei, Harry; Tenenbaum, Gershon
2012-12-01
Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.
ERIC Educational Resources Information Center
Cohen, Alexander B.; Tenenbaum, Gershon; English, R. William
2006-01-01
A multiple case study investigation is reported in which emotions and performance were assessed within the probabilistic individual zone of optimal functioning (IZOF) model (Kamata, Tenenbaum, & Hanin, 2002) to develop idiosyncratic emotion-performance profiles. These profiles were incorporated into a psychological skills training (PST)…
The idiosyncratic nature of confidence
Navajas, Joaquin; Hindocha, Chandni; Foda, Hebah; Keramati, Mehdi; Latham, Peter E; Bahrami, Bahador
2017-01-01
Confidence is the ‘feeling of knowing’ that accompanies decision making. Bayesian theory proposes that confidence is a function solely of the perceived probability of being correct. Empirical research has suggested, however, that different individuals may perform different computations to estimate confidence from uncertain evidence. To test this hypothesis, we collected confidence reports in a task where subjects made categorical decisions about the mean of a sequence. We found that for most individuals, confidence did indeed reflect the perceived probability of being correct. However, in approximately half of them, confidence also reflected a different probabilistic quantity: the perceived uncertainty in the estimated variable. We found that the contribution of both quantities was stable over weeks. We also observed that the influence of the perceived probability of being correct was stable across two tasks, one perceptual and one cognitive. Overall, our findings provide a computational interpretation of individual differences in human confidence. PMID:29152591
Consumption Taxes and Economic Efficiency with Idiosyncratic Wage Shocks
ERIC Educational Resources Information Center
Nishiyama, Shinichi; Smetters, Kent
2005-01-01
Fundamental tax reform is examined in an overlapping-generations model in which heterogeneous agents face idiosyncratic wage shocks and longevity uncertainty. A progressive income tax is replaced with a flat consumption tax. If idiosyncratic wage shocks are insurable (i.e., no risk), this reform improves (interim) efficiency, a result consistent…
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2011-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.
Idiosyncratic Deals: Testing Propositions on Timing, Content, and the Employment Relationship
ERIC Educational Resources Information Center
Rousseau, Denise M.; Hornung, Severin; Kim, Tai Gyu
2009-01-01
This study tests propositions regarding idiosyncratic deals (i-deals) in a sample of N = 265 hospital employees using structural equation modeling. Timing and content of idiosyncratic employment arrangements are postulated to have differential consequences for the nature of the employment relationship. Results confirm that i-deals made after hire…
ERIC Educational Resources Information Center
Fuchs, Manfred
2002-01-01
Organizations that rely heavily on a flexible work force will lose the ability to attract and retain skilled workers with idiosyncratic knowledge. There is an interdependent relationship between the quality of employee relations and the capacity to use the idiosyncratic knowledge of a work force. (Contains 61 references.) (SK)
ERIC Educational Resources Information Center
Lowe, Amanda R.
2012-01-01
This study focuses on a meaningful understanding of idiosyncratic language in psychosis. The psychotic neologisms examined in this dissertation challenge the listener's accurate understanding. Idiosyncratic aspects of speech in psychosis are largely researched from a diagnostic perspective in the literature. This study asks how individuals…
Idiosyncratic Shocks, Child Labor and School Attendance in Indonesia
ERIC Educational Resources Information Center
Kharisma, Bayu
2017-01-01
This paper investigates the effect of various idiosyncratic shocks against child labor, child labor hour and school attendance. Also, the role of the assets held by households as one of the coping strategies to mitigate the effects of shocks. The results show that various idiosyncratic shocks that encourage child labor is generally caused by crop…
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790
Drug Induced Liver Injury: Can Biomarkers Assist RUCAM in Causality Assessment?
Teschke, Rolf; Schulze, Johannes; Eickhoff, Axel; Danan, Gaby
2017-01-01
Drug induced liver injury (DILI) is a potentially serious adverse reaction in a few susceptible individuals under therapy by various drugs. Health care professionals facing DILI are confronted with a wealth of drug-unrelated liver diseases with high incidence and prevalence rates, which can confound the DILI diagnosis. Searching for alternative causes is a key element of RUCAM (Roussel Uclaf Causality Assessment Method) to assess rigorously causality in suspected DILI cases. Diagnostic biomarkers as blood tests would be a great help to clinicians, regulators, and pharmaceutical industry would be more comfortable if, in addition to RUCAM, causality of DILI can be confirmed. High specificity and sensitivity are required for any diagnostic biomarker. Although some risk factors are available to evaluate liver safety of drugs in patients, no valid diagnostic or prognostic biomarker exists currently for idiosyncratic DILI when a liver injury occurred. Identifying a biomarker in idiosyncratic DILI requires detailed knowledge of cellular and biochemical disturbances leading to apoptosis or cell necrosis and causing leakage of specific products in blood. As idiosyncratic DILI is typically a human disease and hardly reproducible in animals, pathogenetic events and resulting possible biomarkers remain largely undisclosed. Potential new diagnostic biomarkers should be evaluated in patients with DILI and RUCAM-based established causality. In conclusion, causality assessment in cases of suspected idiosyncratic DILI is still best achieved using RUCAM since specific biomarkers as diagnostic blood tests that could enhance RUCAM results are not yet available. PMID:28398242
Employee-oriented leadership and quality of working life: mediating roles of idiosyncratic deals.
Hornung, Severin; Glaser, Jürgen; Rousseau, Denise M; Angerer, Peter; Weigl, Matthias
2011-02-01
Leader consideration has long been suggested to be conducive to quality of working life experienced by employees. The present study links this classic leadership dimension with more recent research on idiosyncratic deals, referring to personalized conditions workers negotiate in their employment relationships. A two-wave survey study (N = 159/142) among German hospital physicians suggests that authorizing idiosyncratic deals is a manifestation of employee-oriented leader behavior. Consideration had consistent positive effects on idiosyncratic deals regarding both professional development and working time flexibility. These two types had differential effects on two indicators of the quality of working life. Development related positively to work engagement, flexibility related negatively to work-family conflict. Cross-lagged correlations supported the proposed direction of influence between consideration and idiosyncratic deals in a subsample of repeating responders (n=91). The relation between development and engagement appeared to be reciprocal. Longitudinal results for the association between flexibility and work-family conflict were inconclusive.
Smith, Jonathan C; Karmin, Aaron D
2002-12-01
This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.
Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Buege, L. L.
1983-09-01
Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.
Role of metabolism in drug-induced idiosyncratic hepatotoxicity.
Walgren, Jennie L; Mitchell, Michael D; Thompson, David C
2005-01-01
Rare adverse reactions to drugs that are of unknown etiology, or idiosyncratic reactions, can produce severe medical complications or even death in patients. Current hypotheses suggest that metabolic activation of a drug to a reactive intermediate is a necessary, yet insufficient, step in the generation of an idiosyncratic reaction. We review evidence for this hypothesis with drugs that are associated with hepatotoxicity, one of the most common types of idiosyncratic reactions in humans. We identified 21 drugs that have either been withdrawn from the U.S. market due to hepatotoxicity or have a black box warning for hepatotoxicity. Evidence for the formation of reactive metabolites was found for 5 out of 6 drugs that were withdrawn, and 8 out of 15 drugs that have black box warnings. For the other drugs, either evidence was not available or suitable studies have not been carried out. We also review evidence for reactive intermediate formation from a number of additional drugs that have been associated with idiosyncratic hepatotoxicity but do not have black box warnings. Finally, we consider the potential role that high dosages may play in these adverse reactions.
NASA Technical Reports Server (NTRS)
Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.
1993-01-01
Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.
Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions.
Sharma, Amy M; Uetrecht, Jack
2014-02-01
Drug-induced skin rashes are poorly understood idiosyncratic reactions, and current methods cannot predict their occurrence. Most idiosyncratic drug reactions are thought to be caused by chemically reactive metabolites, and the skin is a frequent site of idiosyncratic reactions; however, the skin has a very limited capacity to metabolize drugs. To balance this, the skin represents a protective barrier with a very active immune response against pathogens and other types of skin injury. Therefore its response to reactive metabolites is quite different from that of the liver. The purpose of this review is to integrate emerging findings into proposed mechanisms of drug and carcinogen metabolism in the skin that are likely responsible for rashes and other immune responses of the skin. Current evidence suggests the skin possesses significant sulfotransferase and flavin monooxygenases activities, but very low cytochromes P450 activity. However, there are skin-specific P450s that are not present in the liver. The manner in which the skin responds to neoantigens through local antigen presentation and innate immune sensing is reviewed with a focus on insights gained from the contact hypersensitivity (CHS) field. The roles of keratinocytes and Langerhans cells, and the emerging function of NOD-like receptors, are highlighted.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
Kenna, J Gerry
2017-05-01
Animal toxicity studies used to assess the safety of new candidate pharmaceuticals prior to their progression into human clinical trials are unable to assess the risk of non-pharmacologically mediated idiosyncratic adverse drug reactions (ADRs), the most frequent of which are drug-induced liver injury and cardiotoxicity. Idiosyncratic ADRs occur only infrequently and in certain susceptible humans, but are caused by many hundreds of different drugs and may lead to serious illness. Areas covered: Idiosyncratic ADRs are initiated by drug-related chemical insults, which cause toxicity due to susceptibility factors that manifest only in certain patients. The chemical insults can be detected using in vitro assays. These enable useful discrimination between drugs that cause high versus low levels of idiosyncratic ADR concern. Especially promising assays, which have been described recently in peer-reviewed scientific literature, are highlighted. Expert opinion: Effective interpretation of in vitro toxicity data requires integration of endpoints from multiple assays, which each address different mechanisms, and must also take account of human systemic and tissue drug exposure in vivo. Widespread acceptance and use of such assays has been hampered by the lack of correlation between idiosyncratic human ADR risk and toxicities observed in vivo in animals.
Drug-Induced Liver Injury: Advances in Mechanistic Understanding that will Inform Risk Management
Mosedale, Merrie; Watkins, Paul B.
2016-01-01
Drug-induced liver injury (DILI) is a major public health problem. Intrinsic (dose-dependent) DILI associated with acetaminophen overdose is the number one cause of acute liver failure in the US. However the most problematic type of DILI impacting drug development is idiosyncratic, occurring only very rarely among treated patients and often only after several weeks or months of treatment with the offending drug. Recent advances in our understanding of the pathogenesis of DILI suggest that three mechanisms may underlie most hepatocyte effects in response to both intrinsic and idiosyncratic DILI drugs: mitochondrial dysfunction, oxidative stress, and alterations in bile acid homeostasis. However, in some cases, hepatocyte stress promotes an immune response that results in clinically important idiosyncratic DILI. This review discusses recent advances in our understanding of the pathogenesis of both intrinsic and idiosyncratic DILI as well as emerging tools and techniques that will likely improve DILI risk identification and management. PMID:27861792
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
ERIC Educational Resources Information Center
Congleton, Adam R.; Rajaram, Suparna
2011-01-01
Research on collaborative memory has unveiled the counterintuitive yet robust phenomenon that collaboration impairs group recall. A candidate explanation for this "collaborative inhibition" effect is the disruption of people's idiosyncratic retrieval strategies during collaboration, and it is hypothesized that employing methods that improve one's…
How Far Dare an Evaluator Go Toward Saving the World?
ERIC Educational Resources Information Center
Stake, Bob
2004-01-01
This is a statement on advocacy, activism, confluence of interest, and uncertainty, perhaps with a surprise ending. No two professional evaluators are the same but many use similar methods. Still, each person will use a method in a somewhat idiosyncratic way. Especially in the interpretation of data, personality and experience have a play.…
ERIC Educational Resources Information Center
Husky, Mathilde M.; Mazure, Carolyn M.; Carroll, Kathleen M.; Barry, Danielle; Petry, Nancy M.
2008-01-01
Contingency management (CM) treatments have been shown to be effective in reducing substance use. This manuscript illustrates how the experience sampling method (ESM) can depict behavior and behavior change and can be used to explore CM treatment mechanisms. ESM characterizes idiosyncratic patterns of behavior and offers the potential to determine…
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
Li, Chunyu; Niu, Ming; Bai, Zhaofang; Zhang, Congen; Zhao, Yanling; Li, Ruiyu; Tu, Can; Li, Huifang; Jing, Jing; Meng, Yakun; Ma, Zhijie; Feng, Wuwen; Tang, Jinfa; Zhu, Yun; Li, Jinjie; Shang, Xiaoya; Zou, Zhengsheng; Xiao, Xiaohe; Wang, Jiabo
2017-06-01
The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent "knock-out" and "knock-in" strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leone, Angelique; Nie, Alex; Brandon Parker, J.
Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit tomore » the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds—chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. - Highlights: • 28 of 97 drugs gave a positive OS/RM gene expression signature in rat liver. • The specificity of the signature for human idiosyncratic hepatotoxicants was 98%. • The sensitivity of the signature for human idiosyncratic hepatotoxicants was 75%. • The signature can help eliminate hepatotoxicants from drug development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosgrove, Benjamin D.; Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA; Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA
Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF,more » IFN{gamma}, IL-1{alpha}, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1{alpha}, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.« less
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Bloom's Idiosyncratic History of the University.
ERIC Educational Resources Information Center
Lawler, Peter Augustine
1989-01-01
Analyzes "The Idiosyncratic History of the University," a chapter in Allan Bloom's "The Closing of the American Mind". Focuses on Bloom's history of the university as explained through Socrates' philosophy. Concentrates on the role of philosophers in society past and present. Discusses the Enlightenment, Existentialism,…
A Text Searching Tool to Identify Patients with Idiosyncratic Drug-Induced Liver Injury.
Heidemann, Lauren; Law, James; Fontana, Robert J
2017-03-01
Idiosyncratic drug-induced liver injury (DILI) is an uncommon but important cause of liver disease that is challenging to diagnose and identify in the electronic medical record (EMR). To develop an accurate, reliable, and efficient method of identifying patients with bonafide DILI in an EMR system. In total, 527,000 outpatient and ER encounters in an EPIC-based EMR were searched for potential DILI cases attributed to eight drugs. A searching algorithm that extracted 200 characters of text around 14 liver injury terms in the EMR were extracted and collated. Physician investigators reviewed the data outputs and used standardized causality assessment methods to adjudicate the potential DILI cases. A total of 101 DILI cases were identified from the 2564 potential DILI cases that included 62 probable DILI cases, 25 possible DILI cases, nine historical DILI cases, and five allergy-only cases. Elimination of the term "liver disease" from the search strategy improved the search recall from 4 to 19 %, while inclusion of the four highest yield liver injury terms further improved the positive predictive value to 64 % but reduced the overall case detection rate by 47 %. RUCAM scores of the 57 probable DILI cases were generally high and concordant with expert opinion causality assessment scores. A novel text searching tool was developed that identified a large number of DILI cases from a widely used EMR system. A computerized extraction of dictated text followed by the manual review of text snippets can rapidly identify bona fide cases of idiosyncratic DILI.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Idiosyncratic Deals and Organizational Commitment
ERIC Educational Resources Information Center
Ng, Thomas W. H.; Feldman, Daniel C.
2010-01-01
This article examines the relationship between idiosyncratic deals and organizational commitment. In particular, it examines how two individual differences which reflect self-worth (core self-evaluations and age) moderate that relationship. We predicted that employees with feelings of high self-worth will expect and will feel entitled to these…
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
False-Positive Tangible Outcomes of Functional Analyses
ERIC Educational Resources Information Center
Rooker, Griffin W.; Iwata, Brian A.; Harper, Jill M.; Fahmie, Tara A.; Camp, Erin M.
2011-01-01
Functional analysis (FA) methodology is the most precise method for identifying variables that maintain problem behavior. Occasionally, however, results of an FA may be influenced by idiosyncratic sensitivity to aspects of the assessment conditions. For example, data from several studies suggest that inclusion of a tangible condition during an FA…
Identifying specific erotic cues in sexual deviations by audiotaped descriptions.
Abel, G G; Blanchard, E B; Barlow, D H; Mavissakalian, M
1975-01-01
Using audiotaped descriptions of sexual experiences and a direct measure of penile erection, it is possible to specify more precisely erotic cues in sexual deviates. Results indicated that such cues are highly idiosyncratic. Some tentative conclusions and suggested application for the method are discussed. PMID:1184490
Neologisms and Idiosyncratic Language in Autistic Speakers.
ERIC Educational Resources Information Center
Volden, Joanne; Lord, Catherine
1991-01-01
This study of 80 autistic (ages 6-18), mentally handicapped, and normal children found that more autistic subjects used neologisms and idiosyncratic language than age- and language-skill-matched control groups. More autistic children used words inappropriately that were neither phonologically nor conceptually related to intended English words than…
Idiom Syntax: Idiosyncratic or Principled?
ERIC Educational Resources Information Center
Tabossi, P.; Wolf, K.; Koterle, S.
2009-01-01
An influential theory posits that the syntactic properties of idioms are idiosyncratic and encoded in the mental lexicon in "superlemmas". It follows that experience with an idiom is necessary in order to judge the acceptability of syntactic operations on that idiom. To test these claims, Experiment 1 explored the acceptability of sentences…
Children's Idiosyncratic Symbol-Making.
ERIC Educational Resources Information Center
Barrett, Margaret; And Others
An ethnographic study documented and analyzed the idiosyncratic symbols kindergarten children employ to encode their experiences in the domains of mathematics, music, and visual art, in order to identify any patterns in use and meaning. In the area of mathematics, children were given common objects and asked to sort them. Four categories of…
Idiosyncratic Functions: Severe Problem Behavior Maintained by Access to Ritualistic Behaviors
ERIC Educational Resources Information Center
Hausman, Nicole; Kahng, SungWoo; Farrell, Ellen; Mongeon, Camille
2009-01-01
The development of functional analysis technology has been an important tool in the assessment and treatment of aberrant behaviors among individuals with developmental disabilities. In some cases, the function of problem behavior may be idiosyncratic in nature, making modifications to functional analyses necessary. In the current study, a…
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting during October 6-8 at the Best Western Sterling Inn, Sterling Heights (Detroit), Michigan is co-sponsored by US Army Tank-automotive & Armaments Command (TACOM). The meeting will provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11's Probabilistic Methods Committee is to "enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development."
Roscoe, Eileen M.; Schlichenmeyer, Kevin J.; Dube, William V.
2015-01-01
When inconclusive functional analysis (FA) outcomes occur, a number of modifications have been made to enhance the putative establishing operation or consequence associated with behavioral maintenance. However, a systematic method for identifying relevant events to test during modified FAs has not been evaluated. The purpose of this study was to develop and evaluate a technology for systematically identifying events to test in a modified FA after an initial FA led to inconclusive outcomes. Six individuals whose initial FA showed little or no responding or high levels only in the control condition participated. An indirect assessment (IA) questionnaire developed for identifying idiosyncratic variables was administered, and a descriptive analysis (DA) was conducted. Results from the IA only or a combination of the IA and DA were used to inform modified FA test and control conditions. Conclusive FA outcomes were obtained with five of the six participants during the modified FA phase. PMID:25930176
Cyclical Dynamics in Idiosyncratic Labor Market Risk.
ERIC Educational Resources Information Center
Storesletten, Kjetil; Telmer, Chris I.; Yaron, Amir
2004-01-01
Is individual labor income more risky in recessions? This is a difficult question to answer because existing panel data sets are so short. To address this problem, we develop a generalized method of moments estimator that conditions on the macroeeonomic history that each member of the panel has experienced. Variation in the cross-sectional…
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion systems components
NASA Technical Reports Server (NTRS)
1991-01-01
Summarized here is the technical effort and computer code developed during the five year duration of the program for probabilistic structural analysis methods. The summary includes a brief description of the computer code manuals and a detailed description of code validation demonstration cases for random vibrations of a discharge duct, probabilistic material nonlinearities of a liquid oxygen post, and probabilistic buckling of a transfer tube liner.
NASA Astrophysics Data System (ADS)
Fei, Cheng-Wei; Bai, Guang-Chen
2014-12-01
To improve the computational precision and efficiency of probabilistic design for mechanical dynamic assembly like the blade-tip radial running clearance (BTRRC) of gas turbine, a distribution collaborative probabilistic design method-based support vector machine of regression (SR)(called as DCSRM) is proposed by integrating distribution collaborative response surface method and support vector machine regression model. The mathematical model of DCSRM is established and the probabilistic design idea of DCSRM is introduced. The dynamic assembly probabilistic design of aeroengine high-pressure turbine (HPT) BTRRC is accomplished to verify the proposed DCSRM. The analysis results reveal that the optimal static blade-tip clearance of HPT is gained for designing BTRRC, and improving the performance and reliability of aeroengine. The comparison of methods shows that the DCSRM has high computational accuracy and high computational efficiency in BTRRC probabilistic analysis. The present research offers an effective way for the reliability design of mechanical dynamic assembly and enriches mechanical reliability theory and method.
ERIC Educational Resources Information Center
Woldehanna, Tassew; Hagos, Adiam
2015-01-01
This paper investigates the impact of idiosyncratic and covariate economic shocks, on the likelihood of children dropping out of primary school. In this endeavour, an Accelerated Failure Time Hazard model was estimated using data from the Young Lives study of childhood poverty. The estimated results indicate that both idiosyncratic shocks and…
Try to See It My Way: The Discursive Function of Idiosyncratic Mathematical Metaphor
ERIC Educational Resources Information Center
Abrahamson, Dor; Gutierrez, Jose F.; Baddorf, Anna K.
2012-01-01
What are the nature, forms, and roles of metaphors in mathematics instruction? We present and closely analyze three examples of idiosyncratic metaphors produced during one-to-one tutorial clinical interviews with 11-year-old participants as they attempted to use unfamiliar artifacts and procedures to reason about realistic probability problems.…
Drugp-Induced Rhabdomyolysis Atlas (DIRA) for idiosyncratic adverse drug reaction management.
Wen, Zhining; Liang, Yu; Hao, Yingyi; Delavan, Brian; Huang, Ruili; Mikailov, Mike; Tong, Weida; Li, Menglong; Liu, Zhichao
2018-06-11
Drug-induced rhabdomyolysis (DIR) is an idiosyncratic and fatal adverse drug reaction (ADR) characterized in severe muscle injuries accompanied by multiple-organ failure. Limited knowledge regarding the pathophysiology of rhabdomyolysis is the main obstacle to developing early biomarkers and prevention strategies. Given the lack of a centralized data resource to curate, organize, and standardize widespread DIR information, here we present a Drug-Induced Rhabdomyolysis Atlas (DIRA) that provides DIR-related information, including: a classification scheme for DIR based on drug labeling information; postmarketing surveillance data of DIR; and DIR drug property information. To elucidate the utility of DIRA, we used precision dosing, concomitant use of DIR drugs, and predictive modeling development to exemplify strategies for idiosyncratic ADR (IADR) management. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
A social ecology approach to understanding urban ecosystems and landscapes
J. Morgan Grove; Karen E. Hinson; Robert J. Northrop
2003-01-01
The shape and dynamics of cities are the result of physical, biological, and social forces. We include the term dynamic to emphasize that cities change over time and are the result of both idiosyncratic events and dominant trends. To begin to understand the patterns and processes of cities, we approach the idiosyncratic and dominant - whether it is physical, biological...
ERIC Educational Resources Information Center
Mercado, Eduardo, III; Church, Barbara A.
2016-01-01
Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair…
The Impact of Precaution and Practice on the Performance of a Risky Motor Task
Keren, Hila; Boyer, Pascal; Mort, Joel; Eilam, David
2013-01-01
The association between threat perception and motor execution, mediated by evolved precaution systems, often results in ritual-like behavior, including many idiosyncratic acts that seem irrelevant to the task at hand. This study tested the hypothesis that threat-detection during performance of a risky motor task would result in idiosyncratic activity that is not necessary for task completion. We asked biology students to follow a particular set of instructions in mixing three solutions labeled “bio-hazardous” and then repeat this operation with “non-hazardous” substances (or vice versa). We observed a longer duration of the overall performance, a greater repertoire of acts, longer maximal act duration, and longer mean duration of acts in the “risky” task when it was performed before the “non-risky” task. Some, but not all, of these differences were eliminated when a “non-risky” task preceded the “risky” one. The increased performance of idiosyncratic unnecessary activity is in accordance with the working hypothesis of the present study: ritualized idiosyncratic activities are performed in response to a real or illusionary threat, as a means to alleviate anxiety. PMID:25379241
Eilam, David
2015-02-01
Behavior in obsessive compulsive disorder (OCD), in habitual daily tasks, and in sport and cultural rituals is deconstructed into elemental acts and categorized into common acts, performed by all individuals completing a similar task, and idiosyncratic acts, not performed by all individuals. Never skipped, common acts establish the pragmatic part of motor tasks. Repetitive performance of a few common acts renders rituals a rigid form, whereby common acts may serve as memes for cultural transmission. While idiosyncratic acts are not pragmatically necessary for task completion, they fulfill important cognitive roles. They form a long preparatory phase in tasks that involve high stakes, and a long confirmatory phase in OCD rituals. Idiosyncratic acts also form transitional phases between motor tasks, and are involved in establishing identity and preserving the flexibility necessary for adapting to varying circumstances. Behavioral variability, as manifested in idiosyncrasy, thus does not seem to be a noise or by-product of motor activity, but an essential cognitive component that has been preserved in the evolution of behavioral patterns, similar to the genetic variability in biology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cognitive world: Neuropsychology of individual differences.
Ardila, Alfredo; Rosselli, Monica
2018-01-01
It is proposed that depending upon the specific pattern of cognitive abilities, each individual lives in an idiosyncratic "cognitive world." Brain pathology can be associated with some disturbed abilities, and frequently experiential changes (i.e., how the world is understood) are observed. Because these patients often are aware of their intellectual changes, they may represent excellent models to illustrate the diversity of cognitive interpretations an individual can have about the surrounding environmental conditions. Four neuropsychology cases are presented to illustrate this point: (a) prosopagnosia associated with spatial agnosia; (b) Gerstmann's syndrome; (c) dysexecutive syndrome due to a head injury; and, (d) patient with Capgras' syndrome associated with a left temporal cyst. It is further emphasized that non-brain damaged people present an enormous-but usually overlooked-dispersion in different cognitive domains, resulting in specific and idiosyncratic patterns of cognitive abilities. It is concluded that the concept of "cognitive world" in neuropsychology can parallel the concept of "perceptual world" introduced by von Uexküll in biology, which assumes that different animal species live in idiosyncratic perceptual worlds, available and knowable by the differences in their sensory system abilities. That is, different individuals live in idiosyncratic cognitive worlds, owing to their differences in cognitive abilities.
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.
1990-01-01
An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.
Probabilistic classifiers with high-dimensional data
Kim, Kyung In; Simon, Richard
2011-01-01
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not “anticonservative” using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set. PMID:21087946
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
ERIC Educational Resources Information Center
Matson, Johnny L.; Fodstad, Jill C.
2009-01-01
Food selectivity and other feeding problems are endemic in children with autism spectrum disorders (ASD). Additionally, many of the challenging behaviors which fall into this category are idiosyncratic to ASD. A technology is beginning to emerge regarding methods to lessen and effectively treat these issues which, if unchecked, can result in poor…
ERIC Educational Resources Information Center
Mu, Guanglun Michael; Wang, Yan; Wang, Zhiqiang; Feng, Yajing; Deng, Meng; Liang, Songmei
2015-01-01
Attitudes, knowledge, and skills are widely recognised as the three pillars of professional competence of inclusive education teachers. Studies emerging from the Chinese context consider these three pillars important for the practice of Learning in Regular Classrooms--an idiosyncratic Chinese form of inclusive education. Our mixed methods study…
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Pervasive influence of idiosyncratic associative biases during facial emotion recognition.
El Zein, Marwa; Wyart, Valentin; Grèzes, Julie
2018-06-11
Facial morphology has been shown to influence perceptual judgments of emotion in a way that is shared across human observers. Here we demonstrate that these shared associations between facial morphology and emotion coexist with strong variations unique to each human observer. Interestingly, a large part of these idiosyncratic associations does not vary on short time scales, emerging from stable inter-individual differences in the way facial morphological features influence emotion recognition. Computational modelling of decision-making and neural recordings of electrical brain activity revealed that both shared and idiosyncratic face-emotion associations operate through a common biasing mechanism rather than an increased sensitivity to face-associated emotions. Together, these findings emphasize the underestimated influence of idiosyncrasies on core social judgments and identify their neuro-computational signatures.
Creating flexible work arrangements through idiosyncratic deals.
Hornung, Severin; Rousseau, Denise M; Glaser, Jürgen
2008-05-01
A survey of 887 employees in a German government agency assessed the antecedents and consequences of idiosyncratic arrangements individual workers negotiated with their supervisors. Work arrangements promoting the individualization of employment conditions, such as part-time work and telecommuting, were positively related to the negotiation of idiosyncratic deals ("i-deals"). Worker personal initiative also had a positive effect on i-deal negotiation. Two types of i-deals were studied: flexibility in hours of work and developmental opportunities. Flexibility i-deals were negatively related and developmental i-deals positively related to work-family conflict and working unpaid overtime. Developmental i-deals were also positively related to increased performance expectations and affective organizational commitment, while flexibility i-deals were unrelated to either. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Mercado, Eduardo; Church, Barbara A
2016-08-01
Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair category learning for some inputs, but not for other closely related inputs. These simulations suggest that large inter- and intra-individual variations in learning capacities shown by children with ASD across similar categorization tasks may similarly result from idiosyncratic perceptual encoding that is resistant to experience-dependent changes. If so, then both feedback- and exposure-based category learning should lead to heterogeneous, stimulus-dependent deficits in children with ASD.
White, P A
2000-04-01
In two experiments, participants made causal judgments from contingency information for problems with different objective contingencies. After the judgment task, the participants reported how their judgments had changed following each type of contingency information. Some reported idiosyncratic tendencies--in other words, tendencies contrary to those expected under associative-learning and normative rule induction models of contingency judgment. These idiosyncratic reports tended to be better predictors of the judgments of those who made them than did the models. The results are consistent with the view that causal judgment from contingency information is made, at least in part, by deliberative use of acquired and sometimes idiosyncratic notions of evidential value, the outcomes of which tend, in aggregate, to be highly correlated with the outcomes of normative procedures.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Global/local methods for probabilistic structural analysis
NASA Astrophysics Data System (ADS)
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Probabilistic drug connectivity mapping
2014-01-01
Background The aim of connectivity mapping is to match drugs using drug-treatment gene expression profiles from multiple cell lines. This can be viewed as an information retrieval task, with the goal of finding the most relevant profiles for a given query drug. We infer the relevance for retrieval by data-driven probabilistic modeling of the drug responses, resulting in probabilistic connectivity mapping, and further consider the available cell lines as different data sources. We use a special type of probabilistic model to separate what is shared and specific between the sources, in contrast to earlier connectivity mapping methods that have intentionally aggregated all available data, neglecting information about the differences between the cell lines. Results We show that the probabilistic multi-source connectivity mapping method is superior to alternatives in finding functionally and chemically similar drugs from the Connectivity Map data set. We also demonstrate that an extension of the method is capable of retrieving combinations of drugs that match different relevant parts of the query drug response profile. Conclusions The probabilistic modeling-based connectivity mapping method provides a promising alternative to earlier methods. Principled integration of data from different cell lines helps to identify relevant responses for specific drug repositioning applications. PMID:24742351
Probabilistic Learning in Junior High School: Investigation of Student Probabilistic Thinking Levels
NASA Astrophysics Data System (ADS)
Kurniasih, R.; Sujadi, I.
2017-09-01
This paper was to investigate level on students’ probabilistic thinking. Probabilistic thinking level is level of probabilistic thinking. Probabilistic thinking is thinking about probabilistic or uncertainty matter in probability material. The research’s subject was students in grade 8th Junior High School students. The main instrument is a researcher and a supporting instrument is probabilistic thinking skills test and interview guidelines. Data was analyzed using triangulation method. The results showed that the level of students probabilistic thinking before obtaining a teaching opportunity at the level of subjective and transitional. After the students’ learning level probabilistic thinking is changing. Based on the results of research there are some students who have in 8th grade level probabilistic thinking numerically highest of levels. Level of students’ probabilistic thinking can be used as a reference to make a learning material and strategy.
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2017-09-01
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.
Probabilistic Geoacoustic Inversion in Complex Environments
2015-09-30
Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, Jeff; Ayala, Samuel
2000-01-01
NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
ERIC Educational Resources Information Center
Barwood, Donna; Penney, Dawn; Cunningham, Christine
2017-01-01
Internationally, research has repeatedly highlighted the marginal and apparently precarious position of Health and Physical Education (HPE) in schools. It has also consistently identified staffing as a key concern in relation to prospects for quality teaching and learning. This paper reports on mixed-methods research that has specifically…
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
A probabilistic Hu-Washizu variational principle
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
Dynamic Probabilistic Instability of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
NASA Technical Reports Server (NTRS)
Ryan, Robert S.; Townsend, John S.
1993-01-01
The prospective improvement of probabilistic methods for space program analysis/design entails the further development of theories, codes, and tools which match specific areas of application, the drawing of lessons from previous uses of probability and statistics data bases, the enlargement of data bases (especially in the field of structural failures), and the education of engineers and managers on the advantages of these methods. An evaluation is presently made of the current limitations of probabilistic engineering methods. Recommendations are made for specific applications.
Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona
2016-01-01
Abstract Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a ‘black box’ research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. PMID:26686842
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
A probabilistic and continuous model of protein conformational space for template-free modeling.
Zhao, Feng; Peng, Jian; Debartolo, Joe; Freed, Karl F; Sosnick, Tobin R; Xu, Jinbo
2010-06-01
One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.
ERIC Educational Resources Information Center
Howard, Sara J.; Perkins, Michael R.; Sowden, Hannah
2012-01-01
Very little is known about the use of gesture by children with developmental language disorders (DLDs). This case study of "Lucy", a child aged 4;10 with a DLD, expands on what is known and in particular focuses on a type of idiosyncratic "rhythmic gesture" (RG) not previously reported. A fine-grained qualitative analysis was carried out of video…
Clinical presentation and management of drug-induced agranulocytosis.
Andrès, Emmanuel; Zimmer, Jacques; Mecili, Mustapha; Weitten, Thierry; Alt, Martine; Maloisel, Frédéric
2011-04-01
In this article, we report and discuss the clinical presentation and management of idiosyncratic drug-induced agranulocytosis (neutrophil count <0.5 × 10(9)/l). Idiosyncratic drug-induced agranulocytosis remains a potentially serious adverse event owing to the frequency of severe sepsis with severe deep tissue infections (e.g., pneumonia), septicemia and septic shock in approximately two-thirds of all hospitalized patients. However, several prognostic factors have recently been identified that may be helpful in practice to identify 'susceptible' patients. Old age (>65 years), septicemia or shock, metabolic disorders such as renal failure and a neutrophil count below 0.1 × 10(9)/l are currently consensually accepted as poor prognostic factors. In this potentially life-threatening disorder, modern management with broad-spectrum antibiotics and hematopoietic growth factors (particularly granulocyte colony-stimulating factor) is likely to improve prognosis. Thus, with appropriate management, the mortality rate from idiosyncratic drug-induced agranulocytosis is currently approximately 5%.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL (Reliability, Maintainability, Supportability, and Logistics) Division activities include identification and fulfillment of joint industry, government, and academia needs for development and implementation of RMSL technologies. Four Projects in the Probabilistic Methods area and two in the area of RMSL have been identified. These are: (1) Evaluation of Probabilistic Technology - progress has been made toward the selection of probabilistic application cases. Future effort will focus on assessment of multiple probabilistic softwares in solving selected engineering problems using probabilistic methods. Relevance to Industry & Government - Case studies of typical problems encountering uncertainties, results of solutions to these problems run by different codes, and recommendations on which code is applicable for what problems; (2) Probabilistic Input Preparation - progress has been made in identifying problem cases such as those with no data, little data and sufficient data. Future effort will focus on developing guidelines for preparing input for probabilistic analysis, especially with no or little data. Relevance to Industry & Government - Too often, we get bogged down thinking we need a lot of data before we can quantify uncertainties. Not True. There are ways to do credible probabilistic analysis with little data; (3) Probabilistic Reliability - probabilistic reliability literature search has been completed along with what differentiates it from statistical reliability. Work on computation of reliability based on quantification of uncertainties in primitive variables is in progress. Relevance to Industry & Government - Correct reliability computations both at the component and system level are needed so one can design an item based on its expected usage and life span; (4) Real World Applications of Probabilistic Methods (PM) - A draft of volume 1 comprising aerospace applications has been released. Volume 2, a compilation of real world applications of probabilistic methods with essential information demonstrating application type and timehost savings by the use of probabilistic methods for generic applications is in progress. Relevance to Industry & Government - Too often, we say, 'The Proof is in the Pudding'. With help from many contributors, we hope to produce such a document. Problem is - not too many people are coming forward due to proprietary nature. So, we are asking to document only minimum information including problem description, what method used, did it result in any savings, and how much?; (5) Software Reliability - software reliability concept, program, implementation, guidelines, and standards are being documented. Relevance to Industry & Government - software reliability is a complex issue that must be understood & addressed in all facets of business in industry, government, and other institutions. We address issues, concepts, ways to implement solutions, and guidelines for maximizing software reliability; (6) Maintainability Standards - maintainability/serviceability industry standard/guidelines and industry best practices and methodologies used in performing maintainability/ serviceability tasks are being documented. Relevance to Industry & Government - Any industry or government process, project, and/or tool must be maintained and serviced to realize the life and performance it was designed for. We address issues and develop guidelines for optimum performance & life.
Probabilistic simulation of stress concentration in composite laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, L.
1993-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
Lee, Jeongmi; Geng, Joy J
2017-02-01
The efficiency of finding an object in a crowded environment depends largely on the similarity of nontargets to the search target. Models of attention theorize that the similarity is determined by representations stored within an "attentional template" held in working memory. However, the degree to which the contents of the attentional template are individually unique and where those idiosyncratic representations are encoded in the brain are unknown. We investigated this problem using representational similarity analysis of human fMRI data to measure the common and idiosyncratic representations of famous face morphs during an identity categorization task; data from the categorization task were then used to predict performance on a separate identity search task. We hypothesized that the idiosyncratic categorical representations of the continuous face morphs would predict their distractability when searching for each target identity. The results identified that patterns of activation in the lateral prefrontal cortex (LPFC) as well as in face-selective areas in the ventral temporal cortex were highly correlated with the patterns of behavioral categorization of face morphs and search performance that were common across subjects. However, the individually unique components of the categorization behavior were reliably decoded only in right LPFC. Moreover, the neural pattern in right LPFC successfully predicted idiosyncratic variability in search performance, such that reaction times were longer when distractors had a higher probability of being categorized as the target identity. These results suggest that the prefrontal cortex encodes individually unique components of categorical representations that are also present in attentional templates for target search. Everyone's perception of the world is uniquely shaped by personal experiences and preferences. Using functional MRI, we show that individual differences in the categorization of face morphs between two identities could be decoded from the prefrontal cortex and the ventral temporal cortex. Moreover, the individually unique representations in prefrontal cortex predicted idiosyncratic variability in attentional performance when looking for each identity in the "crowd" of another morphed face in a separate search task. Our results reveal that the representation of task-related information in prefrontal cortex is individually unique and preserved across categorization and search performance. This demonstrates the possibility of predicting individual behaviors across tasks with patterns of brain activity. Copyright © 2017 the authors 0270-6474/17/371257-12$15.00/0.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
An advanced probabilistic structural analysis method for implicit performance functions
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Probabilistic numerics and uncertainty in computations
Hennig, Philipp; Osborne, Michael A.; Girolami, Mark
2015-01-01
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321
Probabilistic numerics and uncertainty in computations.
Hennig, Philipp; Osborne, Michael A; Girolami, Mark
2015-07-08
We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
NESSUS/EXPERT - An expert system for probabilistic structural analysis methods
NASA Technical Reports Server (NTRS)
Millwater, H.; Palmer, K.; Fink, P.
1988-01-01
An expert system (NESSUS/EXPERT) is presented which provides assistance in using probabilistic structural analysis methods. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator. NESSUS/EXPERT was developed with a combination of FORTRAN and CLIPS, a C language expert system tool, to exploit the strengths of each language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOT National Transportation Integrated Search
2009-10-13
This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
1977-03-31
the machine properly infer his graphical intentions. The graphics are presumed to be a mixture of projective geometry ( the inter- H section of planes ...conditions lecture to the Societe de Psychologie in Paris most conducive ; nor for the psychological explana— (quoted in Ghiselin [17]) Henri Poincare ...information pro- more wit h frustration than accomplishment. His air vided , the individual will attempt to fi;;d a new planes , submar ines and d i v e r t
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
The generic danger and the idiosyncratic support
NASA Astrophysics Data System (ADS)
Temme, Arnaud; Nijp, Jelmer; van der Meij, Marijn; Samia, Jalal; Masselink, Rens
2016-04-01
This contribution argues two main points. First, that generic landscapes used in some modelling studies sometimes have properties or cause simulation results that are unrealistic. Such initially flat or straight-sloped landscapes, sometimes with minor random perturbations, e.g. form the backdrop for ecological simulations of vegetation growth and competition that predict catastrophic shifts. Exploratory results for semi-arid systems suggest that the results based on these generic landscapes are end-members from a distribution of results, rather than an unbiased, typical outcome. Apparently, the desire to avoid idiosyncrasy has unintended consequences. Second, we argue and illustrate that in fact new insights often come from close inspection of idiosyncratic case studies. Our examples from landslide systems, connectivity and soil formation show how a central role for the case study - either in empirical work or to provide model targets - has advanced our understanding. Both points contribute to the conclusion that it is dangerous to forget about annoying, small-scale, idiosyncratic and, indeed, perhaps bad-ass case studies in Earth Sciences.
Hirasawa, Makoto; Hagihara, Katsunobu; Okudaira, Noriko; Izumi, Takashi
2015-01-01
Idiosyncratic lapatinib-induced liver injury has been reported to be associated with human leukocyte antigen (HLA)-DRB1*07:01. In order to investigate its mechanism, interaction of lapatinib with HLA-DRB1*07:01 and its ligand peptide derived from tetanus toxoid, has been evaluated in vitro. Here we show that lapatinib enhances binding of the ligand peptide to HLA-DRB1*07:01. Furthermore in silico molecular dynamics analysis revealed that lapatinib could change the β chain helix in the HLA-DRB1*07:01 specifically to form a tightly closed binding groove structure and modify a large part of the binding groove. These results indicate that lapatinib affects the ligand binding to HLA-DRB1*07:01 and idiosyncratic lapatinib-induced liver injury might be triggered by this mechanism. This is the first report showing that the clinically available drug can enhance the binding of ligand peptide to HLA class II molecules in vitro and in silico. PMID:26098642
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
Li, Zhixi; Peck, Kyung K.; Brennan, Nicole P.; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I.; Young, Robert J.
2014-01-01
Purpose The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. Materials and Methods We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca’s and Wernicke’s areas. Tracts in tumoraffected hemispheres were examined for extension between Broca’s and Wernicke’s areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Results Probabilistic tracts displayed more complete anterior extension to Broca’s area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01). Conclusion Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers. PMID:25328583
Memory Indexing: A Novel Method for Tracing Memory Processes in Complex Cognitive Tasks
ERIC Educational Resources Information Center
Renkewitz, Frank; Jahn, Georg
2012-01-01
We validate an eye-tracking method applicable for studying memory processes in complex cognitive tasks. The method is tested with a task on probabilistic inferences from memory. It provides valuable data on the time course of processing, thus clarifying previous results on heuristic probabilistic inference. Participants learned cue values of…
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.
Herzallah, Randa
2015-03-01
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probabilistic Simulation of Stress Concentration in Composite Laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.
1994-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
Commercialization of NESSUS: Status
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Millwater, Harry R.
1991-01-01
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.
Anthropology and affect: a consideration of the idiosyncratic dimension of human behaviour.
Izmirlian, H
1977-01-01
In this paper a theoretical perspective is presented in which affect occupies a central position and behaviour is viewed in terms of different degrees of affective expression. Such behaviour is conceptualized in terms of three models: a structural model, a rational model and a psychological model. While the first two models are frequently encountered in the literature, the psychological model has not received explicit formulation, although, as shown here, it is crucial in understanding certain forms of idiosyncratic behaviour that have political and social relevance.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
P. B. Woodbury; D. A. Weinstein
2010-01-01
We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...
Non-unitary probabilistic quantum computing
NASA Technical Reports Server (NTRS)
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Animal-to-Animal Variation in Odor Preference and Neural Representation of Odors
NASA Astrophysics Data System (ADS)
Honegger, Kyle; Smith, Matthew; Turner, Glenn; de Bivort, Benjamin
Across any population of animals, individuals exhibit diverse behaviors and reactions to sensory stimuli like tastes and odors. While idiosyncratic behavior is ubiquitous, its biological basis is poorly understood. In this talk, I will present evidence that individual fruit flies (Drosophila melanogaster) display idiosyncratic olfactory behaviors and discuss our ongoing efforts to map these behavioral differences to variation in neural circuits. Using a high-throughput, single-fly assay for odor preference, we have demonstrated that highly inbred flies display substantial animal-to-animal variability, beyond that expected from experimental error, and that these preferences persist over days. Using in vivo two-photon calcium imaging, we are beginning to examine the idiosyncrasy of neural coding in the fly olfactory pathway and find that the odor responses of individual processing channels in the antennal lobe can vary substantially from fly to fly. These results imply that individual differences in neural coding may be used to predict the idiosyncratic behavior of an individual - a hypothesis we are currently testing by imaging neural activity from flies after measuring their odor preferences.
Idiosyncratic Brain Activation Patterns Are Associated with Poor Social Comprehension in Autism
Tyszka, J. Michael; Adolphs, Ralph; Kennedy, Daniel P.
2015-01-01
Autism spectrum disorder (ASD) features profound social deficits but neuroimaging studies have failed to find any consistent neural signature. Here we connect these two facts by showing that idiosyncratic patterns of brain activation are associated with social comprehension deficits. Human participants with ASD (N = 17) and controls (N = 20) freely watched a television situation comedy (sitcom) depicting seminaturalistic social interactions (“The Office”, NBC Universal) in the scanner. Intersubject correlations in the pattern of evoked brain activation were reduced in the ASD group—but this effect was driven entirely by five ASD subjects whose idiosyncratic responses were also internally unreliable. The idiosyncrasy of these five ASD subjects was not explained by detailed neuropsychological profile, eye movements, or data quality; however, they were specifically impaired in understanding the social motivations of characters in the sitcom. Brain activation patterns in the remaining ASD subjects were indistinguishable from those of control subjects using multiple multivariate approaches. Our findings link neurofunctional abnormalities evoked by seminaturalistic stimuli with a specific impairment in social comprehension, and highlight the need to conceive of ASD as a heterogeneous classification. PMID:25855192
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-12-01
This paper constitutes a philosophical and social scientific study of expert elicitation in the assessment and management of volcanic risk on Montserrat during the 1995-present volcanic activity. It outlines the broader context of subjective probabilistic methods and then uses a mixed-method approach to analyse the use of these methods in volcanic crises. Data from a global survey of volcanologists regarding the use of statistical methods in hazard assessment are presented. Detailed qualitative data from Montserrat are then discussed, particularly concerning the expert elicitation procedure that was pioneered during the eruptions. These data are analysed and conclusions about the use of these methods in volcanology are drawn. The paper finds that while many volcanologists are open to the use of these methods, there are still some concerns, which are similar to the concerns encountered in the literature on probabilistic and determinist approaches to seismic hazard analysis.
Probabilistic Structural Analysis of the SRB Aft Skirt External Fitting Modification
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, J.; Ayala, S.
1999-01-01
NASA has funded several major programs (the PSAM Project is an example) to develop Probabilistic Structural Analysis Methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element design tool, known as NESSUS, is used to determine the reliability of the Space Shuttle Solid Rocket Booster (SRB) aft skirt critical weld. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
Topiramate-Induced Somnambulism in a Migraineur: A Probable Idiosyncratic Adverse Effect
Mathew, Thomas; Sarma, G. R. K.; Nadig, Raghunandan; Varghese, Raji
2012-01-01
Somnambulism (sleepwalking) is a disorder of arousal that falls under “parasomnia” group and is more common in children. These phenomena occur as primary sleep events or secondary to systemic disease or can be drug induced. Medications that can cause sleepwalking include neuroleptics, hypnotics, lithium, amitriptyline, and β-blockers.1 This report presents an unusual adverse effect of topiramate on sleep in a patient with migraine. Citation: Mathew T; Sarma GRK; Nadig R; Varghese R. Topiramate-induced somnambulism in a migraineur: a probable idiosyncratic adverse effect. J Clin Sleep Med 2012;8(2):197-198. PMID:22505867
NASA Astrophysics Data System (ADS)
Su, Zhi; Shu, Tengjia; Yin, Libo
2018-05-01
Inspired by Herskovic et al. (2016), we investigate the pricing effect of the firm-level common idiosyncratic volatility (CIV) in China's A-Share market. Return tests indicate that lower CIV risk loadings bring higher returns significantly, while the pricing function of market volatility (MV) is inconsistent. Strategy that goes long the highest CIV-beta quintile and short the lowest CIV-beta quintile brings an annualized average return of 5%-7%. Our findings supplement Herskovic et al. (2016) by confirming a significantly negative relationship between CIV and stock returns in a developing market.
Probabilistic methods for rotordynamics analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Process for computing geometric perturbations for probabilistic analysis
Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Probabilistic Exposure Analysis for Chemical Risk Characterization
Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.
2009-01-01
This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
Fracture mechanics analysis of cracked structures using weight function and neural network method
NASA Astrophysics Data System (ADS)
Chen, J. G.; Zang, F. G.; Yang, Y.; Shi, K. K.; Fu, X. L.
2018-06-01
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Probabilistic Methods for Structural Design and Reliability
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Whitlow, Woodrow, Jr. (Technical Monitor)
2002-01-01
This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate, that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or in deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.
Guided SAR image despeckling with probabilistic non local weights
NASA Astrophysics Data System (ADS)
Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny
2017-12-01
SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.
Bayesian probabilistic population projections for all countries.
Raftery, Adrian E; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K
2012-08-28
Projections of countries' future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950-1990 are used for estimation, and applied to predict 1990-2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20-64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades.
a Probabilistic Embedding Clustering Method for Urban Structure Detection
NASA Astrophysics Data System (ADS)
Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.
2017-09-01
Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.
COMMUNICATING PROBABILISTIC RISK OUTCOMES TO RISK MANAGERS
Increasingly, risk assessors are moving away from simple deterministic assessments to probabilistic approaches that explicitly incorporate ecological variability, measurement imprecision, and lack of knowledge (collectively termed "uncertainty"). While the new methods provide an...
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Development of probabilistic design method for annular fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, Takayuki
2007-07-01
The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method formore » annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)« less
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Rivas, Elena; Lang, Raymond; Eddy, Sean R.
2012-01-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
Probabilistic models of cognition: conceptual foundations.
Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan
2006-07-01
Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Role of Risk Analysis in Decision-Making AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... documents entitled, ``Using Probabilistic Methods to Enhance the Role of Risk Analysis in Decision- Making... Probabilistic Methods to Enhance the Role of Risk Analysis in Decision-Making, with Case Study Examples'' and...
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
Probabilistic composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements
NASA Astrophysics Data System (ADS)
Yokoi, Kentaro
This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
NASA Astrophysics Data System (ADS)
Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik
2018-05-01
Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.
Alternate Methods in Refining the SLS Nozzle Plug Loads
NASA Technical Reports Server (NTRS)
Burbank, Scott; Allen, Andrew
2013-01-01
Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.
NASA Astrophysics Data System (ADS)
Mayr, G. J.; Kneringer, P.; Dietz, S. J.; Zeileis, A.
2016-12-01
Low visibility or low cloud ceiling reduce the capacity of airports by requiring special low visibility procedures (LVP) for incoming/departing aircraft. Probabilistic forecasts when such procedures will become necessary help to mitigate delays and economic losses.We compare the performance of probabilistic nowcasts with two statistical methods: ordered logistic regression, and trees and random forests. These models harness historic and current meteorological measurements in the vicinity of the airport and LVP states, and incorporate diurnal and seasonal climatological information via generalized additive models (GAM). The methods are applied at Vienna International Airport (Austria). The performance is benchmarked against climatology, persistence and human forecasters.
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Ricchiazzi, P. J.
1980-01-01
An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.
Pasta, D J; Taylor, J L; Henning, J M
1999-01-01
Decision-analytic models are frequently used to evaluate the relative costs and benefits of alternative therapeutic strategies for health care. Various types of sensitivity analysis are used to evaluate the uncertainty inherent in the models. Although probabilistic sensitivity analysis is more difficult theoretically and computationally, the results can be much more powerful and useful than deterministic sensitivity analysis. The authors show how a Monte Carlo simulation can be implemented using standard software to perform a probabilistic sensitivity analysis incorporating the bootstrap. The method is applied to a decision-analytic model evaluating the cost-effectiveness of Helicobacter pylori eradication. The necessary steps are straightforward and are described in detail. The use of the bootstrap avoids certain difficulties encountered with theoretical distributions. The probabilistic sensitivity analysis provided insights into the decision-analytic model beyond the traditional base-case and deterministic sensitivity analyses and should become the standard method for assessing sensitivity.
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
NASA Astrophysics Data System (ADS)
Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor
2017-04-01
Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.
An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 1. Theory
Yen, Chung-Cheng; Guymon, Gary L.
1990-01-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
An Efficient Deterministic-Probabilistic Approach to Modeling Regional Groundwater Flow: 1. Theory
NASA Astrophysics Data System (ADS)
Yen, Chung-Cheng; Guymon, Gary L.
1990-07-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B.; Khan, Ikhlas A.; Nagle, Dale G.; Zhou, Yu-Dong
2014-01-01
Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage. PMID:24328138
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of a probabilistic analysis methodology for structural reliability estimation
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.
1991-01-01
The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.
Bayesian probabilistic population projections for all countries
Raftery, Adrian E.; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K.
2012-01-01
Projections of countries’ future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a Bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using Bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950–1990 are used for estimation, and applied to predict 1990–2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20–64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades. PMID:22908249
A probabilistic approach to composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
NASA Astrophysics Data System (ADS)
Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.
2017-08-01
While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Interaction of depth probes and style of depiction
van Doorn, Andrea J.; Koenderink, Jan J.; Leyssen, Mieke H. R.; Wagemans, Johan
2012-01-01
We study the effect of stylistic differences on the nature of pictorial spaces as they appear to an observer when looking into a picture. Four pictures chosen from diverse styles of depiction were studied by 2 different methods. Each method addresses pictorial depth but draws on a different bouquet of depth cues. We find that the depth structures are very similar for 8 observers, apart from an idiosyncratic depth scaling (up to a factor of 3). The differences between observers generalize over (very different) pictures and (very different) methods. They are apparently characteristic of the person. The differences between depths as sampled by the 2 methods depend upon the style of the picture. This is the case for all observers except one. PMID:23145306
Probabilistic liver atlas construction.
Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E
2017-01-13
Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.
NASA Technical Reports Server (NTRS)
Warner, James E.; Zubair, Mohammad; Ranjan, Desh
2017-01-01
This work investigates novel approaches to probabilistic damage diagnosis that utilize surrogate modeling and high performance computing (HPC) to achieve substantial computational speedup. Motivated by Digital Twin, a structural health management (SHM) paradigm that integrates vehicle-specific characteristics with continual in-situ damage diagnosis and prognosis, the methods studied herein yield near real-time damage assessments that could enable monitoring of a vehicle's health while it is operating (i.e. online SHM). High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin, are incorporated using finite element method simulations and Bayesian inference, respectively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the resulting probabilistic damage estimates. To this end, three distinct methods are demonstrated for rapid sampling that utilize surrogate modeling and exploit various degrees of parallelism for leveraging HPC. The accuracy and computational efficiency of the methods are compared on the problem of strain-based crack identification in thin plates. While each approach has inherent problem-specific strengths and weaknesses, all approaches are shown to provide accurate probabilistic damage diagnoses and several orders of magnitude computational speedup relative to a baseline Bayesian diagnosis implementation.
Probabilistic Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.
Probabilistic population projections with migration uncertainty
Azose, Jonathan J.; Ševčíková, Hana; Raftery, Adrian E.
2016-01-01
We produce probabilistic projections of population for all countries based on probabilistic projections of fertility, mortality, and migration. We compare our projections to those from the United Nations’ Probabilistic Population Projections, which uses similar methods for fertility and mortality but deterministic migration projections. We find that uncertainty in migration projection is a substantial contributor to uncertainty in population projections for many countries. Prediction intervals for the populations of Northern America and Europe are over 70% wider, whereas prediction intervals for the populations of Africa, Asia, and the world as a whole are nearly unchanged. Out-of-sample validation shows that the model is reasonably well calibrated. PMID:27217571
Application of Probabilistic Analysis to Aircraft Impact Dynamics
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.
Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food.
Jacobs, Rianne; van der Voet, Hilko; Ter Braak, Cajo J F
Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5-200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.
Influence Diagrams as Decision-Making Tools for Pesticide Risk Management
The pesticide policy arena is filled with discussion of probabilistic approaches to assess ecological risk, however, similar discussions about implementing formal probabilistic methods in pesticide risk decision making are less common. An influence diagram approach is proposed f...
Environmental probabilistic quantitative assessment methodologies
Crovelli, R.A.
1995-01-01
In this paper, four petroleum resource assessment methodologies are presented as possible pollution assessment methodologies, even though petroleum as a resource is desirable, whereas pollution is undesirable. A methodology is defined in this paper to consist of a probability model and a probabilistic method, where the method is used to solve the model. The following four basic types of probability models are considered: 1) direct assessment, 2) accumulation size, 3) volumetric yield, and 4) reservoir engineering. Three of the four petroleum resource assessment methodologies were written as microcomputer systems, viz. TRIAGG for direct assessment, APRAS for accumulation size, and FASPU for reservoir engineering. A fourth microcomputer system termed PROBDIST supports the three assessment systems. The three assessment systems have different probability models but the same type of probabilistic method. The type of advantages of the analytic method are in computational speed and flexibility, making it ideal for a microcomputer. -from Author
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, Robert J.; Kuhlman, Kristopher L
2016-05-01
We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application tomore » probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.« less
Perez-Cruz, Pedro E.; dos Santos, Renata; Silva, Thiago Buosi; Crovador, Camila Souza; Nascimento, Maria Salete de Angelis; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo; Hui, David
2014-01-01
Context Survival prognostication is important during end-of-life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized. Objectives To examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches. Methods Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at day −14 (baseline) with accuracy at each time point using a test of proportions. Results 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 (4, 20) days. Temporal CPS had low accuracy (10–40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (p<.05 at each time point) but decreased close to death. Conclusion Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary. PMID:24746583
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent
2010-04-01
The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.
General Purpose Probabilistic Programming Platform with Effective Stochastic Inference
2018-04-01
2.2 Venture 10 2.3 BayesDB 12 2.4 Picture 17 2.5 MetaProb 20 3.0 METHODS , ASSUMPTIONS, AND PROCEDURES 22 4.0 RESULTS AND DISCUSSION 23 4.1...The methods section outlines the research approach. The results and discussion section gives representative quantitative and qualitative results...modeling via CrossCat, a probabilistic method that emulates many of the judgment calls ordinarily made by a human data analyst. This AI assistance
Superposition-Based Analysis of First-Order Probabilistic Timed Automata
NASA Astrophysics Data System (ADS)
Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph
This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
A novel probabilistic framework for event-based speech recognition
NASA Astrophysics Data System (ADS)
Juneja, Amit; Espy-Wilson, Carol
2003-10-01
One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.
Joint Probabilistic Projection of Female and Male Life Expectancy
Raftery, Adrian E.; Lalic, Nevena; Gerland, Patrick
2014-01-01
BACKGROUND The United Nations (UN) produces population projections for all countries every two years. These are used by international organizations, governments, the private sector and researchers for policy planning, for monitoring development goals, as inputs to economic and environmental models, and for social and health research. The UN is considering producing fully probabilistic population projections, for which joint probabilistic projections of future female and male life expectancy at birth are needed. OBJECTIVE We propose a methodology for obtaining joint probabilistic projections of female and male life expectancy at birth. METHODS We first project female life expectancy using a one-sex method for probabilistic projection of life expectancy. We then project the gap between female and male life expectancy. We propose an autoregressive model for the gap in a future time period for a particular country, which is a function of female life expectancy and a t-distributed random perturbation. This method takes into account mortality data limitations, is comparable across countries, and accounts for shocks. We estimate all parameters based on life expectancy estimates for 1950–2010. The methods are implemented in the bayesLife and bayesPop R packages. RESULTS We evaluated our model using out-of-sample projections for the period 1995–2010, and found that our method performed better than several possible alternatives. CONCLUSIONS We find that the average gap between female and male life expectancy has been increasing for female life expectancy below 75, and decreasing for female life expectancy above 75. Our projections of the gap are lower than the UN’s 2008 projections for most countries and so lead to higher projections of male life expectancy. PMID:25580082
Universal and idiosyncratic characteristic lengths in bacterial genomes
NASA Astrophysics Data System (ADS)
Junier, Ivan; Frémont, Paul; Rivoire, Olivier
2018-05-01
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Peng, Wei; Liu, Ming; Mou, Yi
2008-04-01
ABSTRACT This study investigates whether individual difference influences idiosyncratic experience of game playing. In particular, we examine the relationship between the game player's physical-aggressive personality and the aggressiveness of the player's game playing in violence-oriented video games. Screen video stream of 40 individual participants' game playing was captured and content analyzed. Participants' physical aggression was measured before the game play. The results suggest that people with more physical-aggressive personality engage in a more aggressive style of playing, after controlling the differences of gender and previous gaming experience. Implications of these findings and direction for future studies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr
In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less
NASA Technical Reports Server (NTRS)
1992-01-01
The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis.
Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections
NASA Astrophysics Data System (ADS)
Wakazuki, Y.
2015-12-01
A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
PCEMCAN - Probabilistic Ceramic Matrix Composites Analyzer: User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Mital, Subodh K.; Murthy, Pappu L. N.
1998-01-01
PCEMCAN (Probabalistic CEramic Matrix Composites ANalyzer) is an integrated computer code developed at NASA Lewis Research Center that simulates uncertainties associated with the constituent properties, manufacturing process, and geometric parameters of fiber reinforced ceramic matrix composites and quantifies their random thermomechanical behavior. The PCEMCAN code can perform the deterministic as well as probabilistic analyses to predict thermomechanical properties. This User's guide details the step-by-step procedure to create input file and update/modify the material properties database required to run PCEMCAN computer code. An overview of the geometric conventions, micromechanical unit cell, nonlinear constitutive relationship and probabilistic simulation methodology is also provided in the manual. Fast probability integration as well as Monte-Carlo simulation methods are available for the uncertainty simulation. Various options available in the code to simulate probabilistic material properties and quantify sensitivity of the primitive random variables have been described. The description of deterministic as well as probabilistic results have been described using demonstration problems. For detailed theoretical description of deterministic and probabilistic analyses, the user is referred to the companion documents "Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composite Behavior," NASA TP-3602, 1996 and "Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites", NASA TM 4766, June 1997.
Elghblawi, Ebtisam
2016-01-01
Dermoscopy is a method of growing significance in the diagnoses of dermatological pigmented skin diseases. However, in my case, mycology culture was negative and successful treatment was given on the basis of trichoscopy and wood lamp examination. I hereby describe a young boy with tinea capitis, multiple “comma hairs” and “zigzag hair” and a subtle additional feature “Morse code-like hair” when intensification was applied. Dermatoscopic aspects found skin Type 2 in a child of as a distinctive dermoscopic finding. PMID:28442876
Elghblawi, Ebtisam
2016-01-01
Dermoscopy is a method of growing significance in the diagnoses of dermatological pigmented skin diseases. However, in my case, mycology culture was negative and successful treatment was given on the basis of trichoscopy and wood lamp examination. I hereby describe a young boy with tinea capitis, multiple "comma hairs" and "zigzag hair" and a subtle additional feature "Morse code-like hair" when intensification was applied. Dermatoscopic aspects found skin Type 2 in a child of as a distinctive dermoscopic finding.
Proposal of a method for evaluating tsunami risk using response-surface methodology
NASA Astrophysics Data System (ADS)
Fukutani, Y.
2017-12-01
Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.
76 FR 28102 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., Probabilistic Risk Assessment Branch, Division of Risk Analysis, Office of Nuclear Regulatory Research, U.S... approaches and methods (whether quantitative or qualitative, deterministic or probabilistic), data, and... uses in evaluating specific problems or postulated accidents, and data that the staff needs in its...
Campbell, Kieran R; Yau, Christopher
2017-03-15
Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.
Probabilistic Analysis and Density Parameter Estimation Within Nessus
NASA Astrophysics Data System (ADS)
Godines, Cody R.; Manteufel, Randall D.
2002-12-01
This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.
Probabilistic Analysis and Density Parameter Estimation Within Nessus
NASA Technical Reports Server (NTRS)
Godines, Cody R.; Manteufel, Randall D.; Chamis, Christos C. (Technical Monitor)
2002-01-01
This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.
New decoding methods of interleaved burst error-correcting codes
NASA Astrophysics Data System (ADS)
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Weickert, Thomas W.; Goldberg, Terry E.; Egan, Michael F.; Apud, Jose A.; Meeter, Martijn; Myers, Catherine E.; Gluck, Mark A; Weinberger, Daniel R.
2010-01-01
Background While patients with schizophrenia display an overall probabilistic category learning performance deficit, the extent to which this deficit occurs in unaffected siblings of patients with schizophrenia is unknown. There are also discrepant findings regarding probabilistic category learning acquisition rate and performance in patients with schizophrenia. Methods A probabilistic category learning test was administered to 108 patients with schizophrenia, 82 unaffected siblings, and 121 healthy participants. Results Patients with schizophrenia displayed significant differences from their unaffected siblings and healthy participants with respect to probabilistic category learning acquisition rates. Although siblings on the whole failed to differ from healthy participants on strategy and quantitative indices of overall performance and learning acquisition, application of a revised learning criterion enabling classification into good and poor learners based on individual learning curves revealed significant differences between percentages of sibling and healthy poor learners: healthy (13.2%), siblings (34.1%), patients (48.1%), yielding a moderate relative risk. Conclusions These results clarify previous discrepant findings pertaining to probabilistic category learning acquisition rate in schizophrenia and provide the first evidence for the relative risk of probabilistic category learning abnormalities in unaffected siblings of patients with schizophrenia, supporting genetic underpinnings of probabilistic category learning deficits in schizophrenia. These findings also raise questions regarding the contribution of antipsychotic medication to the probabilistic category learning deficit in schizophrenia. The distinction between good and poor learning may be used to inform genetic studies designed to detect schizophrenia risk alleles. PMID:20172502
Probabilistic liquefaction triggering based on the cone penetration test
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Tokimatsu, K.
2005-01-01
Performance-based earthquake engineering requires a probabilistic treatment of potential failure modes in order to accurately quantify the overall stability of the system. This paper is a summary of the application portions of the probabilistic liquefaction triggering correlations proposed recently proposed by Moss and co-workers. To enable probabilistic treatment of liquefaction triggering, the variables comprising the seismic load and the liquefaction resistance were treated as inherently uncertain. Supporting data from an extensive Cone Penetration Test (CPT)-based liquefaction case history database were used to develop a probabilistic correlation. The methods used to measure the uncertainty of the load and resistance variables, how the interactions of these variables were treated using Bayesian updating, and how reliability analysis was applied to produce curves of equal probability of liquefaction are presented. The normalization for effective overburden stress, the magnitude correlated duration weighting factor, and the non-linear shear mass participation factor used are also discussed.
Probabilistic thinking and death anxiety: a terror management based study.
Hayslip, Bert; Schuler, Eric R; Page, Kyle S; Carver, Kellye S
2014-01-01
Terror Management Theory has been utilized to understand how death can change behavioral outcomes and social dynamics. One area that is not well researched is why individuals willingly engage in risky behavior that could accelerate their mortality. One method of distancing a potential life threatening outcome when engaging in risky behaviors is through stacking probability in favor of the event not occurring, termed probabilistic thinking. The present study examines the creation and psychometric properties of the Probabilistic Thinking scale in a sample of young, middle aged, and older adults (n = 472). The scale demonstrated adequate internal consistency reliability for each of the four subscales, excellent overall internal consistency, and good construct validity regarding relationships with measures of death anxiety. Reliable age and gender effects in probabilistic thinking were also observed. The relationship of probabilistic thinking as part of a cultural buffer against death anxiety is discussed, as well as its implications for Terror Management research.
Idiosyncratic drug-induced agranulocytosis or acute neutropenia.
Andrès, Emmanuel; Maloisel, Frédéric
2008-01-01
Idiosyncratic drug-induced agranulocytosis or acute neutropenia is an adverse event resulting in a neutrophil count of under 0.5 x 10/l. Patients with such severe neutropenia are likely to experience life-threatening and sometimes fatal infections. Over the last 20 years, the incidence of idiosyncratic drug-induced agranulocytosis or acute neutropenia has remained stable at 2.4-15.4 cases per million, despite the emergence of new causative drugs: antibiotics (beta-lactam and cotrimoxazole), antiplatelet agents (ticlopidine), antithyroid drugs, sulfasalazine, neuroleptics (clozapine), antiepileptic agents (carbamazepine), nonsteroidal anti-inflammatory agents and dipyrone. Drug-induced agranulocytosis remains a serious adverse event due to the occurrence of severe sepsis with severe deep infections (such as pneumonia), septicemia and septic shock in around two thirds of patients. In this setting, old age (>65 years), septicemia or shock, metabolic disorders such as renal failure, and a neutrophil count under 0.1 x 10/l are poor prognostic factors. Nevertheless with appropriate management using preestablished procedures, with intravenous broad-spectrum antibiotic therapy and hematopoietic growth factors, the mortality rate is currently around 5%. Given the increased life expectancy and subsequent longer exposure to drugs, as well as the development of new agents, healthcare professionals should be aware of this adverse event and its management.
Development of probabilistic emission inventories of air toxics for Jacksonville, Florida, USA.
Zhao, Yuchao; Frey, H Christopher
2004-11-01
Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.
Bayesian Probabilistic Projections of Life Expectancy for All Countries
Raftery, Adrian E.; Chunn, Jennifer L.; Gerland, Patrick; Ševčíková, Hana
2014-01-01
We propose a Bayesian hierarchical model for producing probabilistic forecasts of male period life expectancy at birth for all the countries of the world from the present to 2100. Such forecasts would be an input to the production of probabilistic population projections for all countries, which is currently being considered by the United Nations. To evaluate the method, we did an out-of-sample cross-validation experiment, fitting the model to the data from 1950–1995, and using the estimated model to forecast for the subsequent ten years. The ten-year predictions had a mean absolute error of about 1 year, about 40% less than the current UN methodology. The probabilistic forecasts were calibrated, in the sense that (for example) the 80% prediction intervals contained the truth about 80% of the time. We illustrate our method with results from Madagascar (a typical country with steadily improving life expectancy), Latvia (a country that has had a mortality crisis), and Japan (a leading country). We also show aggregated results for South Asia, a region with eight countries. Free publicly available R software packages called bayesLife and bayesDem are available to implement the method. PMID:23494599
Offerman, Theo; Palley, Asa B
2016-01-01
Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of [Formula: see text], and (ii) for moderate beliefs agents simply report [Formula: see text]. Applying a prospect theory model of risk preferences, we show that loss aversion can explain both of these behavioral phenomena. Using the insights of this model, we develop a simple off-the-shelf probability assessment mechanism that encourages loss-averse agents to report true beliefs. In an experiment, we demonstrate the effectiveness of this modification in both eliminating uninformative reports and eliciting true probabilistic beliefs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Adarsh, E-mail: adarsh.gandhi@nih.gov; Guo, Tao, E-mail: tguo4@jhu.edu; Shah, Pranav
Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZmore » by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP{sup +/+} and TIRAP{sup −/−} mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP{sup +/+} mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP{sup −/−} mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies provide novel mechanistic insights into idiosyncratic hepatotoxicity.« less
NASA Astrophysics Data System (ADS)
Chen, Tzikang J.; Shiao, Michael
2016-04-01
This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.
Extending the Fellegi-Sunter probabilistic record linkage method for approximate field comparators.
DuVall, Scott L; Kerber, Richard A; Thomas, Alun
2010-02-01
Probabilistic record linkage is a method commonly used to determine whether demographic records refer to the same person. The Fellegi-Sunter method is a probabilistic approach that uses field weights based on log likelihood ratios to determine record similarity. This paper introduces an extension of the Fellegi-Sunter method that incorporates approximate field comparators in the calculation of field weights. The data warehouse of a large academic medical center was used as a case study. The approximate comparator extension was compared with the Fellegi-Sunter method in its ability to find duplicate records previously identified in the data warehouse using different demographic fields and matching cutoffs. The approximate comparator extension misclassified 25% fewer pairs and had a larger Welch's T statistic than the Fellegi-Sunter method for all field sets and matching cutoffs. The accuracy gain provided by the approximate comparator extension grew as less information was provided and as the matching cutoff increased. Given the ubiquity of linkage in both clinical and research settings, the incremental improvement of the extension has the potential to make a considerable impact.
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Efficient Sensitivity Methods for Probabilistic Lifing and Engine Prognostics
2010-09-01
AFRL-RX-WP-TR-2010-4297 EFFICIENT SENSITIVITY METHODS FOR PROBABILISTIC LIFING AND ENGINE PROGNOSTICS Harry Millwater , Ronald Bagley, Jose...5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Harry Millwater , Ronald Bagley, Jose Garza, D. Wagner, Andrew Bates, and Andy Voorhees 5d...Reliability Assessment, MIL-HDBK-1823, 30 April 1999. 9. Leverant GR, Millwater HR, McClung RC, Enright MP, A New Tool for Design and Certification of
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Krejsa, Martin; Janas, Petr; Yilmaz, Işık; Marschalko, Marian; Bouchal, Tomas
2013-01-01
The load-carrying system of each construction should fulfill several conditions which represent reliable criteria in the assessment procedure. It is the theory of structural reliability which determines probability of keeping required properties of constructions. Using this theory, it is possible to apply probabilistic computations based on the probability theory and mathematic statistics. Development of those methods has become more and more popular; it is used, in particular, in designs of load-carrying structures with the required level or reliability when at least some input variables in the design are random. The objective of this paper is to indicate the current scope which might be covered by the new method—Direct Optimized Probabilistic Calculation (DOProC) in assessments of reliability of load-carrying structures. DOProC uses a purely numerical approach without any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases, such approach results in considerably faster completion of computations. DOProC can be used to solve efficiently a number of probabilistic computations. A very good sphere of application for DOProC is the assessment of the bolt reinforcement in the underground and mining workings. For the purposes above, a special software application—“Anchor”—has been developed. PMID:23935412
Constructing Sample Space with Combinatorial Reasoning: A Mixed Methods Study
ERIC Educational Resources Information Center
McGalliard, William A., III.
2012-01-01
Recent curricular developments suggest that students at all levels need to be statistically literate and able to efficiently and accurately make probabilistic decisions. Furthermore, statistical literacy is a requirement to being a well-informed citizen of society. Research also recognizes that the ability to reason probabilistically is supported…
One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....
Three key areas of scientific inquiry in the study of human exposure to environmental contaminants are 1) assessment of aggregate (i.e., multi-pathway, multi-route) exposures, 2) application of probabilistic methods to exposure prediction, and 3) the interpretation of biomarker m...
EXPERIENCES WITH USING PROBABILISTIC EXPOSURE ANALYSIS METHODS IN THE U.S. EPA
Over the past decade various Offices and Programs within the U.S. EPA have either initiated or increased the development and application of probabilistic exposure analysis models. These models have been applied to a broad range of research or regulatory problems in EPA, such as e...
NASA Astrophysics Data System (ADS)
Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.
2013-12-01
Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.
[Cognitive therapy has been shown to be effective in panic disorder].
d'Elia, G; Holsten, F
1998-10-28
Cognitive therapists suggest panic disorder to result from 'catastrophic' misinterpretation of bodily sensations. The patient suffering from panic disorder consistently misinterprets normal anxiety responses, such as racing heart, breathlessness or dizziness, as indicating impending disaster. Cognitive therapists, who challenge the traditional view of anxiety as 'free-floating' and irrational, argue that the patient's anxiety is an understandable response to their misinterpretations, and advocate a treatment method based on the patient's specific cognitive make-up and on the principle of collaborative empiricism. The patient is gently guided to identify and challenge idiosyncratic cognitions, and to consider alternative interpretations of danger signs. The article provides an outline of the treatment method and its empirical support.
Bayesian-information-gap decision theory with an application to CO 2 sequestration
O'Malley, D.; Vesselinov, V. V.
2015-09-04
Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
González, Eduardo; Sher, Anna A.; Anderson, Robert M.; Bay, Robin F.; Bean, Daniel W.; Bissonnete, Gabriel J.; Cooper, David J.; Dohrenwend, Kara; Eichhorst, Kim D.; El Waer, Hisham; Kennard, Deborah K.; Harms-Weissinger, Rebecca; Henry, Annie L.; Makarick, Lori J.; Ostoja, Steven M.; Reynolds, Lindsay V.; Robinson, W. Wright; Shafroth, Patrick B.; Tabacchi, Erich
2017-01-01
Control of invasive species within ecosystems may induce secondary invasions of non-target invaders replacing the first alien. We used four plant species listed as noxious by local authorities in riparian systems to discern whether 1) the severity of these secondary invasions was related to the control method applied to the first alien; and 2) which species that were secondary invaders persisted over time. In a collaborative study by 16 research institutions, we monitored plant species composition following control of non-native Tamarix trees along southwestern U.S. rivers using defoliation by an introduced biocontrol beetle, and three physical removal methods: mechanical using saws, heavy machinery, and burning in 244 treated and 79 untreated sites across six U.S. states. Physical removal favored secondary invasions immediately after Tamarix removal (0–3 yrs.), while in the biocontrol treatment, secondary invasions manifested later (> 5 yrs.). Within this general trend, the response of weeds to control was idiosyncratic; dependent on treatment type and invader. Two annual tumbleweeds that only reproduce by seed (Bassia scoparia and Salsola tragus) peaked immediately after physical Tamarix removal and persisted over time, even after herbicide application. Acroptilon repens, a perennial forb that vigorously reproduces by rhizomes, and Bromus tectorum, a very frequent annual grass before removal that only reproduces by seed, were most successful at biocontrol sites, and progressively spread as the canopy layer opened. These results demonstrate that strategies to control Tamarix affect secondary invasions differently among species and that time since disturbance is an important, generally overlooked, factor affecting response.
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue
NASA Astrophysics Data System (ADS)
Kree, P.; Soize, C.
The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.
Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.P.; Stover, R.L.; Hashimoto, P.S.
1989-01-01
Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.
Bayesian Probabilistic Projection of International Migration.
Azose, Jonathan J; Raftery, Adrian E
2015-10-01
We propose a method for obtaining joint probabilistic projections of migration for all countries, broken down by age and sex. Joint trajectories for all countries are constrained to satisfy the requirement of zero global net migration. We evaluate our model using out-of-sample validation and compare point projections to the projected migration rates from a persistence model similar to the method used in the United Nations' World Population Prospects, and also to a state-of-the-art gravity model.
Probabilistic structural analysis methods and applications
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.
1988-01-01
An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.
Uncertainty characterization approaches for risk assessment of DBPs in drinking water: a review.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2009-04-01
The management of risk from disinfection by-products (DBPs) in drinking water has become a critical issue over the last three decades. The areas of concern for risk management studies include (i) human health risk from DBPs, (ii) disinfection performance, (iii) technical feasibility (maintenance, management and operation) of treatment and disinfection approaches, and (iv) cost. Human health risk assessment is typically considered to be the most important phase of the risk-based decision-making or risk management studies. The factors associated with health risk assessment and other attributes are generally prone to considerable uncertainty. Probabilistic and non-probabilistic approaches have both been employed to characterize uncertainties associated with risk assessment. The probabilistic approaches include sampling-based methods (typically Monte Carlo simulation and stratified sampling) and asymptotic (approximate) reliability analysis (first- and second-order reliability methods). Non-probabilistic approaches include interval analysis, fuzzy set theory and possibility theory. However, it is generally accepted that no single method is suitable for the entire spectrum of problems encountered in uncertainty analyses for risk assessment. Each method has its own set of advantages and limitations. In this paper, the feasibility and limitations of different uncertainty analysis approaches are outlined for risk management studies of drinking water supply systems. The findings assist in the selection of suitable approaches for uncertainty analysis in risk management studies associated with DBPs and human health risk.
Constructing probabilistic scenarios for wide-area solar power generation
Woodruff, David L.; Deride, Julio; Staid, Andrea; ...
2017-12-22
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Constructing probabilistic scenarios for wide-area solar power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David L.; Deride, Julio; Staid, Andrea
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
ERIC Educational Resources Information Center
Vahabi, Mandana
2010-01-01
Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…
On the Measurement and Properties of Ambiguity in Probabilistic Expectations
ERIC Educational Resources Information Center
Pickett, Justin T.; Loughran, Thomas A.; Bushway, Shawn
2015-01-01
Survey respondents' probabilistic expectations are now widely used in many fields to study risk perceptions, decision-making processes, and behavior. Researchers have developed several methods to account for the fact that the probability of an event may be more ambiguous for some respondents than others, but few prior studies have empirically…
2018-03-01
MARCH 2018 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE RESEARCH LABORATORY INFORMATION...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory/RITA DARPA 525 Brooks Road 675 North Randolph Street Rome...1 3.0 METHODS , ASSUMPTIONS, AND PROCEDURES
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
Development of probabilistic regional climate scenario in East Asia
NASA Astrophysics Data System (ADS)
Dairaku, K.; Ueno, G.; Ishizaki, N. N.
2015-12-01
Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in East Asia (CORDEX-EA and Japan), the probability distribution of 2m air temperature was estimated by using developed regression model. The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. Probabilistic climate information in present (1969-1998) and future (2069-2098) climate was developed using CMIP3 SRES A1b scenarios 21 models and the observation data (CRU_TS3.22 & University of Delaware in CORDEX-EA, NIAES AMeDAS mesh data in Japan). The prototype of probabilistic information in CORDEX-EA and Japan represent the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Appropriate combination of statistical methods and optimization of climate ensemble experiments using multi-General Circulation Models (GCMs) and multi-regional climate models (RCMs) ensemble downscaling experiments are investigated.
Probabilistic Design Storm Method for Improved Flood Estimation in Ungauged Catchments
NASA Astrophysics Data System (ADS)
Berk, Mario; Å pačková, Olga; Straub, Daniel
2017-12-01
The design storm approach with event-based rainfall-runoff models is a standard method for design flood estimation in ungauged catchments. The approach is conceptually simple and computationally inexpensive, but the underlying assumptions can lead to flawed design flood estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall and runoff neglects uncertainty in other important parameters, leading to an underestimation of design floods. The selection of a single representative critical rainfall duration in the analysis leads to an additional underestimation of design floods. One way to overcome these nonconservative approximations is the use of a continuous rainfall-runoff model, which is associated with significant computational cost and requires rainfall input data that are often not readily available. As an alternative, we propose a novel Probabilistic Design Storm method that combines event-based flood modeling with basic probabilistic models and concepts from reliability analysis, in particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the limitations of the standard design storm approach, while utilizing the same input information and models without excessive computational effort. Additionally, the Probabilistic Design Storm method allows deriving so-called design charts, which summarize representative design storm events (combinations of rainfall intensity and other relevant parameters) for floods with different return periods. These can be used to study the relationship between rainfall and runoff return periods. We demonstrate, investigate, and validate the method by means of an example catchment located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used in practice.
Evidence-based risk communication: a systematic review.
Zipkin, Daniella A; Umscheid, Craig A; Keating, Nancy L; Allen, Elizabeth; Aung, KoKo; Beyth, Rebecca; Kaatz, Scott; Mann, Devin M; Sussman, Jeremy B; Korenstein, Deborah; Schardt, Connie; Nagi, Avishek; Sloane, Richard; Feldstein, David A
2014-08-19
Effective communication of risks and benefits to patients is critical for shared decision making. To review the comparative effectiveness of methods of communicating probabilistic information to patients that maximize their cognitive and behavioral outcomes. PubMed (1966 to March 2014) and CINAHL, EMBASE, and the Cochrane Central Register of Controlled Trials (1966 to December 2011) using several keywords and structured terms. Prospective or cross-sectional studies that recruited patients or healthy volunteers and compared any method of communicating probabilistic information with another method. Two independent reviewers extracted study characteristics and assessed risk of bias. Eighty-four articles, representing 91 unique studies, evaluated various methods of numerical and visual risk display across several risk scenarios and with diverse outcome measures. Studies showed that visual aids (icon arrays and bar graphs) improved patients' understanding and satisfaction. Presentations including absolute risk reductions were better than those including relative risk reductions for maximizing accuracy and seemed less likely than presentations with relative risk reductions to influence decisions to accept therapy. The presentation of numbers needed to treat reduced understanding. Comparative effects of presentations of frequencies (such as 1 in 5) versus event rates (percentages, such as 20%) were inconclusive. Most studies were small and highly variable in terms of setting, context, and methods of administering interventions. Visual aids and absolute risk formats can improve patients' understanding of probabilistic information, whereas numbers needed to treat can lessen their understanding. Due to study heterogeneity, the superiority of any single method for conveying probabilistic information is not established, but there are several good options to help clinicians communicate with patients. None.
Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit.
Frommholz, Ingo; Roelleke, Thomas
2016-01-01
Probabilistic Datalog (PDatalog, proposed in 1995) is a probabilistic variant of Datalog and a nice conceptual idea to model Information Retrieval in a logical, rule-based programming paradigm. Making PDatalog work in real-world applications requires more than probabilistic facts and rules, and the semantics associated with the evaluation of the programs. We report in this paper some of the key features of the HySpirit system required to scale the execution of PDatalog programs. Firstly, there is the requirement to express probability estimation in PDatalog. Secondly, fuzzy-like predicates are required to model vague predicates (e.g. vague match of attributes such as age or price). Thirdly, to handle large data sets there are scalability issues to be addressed, and therefore, HySpirit provides probabilistic relational indexes and parallel and distributed processing . The main contribution of this paper is a consolidated view on the methods of the HySpirit system to make PDatalog applicable in real-scale applications that involve a wide range of requirements typical for data (information) management and analysis.
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
NASA Astrophysics Data System (ADS)
Yu, Bo; Ning, Chao-lie; Li, Bing
2017-03-01
A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.
Rieger, Martina; Bart, Victoria K. E.
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing. PMID:28018256
Rieger, Martina; Bart, Victoria K E
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing.
Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.
Andrews, T J; Coppola, D M
1999-08-01
Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.
Edema associated with quetiapine
Koleva, Hristina K.; Erickson, Mark A.; Vanderlip, Erik R.; Tansey, Janeta; Mac, Joseph; Fiedorowicz, Jess G.
2010-01-01
Background Edema associated with quetiapine has been described in only one case report to date and represents a potentially serious adverse reaction. Methods We present a case series of three patients who developed bilateral leg edema following initiation of quetiapine. Results One of these patients had a recurrence of edema with subsequent rechallenge. Another patient developed quetiapine-induced edema following a prior episode of olanzapine-induced edema. All the cases present a compelling temporal relationship between the drug challenge and the adverse event. Conclusions Prompt recognition and intervention with discontinuation of the offending agent is important for this potentially serious, seemingly idiosyncratic, vascular complication. PMID:19439156
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K, Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.
Risk assessment for construction projects of transport infrastructure objects
NASA Astrophysics Data System (ADS)
Titarenko, Boris
2017-10-01
The paper analyzes and compares different methods of risk assessment for construction projects of transport objects. The management of such type of projects demands application of special probabilistic methods due to large level of uncertainty of their implementation. Risk management in the projects requires the use of probabilistic and statistical methods. The aim of the work is to develop a methodology for using traditional methods in combination with robust methods that allow obtaining reliable risk assessments in projects. The robust approach is based on the principle of maximum likelihood and in assessing the risk allows the researcher to obtain reliable results in situations of great uncertainty. The application of robust procedures allows to carry out a quantitative assessment of the main risk indicators of projects when solving the tasks of managing innovation-investment projects. Calculation of damage from the onset of a risky event is possible by any competent specialist. And an assessment of the probability of occurrence of a risky event requires the involvement of special probabilistic methods based on the proposed robust approaches. Practice shows the effectiveness and reliability of results. The methodology developed in the article can be used to create information technologies and their application in automated control systems for complex projects.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
NASA Technical Reports Server (NTRS)
Rajagopal, K. R.
1992-01-01
The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Probabilistic topic modeling for the analysis and classification of genomic sequences
2015-01-01
Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734
Instabilities in large economies: aggregate volatility without idiosyncratic shocks
NASA Astrophysics Data System (ADS)
Bonart, Julius; Bouchaud, Jean-Philippe; Landier, Augustin; Thesmar, David
2014-10-01
We study a dynamical model of interconnected firms which allows for certain market imperfections and frictions, restricted here to be myopic price forecasts and slow adjustment of production. Whereas the standard rational equilibrium is still formally a stationary solution of the dynamics, we show that this equilibrium becomes linearly unstable in a whole region of parameter space. When agents attempt to reach the optimal production target too quickly, coordination breaks down and the dynamics becomes chaotic. In the unstable, ‘turbulent’ phase, the aggregate volatility of the total output remains substantial even when the amplitude of idiosyncratic shocks goes to zero or when the size of the economy becomes large. In other words, crises become endogenous. This suggests an interesting resolution of the ‘small shocks, large business cycles’ puzzle.
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.
NASA Astrophysics Data System (ADS)
Sanchez, J.
2018-06-01
In this paper, the application and analysis of the asymptotic approximation method to a single degree-of-freedom has recently been produced. The original concepts are summarized, and the necessary probabilistic concepts are developed and applied to single degree-of-freedom systems. Then, these concepts are united, and the theoretical and computational models are developed. To determine the viability of the proposed method in a probabilistic context, numerical experiments are conducted, and consist of a frequency analysis, analysis of the effects of measurement noise, and a statistical analysis. In addition, two examples are presented and discussed.
Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions
2017-01-01
A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy. PMID:29209469
Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions.
Nantha, Yogarabindranath Swarna
2017-11-01
A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
1983-07-01
be a useful tool for assessing kowledge , but there are several problems with this item format. These problems include the possibility of an examinee...1959. -Kane, M. T., & Moloney, J. M. The effect of SSM grading on reliability when residual items have no discriminating power . Paper presented at
Methods for estimating the amount of vernal pool habitat in the northeastern United States
Van Meter, R.; Bailey, L.L.; Grant, E.H.C.
2008-01-01
The loss of small, seasonal wetlands is a major concern for a variety of state, local, and federal organizations in the northeastern U.S. Identifying and estimating the number of vernal pools within a given region is critical to developing long-term conservation and management strategies for these unique habitats and their faunal communities. We use three probabilistic sampling methods (simple random sampling, adaptive cluster sampling, and the dual frame method) to estimate the number of vernal pools on protected, forested lands. Overall, these methods yielded similar values of vernal pool abundance for each study area, and suggest that photographic interpretation alone may grossly underestimate the number of vernal pools in forested habitats. We compare the relative efficiency of each method and discuss ways of improving precision. Acknowledging that the objectives of a study or monitoring program ultimately determine which sampling designs are most appropriate, we recommend that some type of probabilistic sampling method be applied. We view the dual-frame method as an especially useful way of combining incomplete remote sensing methods, such as aerial photograph interpretation, with a probabilistic sample of the entire area of interest to provide more robust estimates of the number of vernal pools and a more representative sample of existing vernal pool habitats.
Probabilistic Assessment of Fracture Progression in Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank
1999-01-01
This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.
Probabilistic segmentation and intensity estimation for microarray images.
Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro
2006-01-01
We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.
Probabilistic biological network alignment.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.
Hiraishi, Kunihiko
2014-01-01
One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766
Probabilistic Component Mode Synthesis of Nondeterministic Substructures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1996-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
A probabilistic method for testing and estimating selection differences between populations
He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li
2015-01-01
Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. PMID:26463656
Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R
2018-02-19
We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.
Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Briscoe, Victoria (Compiler)
2002-01-01
These are the proceedings of the 5th Annual FAA/Air Force/NASA/Navy Workshop on the Probabilistic Methods for Gas Turbine Engines hosted by NASA Glenn Research Center and held at the Holiday Inn Cleveland West. The history of this series of workshops stems from the recognition that both military and commercial aircraft engines are inevitably subjected to similar design and manufacturing principles. As such, it was eminently logical to combine knowledge bases on how some of these overlapping principles and methodologies are being applied. We have started the process by creating synergy and cooperation between the FAA, Air Force, Navy, and NASA in these workshops. The recent 3-day workshop was specifically designed to benefit the development of probabilistic methods for gas turbine engines by addressing recent technical accomplishments and forging new ideas. We accomplished our goals of minimizing duplication, maximizing the dissemination of information, and improving program planning to all concerned. This proceeding includes the final agenda, abstracts, presentations, and panel notes, plus the valuable contact information from our presenters and attendees. We hope that this proceeding will be a tool to enhance understanding of the developers and users of probabilistic methods. The fifth workshop doubled its attendance and had the success of collaboration with the many diverse groups represented including government, industry, academia, and our international partners. So, "Start your engines!" and utilize these proceedings towards creating safer and more reliable gas turbine engines for our commercial and military partners.
Evaluation of Lithofacies Up-Scaling Methods for Probabilistic Prediction of Carbon Dioxide Behavior
NASA Astrophysics Data System (ADS)
Park, J. Y.; Lee, S.; Lee, Y. I.; Kihm, J. H.; Kim, J. M.
2017-12-01
Behavior of carbon dioxide injected into target reservoir (storage) formations is highly dependent on heterogeneities of geologic lithofacies and properties. These heterogeneous lithofacies and properties basically have probabilistic characteristics. Thus, their probabilistic evaluation has to be implemented properly into predicting behavior of injected carbon dioxide in heterogeneous storage formations. In this study, a series of three-dimensional geologic modeling is performed first using SKUA-GOCAD (ASGA and Paradigm) to establish lithofacies models of the Janggi Conglomerate in the Janggi Basin, Korea within a modeling domain. The Janggi Conglomerate is composed of mudstone, sandstone, and conglomerate, and it has been identified as a potential reservoir rock (clastic saline formation) for geologic carbon dioxide storage. Its lithofacies information are obtained from four boreholes and used in lithofacies modeling. Three different up-scaling methods (i.e., nearest to cell center, largest proportion, and random) are applied, and lithofacies modeling is performed 100 times for each up-scaling method. The lithofacies models are then compared and analyzed with the borehole data to evaluate the relative suitability of the three up-scaling methods. Finally, the lithofacies models are converted into coarser lithofacies models within the same modeling domain with larger grid blocks using the three up-scaling methods, and a series of multiphase thermo-hydrological numerical simulation is performed using TOUGH2-MP (Zhang et al., 2008) to predict probabilistically behavior of injected carbon dioxide. The coarser lithofacies models are also compared and analyzed with the borehole data and finer lithofacies models to evaluate the relative suitability of the three up-scaling methods. Three-dimensional geologic modeling, up-scaling, and multiphase thermo-hydrological numerical simulation as linked methodologies presented in this study can be utilized as a practical probabilistic evaluation tool to predict behavior of injected carbon dioxide and even to analyze its leakage risk. This work was supported by the Korea CCS 2020 Project of the Korea Carbon Capture and Sequestration R&D Center (KCRC) funded by the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Korea.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
Sarma-based key-group method for rock slope reliability analyses
NASA Astrophysics Data System (ADS)
Yarahmadi Bafghi, A. R.; Verdel, T.
2005-08-01
The methods used in conducting static stability analyses have remained pertinent to this day for reasons of both simplicity and speed of execution. The most well-known of these methods for purposes of stability analysis of fractured rock masses is the key-block method (KBM).This paper proposes an extension to the KBM, called the key-group method (KGM), which combines not only individual key-blocks but also groups of collapsable blocks into an iterative and progressive analysis of the stability of discontinuous rock slopes. To take intra-group forces into account, the Sarma method has been implemented within the KGM in order to generate a Sarma-based KGM, abbreviated SKGM. We will discuss herein the hypothesis behind this new method, details regarding its implementation, and validation through comparison with results obtained from the distinct element method.Furthermore, as an alternative to deterministic methods, reliability analyses or probabilistic analyses have been proposed to take account of the uncertainty in analytical parameters and models. The FOSM and ASM probabilistic methods could be implemented within the KGM and SKGM framework in order to take account of the uncertainty due to physical and mechanical data (density, cohesion and angle of friction). We will then show how such reliability analyses can be introduced into SKGM to give rise to the probabilistic SKGM (PSKGM) and how it can be used for rock slope reliability analyses. Copyright
Scalable Quantum Networks for Distributed Computing and Sensing
2016-04-01
probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01
Effects of delay and probability combinations on discounting in humans
Cox, David J.; Dallery, Jesse
2017-01-01
To determine discount rates, researchers typically adjust the amount of an immediate or certain option relative to a delayed or uncertain option. Because this adjusting amount method can be relatively time consuming, researchers have developed more efficient procedures. One such procedure is a 5-trial adjusting delay procedure, which measures the delay at which an amount of money loses half of its value (e.g., $1000 is valued at $500 with a 10-year delay to its receipt). Experiment 1 (n = 212) used 5-trial adjusting delay or probability tasks to measure delay discounting of losses, probabilistic gains, and probabilistic losses. Experiment 2 (n = 98) assessed combined probabilistic and delayed alternatives. In both experiments, we compared results from 5-trial adjusting delay or probability tasks to traditional adjusting amount procedures. Results suggest both procedures produced similar rates of probability and delay discounting in six out of seven comparisons. A magnitude effect consistent with previous research was observed for probabilistic gains and losses, but not for delayed losses. Results also suggest that delay and probability interact to determine the value of money. Five-trial methods may allow researchers to assess discounting more efficiently as well as study more complex choice scenarios. PMID:27498073
Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model.
Liu, Xueliang; Wang, Meng; Yin, Bao-Cai; Huet, Benoit; Li, Xuelong
2015-11-01
Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.
Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yin; Gao, Wenzhong; Momoh, James
In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgridmore » system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.« less
A Probabilistic Design Method Applied to Smart Composite Structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1995-01-01
A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.
Sjöberg, C; Ahnesjö, A
2013-06-01
Label fusion multi-atlas approaches for image segmentation can give better segmentation results than single atlas methods. We present a multi-atlas label fusion strategy based on probabilistic weighting of distance maps. Relationships between image similarities and segmentation similarities are estimated in a learning phase and used to derive fusion weights that are proportional to the probability for each atlas to improve the segmentation result. The method was tested using a leave-one-out strategy on a database of 21 pre-segmented prostate patients for different image registrations combined with different image similarity scorings. The probabilistic weighting yields results that are equal or better compared to both fusion with equal weights and results using the STAPLE algorithm. Results from the experiments demonstrate that label fusion by weighted distance maps is feasible, and that probabilistic weighted fusion improves segmentation quality more the stronger the individual atlas segmentation quality depends on the corresponding registered image similarity. The regions used for evaluation of the image similarity measures were found to be more important than the choice of similarity measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Merchant, D. H.
1976-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.
CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O.
2006-01-01
This paper presents a complete methodology for both probabilistic and deterministic assessment of seismic soil liquefaction triggering potential based on the cone penetration test (CPT). A comprehensive worldwide set of CPT-based liquefaction field case histories were compiled and back analyzed, and the data then used to develop probabilistic triggering correlations. Issues investigated in this study include improved normalization of CPT resistance measurements for the influence of effective overburden stress, and adjustment to CPT tip resistance for the potential influence of "thin" liquefiable layers. The effects of soil type and soil character (i.e., "fines" adjustment) for the new correlations are based on a combination of CPT tip and sleeve resistance. To quantify probability for performancebased engineering applications, Bayesian "regression" methods were used, and the uncertainties of all variables comprising both the seismic demand and the liquefaction resistance were estimated and included in the analysis. The resulting correlations were developed using a Bayesian framework and are presented in both probabilistic and deterministic formats. The results are compared to previous probabilistic and deterministic correlations. ?? 2006 ASCE.
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.
2011-12-01
The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
Probabilistic combination of static and dynamic gait features for verification
NASA Astrophysics Data System (ADS)
Bazin, Alex I.; Nixon, Mark S.
2005-03-01
This paper describes a novel probabilistic framework for biometric identification and data fusion. Based on intra and inter-class variation extracted from training data, posterior probabilities describing the similarity between two feature vectors may be directly calculated from the data using the logistic function and Bayes rule. Using a large publicly available database we show the two imbalanced gait modalities may be fused using this framework. All fusion methods tested provide an improvement over the best modality, with the weighted sum rule giving the best performance, hence showing that highly imbalanced classifiers may be fused in a probabilistic setting; improving not only the performance, but also generalized application capability.
A generative, probabilistic model of local protein structure.
Boomsma, Wouter; Mardia, Kanti V; Taylor, Charles C; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas
2008-07-01
Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.
Campbell, Kieran R.
2016-01-01
Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K. Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.
Feature selection using probabilistic prediction of support vector regression.
Yang, Jian-Bo; Ong, Chong-Jin
2011-06-01
This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.
Methods for the behavioral, educational, and social sciences: an R package.
Kelley, Ken
2007-11-01
Methods for the Behavioral, Educational, and Social Sciences (MBESS; Kelley, 2007b) is an open source package for R (R Development Core Team, 2007b), an open source statistical programming language and environment. MBESS implements methods that are not widely available elsewhere, yet are especially helpful for the idiosyncratic techniques used within the behavioral, educational, and social sciences. The major categories of functions are those that relate to confidence interval formation for noncentral t, F, and chi2 parameters, confidence intervals for standardized effect sizes (which require noncentral distributions), and sample size planning issues from the power analytic and accuracy in parameter estimation perspectives. In addition, MBESS contains collections of other functions that should be helpful to substantive researchers and methodologists. MBESS is a long-term project that will continue to be updated and expanded so that important methods can continue to be made available to researchers in the behavioral, educational, and social sciences.
Probabilistic Sizing and Verification of Space Ceramic Structures
NASA Astrophysics Data System (ADS)
Denaux, David; Ballhause, Dirk; Logut, Daniel; Lucarelli, Stefano; Coe, Graham; Laine, Benoit
2012-07-01
Sizing of ceramic parts is best optimised using a probabilistic approach which takes into account the preexisting flaw distribution in the ceramic part to compute a probability of failure of the part depending on the applied load, instead of a maximum allowable load as for a metallic part. This requires extensive knowledge of the material itself but also an accurate control of the manufacturing process. In the end, risk reduction approaches such as proof testing may be used to lower the final probability of failure of the part. Sizing and verification of ceramic space structures have been performed by Astrium for more than 15 years, both with Zerodur and SiC: Silex telescope structure, Seviri primary mirror, Herschel telescope, Formosat-2 instrument, and other ceramic structures flying today. Throughout this period of time, Astrium has investigated and developed experimental ceramic analysis tools based on the Weibull probabilistic approach. In the scope of the ESA/ESTEC study: “Mechanical Design and Verification Methodologies for Ceramic Structures”, which is to be concluded in the beginning of 2012, existing theories, technical state-of-the-art from international experts, and Astrium experience with probabilistic analysis tools have been synthesized into a comprehensive sizing and verification method for ceramics. Both classical deterministic and more optimised probabilistic methods are available, depending on the criticality of the item and on optimisation needs. The methodology, based on proven theory, has been successfully applied to demonstration cases and has shown its practical feasibility.
Intermingling and disordered logic as influences on schizophrenic 'thought disorders'.
Harrow, M; Prosen, M
1978-10-01
A technique was devised to elicit bizarre or idiosyncratic responses from 30 young schizophrenics, who were then re-interviewed a week later to determine the reasons for each patient's idiosyncratic verbalizations. Taped interviews of the schizophrenics, scored along a series of rating scales, indicated: (1) An overt mechanism involved in bizarre schizophrenic language is a tendency to intermingle into their responses material from their current and past experiences. (2) Careful analysis suggests that the seemingly bizarre intermingled material of schizophrenics usually is close to the original "correct" topic. (3) The bizarre intermingled material is related to the patients' personal lives. (4) The intermingled material does not usually represent a failure to screen out or repress primitive drive dominated sexual or aggressive material. (5) Disordered logic was not a major factor in accounting for bizarre schizophrenic language.
Suh, Joyce; Eigsti, Inge-Marie; Naigles, Letitia; Barton, Marianne; Kelley, Elizabeth; Fein, Deborah
2014-01-01
Autism Spectrum Disorders (ASDs) have traditionally been considered a lifelong condition; however, a subset of people makes such significant improvements that they no longer meet diagnostic criteria for an ASD. The current study examines whether these “optimal outcome” (OO) children and adolescents continue to have subtle pragmatic language deficits. The narratives of 15 OO individuals, 15 high-functioning individuals with an ASD (HFA), and 15 typically developing peers (TD) were evaluated. Despite average cognitive functioning, the ASD group produced narratives with fewer central “gist” descriptions, more ambiguous pronominal referents, idiosyncratic language, speech dysfluency (more repetitions and self-corrections), and were less likely to name story characters. The OO participants displayed only very subtle pragmatic and higher-level language deficits (idiosyncratic language and self-correction dysfluency). PMID:24500659
Minimizing AED adverse effects: improving quality of life in the interictal state in epilepsy care.
St Louis, Erik K; Louis, Erik K
2009-06-01
The goals of epilepsy therapy are to achieve seizure freedom while minimizing adverse effects of treatment. However, producing seizure-freedom is often overemphasized, at the expense of inducing adverse effects of treatment. All antiepileptic drugs (AEDs) have the potential to cause dose-related, "neurotoxic" adverse effects (i.e., drowsiness, fatigue, dizziness, blurry vision, and incoordination). Such adverse effects are common, especially when initiating AED therapy and with polytherapy. Dose-related adverse effects may be obviated in most patients by dose reduction of monotherapy, reduction or elimination of polytherapy, or substituting for a better tolerated AED. Additionally, all older and several newer AEDs have idiosyncratic adverse effects which usually require withdrawal in an affected patient, including serious rash (i.e., Stevens-Johnson Syndrome, toxic epidermal necrolysis), hematologic dyscrasias, hepatotoxicity, teratogenesis in women of child bearing potential, bone density loss, neuropathy, and severe gingival hyperplasia. Unfortunately, occurrence of idiosyncratic AED adverse effects cannot be predicted or, in most cases, prevented in susceptible patients. This article reviews a practical approach for the definition and identification of adverse effects of epilepsy therapies, and reviews the literature demonstrating that adverse effects result in detrimental quality of life in epilepsy patients. Strategies for minimizing AED adverse effects by reduction or elimination of AED polytherapy, appropriately employing drug-sparing therapies, and optimally administering AEDs are outlined, including tenets of AED selection, titration, therapeutic AED laboratory monitoring, and avoidance of chronic idiosyncratic adverse effects.
Idiosyncratic risk in the Dow Jones Eurostoxx50 Index
NASA Astrophysics Data System (ADS)
Daly, Kevin; Vo, Vinh
2008-07-01
Recent evidence by Campbell et al. [J.Y. Campbell, M. Lettau B.G. Malkiel, Y. Xu, Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk, The Journal of Finance (February) (2001)] shows an increase in firm-level volatility and a decline of the correlation among stock returns in the US. In relation to the Euro-Area stock markets, we find that both aggregate firm-level volatility and average stock market correlation have trended upwards. We estimate a linear model of the market risk-return relationship nested in an EGARCH(1, 1)-M model for conditional second moments. We then show that traditional estimates of the conditional risk-return relationship, that use ex-post excess-returns as the conditioning information set, lead to joint tests of the theoretical model (usually the ICAPM) and of the Efficient Market Hypothesis in its strong form. To overcome this problem we propose alternative measures of expected market risk based on implied volatility extracted from traded option prices and we discuss the conditions under which implied volatility depends solely on expected risk. We then regress market excess-returns on lagged market implied variance computed from implied market volatility to estimate the relationship between expected market excess-returns and expected market risk.We investigate whether, as predicted by the ICAPM, the expected market risk is the main factor in explaining the market risk premium and the latter is independent of aggregate idiosyncratic risk.
Probabilistic simulation of multi-scale composite behavior
NASA Technical Reports Server (NTRS)
Liaw, D. G.; Shiao, M. C.; Singhal, S. N.; Chamis, Christos C.
1993-01-01
A methodology is developed to computationally assess the probabilistic composite material properties at all composite scale levels due to the uncertainties in the constituent (fiber and matrix) properties and in the fabrication process variables. The methodology is computationally efficient for simulating the probability distributions of material properties. The sensitivity of the probabilistic composite material property to each random variable is determined. This information can be used to reduce undesirable uncertainties in material properties at the macro scale of the composite by reducing the uncertainties in the most influential random variables at the micro scale. This methodology was implemented into the computer code PICAN (Probabilistic Integrated Composite ANalyzer). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in the material properties of a typical laminate and comparing the results with the Monte Carlo simulation method. The experimental data of composite material properties at all scales fall within the scatters predicted by PICAN.
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Heck, Daniel W; Hilbig, Benjamin E; Moshagen, Morten
2017-08-01
Decision strategies explain how people integrate multiple sources of information to make probabilistic inferences. In the past decade, increasingly sophisticated methods have been developed to determine which strategy explains decision behavior best. We extend these efforts to test psychologically more plausible models (i.e., strategies), including a new, probabilistic version of the take-the-best (TTB) heuristic that implements a rank order of error probabilities based on sequential processing. Within a coherent statistical framework, deterministic and probabilistic versions of TTB and other strategies can directly be compared using model selection by minimum description length or the Bayes factor. In an experiment with inferences from given information, only three of 104 participants were best described by the psychologically plausible, probabilistic version of TTB. Similar as in previous studies, most participants were classified as users of weighted-additive, a strategy that integrates all available information and approximates rational decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Probabilistic double guarantee kidnapping detection in SLAM.
Tian, Yang; Ma, Shugen
2016-01-01
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.
Exploration of Advanced Probabilistic and Stochastic Design Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
2003-01-01
The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and tutorials are attached in electronic form with the enclosed CD.
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
A Guide to the Literature on Learning Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Friedland, Peter (Technical Monitor)
1994-01-01
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.
PREDICT: Privacy and Security Enhancing Dynamic Information Monitoring
2015-08-03
consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided local...12], consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided...these methods achieve high sensing coverage with low cost using cloaked locations [3]. In follow-on work, the issue of mobility is addressed. Task
The purpose of this SOP is to describe the procedures undertaken to calculate the ingestion exposure using composite food chemical residue values from the day of direct measurements. The calculation is based on the probabilistic approach. This SOP uses data that have been proper...
Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment
NASA Technical Reports Server (NTRS)
Yackovetsky, Robert (Technical Monitor)
2002-01-01
The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.
A probabilistic method for testing and estimating selection differences between populations.
He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li
2015-12-01
Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. © 2015 He et al.; Published by Cold Spring Harbor Laboratory Press.
Middlebrooks, E H; Tuna, I S; Grewal, S S; Almeida, L; Heckman, M G; Lesser, E R; Foote, K D; Okun, M S; Holanda, V M
2018-06-01
Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings. © 2018 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe
2018-06-01
Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.
NASA Astrophysics Data System (ADS)
Ishizaki, N. N.; Dairaku, K.; Ueno, G.
2016-12-01
We have developed a statistical downscaling method for estimating probabilistic climate projection using CMIP5 multi general circulation models (GCMs). A regression model was established so that the combination of weights of GCMs reflects the characteristics of the variation of observations at each grid point. Cross validations were conducted to select GCMs and to evaluate the regression model to avoid multicollinearity. By using spatially high resolution observation system, we conducted statistically downscaled probabilistic climate projections with 20-km horizontal grid spacing. Root mean squared errors for monthly mean air surface temperature and precipitation estimated by the regression method were the smallest compared with the results derived from a simple ensemble mean of GCMs and a cumulative distribution function based bias correction method. Projected changes in the mean temperature and precipitation were basically similar to those of the simple ensemble mean of GCMs. Mean precipitation was generally projected to increase associated with increased temperature and consequent increased moisture content in the air. Weakening of the winter monsoon may affect precipitation decrease in some areas. Temperature increase in excess of 4 K was expected in most areas of Japan in the end of 21st century under RCP8.5 scenario. The estimated probability of monthly precipitation exceeding 300 mm would increase around the Pacific side during the summer and the Japan Sea side during the winter season. This probabilistic climate projection based on the statistical method can be expected to bring useful information to the impact studies and risk assessments.
Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill
2012-01-01
In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1995-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature, researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. This paper presents a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
Prakash, Chandra; Sharma, Raman; Gleave, Michelle; Nedderman, Angus
2008-11-01
Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.
Zhang, Lei; Zeng, Zhi; Ji, Qiang
2011-09-01
Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.
Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William
2009-01-01
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad Atif; Curtis, Andrew
2018-04-01
We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.
Durability reliability analysis for corroding concrete structures under uncertainty
NASA Astrophysics Data System (ADS)
Zhang, Hao
2018-02-01
This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.
NASA Technical Reports Server (NTRS)
McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.
2012-01-01
This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.
Alomari, Yazan M.; MdZin, Reena Rahayu
2015-01-01
Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
Disorders of Nonverbal Communication
ERIC Educational Resources Information Center
Starkweather, C. Woodruff
1977-01-01
The author explores the idea that nonverbal communication can be disordered, describes several types of nonverbal disorders (such as impaired eye movement, inappropriate body movements, idiosyncratic mannerisms, and voice disorders), explains sources of nonverbal disorders, and suggests therapeutic procedures. (IM)
Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)
NASA Technical Reports Server (NTRS)
McClung, R. Craig; Enright, Michael P.; Liang, Wuwei
2011-01-01
In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.
Speech processing using maximum likelihood continuity mapping
Hogden, John E.
2000-01-01
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Speech processing using maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.E.
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Modeling Being "Lost": Imperfect Situation Awareness
NASA Technical Reports Server (NTRS)
Middleton, Victor E.
2011-01-01
Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.
Idiosyncratic responding during movie-watching predicted by age differences in attentional control
Campbell, Karen L.; Shafto, Meredith A.; Wright, Paul; Tsvetanov, Kamen A.; Geerligs, Linda; Cusack, Rhodri; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Henson, Rik; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Price, Darren; Taylor, Jason; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Dixon, Marie; Barnes, Dan; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Tyler, Lorraine K.
2015-01-01
Much is known about how age affects the brain during tightly controlled, though largely contrived, experiments, but do these effects extrapolate to everyday life? Naturalistic stimuli, such as movies, closely mimic the real world and provide a window onto the brain's ability to respond in a timely and measured fashion to complex, everyday events. Young adults respond to these stimuli in a highly synchronized fashion, but it remains to be seen how age affects neural responsiveness during naturalistic viewing. To this end, we scanned a large (N = 218), population-based sample from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) during movie-watching. Intersubject synchronization declined with age, such that older adults' response to the movie was more idiosyncratic. This decreased synchrony related to cognitive measures sensitive to attentional control. Our findings suggest that neural responsivity changes with age, which likely has important implications for real-world event comprehension and memory. PMID:26359527
A Dynamic Network Model to Explain the Development of Excellent Human Performance
Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.
2016-01-01
Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140
ERIC Educational Resources Information Center
Wang, Yinying; Bowers, Alex J.; Fikis, David J.
2017-01-01
Purpose: The purpose of this study is to describe the underlying topics and the topic evolution in the 50-year history of educational leadership research literature. Method: We used automated text data mining with probabilistic latent topic models to examine the full text of the entire publication history of all 1,539 articles published in…
Method and system for dynamic probabilistic risk assessment
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans
2014-01-01
An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219
A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints
NASA Astrophysics Data System (ADS)
Wei, Helin; Wang, Kuisheng
2011-11-01
Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.
Effects of delay and probability combinations on discounting in humans.
Cox, David J; Dallery, Jesse
2016-10-01
To determine discount rates, researchers typically adjust the amount of an immediate or certain option relative to a delayed or uncertain option. Because this adjusting amount method can be relatively time consuming, researchers have developed more efficient procedures. One such procedure is a 5-trial adjusting delay procedure, which measures the delay at which an amount of money loses half of its value (e.g., $1000 is valued at $500 with a 10-year delay to its receipt). Experiment 1 (n=212) used 5-trial adjusting delay or probability tasks to measure delay discounting of losses, probabilistic gains, and probabilistic losses. Experiment 2 (n=98) assessed combined probabilistic and delayed alternatives. In both experiments, we compared results from 5-trial adjusting delay or probability tasks to traditional adjusting amount procedures. Results suggest both procedures produced similar rates of probability and delay discounting in six out of seven comparisons. A magnitude effect consistent with previous research was observed for probabilistic gains and losses, but not for delayed losses. Results also suggest that delay and probability interact to determine the value of money. Five-trial methods may allow researchers to assess discounting more efficiently as well as study more complex choice scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng
2010-10-01
Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang
2015-05-15
Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources
NASA Astrophysics Data System (ADS)
Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi
2017-01-01
Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-08-31
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-01-01
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-01-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a “specialized” domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the “community structure” of the ToH and their difficulties in executing so-called “counterintuitive” movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand—a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits. PMID:27074140
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-04-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits.
Probabilistic analysis of tsunami hazards
Geist, E.L.; Parsons, T.
2006-01-01
Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).
A model-based test for treatment effects with probabilistic classifications.
Cavagnaro, Daniel R; Davis-Stober, Clintin P
2018-05-21
Within modern psychology, computational and statistical models play an important role in describing a wide variety of human behavior. Model selection analyses are typically used to classify individuals according to the model(s) that best describe their behavior. These classifications are inherently probabilistic, which presents challenges for performing group-level analyses, such as quantifying the effect of an experimental manipulation. We answer this challenge by presenting a method for quantifying treatment effects in terms of distributional changes in model-based (i.e., probabilistic) classifications across treatment conditions. The method uses hierarchical Bayesian mixture modeling to incorporate classification uncertainty at the individual level into the test for a treatment effect at the group level. We illustrate the method with several worked examples, including a reanalysis of the data from Kellen, Mata, and Davis-Stober (2017), and analyze its performance more generally through simulation studies. Our simulations show that the method is both more powerful and less prone to type-1 errors than Fisher's exact test when classifications are uncertain. In the special case where classifications are deterministic, we find a near-perfect power-law relationship between the Bayes factor, derived from our method, and the p value obtained from Fisher's exact test. We provide code in an online supplement that allows researchers to apply the method to their own data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Random matrix approach to group correlations in development country financial market
NASA Astrophysics Data System (ADS)
Qohar, Ulin Nuha Abdul; Lim, Kyuseong; Kim, Soo Yong; Liong, The Houw; Purqon, Acep
2015-12-01
Financial market is a borderless economic activity, everyone in this world has the right to participate in stock transactions. The movement of stocks is interesting to be discussed in various sciences, ranging from economists to mathe-maticians try to explain and predict the stock movement. Econophysics, as a discipline that studies the economic behavior using one of the methods in particle physics to explain stock movement. Stocks tend to be unpredictable probabilistic regarded as a probabilistic particle. Random Matrix Theory is one method used to analyze probabilistic particle is used to analyze the characteristics of the movement in the stock collection of developing country stock market shares of the correlation matrix. To obtain the characteristics of the developing country stock market and use characteristics of stock markets of developed countries as a parameter for comparison. The result shows market wide effect is not happened in Philipine market and weak in Indonesia market. Contrary, developed country (US) has strong market wide effect.
Unsteady Probabilistic Analysis of a Gas Turbine System
NASA Technical Reports Server (NTRS)
Brown, Marilyn
2003-01-01
In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
Optimization of Adaptive Intraply Hybrid Fiber Composites with Reliability Considerations
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1994-01-01
The reliability with bounded distribution parameters (mean, standard deviation) was maximized and the reliability-based cost was minimized for adaptive intra-ply hybrid fiber composites by using a probabilistic method. The probabilistic method accounts for all naturally occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry, and control-related parameters. Probabilistic sensitivity factors were computed and used in the optimization procedures. For actuated change in the angle of attack of an airfoil-like composite shell structure with an adaptive torque plate, the reliability was maximized to 0.9999 probability, with constraints on the mean and standard deviation of the actuation material volume ratio (percentage of actuation composite material in a ply) and the actuation strain coefficient. The reliability-based cost was minimized for an airfoil-like composite shell structure with an adaptive skin and a mean actuation material volume ratio as the design parameter. At a O.9-mean actuation material volume ratio, the minimum cost was obtained.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
A simulation-based probabilistic design method for arctic sea transport systems
NASA Astrophysics Data System (ADS)
Martin, Bergström; Ove, Erikstad Stein; Sören, Ehlers
2016-12-01
When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.
Interrelation Between Safety Factors and Reliability
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Chamis, Christos C. (Technical Monitor)
2001-01-01
An evaluation was performed to establish relationships between safety factors and reliability relationships. Results obtained show that the use of the safety factor is not contradictory to the employment of the probabilistic methods. In many cases the safety factors can be directly expressed by the required reliability levels. However, there is a major difference that must be emphasized: whereas the safety factors are allocated in an ad hoc manner, the probabilistic approach offers a unified mathematical framework. The establishment of the interrelation between the concepts opens an avenue to specify safety factors based on reliability. In cases where there are several forms of failure, then the allocation of safety factors should he based on having the same reliability associated with each failure mode. This immediately suggests that by the probabilistic methods the existing over-design or under-design can be eliminated. The report includes three parts: Part 1-Random Actual Stress and Deterministic Yield Stress; Part 2-Deterministic Actual Stress and Random Yield Stress; Part 3-Both Actual Stress and Yield Stress Are Random.
Characterizing the topology of probabilistic biological networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
Briggs, Andrew H; Ades, A E; Price, Martin J
2003-01-01
In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.
Coupled Multi-Disciplinary Optimization for Structural Reliability and Affordability
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented for Non-Deterministic Multidisciplinary Optimization of engine composite materials and structures. A hypothetical engine duct made with ceramic matrix composites (CMC) is evaluated probabilistically in the presence of combined thermo-mechanical loading. The structure is tailored by quantifying the uncertainties in all relevant design variables such as fabrication, material, and loading parameters. The probabilistic sensitivities are used to select critical design variables for optimization. In this paper, two approaches for non-deterministic optimization are presented. The non-deterministic minimization of combined failure stress criterion is carried out by: (1) performing probabilistic evaluation first and then optimization and (2) performing optimization first and then probabilistic evaluation. The first approach shows that the optimization feasible region can be bounded by a set of prescribed probability limits and that the optimization follows the cumulative distribution function between those limits. The second approach shows that the optimization feasible region is bounded by 0.50 and 0.999 probabilities.
Sáez, Carlos; Zurriaga, Oscar; Pérez-Panadés, Jordi; Melchor, Inma; Robles, Montserrat; García-Gómez, Juan M
2016-11-01
To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Probabilistic objective functions for margin-less IMRT planning
NASA Astrophysics Data System (ADS)
Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel
2013-06-01
We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.
High Cycle Fatigue (HCF) Science and Technology Program 2002 Annual Report
2003-08-01
Turbine Engine Airfoils, Phase I 4.3 Probabilistic Design of Turbine Engine Airfoils, Phase II 4.4 Probabilistic Blade Design System 4.5...XTL17/SE2 7.4 Conclusion 8.0 TEST AND EVALUATION 8.1 Characterization Test Protocol 8.2 Demonstration Test Protocol 8.3 Development of Multi ...transparent and opaque overlays for processing. The objective of the SBIR Phase I program was to identify and evaluate promising methods for
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Probabilistic fracture finite elements
NASA Astrophysics Data System (ADS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less
Comparison of the economic impact of different wind power forecast systems for producers
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.
2014-05-01
Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
Galtier, N; Boursot, P
2000-03-01
A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.
Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Lin, Hong-Zong; Khalessi, Mohammad R.
2002-01-01
Three methods of probabilistic uncertainty propagation and quantification (the method of moments, Monte Carlo simulation, and a nongradient simulation search method) are applied to an aircraft analysis and conceptual design program to demonstrate design under uncertainty. The chosen example problems appear to have discontinuous design spaces and thus these examples pose difficulties for many popular methods of uncertainty propagation and quantification. However, specific implementation features of the first and third methods chosen for use in this study enable successful propagation of small uncertainties through the program. Input uncertainties in two configuration design variables are considered. Uncertainties in aircraft weight are computed. The effects of specifying required levels of constraint satisfaction with specified levels of input uncertainty are also demonstrated. The results show, as expected, that the designs under uncertainty are typically heavier and more conservative than those in which no input uncertainties exist.
NASA Astrophysics Data System (ADS)
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
Probabilistic Analysis of a Composite Crew Module
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Krishnamurthy, Thiagarajan
2011-01-01
An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Horta, Lucas G.
2012-01-01
Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.
Perez-Cruz, Pedro E; Dos Santos, Renata; Silva, Thiago Buosi; Crovador, Camila Souza; Nascimento, Maria Salete de Angelis; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo; Hui, David
2014-11-01
Survival prognostication is important during the end of life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized. The aims of the study were to examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches. Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at Day -14 (baseline) with accuracy at each time point using a test of proportions. A total of 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 days (4-20 days). Temporal CPS had low accuracy (10%-40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (P < .05 at each time point) but decreased close to death. Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Relationships Between Intellectual Factors And Coping In Physical Rehabilitation
ERIC Educational Resources Information Center
Fogel, Max L.; Rosillo, Ronald H.
1973-01-01
Weschler Adult Intelligence Scale (WAIS) prorated IQ and subtest scores were related to improvement in physical rehabilitation. Independent psychiatric ratings evaluated physical improvement in patients from admission to discharge. In physical rehabilitation intelligence apparently may interact differentially with idiosyncratic attributes…
Why Can You "Have a Drink" When You Can't "*Have an Eat?"
ERIC Educational Resources Information Center
Wierzbicka, Anna
1982-01-01
Argues that sentences in the "have a V" frame are not idiosyncratic, but exhibit orderly and systematic behavior and are governed by strict semantic rules. Discusses 10 subtypes, each with a slightly different semantic formula. (EKN)
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Liu, Li; Chen, Jinhu
2014-06-01
Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment demonstrated that liver structures of CBCT with artifacts can be extracted accurately for following adaptive radiation therapy. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks
Yin, Junming; Ho, Qirong; Xing, Eric P.
2014-01-01
We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction. PMID:25400487
Probabilistic simulation of uncertainties in composite uniaxial strengths
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Stock, T. A.
1990-01-01
Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.
Probabilistic assessment method of the non-monotonic dose-responses-Part I: Methodological approach.
Chevillotte, Grégoire; Bernard, Audrey; Varret, Clémence; Ballet, Pascal; Bodin, Laurent; Roudot, Alain-Claude
2017-08-01
More and more studies aim to characterize non-monotonic dose response curves (NMDRCs). The greatest difficulty is to assess the statistical plausibility of NMDRCs from previously conducted dose response studies. This difficulty is linked to the fact that these studies present (i) few doses tested, (ii) a low sample size per dose, and (iii) the absence of any raw data. In this study, we propose a new methodological approach to probabilistically characterize NMDRCs. The methodology is composed of three main steps: (i) sampling from summary data to cover all the possibilities that may be presented by the responses measured by dose and to obtain a new raw database, (ii) statistical analysis of each sampled dose-response curve to characterize the slopes and their signs, and (iii) characterization of these dose-response curves according to the variation of the sign in the slope. This method allows characterizing all types of dose-response curves and can be applied both to continuous data and to discrete data. The aim of this study is to present the general principle of this probabilistic method which allows to assess the non-monotonic dose responses curves, and to present some results. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel TRM Calculation Method by Probabilistic Concept
NASA Astrophysics Data System (ADS)
Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki
In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.
Frost, Anja; Renners, Eike; Hötter, Michael; Ostermann, Jörn
2013-01-01
An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction. PMID:23344378
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
Fast probabilistic file fingerprinting for big data
2013-01-01
Background Biological data acquisition is raising new challenges, both in data analysis and handling. Not only is it proving hard to analyze the data at the rate it is generated today, but simply reading and transferring data files can be prohibitively slow due to their size. This primarily concerns logistics within and between data centers, but is also important for workstation users in the analysis phase. Common usage patterns, such as comparing and transferring files, are proving computationally expensive and are tying down shared resources. Results We present an efficient method for calculating file uniqueness for large scientific data files, that takes less computational effort than existing techniques. This method, called Probabilistic Fast File Fingerprinting (PFFF), exploits the variation present in biological data and computes file fingerprints by sampling randomly from the file instead of reading it in full. Consequently, it has a flat performance characteristic, correlated with data variation rather than file size. We demonstrate that probabilistic fingerprinting can be as reliable as existing hashing techniques, with provably negligible risk of collisions. We measure the performance of the algorithm on a number of data storage and access technologies, identifying its strengths as well as limitations. Conclusions Probabilistic fingerprinting may significantly reduce the use of computational resources when comparing very large files. Utilisation of probabilistic fingerprinting techniques can increase the speed of common file-related workflows, both in the data center and for workbench analysis. The implementation of the algorithm is available as an open-source tool named pfff, as a command-line tool as well as a C library. The tool can be downloaded from http://biit.cs.ut.ee/pfff. PMID:23445565
Study on the evaluation method for fault displacement based on characterized source model
NASA Astrophysics Data System (ADS)
Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.
2016-12-01
In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
CrowdMapping: A Crowdsourcing-Based Terminology Mapping Method for Medical Data Standardization.
Mao, Huajian; Chi, Chenyang; Huang, Boyu; Meng, Haibin; Yu, Jinghui; Zhao, Dongsheng
2017-01-01
Standardized terminology is the prerequisite of data exchange in analysis of clinical processes. However, data from different electronic health record systems are based on idiosyncratic terminology systems, especially when the data is from different hospitals and healthcare organizations. Terminology standardization is necessary for the medical data analysis. We propose a crowdsourcing-based terminology mapping method, CrowdMapping, to standardize the terminology in medical data. CrowdMapping uses a confidential model to determine how terminologies are mapped to a standard system, like ICD-10. The model uses mappings from different health care organizations and evaluates the diversity of the mapping to determine a more sophisticated mapping rule. Further, the CrowdMapping model enables users to rate the mapping result and interact with the model evaluation. CrowdMapping is a work-in-progress system, we present initial results mapping terminologies.
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called "causal independence"). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to O(k log(k)2) and the space to O(k log(k)) where k is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions.
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.
Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies
2015-01-01
Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018
Probabilistic Estimates of Global Mean Sea Level and its Underlying Processes
NASA Astrophysics Data System (ADS)
Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.
2015-12-01
Local sea level can vary significantly from the global mean value due to a suite of processes that includes ongoing sea-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform sea-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present sea-level change and projecting future sea-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian process regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean sea level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing processes. Both methods provide constraints on the sea-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian process regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced sea-level change. We present the two methodologies, the model-derived geometries of the underlying processes, and our new probabilistic estimates of GMSL and GIA.
Speech Enhancement Using Gaussian Scale Mixture Models
Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.
2011-01-01
This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress. PMID:21359139
Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources
Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.
2009-01-01
The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.
Probabilistic tsunami hazard analysis: Multiple sources and global applications
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël; Parsons, Thomas E.; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-01-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications
NASA Astrophysics Data System (ADS)
Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël.; Parsons, Tom; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie
2017-12-01
Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra.
Claxton, Karl; Sculpher, Mark; McCabe, Chris; Briggs, Andrew; Akehurst, Ron; Buxton, Martin; Brazier, John; O'Hagan, Tony
2005-04-01
Recently the National Institute for Clinical Excellence (NICE) updated its methods guidance for technology assessment. One aspect of the new guidance is to require the use of probabilistic sensitivity analysis with all cost-effectiveness models submitted to the Institute. The purpose of this paper is to place the NICE guidance on dealing with uncertainty into a broader context of the requirements for decision making; to explain the general approach that was taken in its development; and to address each of the issues which have been raised in the debate about the role of probabilistic sensitivity analysis in general. The most appropriate starting point for developing guidance is to establish what is required for decision making. On the basis of these requirements, the methods and framework of analysis which can best meet these needs can then be identified. It will be argued that the guidance on dealing with uncertainty and, in particular, the requirement for probabilistic sensitivity analysis, is justified by the requirements of the type of decisions that NICE is asked to make. Given this foundation, the main issues and criticisms raised during and after the consultation process are reviewed. Finally, some of the methodological challenges posed by the need fully to characterise decision uncertainty and to inform the research agenda will be identified and discussed. Copyright (c) 2005 John Wiley & Sons, Ltd.
Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval
Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene
2018-01-01
Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie PMID:29688379
Praveen, Paurush; Fröhlich, Holger
2013-01-01
Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available.
Addressing the crisis of GP recruitment and retention: a systematic review
Marchand, Catherine; Peckham, Stephen
2017-01-01
Background The numbers of GPs and training places in general practice are declining, and retaining GPs in their practices is an increasing problem. Aim To identify evidence on different approaches to retention and recruitment of GPs, such as intrinsic versus extrinsic motivational determinants. Design and setting Synthesis of qualitative and quantitative research using seven electronic databases from 1990 onwards (Medline, Embase, Cochrane Library, Health Management Information Consortium [HMIC], Cumulative Index to Nursing and Allied Health Literature (Cinahl), PsycINFO, and the Turning Research Into Practice [TRIP] database). Method A qualitative approach to reviewing the literature on recruitment and retention of GPs was used. The studies included were English-language studies from Organisation for Economic Cooperation and Development countries. The titles and abstracts of 138 articles were reviewed and analysed by the research team. Results Some of the most important determinants to increase recruitment in primary care were early exposure to primary care practice, the fit between skills and attributes, and a significant experience in a primary care setting. Factors that seemed to influence retention were subspecialisation and portfolio careers, and job satisfaction. The most important determinants of recruitment and retention were intrinsic and idiosyncratic factors, such as recognition, rather than extrinsic factors, such as income. Conclusion Although the published evidence relating to GP recruitment and retention is limited, and most focused on attracting GPs to rural areas, the authors found that there are clear overlaps between strategies to increase recruitment and retention. Indeed, the most influential factors are idiosyncratic and intrinsic to the individuals. PMID:28289014
Organizational Structure at the Crossroads.
ERIC Educational Resources Information Center
Person, Ruth
1994-01-01
Because colleges and universities have adopted new information technology idiosyncratically, formal structures to manage and govern its use have not evolved at the same pace. In creating such structures, issues to be considered include centralization vs. decentralization, attitudes toward change, institutional diversity, entrepreneurial spirit,…
Differential Rationality and Personal Development.
ERIC Educational Resources Information Center
Fincher, Cameron
This publication discusses differential rationality; it asserts that the development of institutions, professions, and individuals involves the differentiation of forms and styles of thinking and knowing that are, in various ways, idiosyncratic. Based on this understanding, differential rationality can be seen as a developmental construct that…
Communication in the Chinese Classroom.
ERIC Educational Resources Information Center
Ngwainmbi, Emmanuel K.
2004-01-01
This study investigates cultural (idiosyncratic, linguistic) aspects of interpersonal & cross-cultural interactions in a Chinese learning environment. It explains the relationship between the Chinese academic community (CAL) in a university in Beijing, China and American professors (AAS) and how the CAL negotiates meaning through verbal…
Post-Doctoral Training Program in Bio-Behavioral Breast Cancer Research
2005-05-01
therapy with a particular interest in Rational Emotive- Behavior Therapy ( REBT ) and its application to clinical populations, including breast cancer...Implication for my idiosyncratic practice of REBT . Psychological Annals of Oradea State University (Annalele Universitatii din Oradea-Psihologie), 4: 29-55
ERIC Educational Resources Information Center
Schoenfeld, Alan H.
2017-01-01
The challenge of "educational" assessments--assessments that advance the purposes of learning and instruction--is to provide useful information regarding students' progress towards the goals of instruction in ways that are reliable and not idiosyncratic. In this commentary, the author indicates that the challenges are actually more…
Instructing the Online Catalog User.
ERIC Educational Resources Information Center
Miller, William
1986-01-01
This essay offers suggestions to make online public access catalogs (OPACs) less idiosyncratic and more usable. Discussion covers qualitative difference between online catalog and predecessors, challenge of debunking assumptions, skills for success, maintaining an instructional perspective, catalog development for the people by the people, and the…
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Damage Tolerance and Reliability of Turbine Engine Components
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1999-01-01
This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir
2012-02-28
In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Isanto, A.; Polsterer, K. L.
2018-01-01
Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.
Towards a multilevel cognitive probabilistic representation of space
NASA Astrophysics Data System (ADS)
Tapus, Adriana; Vasudevan, Shrihari; Siegwart, Roland
2005-03-01
This paper addresses the problem of perception and representation of space for a mobile agent. A probabilistic hierarchical framework is suggested as a solution to this problem. The method proposed is a combination of probabilistic belief with "Object Graph Models" (OGM). The world is viewed from a topological optic, in terms of objects and relationships between them. The hierarchical representation that we propose permits an efficient and reliable modeling of the information that the mobile agent would perceive from its environment. The integration of both navigational and interactional capabilities through efficient representation is also addressed. Experiments on a set of images taken from the real world that validate the approach are reported. This framework draws on the general understanding of human cognition and perception and contributes towards the overall efforts to build cognitive robot companions.
Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2014-01-01
The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex between researchers in the visual sexing method although both researchers identified the same sex in all cases in the manual and virtual DSP methods for both the hip bones and pelvic girdles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Memory Errors Reveal a Bias to Spontaneously Generalize to Categories
Sutherland, Shelbie L.; Cimpian, Andrei; Leslie, Sarah-Jane; Gelman, Susan A.
2014-01-01
Much evidence suggests that, from a young age, humans are able to generalize information learned about a subset of a category to the category itself. Here, we propose that—beyond simply being able to perform such generalizations—people are biased to generalize to categories, such that they routinely make spontaneous, implicit category generalizations from information that licenses such generalizations. To demonstrate the existence of this bias, we asked participants to perform a task in which category generalizations would distract from the main goal of the task, leading to a characteristic pattern of errors. Specifically, participants were asked to memorize two types of novel facts: quantified facts about sets of kind members (e.g., facts about all or many stups) and generic facts about entire kinds (e.g., facts about zorbs as a kind). Moreover, half of the facts concerned properties that are typically generalizable to an animal kind (e.g., eating fruits and vegetables), and half concerned properties that are typically more idiosyncratic (e.g., getting mud in their hair). We predicted that—because of the hypothesized bias—participants would spontaneously generalize the quantified facts to the corresponding kinds, and would do so more frequently for the facts about generalizable (rather than idiosyncratic) properties. In turn, these generalizations would lead to a higher rate of quantified-to-generic memory errors for the generalizable properties. The results of four experiments (N = 449) supported this prediction. Moreover, the same generalizable-versus-idiosyncratic difference in memory errors occurred even under cognitive load, which suggests that the hypothesized bias operates unnoticed in the background, requiring few cognitive resources. In sum, this evidence suggests the presence of a powerful bias to draw generalizations about kinds. PMID:25327964
Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs
NASA Astrophysics Data System (ADS)
Pelorosso, Leandro; Diehl, Alexandra; Matković, Krešimir; Delrieux, Claudio; Ruiz, Juan; Gröeller, M. Eduard; Bruckner, Stefan
2016-04-01
Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembles can be expressed as probabilistic forecasts, which have proven to be very effective in the decision-making processes [DE06]. The ensemble of forecasts represents only some of the possible future atmospheric states, usually underestimating the degree of uncertainty in the predictions [KAL03, PH06]. Hamill and Whitaker [HW06] introduced the "Reforecast Analog Regression" (RAR) technique to overcome the limitations of ensemble forecasting. This technique produces probabilistic predictions based on the analysis of historical forecasts and observations. Visual analytics provides tools for processing, visualizing, and exploring data to get new insights and discover hidden information patterns in an interactive exchange between the user and the application [KMS08]. In this work, we introduce Albero, a visual analytics solution for probabilistic weather forecasting based on the RAR technique. Albero targets at least two different type of users: "forecasters", who are meteorologists working in operational weather forecasting and "researchers", who work in the construction of numerical prediction models. Albero is an efficient tool for analyzing precipitation forecasts, allowing forecasters to make and communicate quick decisions. Our solution facilitates the analysis of a set of probabilistic forecasts, associated statistical data, observations and uncertainty. A dashboard with small-multiples of probabilistic forecasts allows the forecasters to analyze at a glance the distribution of probabilities as a function of time, space, and magnitude. It provides the user with a more accurate measure of forecast uncertainty that could result in better decision-making. It offers different level of abstractions to help with the recalibration of the RAR method. It also has an inspection tool that displays the selected analogs, their observations and statistical data. It gives the users access to inner parts of the method, unveiling hidden information. References [GR05] GNEITING T., RAFTERY A. E.: Weather forecasting with ensemble methods. Science 310, 5746, 248-249, 2005. [KAL03] KALNAY E.: Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 2003. [PH06] PALMER T., HAGEDORN R.: Predictability of weather and climate. Cambridge University Press, 2006. [HW06] HAMILL T. M., WHITAKER J. S.: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Monthly Weather Review 134, 11, 3209-3229, 2006. [DE06] DEITRICK S., EDSALL R.: The influence of uncertainty visualization on decision making: An empirical evaluation. Springer, 2006. [KMS08] KEIM D. A., MANSMANN F., SCHNEIDEWIND J., THOMAS J., ZIEGLER H.: Visual analytics: Scope and challenges. Springer, 2008.
Just, Rebecca S; Irwin, Jodi A
2018-05-01
Some of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input. Yet to leverage the benefits of NGS for enhanced genotyping and mixture deconvolution, the sequence variation among same-length products must be utilized in some form. Here, we propose use of the longest uninterrupted stretch (LUS) in allele designations as a simple method to represent sequence variation within the STR repeat regions and facilitate - in the nearterm - probabilistic interpretation of NGS-based typing results. An examination of published population data indicated that a reference LUS region is straightforward to define for most autosomal STR loci, and that using repeat unit plus LUS length as the allele designator can represent greater than 80% of the alleles detected by sequencing. A proof of concept study performed using a freely available probabilistic software demonstrated that the LUS length can be used in allele designations when a program does not require alleles to be integers, and that utilizing sequence information improves interpretation of both single-source and mixed contributor STR typing results as compared to using repeat unit information alone. The LUS concept for allele designation maintains the repeat-based allele nomenclature that will permit backward compatibility to extant STR databases, and the LUS lengths themselves will be concordant regardless of the NGS assay or analysis tools employed. Further, these biologically based, easy-to-derive designations uphold clear relationships between parent alleles and their stutter products, enabling analysis in fully continuous probabilistic programs that model stutter while avoiding the algorithmic complexities that come with string based searches. Though using repeat unit plus LUS length as the allele designator does not capture variation that occurs outside of the core repeat regions, this straightforward approach would permit the large majority of known STR sequence variation to be used for mixture deconvolution and, in turn, result in more informative mixture statistics in the near term. Ultimately, the method could bridge the gap from current length-based probabilistic systems to facilitate broader adoption of NGS by forensic DNA testing laboratories. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
A Comparison of Two Methods for Boolean Query Relevancy Feedback.
ERIC Educational Resources Information Center
Salton, G.; And Others
1984-01-01
Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
1983-09-01
al. (1981) was conducted on Copper City No. 2 tailings embankment damn near Miami, Arizona . Due to the extreme topographic relief in the area of the...mode of behavior and scale. ThiL dependency is summarized in the factor R. For example, circular shear instability as in a copper porphyry slope...OF THE PROBABILISTIC SLOPE STABILITY MODEL. . 32 6.1 DESCRIPTION OF COPPER CITY NUMBER 2 TAILINGS DAM . . 32 6.2 SUBSURFACE INVESTIGATION
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Methods for Probabilistic Fault Diagnosis: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Ricks, Brian W.; Mengshoel, Ole J.
2009-01-01
Health management systems that more accurately and quickly diagnose faults that may occur in different technical systems on-board a vehicle will play a key role in the success of future NASA missions. We discuss in this paper the diagnosis of abrupt continuous (or parametric) faults within the context of probabilistic graphical models, more specifically Bayesian networks that are compiled to arithmetic circuits. This paper extends our previous research, within the same probabilistic setting, on diagnosis of abrupt discrete faults. Our approach and diagnostic algorithm ProDiagnose are domain-independent; however we use an electrical power system testbed called ADAPT as a case study. In one set of ADAPT experiments, performed as part of the 2009 Diagnostic Challenge, our system turned out to have the best performance among all competitors. In a second set of experiments, we show how we have recently further significantly improved the performance of the probabilistic model of ADAPT. While these experiments are obtained for an electrical power system testbed, we believe they can easily be transitioned to real-world systems, thus promising to increase the success of future NASA missions.
Kindermans, Pieter-Jan; Verschore, Hannes; Schrauwen, Benjamin
2013-10-01
In recent years, in an attempt to maximize performance, machine learning approaches for event-related potential (ERP) spelling have become more and more complex. In this paper, we have taken a step back as we wanted to improve the performance without building an overly complex model, that cannot be used by the community. Our research resulted in a unified probabilistic model for ERP spelling, which is based on only three assumptions and incorporates language information. On top of that, the probabilistic nature of our classifier yields a natural dynamic stopping strategy. Furthermore, our method uses the same parameters across 25 subjects from three different datasets. We show that our classifier, when enhanced with language models and dynamic stopping, improves the spelling speed and accuracy drastically. Additionally, we would like to point out that as our model is entirely probabilistic, it can easily be used as the foundation for complex systems in future work. All our experiments are executed on publicly available datasets to allow for future comparison with similar techniques.
Real-time value-driven diagnosis
NASA Technical Reports Server (NTRS)
Dambrosio, Bruce
1995-01-01
Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.
Use of model calibration to achieve high accuracy in analysis of computer networks
Frogner, Bjorn; Guarro, Sergio; Scharf, Guy
2004-05-11
A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.
Probabilistic Reasoning for Plan Robustness
NASA Technical Reports Server (NTRS)
Schaffer, Steve R.; Clement, Bradley J.; Chien, Steve A.
2005-01-01
A planning system must reason about the uncertainty of continuous variables in order to accurately project the possible system state over time. A method is devised for directly reasoning about the uncertainty in continuous activity duration and resource usage for planning problems. By representing random variables as parametric distributions, computing projected system state can be simplified in some cases. Common approximation and novel methods are compared for over-constrained and lightly constrained domains. The system compares a few common approximation methods for an iterative repair planner. Results show improvements in robustness over the conventional non-probabilistic representation by reducing the number of constraint violations witnessed by execution. The improvement is more significant for larger problems and problems with higher resource subscription levels but diminishes as the system is allowed to accept higher risk levels.
Feedback and the Reconstruction of Meaning.
ERIC Educational Resources Information Center
Langer, Philip; And Others
This investigation of the impact of feedback upon scrambled discourse was intended to show the effects of idiosyncratic processing and to provide a more sensitive indicator of feedback usefulness. Learner schemata, text organization, and feedback strategies interact in processing discourse, although past research has favored limited models…
Genomic Indicators in the blood predict drug-induced liver injury
Hepatotoxicity and other forms of liver injury stemming from exposure to toxicants and idiosyncratic drug reactions are major concerns during the drug discovery process. Animal model systems have been utilized in an attempt to extrapolate the risk of harmful agents to humans and...
Idiosyncratic responding during movie-watching predicted by age differences in attentional control.
Campbell, Karen L; Shafto, Meredith A; Wright, Paul; Tsvetanov, Kamen A; Geerligs, Linda; Cusack, Rhodri; Tyler, Lorraine K
2015-11-01
Much is known about how age affects the brain during tightly controlled, though largely contrived, experiments, but do these effects extrapolate to everyday life? Naturalistic stimuli, such as movies, closely mimic the real world and provide a window onto the brain's ability to respond in a timely and measured fashion to complex, everyday events. Young adults respond to these stimuli in a highly synchronized fashion, but it remains to be seen how age affects neural responsiveness during naturalistic viewing. To this end, we scanned a large (N = 218), population-based sample from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) during movie-watching. Intersubject synchronization declined with age, such that older adults' response to the movie was more idiosyncratic. This decreased synchrony related to cognitive measures sensitive to attentional control. Our findings suggest that neural responsivity changes with age, which likely has important implications for real-world event comprehension and memory. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Idiosyncratic species effects confound size-based predictions of responses to climate change.
Twomey, Marion; Brodte, Eva; Jacob, Ute; Brose, Ulrich; Crowe, Tasman P; Emmerson, Mark C
2012-11-05
Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change.
Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses.
Parashar, Abhinav; Gideon, Daniel Andrew; Manoj, Kelath Murali
2018-01-01
Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term "murburn" is abstracted from " mur ed burn ing " or " m ild u n r estricted burn ing " and connotes a novel " m olecule- u nbound ion- r adical " interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a "reactivity outside the active-site" perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between "additive-influenced redox catalysis" and "unusual dose responses" in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in "maverick" concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.
Liu, Jun; Lee, Cynthia; Hui, Chun; Kwan, Ho Kwong; Wu, Long-Zeng
2013-09-01
The majority of studies on idiosyncratic employment arrangements ("i-deals") are based on social exchange theory. The authors suggest that self-enhancement theory, in addition to social exchange, can be used to explain the effects of i-deals. Using a multisource sample including 230 employees and 102 supervisors from 2 Chinese companies, the authors adopt a 3-wave lagged design to examine the mediating roles of social exchange and self-enhancement and the moderating role of individualism in the relationships between i-deals and employee outcomes, as indicated by proactive behaviors and affective commitment. The results of bootstrapping analyses confirm the mediating effects of social exchange and self-enhancement. In addition, employees with high levels of individualism are more receptive to self-enhancement effects; in contrast, employees with low levels of individualism are more receptive to social exchange effects. PsycINFO Database Record (c) 2013 APA, all rights reserved
Development of a Probabilistic Tsunami Hazard Analysis in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka
2006-07-01
It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less
NASA Astrophysics Data System (ADS)
Scheingraber, Christoph; Käser, Martin; Allmann, Alexander
2017-04-01
Probabilistic seismic risk analysis (PSRA) is a well-established method for modelling loss from earthquake events. In the insurance industry, it is widely employed for probabilistic modelling of loss to a distributed portfolio. In this context, precise exposure locations are often unknown, which results in considerable loss uncertainty. The treatment of exposure uncertainty has already been identified as an area where PSRA would benefit from increased research attention. However, so far, epistemic location uncertainty has not been in the focus of a large amount of research. We propose a new framework for efficient treatment of location uncertainty. To demonstrate the usefulness of this novel method, a large number of synthetic portfolios resembling real-world portfolios is systematically analyzed. We investigate the effect of portfolio characteristics such as value distribution, portfolio size, or proportion of risk items with unknown coordinates on loss variability. Several sampling criteria to increase the computational efficiency of the framework are proposed and put into the wider context of well-established Monte-Carlo variance reduction techniques. The performance of each of the proposed criteria is analyzed.
Probabilistic Fiber Composite Micromechanics
NASA Technical Reports Server (NTRS)
Stock, Thomas A.
1996-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intra-ply level, and the related effects of these on composite properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Draxl, Caroline; Hopson, Thomas
Numerical weather prediction (NWP) models have been widely used for wind resource assessment. Model runs with higher spatial resolution are generally more accurate, yet extremely computational expensive. An alternative approach is to use data generated by a low resolution NWP model, in conjunction with statistical methods. In order to analyze the accuracy and computational efficiency of different types of NWP-based wind resource assessment methods, this paper performs a comparison of three deterministic and probabilistic NWP-based wind resource assessment methodologies: (i) a coarse resolution (0.5 degrees x 0.67 degrees) global reanalysis data set, the Modern-Era Retrospective Analysis for Research and Applicationsmore » (MERRA); (ii) an analog ensemble methodology based on the MERRA, which provides both deterministic and probabilistic predictions; and (iii) a fine resolution (2-km) NWP data set, the Wind Integration National Dataset (WIND) Toolkit, based on the Weather Research and Forecasting model. Results show that: (i) as expected, the analog ensemble and WIND Toolkit perform significantly better than MERRA confirming their ability to downscale coarse estimates; (ii) the analog ensemble provides the best estimate of the multi-year wind distribution at seven of the nine sites, while the WIND Toolkit is the best at one site; (iii) the WIND Toolkit is more accurate in estimating the distribution of hourly wind speed differences, which characterizes the wind variability, at five of the available sites, with the analog ensemble being best at the remaining four locations; and (iv) the analog ensemble computational cost is negligible, whereas the WIND Toolkit requires large computational resources. Future efforts could focus on the combination of the analog ensemble with intermediate resolution (e.g., 10-15 km) NWP estimates, to considerably reduce the computational burden, while providing accurate deterministic estimates and reliable probabilistic assessments.« less
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.
Benoit, Gaëtan; Lemaitre, Claire; Lavenier, Dominique; Drezen, Erwan; Dayris, Thibault; Uricaru, Raluca; Rizk, Guillaume
2015-09-14
Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.
Evaluation of power system security and development of transmission pricing method
NASA Astrophysics Data System (ADS)
Kim, Hyungchul
The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services. The introduction of competition into unbundled electricity services may lead system operation closer to its security boundaries resulting in smaller operating safety margins. The competitive environment is expected to lead to lower price rates for customers and higher efficiency for power suppliers in the long run. Under this deregulated environment, security assessment and pricing of transmission services have become important issues in power systems. This dissertation provides new methods for power system security assessment and transmission pricing. In power system security assessment, the following issues are discussed (1) The description of probabilistic methods for power system security assessment; (2) The computation time of simulation methods; (3) on-line security assessment for operation. A probabilistic method using Monte-Carlo simulation is proposed for power system security assessment. This method takes into account dynamic and static effects corresponding to contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning Vector Quantization, are employed to speed up the probabilistic method. The combination of Kohonen networks and Monte-Carlo simulation can reduce computation time in comparison with straight Monte-Carlo simulation. A technique for security assessment employing Bayes classifier is also proposed. This method can be useful for system operators to make security decisions during on-line power system operation. This dissertation also suggests an approach for allocating transmission transaction costs based on reliability benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line capacity-use and allocation by reliability benefits is computed using the probability of system failure.
Internal validation of STRmix™ for the interpretation of single source and mixed DNA profiles.
Moretti, Tamyra R; Just, Rebecca S; Kehl, Susannah C; Willis, Leah E; Buckleton, John S; Bright, Jo-Anne; Taylor, Duncan A; Onorato, Anthony J
2017-07-01
The interpretation of DNA evidence can entail analysis of challenging STR typing results. Genotypes inferred from low quality or quantity specimens, or mixed DNA samples originating from multiple contributors, can result in weak or inconclusive match probabilities when a binary interpretation method and necessary thresholds (such as a stochastic threshold) are employed. Probabilistic genotyping approaches, such as fully continuous methods that incorporate empirically determined biological parameter models, enable usage of more of the profile information and reduce subjectivity in interpretation. As a result, software-based probabilistic analyses tend to produce more consistent and more informative results regarding potential contributors to DNA evidence. Studies to assess and internally validate the probabilistic genotyping software STRmix™ for casework usage at the Federal Bureau of Investigation Laboratory were conducted using lab-specific parameters and more than 300 single-source and mixed contributor profiles. Simulated forensic specimens, including constructed mixtures that included DNA from two to five donors across a broad range of template amounts and contributor proportions, were used to examine the sensitivity and specificity of the system via more than 60,000 tests comparing hundreds of known contributors and non-contributors to the specimens. Conditioned analyses, concurrent interpretation of amplification replicates, and application of an incorrect contributor number were also performed to further investigate software performance and probe the limitations of the system. In addition, the results from manual and probabilistic interpretation of both prepared and evidentiary mixtures were compared. The findings support that STRmix™ is sufficiently robust for implementation in forensic laboratories, offering numerous advantages over historical methods of DNA profile analysis and greater statistical power for the estimation of evidentiary weight, and can be used reliably in human identification testing. With few exceptions, likelihood ratio results reflected intuitively correct estimates of the weight of the genotype possibilities and known contributor genotypes. This comprehensive evaluation provides a model in accordance with SWGDAM recommendations for internal validation of a probabilistic genotyping system for DNA evidence interpretation. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik
2018-05-01
Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban; ...
2018-05-01
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
A general probabilistic model for group independent component analysis and its estimation methods
Guo, Ying
2012-01-01
SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789
Bilingual Idiosyncratic Dimensions of Language Attitudes
ERIC Educational Resources Information Center
Santello, Marco
2015-01-01
The goal of this study is to identify new dimensions of language attitudes to allow for both their multidimensionality and possible language-specificity stemming from local sociolinguistic environments. Adopting a two-step methodology comprising (1) elicitation of adjectives in group interviews and (2) employment of the semantic differential…
The Role of Idiomorphs in Emergent Literacy
ERIC Educational Resources Information Center
Neumann, Michelle M.; Neumann, David L.
2012-01-01
Psycholinguistics coined the term idiomorph to describe idiosyncratic invented word-like units that toddlers use to refer to familiar objects during their early language development (Haslett & Samter, 1997; Otto, 2008; Reich, 1986; Scovel, 2004; Werner & Kaplan, 1963). Idiomorphs act as "words" because their meanings and phonetic pronunciations…
Narrative Therapies with Children and Adolescents.
ERIC Educational Resources Information Center
Smith, Craig, Ed.; Nylund, David, Ed.
Through transcripts and case examples this book explores how drama, art, play, and humor can be used to engage children of different ages in therapy and to honor their idiosyncratic language, knowledge, and perspectives. Chapters are: (1) "Introduction: Comparing Traditional Therapies with Narrative Approaches" (C. Smith); (2) "'I…
Cognitions of Ordinary Events: Their Relationship to Depression.
ERIC Educational Resources Information Center
Hindin, David A.; And Others
Beck's cognitive theory and the reformulated learned helplessness model suggest that there is a negative idiosyncratic cognitive style that characterizes the way depressed individuals appraise events which is causally associated with depression. Although a few researchers have recognized the importance of examining appraisals of everyday events,…
Practical Tools to Foster Harmonic Understanding
ERIC Educational Resources Information Center
Johnson, Erik
2013-01-01
Among the elements required to develop a comprehensive understanding of music is students' ability to perceive, recognize, and label the harmonies they hear. Harmonic dictation is among the strategies that teachers have traditionally chosen to help students develop harmonic awareness. However, the highly idiosyncratic ways that students approach…
Calibration of decadal ensemble predictions
NASA Astrophysics Data System (ADS)
Pasternack, Alexander; Rust, Henning W.; Bhend, Jonas; Liniger, Mark; Grieger, Jens; Müller, Wolfgang; Ulbrich, Uwe
2017-04-01
Decadal climate predictions are of great socio-economic interest due to the corresponding planning horizons of several political and economic decisions. Due to uncertainties of weather and climate, forecasts (e.g. due to initial condition uncertainty), they are issued in a probabilistic way. One issue frequently observed for probabilistic forecasts is that they tend to be not reliable, i.e. the forecasted probabilities are not consistent with the relative frequency of the associated observed events. Thus, these kind of forecasts need to be re-calibrated. While re-calibration methods for seasonal time scales are available and frequently applied, these methods still have to be adapted for decadal time scales and its characteristic problems like climate trend and lead time dependent bias. Regarding this, we propose a method to re-calibrate decadal ensemble predictions that takes the above mentioned characteristics into account. Finally, this method will be applied and validated to decadal forecasts from the MiKlip system (Germany's initiative for decadal prediction).
ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.
Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer
2018-06-26
Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Szafran, J.; Kamiński, M.
2017-02-01
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2014-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barajas-Solano, David A.; Tartakovsky, Alexandre M.
We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advectivemore » dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.« less
Wei, Yaqiang; Dong, Yanhui; Yeh, Tian-Chyi J; Li, Xiao; Wang, Liheng; Zha, Yuanyuan
2017-11-01
There have been widespread concerns about solute transport problems in fractured media, e.g. the disposal of high-level radioactive waste in geological fractured rocks. Numerical simulation of particle tracking is gradually being employed to address these issues. Traditional predictions of radioactive waste transport using discrete fracture network (DFN) models often consider one particular realization of the fracture distribution based on fracture statistic features. This significantly underestimates the uncertainty of the risk of radioactive waste deposit evaluation. To adequately assess the uncertainty during the DFN modeling in a potential site for the disposal of high-level radioactive waste, this paper utilized the probabilistic distribution method (PDM). The method was applied to evaluate the risk of nuclear waste deposit in Beishan, China. Moreover, the impact of the number of realizations on the simulation results was analyzed. In particular, the differences between the modeling results of one realization and multiple realizations were demonstrated. Probabilistic distributions of 20 realizations at different times were also obtained. The results showed that the employed PDM can be used to describe the ranges of the contaminant particle transport. The high-possibility contaminated areas near the release point were more concentrated than the farther areas after 5E6 days, which was 25,400 m 2 .
NASA Technical Reports Server (NTRS)
Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2004-01-01
This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.
Mixture Modeling for Background and Sources Separation in x-ray Astronomical Images
NASA Astrophysics Data System (ADS)
Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker
2004-11-01
A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian probability theory is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied to ROSAT PSPC data (0.1-2.4 keV) in Survey Mode. A background map is modelled using a Thin-Plate spline. Source probability maps are obtained for each pixel (45 arcsec) independently and for larger correlation lengths, revealing faint and extended sources. We will demonstrate that the described probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS) used for the production of the ROSAT All-Sky Survey (RASS) catalogues.
Elasto-limited plastic analysis of structures for probabilistic conditions
NASA Astrophysics Data System (ADS)
Movahedi Rad, M.
2018-06-01
With applying plastic analysis and design methods, significant saving in material can be obtained. However, as a result of this benefit excessive plastic deformations and large residual displacements might develop, which in turn might lead to unserviceability and collapse of the structure. In this study, for deterministic problem the residual deformation of structures is limited by considering a constraint on the complementary strain energy of the residual forces. For probabilistic problem the constraint for the complementary strain energy of the residual forces is given randomly and critical stresses updated during the iteration. Limit curves are presented for the plastic limit load factors. The results show that these constraints have significant effects on the load factors. The formulations of the deterministic and probabilistic problems lead to mathematical programming which are solved by the use of nonlinear algorithm.
Reconstructing cerebrovascular networks under local physiological constraints by integer programming
Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; ...
2015-04-23
We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less
Menze, Bjoern H.; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-André; Székely, Gabor; Ayache, Nicholas; Golland, Polina
2016-01-01
We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM) to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo-or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the generative-discriminative model to be one of the top ranking methods in the BRATS evaluation. PMID:26599702
Menze, Bjoern H; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-Andre; Szekely, Gabor; Ayache, Nicholas; Golland, Polina
2016-04-01
We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as "tumor core" or "fluid-filled structure", but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.
NASA Astrophysics Data System (ADS)
Lane, E. M.; Gillibrand, P. A.; Wang, X.; Power, W.
2013-09-01
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an "Average Recurrence Interval" of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.
Praveen, Paurush; Fröhlich, Holger
2013-01-01
Inferring regulatory networks from experimental data via probabilistic graphical models is a popular framework to gain insights into biological systems. However, the inherent noise in experimental data coupled with a limited sample size reduces the performance of network reverse engineering. Prior knowledge from existing sources of biological information can address this low signal to noise problem by biasing the network inference towards biologically plausible network structures. Although integrating various sources of information is desirable, their heterogeneous nature makes this task challenging. We propose two computational methods to incorporate various information sources into a probabilistic consensus structure prior to be used in graphical model inference. Our first model, called Latent Factor Model (LFM), assumes a high degree of correlation among external information sources and reconstructs a hidden variable as a common source in a Bayesian manner. The second model, a Noisy-OR, picks up the strongest support for an interaction among information sources in a probabilistic fashion. Our extensive computational studies on KEGG signaling pathways as well as on gene expression data from breast cancer and yeast heat shock response reveal that both approaches can significantly enhance the reconstruction accuracy of Bayesian Networks compared to other competing methods as well as to the situation without any prior. Our framework allows for using diverse information sources, like pathway databases, GO terms and protein domain data, etc. and is flexible enough to integrate new sources, if available. PMID:23826291
Scanlan, Tara K; Russell, David G; Magyar, T Michelle; Scanlan, Larry A
2009-12-01
The Sport Commitment Model was further tested using the Scanlan Collaborative Interview Method to examine its generalizability to New Zealand's elite female amateur netball team, the Silver Ferns. Results supported or clarified Sport Commitment Model predictions, revealed avenues for model expansion, and elucidated the functions of perceived competence and enjoyment in the commitment process. A comparison and contrast of the in-depth interview data from the Silver Ferns with previous interview data from a comparable elite team of amateur male athletes allowed assessment of model external validity, tested the generalizability of the underlying mechanisms, and separated gender differences from discrepancies that simply reflected team or idiosyncratic differences.
Aircraft Conflict Analysis and Real-Time Conflict Probing Using Probabilistic Trajectory Modeling
NASA Technical Reports Server (NTRS)
Yang, Lee C.; Kuchar, James K.
2000-01-01
Methods for maintaining separation between aircraft in the current airspace system have been built from a foundation of structured routes and evolved procedures. However, as the airspace becomes more congested and the chance of failures or operational error become more problematic, automated conflict alerting systems have been proposed to help provide decision support and to serve as traffic monitoring aids. The problem of conflict detection and resolution has been tackled from a number of different ways, but in this thesis, it is recast as a problem of prediction in the presence of uncertainties. Much of the focus is concentrated on the errors and uncertainties from the working trajectory model used to estimate future aircraft positions. The more accurate the prediction, the more likely an ideal (no false alarms, no missed detections) alerting system can be designed. Additional insights into the problem were brought forth by a review of current operational and developmental approaches found in the literature. An iterative, trial and error approach to threshold design was identified. When examined from a probabilistic perspective, the threshold parameters were found to be a surrogate to probabilistic performance measures. To overcome the limitations in the current iterative design method, a new direct approach is presented where the performance measures are directly computed and used to perform the alerting decisions. The methodology is shown to handle complex encounter situations (3-D, multi-aircraft, multi-intent, with uncertainties) with relative ease. Utilizing a Monte Carlo approach, a method was devised to perform the probabilistic computations in near realtime. Not only does this greatly increase the method's potential as an analytical tool, but it also opens up the possibility for use as a real-time conflict alerting probe. A prototype alerting logic was developed and has been utilized in several NASA Ames Research Center experimental studies.
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha
Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less
NASA Astrophysics Data System (ADS)
Wellons, Sarah; Torrey, Paul
2017-06-01
Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.
The crowding factor method applied to parafoveal vision
Ghahghaei, Saeideh; Walker, Laura
2016-01-01
Crowding increases with eccentricity and is most readily observed in the periphery. During natural, active vision, however, central vision plays an important role. Measures of critical distance to estimate crowding are difficult in central vision, as these distances are small. Any overlap of flankers with the target may create an overlay masking confound. The crowding factor method avoids this issue by simultaneously modulating target size and flanker distance and using a ratio to compare crowded to uncrowded conditions. This method was developed and applied in the periphery (Petrov & Meleshkevich, 2011b). In this work, we apply the method to characterize crowding in parafoveal vision (<3.5 visual degrees) with spatial uncertainty. We find that eccentricity and hemifield have less impact on crowding than in the periphery, yet radial/tangential asymmetries are clearly preserved. There are considerable idiosyncratic differences observed between participants. The crowding factor method provides a powerful tool for examining crowding in central and peripheral vision, which will be useful in future studies that seek to understand visual processing under natural, active viewing conditions. PMID:27690170
Impacts of potential seismic landslides on lifeline corridors.
DOT National Transportation Integrated Search
2015-02-01
This report presents a fully probabilistic method for regional seismically induced landslide hazard analysis and : mapping. The method considers the most current predictions for strong ground motions and seismic sources : through use of the U.S.G.S. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric
This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less
Caillouet, Laurie; Vidal, Jean -Philippe; Sauquet, Eric; ...
2016-03-16
This work proposes a daily high-resolution probabilistic reconstruction of precipitation and temperature fields in France over the 1871–2012 period built on the NOAA Twentieth Century global extended atmospheric reanalysis (20CR). The objective is to fill in the spatial and temporal data gaps in surface observations in order to improve our knowledge on the local-scale climate variability from the late nineteenth century onwards. The SANDHY (Stepwise ANalogue Downscaling method for HYdrology) statistical downscaling method, initially developed for quantitative precipitation forecast, is used here to bridge the scale gap between large-scale 20CR predictors and local-scale predictands from the Safran high-resolution near-surface reanalysis,more » available from 1958 onwards only. SANDHY provides a daily ensemble of 125 analogue dates over the 1871–2012 period for 608 climatically homogeneous zones paving France. Large precipitation biases in intermediary seasons are shown to occur in regions with high seasonal asymmetry like the Mediterranean. Moreover, winter and summer temperatures are respectively over- and under-estimated over the whole of France. Two analogue subselection methods are therefore developed with the aim of keeping the structure of the SANDHY method unchanged while reducing those seasonal biases. The calendar selection keeps the analogues closest to the target calendar day. The stepwise selection applies two new analogy steps based on similarity of the sea surface temperature (SST) and the large-scale 2 m temperature ( T). Comparisons to the Safran reanalysis over 1959–2007 and to homogenized series over the whole twentieth century show that biases in the interannual cycle of precipitation and temperature are reduced with both methods. The stepwise subselection moreover leads to a large improvement of interannual correlation and reduction of errors in seasonal temperature time series. When the calendar subselection is an easily applicable method suitable in a quantitative precipitation forecast context, the stepwise subselection method allows for potential season shifts and SST trends and is therefore better suited for climate reconstructions and climate change studies. Furthermore, the probabilistic downscaling of 20CR over the period 1871–2012 with the SANDHY probabilistic downscaling method combined with the stepwise subselection thus constitutes a perfect framework for assessing the recent observed meteorological events but also future events projected by climate change impact studies and putting them in a historical perspective.« less
NASA Astrophysics Data System (ADS)
Albertson, J. D.
2015-12-01
Methane emissions from underground pipeline leaks remain an ongoing issue in the development of accurate methane emission inventories for the natural gas supply chain. Application of mobile methods during routine street surveys would help address this issue, but there are large uncertainties in current approaches. In this paper, we describe results from a series of near-source (< 30 m) controlled methane releases where an instrumented van was used to measure methane concentrations during both fixed location sampling and during mobile traverses immediately downwind of the source. The measurements were used to evaluate the application of EPA Method 33A for estimating methane emissions downwind of a source and also to test the application of a new probabilistic approach for estimating emission rates from mobile traverse data.
Clinical Effects of Naltrexone on Autistic Behavior.
ERIC Educational Resources Information Center
Zingarelli, Gene; And Others
1992-01-01
Eight young adults (ages 19-39) with autism were given the opiate antagonist naltrexone to control self-injurious behavior and maladaptive idiosyncratic mannerisms. Although one subject appeared to have partial decreases in maladaptive behaviors, the drug did not clearly reduce the self-injurious and other maladaptive behaviors of the subjects.…
Learning and Classroom Preferences of Gifted Eighth Graders: A Qualitative Study
ERIC Educational Resources Information Center
Samardzija, Nadine; Peterson, Jean Sunde
2015-01-01
The purpose of this phenomenological qualitative study was to explore how academically gifted eighth graders experience learning, with special attention to learning and classroom preferences. Twenty-three students were interviewed individually. The central phenomenon was that their learning preferences were complex, nuanced, and idiosyncratic, and…
The Changing Nature of Jobs: A Paraprofessional Time Series.
ERIC Educational Resources Information Center
Johnson, Carol P.
1996-01-01
This study examined job descriptions (1975, 1981, 1990) of three paraprofessional jobs in an academic library technical services department at a small, private liberal arts college to determine changes occurring as a result of automation. It found no significant differences. Although changes were more idiosyncratic than expected, they may indicate…
Welsh Bilinguals' English Spelling: An Error Analysis.
ERIC Educational Resources Information Center
James, Carl; And Others
1993-01-01
The extent to which the second-language English spelling of young Welsh-English bilinguals is systematically idiosyncratic was examined from free compositions written by 10- to 11-year-old children. A model is presented of the second-language spelling process in the form of a "decision tree." (Contains 29 references.) (Author/LB)
Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement.
ERIC Educational Resources Information Center
Hassanein, Neva; Kloppenburg, Jack R., Jr.
1995-01-01
Intensive rotational grazing by Wisconsin dairy farmers represents a local expression of the sustainable agriculture movement. Contrary to interpretations that view local knowledge in agriculture as idiosyncratic, these graziers use horizontal forms of organizing and information exchange to overcome the limits of personal experience and share…
ERIC Educational Resources Information Center
Guiso, Luigi; Pistaferri, Luigi; Schivardi, Fabiano
2005-01-01
We evaluate the allocation of risk between firms and their workers using matched employer-employee panel data. Unlike previous contributions, this paper focuses on idiosyncratic shocks to the firm, which are the correct empirical counterpart of the theoretical notion of diversifiable risk. We allow for both temporary and permanent shocks to output…
Identifying Discourses of Moderation in Higher Education
ERIC Educational Resources Information Center
Adie, Lenore; Lloyd, Margaret; Beutel, Denise
2013-01-01
Moderation of student assessment is a critical component of teaching and learning in contemporary universities. Yet, despite this, it tends to be marked by idiosyncratic and sporadic processes informed by liminal understanding. This paper, in the light of forthcoming radical national requirements for the declaration of moderation processes in…
Flexibility of Household Structure: Child Fostering Decisions in Burkina Faso
ERIC Educational Resources Information Center
Akresh, Richard
2009-01-01
Using data I collected in Africa, this paper examines a household's decision to adjust its size through child fostering, an institution where biological parents temporarily send children to live with other families. Households experiencing negative idiosyncratic income shocks, child gender imbalances, located further from primary schools, or with…
In Defense of Freedom: Horace L. Traubel and the "Conservator."
ERIC Educational Resources Information Center
Bussel, Alan
Philadelphia poet and journalist Horace L. Traubel's work as biographer of Walt Whitman has overshadowed his role as crusading editor. Traubel (1858-1919) devoted 30 years to publishing the "Conservator," a monthly newspaper that reflected its editor's idiosyncratic philosophy and crusaded persistently for libertarian principles. He made…
On the evolution of hoarding, risk-taking, and wealth distribution in nonhuman and human populations
Bergstrom, Theodore C.
2014-01-01
This paper applies the theory of the evolution of risk-taking in the presence of idiosyncratic and environmental risks to the example of food hoarding by animals and explores implications of the resulting theory for human attitudes toward risk. PMID:25024179