Science.gov

Sample records for idp signature processing

  1. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  2. IDP: Image and data processing (software) in C++

    SciTech Connect

    Lehman, S.

    1994-11-15

    IDP++(Image and Data Processing in C++) is a complied, multidimensional, multi-data type, signal processing environment written in C++. It is being developed within the Radar Ocean Imaging group and is intended as a partial replacement for View. IDP++ takes advantage of the latest object-oriented compiler technology to provide `information hiding.` Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is being designed for real-time environment where interpreted signal processing packages are less efficient.

  3. History of Nebular Processing Traced by Silicate Stardust in IDPs

    NASA Astrophysics Data System (ADS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A.

    2010-03-01

    We have identified two presolar silicate grains as polycrystalline assemblages, or equilibrated aggregates. These grains occur in a stardust-rich interplanetary dust particle (IDP). We propose these grains were annealed in the solar nebula.

  4. IDP++: signal and image processing algorithms in C++ version 4.1

    SciTech Connect

    Lehman, S.K.

    1996-11-01

    IDP++ (Image and Data Processing in C++) is a collection of signal and image processing algorithms written in C++. It is a compiled signal processing environment which supports four data types of up to four dimensions. It is developed within Lawrence Livermore National Laboratory`s Image and Data Processing group as a partial replacement for View. IDP ++ takes advantage of the latest, implemented and actually working, object-oriented compiler technology to provide `information hiding.` Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is designed for real-time environment where interpreted processing packages are less efficient. IDP++ exists for both SUNs and Silicon Graphics using their most current compilers.

  5. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin?

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Messenger, S.; Keller, L. P.

    2005-01-01

    Chondritic interplanetary dust particles (IDPs) are subdivided into (1) particles that form highly porous aggregates (chondritic porous "CP" IDPs), and (2) smooth particles ("CS" IDPs). Infrared (IR) spectroscopy has been a valuable tool for non-destructively determining the bulk mineralogy of IDPs. Most IDPs fall within three distinct IR groups: (1) olivine-rich particles, (2) pyroxene-rich particles, and (3) phyllosilicate-rich particles. From the IR studies, IDPs dominated by anhydrous minerals tend to be fine grained (CP), while phyllosilicate-rich IDPs are mostly CS. CP IDPs have been linked to cometary sources based on their compositions, spectral properties, and atmospheric entry velocities. Since no spectral signatures of hydrated minerals have been detected in comets, CS IDPs are thought to derive from primitive asteroids. Transmission electron microscopy (TEM) studies have revealed that the mineralogical distinctions between CP and CS IDPs are not always clear. Previous investigators have reported trace amounts of hydrous minerals in dominantly anhydrous particles. A better understanding of these particles will help to elucidate whether there is a genetic relationship between anhydrous and hydrated IDPs, provide insight into the earliest stages of aqueous alteration of primitive materials, and may help to determine whether comets have experienced any aqueous processing. Here we report a combined TEM and isotopic imaging study of an unusual anhydrous IDP with hydrated phases. Additional information is included in the original extended abstract.

  6. (13)C-detected NMR experiments for automatic resonance assignment of IDPs and multiple-fixing SMFT processing.

    PubMed

    Dziekański, Paweł; Grudziąż, Katarzyna; Jarvoll, Patrik; Koźmiński, Wiktor; Zawadzka-Kazimierczuk, Anna

    2015-06-01

    Intrinsically disordered proteins (IDPs) have recently attracted much interest, due to their role in many biological processes, including signaling and regulation mechanisms. High-dimensional (13)C direct-detected NMR experiments have proven exceptionally useful in case of IDPs, providing spectra with superior peak dispersion. Here, two such novel experiments recorded with non-uniform sampling are introduced, these are 5D HabCabCO(CA)NCO and 5D HNCO(CA)NCO. Together with the 4D (HACA)CON(CA)NCO, an extension of the previously published 3D experiments (Pantoja-Uceda and Santoro in J Biomol NMR 59:43-50, 2014. doi: 10.1007/s10858-014-9827-1), they form a set allowing for complete and reliable resonance assignment of difficult IDPs. The processing is performed with sparse multidimensional Fourier transform based on the concept of restricting (fixing) some of spectral dimensions to a priori known resonance frequencies. In our study, a multiple-fixing method was developed, that allows easy access to spectral data. The experiments were tested on a resolution-demanding alpha-synuclein sample. Due to superior peak dispersion in high-dimensional spectrum and availability of the sequential connectivities between four consecutive residues, the overwhelming majority of resonances could be assigned automatically using the TSAR program. PMID:25902761

  7. Nonlinear image filtering within IDP++

    SciTech Connect

    Lehman, S.K.; Wieting, M.G.; Brase, J.M.

    1995-02-09

    IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

  8. Nonlinear image filtering within IDP++

    NASA Astrophysics Data System (ADS)

    Lehman, Sean K.; Wieting, Mel G.; Brase, James M.

    1995-03-01

    IDP++, image and data processing in C++, is a set of signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide `information hiding.' Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We present here some examples of the nonlinear filter library within IDP++. Specifically, the results of min, max, median, (alpha) -trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RAR) and synthetic aperture radar (SAR) data set.

  9. Iron-sulfides, iron-oxides and aqueous processing of organic materials in CM and CI meteorites and IDPs

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J.

    Why do CM meteorites have such a rich variety of organics? D/H isotope ratios prove an interstellar component of the organic matter in CM and CI carbonaceous meteorites wherein the complex ``organics'' could in part be due to Fischer-Tropsch type (FTT) processes and processing of organic precursors on Fe-sulfide, Fe-oxide or clay catalysts. ``Origin of Life'' scenarios refer to the richly varied organics in CM (Murchison) meteorites as the precursor materials delivered to the Earth 4.2-3.9 Gyrs ago. Aggregate interplanetary dust particles (IDPs) have more carbon, incl. an interstellar component, than CI and CM meteorites but their original ``organics'' and amounts are modified by pyrolysis during atmospheric entry. Here, I will assume that anhydrous aggregate IDPs formed the originally anhydrous CI and CM matrix. These IDPs contain submicron CHON, mixed and `silicate' principal components (PCs), e.g. Fe-rich serpentine dehydroxylate, (Mg,Fe)3Si2O7, PCs [Fe/(Mg+Fe)(fe) = 0.3-0.8], and micron-size Fe-sulfides, olivine and pyroxenes. In a Mg-Fe-Si diagram with an Fe-apex, these PC compositions plot on a serpentine, (Mg,Fe)/Si line. The hydrated CI matrix compositions also define a straight line that, anchored at serpentine, fe = 0.3, is rotated towards higher (Mg,Fe)/Si ratios with increasing serpentine fe-ratio when during hydration of an initially ``serpentine dehydroxylate PC'' CI matrix reacted with Fe-sulfide, Fe-oxide, or both. The straight line defining hydrated CM matrix compositions is rotated even more towards higher (Mg,Fe)/Si ratios when hydrated CI-like material continued reacting with Fe-oxide and Fe-sulfide and formed tochilinite, a mineral unique to CM meteorites. Continuous hydration of IDP-like material with an ample supply of Fe-minerals acting as catalysts for formation and processing ``organics'' would have affected the redox conditions of a buffered C-H-O-S aqueous fluid during the time ``organics' were modified to the unique mélanges of CM

  10. IDPs at Work

    ERIC Educational Resources Information Center

    Hirsh, Åsa

    2015-01-01

    The present study concerns Swedish teachers' practices with regard to individual development plans (IDPs), which are mandatory for all students in compulsory school. The conceptual points of departure are taken from Wartofsky's distinctions between primary, secondary, and tertiary artifacts and the concepts of inscription and…

  11. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

  12. Signatures of mutational processes in human cancer

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  13. Signatures of mutational processes in human cancer.

    PubMed

    Alexandrov, Ludmil B; Nik-Zainal, Serena; Wedge, David C; Aparicio, Samuel A J R; Behjati, Sam; Biankin, Andrew V; Bignell, Graham R; Bolli, Niccolò; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P; Caldas, Carlos; Davies, Helen R; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinski, Marcin; Imielinsk, Marcin; Jäger, Natalie; Jones, David T W; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C; Nakamura, Hiromi; Northcott, Paul A; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V; Puente, Xose S; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N; Span, Paul N; Teague, Jon W; Totoki, Yasushi; Tutt, Andrew N J; Valdés-Mas, Rafael; van Buuren, Marit M; van 't Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R; Zucman-Rossi, Jessica; Futreal, P Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M; Campbell, Peter J; Stratton, Michael R

    2013-08-22

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

  14. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  15. Chemical compositions of large cluster IDPs

    SciTech Connect

    Flynn, G.J.; Lanzirotti, A.; Sutton, S.R.

    2006-12-06

    We performed X-ray fluorescence spectroscopy on two large cluster IDPs, which sample the IDP parent body at a mass scale two orders-of-magnitude larger than {approx}10 {micro}m IDPs, allowing proper incorporation of larger mineral grains into the bulk composition of the parent body. We previously determined that {approx}10 {micro}m interplanetary dust particles (IDPs) collected from the Earth's stratosphere are enriched in many moderately volatile elements by a factor of {approx}3 over the CI meteorites. However, these IDP measurements provide no direct constraint on the bulk chemical composition of the parent body (or parent bodies) of the IDPs. Collisions are believed to be the major mechanism for dust production by the asteroids, producing dust by surface erosion, cratering and catastrophic disruption. Hypervelocity impact experiments at {approx}5 km/sec, which is the mean collision velocity in the main belt, performed by Flynn and Durda on ordinary chondrite meteorites and the carbonaceous chondrite meteorite Allende show that the 10 {micro}m debris is dominated by matrix material while the debris larger than {approx}25 {micro}m is dominated by chondrule fragments. Thus, if the IDP parent body is similar in structure to the chondritic meteorites, it is likely that the {approx}10 {micro}m IDPs oversample the fine-grained component of the parent body. We have examined the matrix material from the few meteorites that are sufficiently fine-grained to be samples of potential IDP parent bodies. This search has, thus far, not produced a compositional and mineralogical match to either the hydrous or anhydrous IDPs. This result, coupled with our recent mapping of the element distributions, which indicates the enrichment of moderately volatile elements is not due to contamination on their surfaces, suggests the IDPs represent a new type of extraterrestrial material. Nonetheless, the meteorite fragmentation results suggest that compositional measurements on 10 {micro

  16. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds.

    PubMed

    Clark, Sarah A; Jespersen, Nathan; Woodward, Clare; Barbar, Elisar

    2015-09-14

    A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly. PMID:26226419

  17. Extracellular Signatures as Indicators of Processing Methods

    SciTech Connect

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  18. Structural and Dynamic Analysis on IDPs by Modified AWSEM-MD

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Papoian, Garegin; Papoian Theoretical Biophysics Group Team

    Unlike globular proteins, intrinsically disordered proteins (IDPs) lack both secondary and tertiary structures and can play key roles in various biological processes, including transcriptional regulation, molecular recognition and cellular signaling. These functions can be potentially elucidated by structural heterogeneity of IDPs. Because of their flexibility and disordered nature, it has been difficult to investigate IDPs both computationally and experimentally. In particular, it is desirable to develop coarse-grained, yet accurate models of IDPs, such that simulations exploring sufficient conformational ensembles could be carried out within feasible times. To achieve this goal, we modified the associative memory, water mediated, structure and energy model (AWSEM-MD), which is typically used for folding of globular proteins or binding studies. We tested modified AWSEM-MD on several well-studied IDPs and found the transient secondary structure propensity is consistent with NMR experimental results. The rugged free energy landscapes obtained also show structural heterogeneity of these IDPs. Our proposed extension of AWSEM-MD may allow simulating a wider range of IDPs with high accuracy and computational efficiency.

  19. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth

  20. High-Nickel Iron-Sulfides in Anhydrous, Gems-Rich CP IDPs

    NASA Technical Reports Server (NTRS)

    FLynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.

    2016-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) that were not severly heated during atmospheric deceleration are the best preserved samples of the solids that condensed from the Solar protoplanetary disk, as well as pre-Solar grains thatr survived incorporation into the disk, currently available for laboratory analysis [1]. These CP IDPs never experienced the aqueous and/or thermal processing, gravitational compaction, and shock effects that overprinted the record of Solar nebula processes in meteorites.

  1. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOEpatents

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  2. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials.

  3. Human topographic signatures and derived geomorphic processes across landscapes

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-02-01

    The Earth's surface morphology, in an abiotic context, is a consequence of major forcings such as tectonic uplift, erosion, sediment transport, and climate. Recently, however, it has become essential for the geomorphological community to also take into account biota as a geomorphological agent that has a role in shaping the landscape, even if at a different scale and magnitude from that of geology. Although the modern literature is flourishing on the impacts of vegetation on geomorphic processes, the study of anthropogenic pressures on geomorphology is still in its early stages. Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes. This review provides an overview of the recent literature on the role of humans as a geological agent in shaping the morphology of the landscape. We explore different contexts that are significantly characterized by anthropogenic topographic signatures: landscapes affected by mining activities, road networks and agricultural practices. We underline the main characteristics of those landscapes and the implications of human impacts on Earth surface processes. The final section considers future challenges wherein we explore recent novelties and trials in the concept of anthropogenic geomorphology. Herein, we focus on the role of high-resolution topographic and remote-sensing technologies. The reconstruction or identification of artificial or anthropogenic topographies provides a mechanism for quantifying anthropogenic changes to landscape systems. This study may allow an improved understanding and targeted mitigation of the processes driving geomorphic

  4. Fairness influences early signatures of reward-related neural processing.

    PubMed

    Massi, Bart; Luhmann, Christian C

    2015-12-01

    Many humans exhibit a strong preference for fairness during decision-making. Although there is evidence that social factors influence reward-related and affective neural processing, it is unclear if this effect is mediated by compulsory outcome evaluation processes or results from slower deliberate cognition. Here we show that the feedback-related negativity (FRN) and late positive potential (LPP), two signatures of early hedonic processing, are modulated by the fairness of rewards during a passive rating task. We find that unfair payouts elicit larger FRNs than fair payouts, whereas fair payouts elicit larger LPPs than unfair payouts. This is true both in the time-domain, where the FRN and LPP are related, and in the time-frequency domain, where the two signals are largely independent. Ultimately, this work demonstrates that fairness affects the early stages of reward and affective processing, suggesting a common biological mechanism for social and personal reward evaluation.

  5. Group Interpersonal Psychotherapy for depressed youth in IDP camps in Northern Uganda: adaptation and training.

    PubMed

    Verdeli, Helen; Clougherty, Kathleen; Onyango, Grace; Lewandowski, Eric; Speelman, Liesbeth; Betancourt, Teresa S; Neugebauer, Richard; Stein, Traci R; Bolton, Paul

    2008-07-01

    This article reviews the use of Interpersonal Psychotherapy (IPT) with depressed youth living in Internally Displaced Persons (IDP) camps in North Uganda. This youth has been exposed to severe losses and disruptions in relationships with caregivers, family, and community members; limited access to formal education; exposure to malnutrition and infections; and pressure to prematurely assume adult family roles. The process of adaptation to the content and training of IPT for these youth is presented and illustrated with case examples. PMID:18558315

  6. Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Wirick, S.; Jacobsen, C.

    2004-01-01

    Many anhydrous interplanetary dust particles (IDPs) are the most pristine samples of primitive solar system dust currently available for laboratory analysis. Their primitive nature is demonstrated by: 1) the high content of moderately volatile elements, indicating they have not been heated significantly since formation, 2) the absence of hydrated material, indicating they never experienced aqueous processing, 3) the presence of unequilibrated mineral assemblages, 4) the presence of large isotopic anomalies (e.g., D and 15N enrichment), in these IDPs.

  7. Association of Presolar Grains with Molecular Cloud Material in IDPs

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) collected in the stratosphere appear chemically, mineralogically, and texturally primitive in comparison to meteorites. Particles that escape significant atmospheric entry heating have highly unequilibrated mineralogy, are volatile element rich, and, overall, appear to have escaped significant parent body hydrothermal alteration. These IDPs are comprised of the building blocks of the solar system. The strongest evidence that anhydrous IDPs are primitive is that they contain abundant stardust and molecular cloud material. In particular, presolar silicates were first identified in IDPs and are present in abundances (450-5,500 ppm) that are well above that observed in primitive meteorites (less than 170 ppm). The most fragile (cluster) IDPs also commonly exhibit large H and N isotopic anomalies that likely originated by isotopic fractionation during extremely low temperature chemical reactions in a presolar cold molecular cloud. The D/H ratios exceed that of most primitive meteorites, and in rare cases reach values directly observed from simple gas phase molecules in cold molecular clouds. The most extreme D- and N-15-enrichments are usually observed at the finest spatial scales (0.5-2 microns) that can be measured. These observations suggest that D and N-15 hotspots are in fact preserved nuggets of molecular cloud material, and that the materials within them also have presolar origins. The advanced capabilities of the NanoSIMS ion microprobe now enable us to test this hypothesis. Here, we report two recent examples of presolar silicates found to be directly associated with molecular cloud material.

  8. Coordinated Chemical and Isotopic Studies of GEMS in IDPS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2008-01-01

    Cometary IDPs contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula [1]. Following their accretion, these materials have remained relatively unaltered because of the lack of parent body hydrothermal alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these IDPs because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars [e.g. 2]. Amorphous silicates (in the form of GEMS grains) are a major component of cometary IDPs and so a major objective of this work is to elucidate their origins. In rare cases, GEMS grains have highly anomalous O isotopic compositions that establish their origins as circumstellar condensates [3]. Here we present data on a systematic study of the silicate components within a primitive IDP.

  9. N-15-Rich Organic Globules in a Cluster IDP and the Bells CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, Lindsay P.

    2008-01-01

    Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and 15N/14N relative to terrestrial values [1-3]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [1]. Some meteorites and IDPs contain m-size inclusions with extreme H and N isotopic anomalies [2-4], possibly due to preserved pristine primordial organic grains. We recently showed that the in the Tagish Lake meteorite, the principle carriers of these anomalies are sub- m, hollow organic globules [5]. The globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. We proposed that similar materials should be common among primitive meteorites, IDPs, and comets. Similar objects have been observed in organic extracts of carbonaceous chondrites [6-8], however their N and H isotopic compositions are generally unknown. Bulk H and N isotopic compositions may indicate which meteorites best preserve interstellar organic compounds. Thus, we selected the Bells CM2 carbonaceous chondrites for study based on its large bulk 15N (+335 %) and D (+990 %) [9].

  10. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  11. Test and Evaluation of ff99IDPs Force Field for Intrinsically Disordered Proteins.

    PubMed

    Ye, Wei; Ji, Dingjue; Wang, Wei; Luo, Ray; Chen, Hai-Feng

    2015-05-26

    Over 40% of eukaryotic proteomic sequences have been predicted to be intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) and confirmed to be associated with many diseases. However, widely used force fields cannot well reproduce the conformers of IDPs. Previously the ff99IDPs force field was released to simulate IDPs with CMAP energy corrections for the eight disorder-promoting residues. In order to further confirm the performance of ff99IDPs, three representative IDP systems (arginine-rich HIV-1 Rev, aspartic proteinase inhibitor IA3, and α-synuclein) were used to test and evaluate the simulation results. The results show that for free disordered proteins, the chemical shifts from the ff99IDPs simulations are in quantitative agreement with those from reported NMR measurements and better than those from ff99SBildn. Thus, ff99IDPs can sample more clusters of disordered conformers than ff99SBildn. For structural proteins, both ff99IDPs and ff99SBildn can well reproduce the conformations. In general, ff99IDPs can successfully be used to simulate the conformations of IDPs and IDRs in both bound and free states. However, relative errors could still be found at the boundaries of ordered residues scattered in long disorder-promoting sequences. Therefore, polarizable force fields might be one of the possible ways to further improve the performance on IDPs. PMID:25919886

  12. Arctic sea ice microwave signature and geophysical processes study

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Shuchman, Robert A.

    1993-01-01

    Studies on the validation and utilization of ERS-1 SAR (Synthetic Aperture Radar) derived liquid and solid ocean information and the study of the interregional, regional, and temporal variation of the microwave signatures of sea ice and snow, are reported. Initial interests are focused on the accuracy of the estimates of ice type, ice form, deformation state, or thickness, and the ability to retrieve ice physical property information. Two in situ campaigns were conducted for the purpose of 'truth' ERS-1 SAR products and to gather data in support of the above science studies.

  13. An assessment of the contamination acquired by IDPs during atmospheric deceleration

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    The E-layer of the terrestrial mesosphere, between 80 and 110 km altitude, is derived from meteoric ablation. Concentrations of Na and Fe, contributed by meteoric vapor, have been monitored in the mesosphere, and both individual meteors and average concentration profiles have been measured. Individual interplanetary dust particles (IDP's) entering the earth's atmosphere must pass through the mesospheric layers rich in meteoric volatile elements. Limits on the extent to which individual IDP's can be contaminated by meteoric volatile elements during deceleration in the upper atmosphere can be established by considering the extreme cases: the direct passage of an IDP through a meteoric vapor trail or the passage of an IDP through the mesospheric layer rich in meteoric volatiles. It appears the interaction of IDP's with meteoric vapor during deceleration in the upper atmosphere does not produce significant contamination of IDP's as they decelerate in the upper atmosphere.

  14. An efficient forward-secure group certificate digital signature scheme to enhance EMR authentication process.

    PubMed

    Yu, Yao-Chang; Hou, Ting-Wei

    2014-05-01

    The frequently used digital signature algorithms, such as RSA and the Digital Signature Algorithm (DSA), lack forward-secure function. The result is that, when private keys are renewed, trustworthiness is lost. In other words, electronic medical records (EMRs) signed by revoked private keys are no longer trusted. This significant security threat stands in the way of EMR adoption. This paper proposes an efficient forward-secure group certificate digital signature scheme that is based on Shamir's (t,n) threshold scheme and Schnorr's digital signature scheme to ensure trustworthiness is maintained when private keys are renewed and to increase the efficiency of EMRs' authentication processes in terms of number of certificates, number of keys, forward-secure ability and searching time.

  15. Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Chadwick, Oliver A.

    1996-01-01

    The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.

  16. Comparing Wild 2 Particles to Chondrites and IDPS

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Nakamura-Messenger, Keiko; Rietmeijer, Frans; Leroux, Hugues; Mikouchi, Takashi; Ohsumi, Kazumasa; Simon, Steven; Grossman, Lawrence; Stephan, Thomas; Weisberg, Michael; Velbel, Michael; Zega, Thomas; Stroud, Rhonda; Tomeoka, Kazushige; Ohnishi, Ichiro; Tomioka, Naotaka; Nakamura, Tomoki; Matrajt, Graciela; Joswiak, David; Brownlee, Don; Langenhorst, Falko; Krot, Alexander; Kearsley, Anton; Ishii, Hope; Graham, Giles

    2008-01-01

    We compare the observed composition ranges of olivine, pyroxene and Fe-Ni sulfides in Wild 2 grains, comparing these with chondritic IDPs and chondrite classes to explore whether these data suggest affinities to known hydrous materials in particular. Wild 2 olivine has an extremely wide composition range, from Fo4-100 with a pronounced frequency peak at Fo99. The composition range displayed by the low-calcium pyroxene is also very extensive, from En52 to En100, with a significant frequency peak centered at En95. These ranges are as broad or broader than those reported for any other extraterrestrial material. Wild 2 Fe-Ni sulfides mainly have compositions close to that of FeS, with less than 2 atom % Ni - to date, only two pentlandite grains have been found among the Wild-grains suggesting that this mineral is not abundant. The complete lack of compositions between FeS and pentlandite (with intermediate solid solution compositions) suggests (but does not require) that FeS and pentlandite condensed as crystalline species, i.e. did not form as amorphous phases, which later became annealed. While we have not yet observed any direct evidence of water-bearing minerals, the presence of Ni-bearing sulfides, and magnesium-dominated olivine and low-Ca pyroxene does not rule out their presence at low abundance. We do conclude that modern major and minor element compositions of chondrite matrix and IDPs are needed.

  17. IDP Camp and Reconstruction Monitoring Experience at SERTIT

    NASA Astrophysics Data System (ADS)

    Clandillon, Stephen; Allenbach, Bernard; Battiston, Stephanie; Caspard, Mathilde; Fellah, Kader; Giraud, Henri; Montabord, Myldred; Tholey, Nadine; Uribe, Carlos; Yesou, Herve; de Fraipont, Paul

    2010-12-01

    SERTIT's rapid mapping activities covering disasters and damage mapping after a major catastrophic event such as those realized within the framework of International Charter "Space and major disasters" (Charter) and GMES1 programmes are relatively well known, whereas the work carried since 2004 on the exploitation of Earth Observation data for humanitarian aid is less often presented. The aim of this paper is to present this work from mapping and monitoring IDP camp related emergencies to supporting recovery and reconstruction and the context, procedures and examples of this work. A brief introduction to the world of rapid mapping will be given within the context of emergency mapping and monitoring and why this need arises. This is combined with a word on the development of this service with respect to the Internally Displaced Persons (IDP) camp mapping. Then, the cases of Sudan 2004, Chad & Sudan 2008 and Yemen 2009 will be treated to show that the Emergency Mapping and Monitoring Service for Displaced Populations is operational. Afterwards, SERTIT's complementary Emergency Recovery Support Service will be demonstrated through the long- term reconstruction monitoring work carried out, post- disaster, following the 2003 Boumerdès earthquake event. Finally, the need for the availability and deployment of this kind of services is highlighted by the reconstruction planning and monitoring requirements in Haiti, amongst other places.

  18. Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample.

  19. Nano-Diamonds in Interplanetary Dust Particles (IDPs), Micrometeorites, and Meteorites

    NASA Technical Reports Server (NTRS)

    Dai, Z. R.; Bradley, J. P.; Joswiak, D. J.; Brownlee, D. E.; Genge, M. J.

    2002-01-01

    Nano-diamonds have been identified in IDPs (Interplanetary Dust Particles), micrometeorites, and meteorites. They appear to be depleted in non-cluster IDPs suggesting that some nano-diamonds are not presolar. Additional information is contained in the original extended abstract.

  20. The Impact of Talibanization on the Education of IDP's in N. W. F. P. Pakistan

    ERIC Educational Resources Information Center

    Akhtar, Sajjad Hayat

    2009-01-01

    The study looked into a descriptive research to evaluate the impact of talibanization on the education of IDP's in NWFP (Pakistan). The study has defined the needs, problems and opportunities, contribution of NGO's and emerging trends of IDP's regarding maddrassa education/ general education. The main focus of the study was the needs and…

  1. Exploring the geophysical signatures of microbial processes in the earth

    SciTech Connect

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  2. Atypical spatiotemporal signatures of working memory brain processes in autism.

    PubMed

    Urbain, C M; Pang, E W; Taylor, M J

    2015-08-11

    Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed.

  3. Atypical spatiotemporal signatures of working memory brain processes in autism

    PubMed Central

    Urbain, C M; Pang, E W; Taylor, M J

    2015-01-01

    Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed. PMID:26261885

  4. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  5. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  6. Technology Gap Analysis for the Detection of Process Signatures Using Less Than Remote Methods

    SciTech Connect

    Hartman, John S.; Atkinson, David A.; Lind, Michael A.; Maughan, A. D.; Kelly, James F.

    2005-01-01

    Although remote sensing methods offer advantages for monitoring important illicit process activities, remote and stand-off technologies cannot successfully detect all important processes with the sensitivity and certainty that is desired. The main scope of the program is observables, with a primary focus on chemical signatures. A number of key process signatures elude remote or stand-off detection for a variety of reasons (e.g., heavy particulate emissions that do not propagate far enough for detection at stand-off distances, semi-volatile chemicals that do not tend to vaporize and remain in the environment near the source, etc.). Some of these compounds can provide persistent, process-specific information that is not available through remote techniques; however, the associated measurement technologies have their own set of advantages, disadvantages and technical challenges that may need to be overcome before additional signature data can be effectively and reliably exploited. The main objective of this report is to describe a process to identify high impact technology gaps for important less-than-remote detection applications. The subsequent analysis focuses on the technology development needed to enable exploitation of important process signatures. The evaluation process that was developed involves three interrelated and often conflicting requirements generation activities: • Identification of target signature chemicals with unique intelligence value and their associated attributes as mitigated by environmentally influenced fate and transport effects (i.e., what can you expect to actually find that has intelligence value, where do you need to look for it and what sensitivity and selectivity do you need to see it) • Identification of end-user deployment scenario possibilities and constraints with a focus on alternative detection requirements, timing issues, logistical consideration, and training requirements for a successful measurement • Identification of

  7. A Dynamic Time Warping based covariance function for Gaussian Processes signature identification

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-11-01

    Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.

  8. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  9. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    SciTech Connect

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  10. Hydrological signatures of Critical Zone Processes: Developing targets for Critical Zone modeling.

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Karst, N.; Dralle, D.

    2015-12-01

    Water fluxes through the Critical Zone (CZ) are ubiquitous, and their behavior has the potential to reveal information about the structure and dynamics of the CZ. Models describing these fluxes implicitly propose hypotheses about the CZ which are encoded in the structure of the models. However, the certainty with which such hypotheses can be tested with observed hydrologic data is challenged by the well-known problem of equifinality - the tendency of multiple models, with very different model structures, to produce equally good representations of observed hydrologic dynamics. The project of modeling the CZ is thus challenged by the need to identify hydrologic signatures that are closely tied to the CZ structure and which could provide a stronger basis for hypothesis testing in model frameworks. Here I present one potential signature based on streamflow recession dynamics and the structure of their variability. Firstly, I present a technique to remove a mathematical artifact that is inherent in power-law representations of streamflow recessions. Secondly, I show that having removed this artifact, intriguing relationships emerge in the recession variability in the rivers near the Eel River Critical Zone Observatory. This relationship is interpreted in terms of how water is partitioned within the CZ. The close relationship between CZ processes and this part of the hydrologic response suggests that co-variation in recession parameters could provide a process-oriented hydrologic signature that CZ models should attempt to emulate.

  11. Catastrophic Disruptions or Slow Erosion as the Dominant Mechanism for IDP Production

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.

    1993-07-01

    Evidence from the degree of entry heating [1,2] and solar flare track densities [3] suggests a large fraction of the silicate IDPs recovered from the stratosphere are derived from main-belt asteroidal parent bodies. The two dominant mechanisms by which main-belt asteroids contribute to the interplanetary dust are slow erosion and catastrophic disruption with subsequent comminution of the debris. These mechanisms produce profoundly different IDP populations. If slow erosion dominates, the IDPs sample the diversity of the asteroid population in rough proportion to the surface areas of the individual asteroids [4], although probably modified by fragmentation effects [5]. If catastrophic collisions dominate, the IDPs principlly sample the debris of a few recent disruptions. Comparison of the compositional diversity of the IDP population with that of the main-belt asteroids and with the asteroid families associated with recent disruptions should allow a choice between the two mechanisms. Diversity in the Main-Belt: Reflection spectroscopy indicates that the main-belt asteroids include primitive, metamorphic, and igneous objects showing a great range of compositional diversity within each group [6]. Likely parent bodies for most types of meteorites have been identified in the main-belt, and several types of asteroids remain without analog meteorites [6]. Many of these asteroids have relatively high albedos. Diversity of the IDPs: Both the anhydrous and the hydrated silicate IDPs have high contents of carbon [4,7] and volatiles [8]. Only 4 of 30 silicate IDPs analyzed by [4] and 2 of 11 analyzed by Thomas et al. [7] had C/Si lower than CM meteorites, suggesting that most silicate IDPs are carbonaceous chondrites [4]. The parent bodies of these carbon-rich IDPs are likely to be dark objects. Unless many higher albedo interplanetary particles are hidden among the "terrestrial" dust on the collectors, the silicate IDPs do not sample the higher albedo asteroids in proportion

  12. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  13. Statistical signatures of structural organization: The case of long memory in renewal processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-04-01

    Identifying and quantifying memory are often critical steps in developing a mechanistic understanding of stochastic processes. These are particularly challenging and necessary when exploring processes that exhibit long-range correlations. The most common signatures employed rely on second-order temporal statistics and lead, for example, to identifying long memory in processes with power-law autocorrelation function and Hurst exponent greater than 1/2. However, most stochastic processes hide their memory in higher-order temporal correlations. Information measures-specifically, divergences in the mutual information between a process' past and future (excess entropy) and minimal predictive memory stored in a process' causal states (statistical complexity)-provide a different way to identify long memory in processes with higher-order temporal correlations. However, there are no ergodic stationary processes with infinite excess entropy for which information measures have been compared to autocorrelation functions and Hurst exponents. Here, we show that fractal renewal processes-those with interevent distribution tails ∝t-α-exhibit long memory via a phase transition at α = 1. Excess entropy diverges only there and statistical complexity diverges there and for all α < 1. When these processes do have power-law autocorrelation function and Hurst exponent greater than 1/2, they do not have divergent excess entropy. This analysis breaks the intuitive association between these different quantifications of memory. We hope that the methods used here, based on causal states, provide some guide as to how to construct and analyze other long memory processes.

  14. Igneous processes and dike swarms: Magnetic signatures in the Solar System

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.

    2015-12-01

    Large igneous provinces (LIP) are common in planetary environments: at Mars, Venus, Mercury, Io, and of course the Earth and its Moon. Dike swarms are often associated with LIPs, and are one of the only remaining signatures of a LIP in old, eroded settings. On Earth, dike swarms are often recognized by their magnetic signatures. The World Digital Magnetic Anomaly Map (version 2, 2015) is now based on a higher resolution 5 km grid, so many more dike swarms are apparent. We review this latest compilation. Several new high resolution planetary magnetic data sets have also recently become available, and we review evidence for igneous processes, and dikes, in these new data sets. We also review the prospect for new planetary magnetic data sets that might further elucidate igneous processes. At Mars, for example, we have photogeologic evidence for a host of dike swarms, but because of the high altitude of the magnetic data sets, no magnetic evidence exists. A new technique based on remotely sensing the magnetic field of the atomic Na in micro-meteorite ablation layers offers the promise of improving the spatial resolution by a factor of 2-4 at Mars.

  15. Carbon analyses of IDP's sectioned in sulfur and supported on beryllium films

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Keller, L.; Thomas, K. L.; Vanderwood, T. B.; Brownlee, D. E.

    1993-01-01

    Carbon is the only major element in interplanetary dust whose abundance, distribution and chemical state are not well understood. Information about carbon could clarify the relationship between the various classes of IDP's, conventional meteorites, and sources (e.g., comets vs. asteroids). To date, the most reliable estimates of C abundance in Interplanetary Dust Particles (IDP's) have been obtained by analyzing particles on thick-flat Be substrates using thin-window energy-dispersive spectroscopy in the SEM. These estimates of C abundance are valid only if C is homogeneously distributed, because detected C x-rays originate from the outer 0.1 micrometers of the particle. An alternative and potentially more accurate method of measuring C abundances is to analyze multiple thin sections (each less than 0.1 less than 0.1 micrometers thick) of IDP's. These efforts however, have been stymied because of a lack of a suitable non-carbonaceous embedding medium and the availability of C-free conductive substrates. We have embedded and thin-sectioned IDP's in glassy sulfur, and transferred the thin sections to Be support films approximately 25 nm thick. The sections were then analyzed in a 200 KeV analytical TEM. S sublimes rapidly under vacuum in the TEM, leaving non-embedded sections supported on Be. Apart from quantitative C (and O) analyses, S sectioning dramatically expands the range of analytical measurements that can be performed on a single IDP.

  16. Signal/Image Processing of Acoustic Flaw Signatures for Detection and Localization

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-06-01

    The timely, nondestructive evaluation (NDE) of critical optics in high energy, pulsed laser experiments is a crucial analysis that must be performed for the experiment to be successful. Failure to detect flaws of critical sizes in vacuum-loaded optical windows can result in a catastrophic failure jeopardizing the safety of both personnel and costly equipment. We discuss the development of signal/image processing techniques to both detect critical flaws and locate their position on the window. The data measured from two Orthogonal arrays of narrow beamwidth ultrasonic transducers are preprocessed using a model-based scheme based on the Green's function of the medium providing individual channel signatures. These signatures are then transformed to the two-dimensional image space using a power-based estimator. A 2D-replicant is then constructed based on the underlying physics of the material along with the geometry of the window. Correlating the replicant with the enhanced power image leads to the optimal 2D-matched filter solution detecting and localizing the flaw. Controlled experimental results on machined flaws are discussed.

  17. Coordinated Chemical and Isotropic Studies of IDPS: Comparison of Circumstellar and Solar GEMS Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2007-01-01

    Silicate stardust in IDPs and meteorites include forsterite, amorphous silicates, and GEMS grains [1]. Amorphous presolar silicates are much less abundant than expected based on astronomical models [2], possibly destroyed by parent body alteration. A more accurate accounting of presolar silicate mineralogy may be preserved in anhydrous IDPs. Here we present results of coordinated TEM and isotopic analyses of an anhydrous IDP (L2005AL5) that is comprised of crystalline silicates and sulfides, GEMS grains, and equilibrated aggregates embedded in a carbonaceous matrix. Nanometer-scale quantitative compositional maps of all grains in two microtome thin sections were obtained with a JEOL 2500SE. These sections were then subjected to O and N isotopic imaging with the JSC NanoSIMS 50L. Coordinated high resolution chemical maps and O isotopic com-positions were obtained on 11 GEMS grains, 8 crystalline grains, and 6 equilibrated aggregates.

  18. Nebular and Interstellar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Comets contain a complex mixture of materials with presolar and Solar System origins. Chondritic porous interplanetary dust particles (CP-IDPs) are associated with comets by their fragile nature, unequilibrated anhydrous mineralogy and high abundances of circumstellar grains and isotopically anomalous organic materials. Comet 81P/Wild 2 samples returned by the Stardust spacecraft contain presolar materials as well as refractory 16O-rich Ca-Al-rich inclusion- (CAI), chondrule-, and AOA-like materials. We are conducting coordinated chemical, mineralogical, and isotopic studies of a giant cluster CP-IDP (U2-20-GCA) to determine the proportions of inner Solar System and interstellar materials. We previously found that this IDP contains abundant presolar silicates (approx. 1,800 ppm) and 15N-rich hotspots [6].

  19. Organic Matter from Comet 81p/Wild 2, IDPS and Carbonaceous Meteorites; Similarities and Differences

    SciTech Connect

    Wirick, S.; Flynn, G; Keller, L; Nakamura Messenger, K; Peltzer, C; Jacobsen, C; Sandford, S; Zolensky, M

    2009-01-01

    During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.

  20. C/N and other Elemental Ratios of Chondritic Porous IDPS and a Fluffy Concordia Micrometeorite

    NASA Technical Reports Server (NTRS)

    Smith, T.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Khodja, H.; Raepsaet, C.; Wirick, S.; Flynn, G. J.; Taylor, S.; Engrand, C.; Duprat, J.; Herzog, G. F.

    2013-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be cometary in origin [1], as may ultracarbona-ceous (UCAMMs) [2] and 'fluffy' [3] micrometeorites from the Concordia collection. They are all rich in organics, which can rim grains and may have helped glue grains together during accretion [4]. The organics also contain nitrogen the input of which to Earth has potential biological importance. We report C/N ratios, and other properties of CP-IDPs and a Concordia fluffy microme-teorite.

  1. Focused Ion Beam Recovery and Analysis of Interplanetary Dust Particles (IDPs) and Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Bradley, J. P.; Bernas, M.; Stroud, R. M.; Dai, Z. R.; Floss, C.; Stadermann, F. J.; Snead, C. J.; Westphal, A. J.

    2004-01-01

    Meteoritics research is a major beneficiary of recent developments in analytical instrumentation [1,2]. Integrated studies in which multiple analytical techniques are applied to the same specimen are providing new insight about the nature of IDPs [1]. Such studies are dependent on the ability to prepare specimens that can be analyzed in multiple instruments. Focused ion beam (FIB) microscopy has revolutionized specimen preparation in materials science [3]. Although FIB has successfully been used for a few IDP and meteorite studies [1,4-6], it has yet to be widely utilized in meteoritics. We are using FIB for integrated TEM/NanoSIMS/synchrotron infrared (IR) studies [1].

  2. Collection and curation of IDPs in the stratosphere and below. Part 2: The Greenland and Antarctic ice sheets

    NASA Technical Reports Server (NTRS)

    Maurette, Michel; Hammer, C.; Harvey, R.; Immel, G.; Kurat, G.; Taylor, S.

    1994-01-01

    In a companion paper, Zolensky discusses interplanetary dust particles (IDP's) collected in the stratosphere. Here, we describe the recovery of much larger unmelted to partially melted IDP's from the Greenland and Antarctica ice sheet, and discuss problems arising in their collection and curation, as well as future prospects for tackling these problems.

  3. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  4. Crustal processes cause adakitic chemical signatures in syn-collision magmatism from SE Iran

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Kheirkhah, Monireh; Neill, Iain

    2015-04-01

    Dehaj magmatism may have developed its geochemical signature during deep fractionation as the ascent of the magmas was impeded by thick orogenic crust. The rocks may be seen as just another part of the widespread syn-collision magmatism that has affected widespread areas of Turkey, Iran, Armenia and neighbouring countries in the last ~10-15 Ma, and need not be used as markers for debateable geodynamic events such as break-off. Adakites are also present in NE Iran without any obvious association with subduction processes. We argue that magmatism across much of the plateau is linked at least in part to mantle upwelling following Miocene slab break-off, but also to small-scale convection beneath the collision zone, as predicted by numerical modelling. Particular compositions such as those at Dehaj are influenced by local sources and differentiation processes, but there is no need for independent triggers for initial melting across disparate locations.

  5. High-Nickel Iron-Sulfides in Anhydrous, GEMS-Rich IDPs

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.

    2016-08-01

    We used the new Hard X-ray Nanoprobe at the NSLS II to map the element distributions, with ~15 nm spatial resolution, in anhydrous, GEMS-rich IDPs and found high-Ni, Fe-sulfides, previously thought only to form by hydrous alteration on parent bodies.

  6. Assessment of Mobilization and Leadership Challenges in Azerbaijani IDP and Refugee Camps.

    ERIC Educational Resources Information Center

    Affolter, Friedrich W.; Findlay, Henry J.

    2002-01-01

    A study analyzed community mobilization and leadership challenges in Azerbaijan refugee and internally displaced people (IDP) camps. The research determined that there is a lack of capacity to mobilize the community to effective community action and learning. (Contains 21 references.) (Author/JOW)

  7. 78 FR 43145 - Announcing Approval of Federal Information Processing Standard 186-4, Digital Signature Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ..., first published on May 19, 1994 (59 FR 26208), specified a digital signature algorithm (DSA) to generate... the RSA digital signature algorithm. FIPS 186-3, which was adopted on June 9, 2009 (74 FR 27287... Register on December 15, 1998 (63 FR 69049) and FIPS 186-2, which was published on February 15, 2000 (65...

  8. Mineralogy of IDPs with Known 4He and Trace Element Contents

    NASA Astrophysics Data System (ADS)

    Klock, W.; Flynn, G. J.; Sutton, S. R.; Nier, A. O.

    1992-07-01

    Interplanetary Dust Particles (IDPs) collected in the atmosphere are a very special source of information about solar system objects like asteroids and comets. Suggested IDP properties indicative of their origins include amounts of 4He and 4He release temperatures (Nier and Schlutter 1990, 1992), solar flare track densities (Sandford and Bradley 1989), and trace element abundances (Flynn et al. 1992). Recently Flynn et al. (1992) suggested that Zn depletions of IDPs are indicative of heating in the atmosphere. On the average, asteroidal particles experience less heating than cometary particles (Flynn 1989). Nier and Schlutter (1992) showed that 4He release temperatures of individual IDPs vary from 420 C up to more than 800 C. Presently it is not clear if variations of 4He contents are a result of the original mineral compositions, and therefore source of individual IDPs, or if they are mainly affected by atmospheric entry heating. We studied the mineralogy of IDPs having variable amounts of 4He. Some of the particles were analyzed by SXRF for volatile trace elements. The particles in Table 1 are ordered according to their amount of 4He. High 4He contents (>11.0 x 1O^-11 cm^3) are found among particles characterized by their porous texture and occurrence of unequilibrated mineral phases. Particles of this group contain abundant glass, solar flare tracks are preserved and have chondritic Zn abundances. Among the 13 particles having low 4He contents six particles contain magnetite crystals that formed by atmospheric entry heating. Three magnetite-bearing particles are low in Zn. Though high in Zn, due to a Zn-bearing iron-sulfide in the center, L2005C19 is a heated particle. L2005A8 is texturally similar to other heated particles, but magnetites were so far not identified. According to Rietmeijer and Mackinnon (1985), particle W7029*A was not heated above 315 C and this explains its chondritic Zn level at a low amount of 4He. Three hydrated IDPs have low 4He contents

  9. Deciphering seismic signatures of physical processes in dynamic complex systems: an experimental approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Dingwell, D. B.

    2012-12-01

    Seismic evaluation of well-controlled experimental simulations of volumetric sources (e.g. explosions, cavitations, burst, pressure drops) is a powerful tool for better understanding of the seismic wave field of complex systems. In this work, we describe two distinct well-constrained physical models, which under controlled laboratory conditions enable the simulation of complex systems; volcanic explosions and fluid-filled wells. For volcanic explosion simulations, several experiments were performed to study seismic signals associated with fragmentation processes of volcanic rocks by rapid decompression. These experiments were performed in a shock-tube apparatus at room temperature and a pressure range of 4 to 20 MPa. Pumice samples from Popocatepetl volcano of different porosity were studied. To investigate the elastic wave propagation inside a fluid-filled well, we present a hollow cylinder model surrounded by water, excited by a ultrasonic laser beam emitting pulses between 5 and 8 ns in duration, causing micro-cavitations. Adequate instrumentation of these mechanical systems, using high-precision sensors, enabled us to capture and to analyze seismic wave fields, characterizing also their source mechanism. Although these laboratory analogues have simplified geometries and media properties, these experimental investigations are based upon the hypothesis that, in comparable systems, any physical process (e.g. pressure drops, fragmentation, vibration, elastic deformation, etc) conducts to equivalent system responses, causing the same distinctive effects, which are independent on the scale. These effects engender particular seismic signatures, reflecting the dynamics of the process, and are comparable with numerical simulations and seismic field observations. Therefore, laboratory models can validate the inverse problem solution, indicating that the source mechanism and the system nature can both be inferred from field-based seismograms.

  10. From Positivity to Negativity Bias: Ambiguity Affects the Neurophysiological Signatures of Feedback Processing.

    PubMed

    Gibbons, Henning; Schnuerch, Robert; Stahl, Jutta

    2016-04-01

    Previous studies on the neurophysiological underpinnings of feedback processing almost exclusively used low-ambiguity feedback, which does not fully address the diversity of situations in everyday life. We therefore used a pseudo trial-and-error learning task to investigate ERPs of low- versus high-ambiguity feedback. Twenty-eight participants tried to deduce the rule governing visual feedback to their button presses in response to visual stimuli. In the blocked condition, the same two feedback words were presented across several consecutive trials, whereas in the random condition feedback was randomly drawn on each trial from sets of five positive and five negative words. The feedback-related negativity (FRN-D), a frontocentral ERP difference between negative and positive feedback, was significantly larger in the blocked condition, whereas the centroparietal late positive complex indicating controlled attention was enhanced for negative feedback irrespective of condition. Moreover, FRN-D in the blocked condition was due to increased reward positivity (Rew-P) for positive feedback, rather than increased (raw) FRN for negative feedback. Our findings strongly support recent lines of evidence that the FRN-D, one of the most widely studied signatures of reinforcement learning in the human brain, critically depends on feedback discriminability and is primarily driven by the Rew-P. A novel finding concerned larger frontocentral P2 for negative feedback in the random but not the blocked condition. Although Rew-P points to a positivity bias in feedback processing under conditions of low feedback ambiguity, P2 suggests a specific adaptation of information processing in case of highly ambiguous feedback, involving an early negativity bias. Generalizability of the P2 findings was demonstrated in a second experiment using explicit valence categorization of highly emotional positive and negative adjectives. PMID:26765948

  11. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  12. Voyager 2 Signatures of Important Processes/Dynamics in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Intriligator, J.; Miller, W. D.; Webber, W. R.; Decker, R. B.; Sittler, E. C.

    2011-12-01

    We continue investigating the Voyager 2 (V2) Plasma Subsystem (PLS) elevated readings in L-mode on energy/unit charge (E/Q) step 12 on the B-Cup we first reported (Intriligator et al., JGR, 2010) near the termination shock at 84 AU. These elevated B12 readings, which we previously referred to as "high energy ions (HEIs)", are found in the V2 PLS data on the sunward facing B-Cup at E/Q step 12 corresponding to 1610 volts and a proton speed of ~ 600 km/s. In the present paper we update our findings and present V2 data from three years earlier when V2 was in the solar wind in the outer heliosphere (OH) at 73 AU measuring the interplanetary (IP) effects from the October-November (Halloween) 2003 solar events. We also examine other V2 OH time intervals. We show links between solar activity and the elevated B12 readings in the V2 data. We present evidence that these elevated B12 readings appear to be accompanied by significant simultaneous changes in other V2 measurements, including: low energy ions, low energy cosmic rays, anomalous cosmic rays, cosmic ray electrons, interplanetary magnetic field (IMF), and convective solar wind plasma. Our results suggest that the V2 elevated B12 readings may be signatures, tracers, by-products, or indicators of important IP processes such as those associated with intervals of particle acceleration, changes in IMF turbulence, and perhaps local reconnection. This work was funded by NASA Grant NNX08AE40G and by Carmel Research Center, Inc.

  13. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  14. Neural Signatures of Number Processing in Human Infants: Evidence for Two Core Systems Underlying Numerical Cognition

    ERIC Educational Resources Information Center

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2011-01-01

    Behavioral research suggests that two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants by recording event-related potentials…

  15. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    PubMed

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling).

  16. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing

  17. Methods of extending signatures and training without ground information. [data processing, pattern recognition

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.

    1975-01-01

    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.

  18. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes

    PubMed Central

    Ai, Rizi; Hammaker, Deepa; Boyle, David L.; Morgan, Rachel; Walsh, Alice M.; Fan, Shicai; Firestein, Gary S.; Wang, Wei

    2016-01-01

    Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signalling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-sequencing. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients. PMID:27282753

  19. The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation.

    PubMed

    Hamre, Anne Grethe; Schaupp, Daniel; Eijsink, Vincent G H; Sørlie, Morten

    2015-07-01

    The enzymatic degradation of the closely related insoluble polysaccharides; cellulose (β(1-4)-linked glucose) by cellulases and chitin (β(1-4)-linked N-acetylglucosamine) by chitinases, is of large biological and economical importance. Processive enzymes with different inherent directionalities, i.e. attacking the polysaccharide chains from opposite ends, are crucial for the efficiency of this degradation process. While processive cellulases with complementary functions differ in structure and catalytic mechanism, processive chitinases belong to one single protein family with similar active site architectures. Using the unique model system of Serratia marcescens with two processive chitinases attacking opposite ends of the substrate, we here show that different directionalities of processivity are correlated to distinct differences in the kinetic signatures for hydrolysis of oligomeric tetra-N-acetyl chitotetraose.

  20. Shining new light on the brain's "bilingual signature": a functional Near Infrared Spectroscopy investigation of semantic processing.

    PubMed

    Kovelman, Ioulia; Shalinsky, Mark H; Berens, Melody S; Petitto, Laura-Ann

    2008-02-01

    Decades of research have shown that, from an early age, proficient bilinguals can speak each of their two languages separately (similar to monolinguals) or rapidly switch between them (dissimilar to monolinguals). Thus we ask, do monolingual and bilingual brains process language similarly or dissimilarly, and is this affected by the language context? Using an innovative brain imaging technology, functional Near Infrared Spectroscopy (fNIRS), we investigated how adult bilinguals process semantic information, both in speech and in print, in a monolingual language context (one language at a time) or in a bilingual language context (two languages in rapid alternation). While undergoing fNIRS recording, ten early exposed, highly proficient Spanish-English bilinguals completed a Semantic Judgment task in monolingual and bilingual contexts and were compared to ten English monolingual controls. Two hypotheses were tested: the Signature Hypothesis predicts that early, highly proficient bilinguals will recruit neural tissue to process language differently from monolinguals across all language contexts. The Switching Hypothesis predicts that bilinguals will recruit neural tissue to process language similarly to monolinguals, when using one language at a time. Supporting the Signature Hypothesis, in the monolingual context, bilinguals and monolinguals showed differences in both hemispheres in the recruitment of DLPFC (BA 46/9) and IFC (BA 47/11), but similar recruitment of Broca's area (BA 44/45). In particular, in the monolingual context, bilinguals showed greater signal intensity in channels maximally overlaying DLPFC and IFC regions as compared to monolinguals. In the bilingual context, bilinguals demonstrated a more robust recruitment of right DLPFC and right IFC. These findings reveal how extensive early bilingual exposure modifies language organization in the brain-thus imparting a possible "bilingual signature." They further shed fascinating new light on how the

  1. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  2. Unusual satellite-electron signature within the Uranian magnetosphere and its implications regarding whistler electron loss processes

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Keath, E. P.; Krimigis, S. M.

    1994-01-01

    It has been reported that during the outbound (nightside) portion of the Voyager 2 encounter with the Uranian magnetosphere, intense whistler mode emissions were observed near the magnetic equator (lambda(sub m) approx. 16 deg) and at L shell values between approx. 5.5 and approx. 9 R(sub U). Comprehensive calculations of whistler-driven pitch angle diffusion, in previous work, have yielded strong diffusion electron lifetimes of approx. 1 hour for 20 to 40 keV electrons. In this paper we report on an unusual and sharply defined charged particle feature that: (1) involved electrons between 22 and 35 keV, (2) was observed during the time period of the intense whistler mode observations, (3) was aligned very accurately and sharply with the minimum L shell position (L approx. 7.5) of the satellite Ariel, and (4) has an appearance that suggests that electrons were removed only at and beyond Ariel's minimum-L. On the basis of our conclusion that the signature was caused by electron interactions with either Ariel or materials distributed along Ariel's orbit, the signature could not have been generated for at least 10 hours prior to its observation. Thus the calculated whistler loss times are in apparent conflict with the signature observation. A scenario of events is proposed to explain the data that involves substormlike electron acceleration on the Uranian nightside and a subsequent sculpting of the electron spatial distributions via interactions with Ariel or materials distributed along Ariel's orbit. The possibility exists that the accurate alignment of the sharp electron feature with Ariel's minimum-L, and the absorptionlike character of the feature, are accidental, and that the feature is caused by dynamical processes (e.g., substorms). In this case the dynamical processes must be quite dissimilar to those occurring in the Earth's magnetosphere.

  3. Kabrit ki gen twòp mèt: understanding gaps in WASH services in Haiti's IDP camps.

    PubMed

    Schuller, Mark; Levey, Tania

    2014-04-01

    Despite the enormous infusion of post-quake aid to Haiti, cholera had killed more than 8,000 people by January 2013. Based on two mixed-method studies of a random sample of 108 internally displaced person (IDP) camps and 168 interviews with agency representatives and recipients, this article examines the prevalence of factors that have proven most relevant to the rapid spread of cholera, particularly the provision of water and sanitation services in IDP camps. The study reveals that 30% of IDP camps had no toilets and 40% had no access to water before the outbreak, with only minimal progress after three months. Using bivariate and multivariate statistical analyses, this article explores patterns in the gaps of services with a range of variables such as NGO camp management, municipality and land-owners. It offers several theoretical and policy explanations for low level of services, concluding with a series of recommendations for better coordination and management.

  4. Kabrit ki gen twòp mèt: understanding gaps in WASH services in Haiti's IDP camps.

    PubMed

    Schuller, Mark; Levey, Tania

    2014-04-01

    Despite the enormous infusion of post-quake aid to Haiti, cholera had killed more than 8,000 people by January 2013. Based on two mixed-method studies of a random sample of 108 internally displaced person (IDP) camps and 168 interviews with agency representatives and recipients, this article examines the prevalence of factors that have proven most relevant to the rapid spread of cholera, particularly the provision of water and sanitation services in IDP camps. The study reveals that 30% of IDP camps had no toilets and 40% had no access to water before the outbreak, with only minimal progress after three months. Using bivariate and multivariate statistical analyses, this article explores patterns in the gaps of services with a range of variables such as NGO camp management, municipality and land-owners. It offers several theoretical and policy explanations for low level of services, concluding with a series of recommendations for better coordination and management. PMID:24601930

  5. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  6. Transformation processes, pathways, and possible sources of distinctive polychlorinated dibenzo-p-dioxin signatures in sink environments.

    PubMed

    Gaus, Caroline; Brunskill, Gregg J; Connell, W; Prange, Joelle; Müller, Jochen F; Päpke, Olaf; Weber, Roland

    2002-08-15

    In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PCDDs and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warranted into possible anthropogenic sources in areas where natural PCDD formation has been suggested. PMID:12214647

  7. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating?

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.; Thomas, K. L.; Keller, L. P.

    1993-03-01

    The degree of heating of interplanetary dust particles (IDP's) on Earth atmospheric entry is important in distinguishing cometary particles from main-belt asteroidal particles. Depletions in the volatile elements S and Zn were proposed as chemical indicators of significant entry heating. The S and Zn contents of cosmic dust particles were correlated with physical indicators of atmospheric entry heating, such as the production of magnetite and the loss of solar wind implanted He. The results indicate that the Zn content of IDP's is a useful indicator of entry heating, but the S content seems to be less useful.

  8. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating?

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.; Thomas, K. L.; Keller, L. P.

    1993-01-01

    The degree of heating of interplanetary dust particles (IDP's) on Earth atmospheric entry is important in distinguishing cometary particles from main-belt asteroidal particles. Depletions in the volatile elements S and Zn were proposed as chemical indicators of significant entry heating. The S and Zn contents of cosmic dust particles were correlated with physical indicators of atmospheric entry heating, such as the production of magnetite and the loss of solar wind implanted He. The results indicate that the Zn content of IDP's is a useful indicator of entry heating, but the S content seems to be less useful.

  9. Assisting Groundwater Exploration for Refugee/IDP Camps by Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Wendt, Lorenz; Robl, Jörg; Hilberg, Sylke; Braun, Andreas; Rogenhofer, Edith; Dirnberger, Daniel; Strasser, Thomas; Füreder, Petra; Lang, Stefan

    2015-04-01

    Refugee camps and camps of internally displaced people (IDP) often form spontaneously or have to be established rapidly in remote, rural areas, where little is known about the hydrogeological situation. This requires a rapid assessment of the availability of groundwater to enable humanitarian organisations like Médecins Sans Frontières (MSF) to supply the camp population with sufficient potable water. Within the project EO4HumEn, hydrogeological reconnaissance maps are produced for MSF by integrating remote sensing data like SRTM, Landsat, ASTER, optical very-high resolution (VHR) imagery, and SAR data. Depending on the specific situation of the camps, these maps contain topography, permanent and temporary water bodies, hard rock outcrops and their geological variability, locations of existing boreholes and wells (if available), potential contamination sources, roads and obstacles (e.g. swampland). In areas characterized by unconsolidated sediments, specific landforms like alluvial fans, meanders, levees, deltas or beach ridges are identified. Here, the reconnaissance map can be sufficient to plan drill sites for groundwater abstraction. In hard rock areas, the lithology is determined, if the vegetation cover allows it. Fractures, faults and karst features are mapped to resolve the structural setting. Anomalous vegetation patterns are interpreted in terms of near-surface groundwater. The maps provide an overview of the camp surroundings, and allow the field hydrogeologists to focus their investigations on the most promising locations. The maps are complemented by a literature review on geological maps, articles and reports available for the area of interest. Assisting groundwater exploration by remote sensing data analysis is not a new development, but it has not been widely adopted by the humanitarian community as interfaces between humanitarian organisations and GI-scientists were missing. EO4HumEn fills this gap by a strong interdisciplinary cooperation

  10. TOP-IDP-Scale: A New Amino Acid Scale Measuring Propensity for Intrinsic Disorder

    PubMed Central

    Campen, Andrew; Williams, Ryan M.; Brown, Celeste J.; Meng, Jingwei; Uversky, Vladimir N.; Dunker, A. Keith

    2009-01-01

    Intrinsically disordered proteins carry out various biological functions while lacking ordered secondary and/or tertiary structure. In order to find general intrinsic properties of amino acid residues that are responsible for the absence of ordered structure in intrinsically disordered proteins we surveyed 517 amino acid scales. Each of these scales was taken as an independent attribute for the subsequent analysis. For a given attribute value X, which is averaged over a consecutive string of amino acids, and for a given data set having both ordered and disordered segments, the conditional probabilities P(so | x) and P(sd | x) for order and disorder, respectively, can be determined for all possible values of X. Plots of the conditional probabilities P(so | x) and P(sd | x) versus X give a pair of curves. The area between these two curves divided by the total area of the graph gives the area ratio value (ARV), which is proportional to the degree of separation of the two probability curves and, therefore, provides a measure of the given attribute’s power to discriminate between order and disorder. As ARV falls between zero and one, larger ARV corresponds to the better discrimination between order and disorder. Starting from the scale with the highest ARV, we applied a simulated annealing procedure to search for alternative scale values and have managed to increase the ARV by more than 10%. The ranking of the amino acids in this new TOP-IDP scale is as follows (from order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. A web-based server has been created to apply the TOP-IDP scale to predict intrinsically disordered proteins (http://www.disprot.org/dev/disindex.php). PMID:18991772

  11. Brain signatures of artificial language processing: evidence challenging the critical period hypothesis.

    PubMed

    Friederici, Angela D; Steinhauer, Karsten; Pfeifer, Erdmut

    2002-01-01

    Adult second language learning seems to be more difficult and less efficient than first language acquisition during childhood. By using event-related brain potentials, we show that adults who learned a miniature artificial language display a similar real-time pattern of brain activation when processing this language as native speakers do when processing natural languages. Participants trained in the artificial language showed two event-related brain potential components taken to reflect early automatic and late controlled syntactic processes, whereas untrained participants did not. This result challenges the common view that late second language learners process language in a principally different way from native speakers. Our findings demonstrate that a small system of grammatical rules can be syntactically instantiated by the adult speaker in a way that strongly resembles native-speaker sentence processing. PMID:11773629

  12. Brain signatures of artificial language processing: Evidence challenging the critical period hypothesis

    PubMed Central

    Friederici, Angela D.; Steinhauer, Karsten; Pfeifer, Erdmut

    2002-01-01

    Adult second language learning seems to be more difficult and less efficient than first language acquisition during childhood. By using event-related brain potentials, we show that adults who learned a miniature artificial language display a similar real-time pattern of brain activation when processing this language as native speakers do when processing natural languages. Participants trained in the artificial language showed two event-related brain potential components taken to reflect early automatic and late controlled syntactic processes, whereas untrained participants did not. This result challenges the common view that late second language learners process language in a principally different way from native speakers. Our findings demonstrate that a small system of grammatical rules can be syntactically instantiated by the adult speaker in a way that strongly resembles native-speaker sentence processing. PMID:11773629

  13. Stable isotope signatures in bulk samples from two soils with contrasting characteristics. What do they tell about ongoing pedogenic processes?

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.

    2014-05-01

    Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the

  14. The Neural Signatures of Processing Semantic End Values in Automatic Number Comparisons.

    PubMed

    Pinhas, Michal; Buchman, Chananel; Lavro, Dmitri; Mesika, David; Tzelgov, Joseph; Berger, Andrea

    2015-01-01

    The brain activity associated with processing numerical end values has received limited research attention. The present study explored the neural correlates associated with processing semantic end values under conditions of automatic number processing. Event-related potentials (ERPs) were recorded while participants performed the numerical Stroop task, in which they were asked to compare the physical size of pairs of numbers, while ignoring their numerical values. The smallest end value in the set, which is a task irrelevant factor, was manipulated between participant groups. We focused on the processing of the lower end values of 0 and 1 because these numbers were found to be automatically tagged as the "smallest." Behavioral results showed that the size congruity effect was modulated by the presence of the smallest end value in the pair. ERP data revealed a spatially extended centro-parieto-occipital P3 that was enhanced for congruent versus incongruent trials. Importantly, over centro-parietal sites, the P3 congruity effect (congruent minus incongruent) was larger for pairs containing the smallest end value than for pairs containing non-smallest values. These differences in the congruency effect were localized to the precuneus. The presence of an end value within the pair also modulated P3 latency. Our results provide the first neural evidence for the encoding of numerical end values. They further demonstrate that the use of end values as anchors is a primary aspect of processing symbolic numerical information. PMID:26640436

  15. The Neural Signatures of Processing Semantic End Values in Automatic Number Comparisons

    PubMed Central

    Pinhas, Michal; Buchman, Chananel; Lavro, Dmitri; Mesika, David; Tzelgov, Joseph; Berger, Andrea

    2015-01-01

    The brain activity associated with processing numerical end values has received limited research attention. The present study explored the neural correlates associated with processing semantic end values under conditions of automatic number processing. Event-related potentials (ERPs) were recorded while participants performed the numerical Stroop task, in which they were asked to compare the physical size of pairs of numbers, while ignoring their numerical values. The smallest end value in the set, which is a task irrelevant factor, was manipulated between participant groups. We focused on the processing of the lower end values of 0 and 1 because these numbers were found to be automatically tagged as the “smallest.” Behavioral results showed that the size congruity effect was modulated by the presence of the smallest end value in the pair. ERP data revealed a spatially extended centro-parieto-occipital P3 that was enhanced for congruent versus incongruent trials. Importantly, over centro-parietal sites, the P3 congruity effect (congruent minus incongruent) was larger for pairs containing the smallest end value than for pairs containing non-smallest values. These differences in the congruency effect were localized to the precuneus. The presence of an end value within the pair also modulated P3 latency. Our results provide the first neural evidence for the encoding of numerical end values. They further demonstrate that the use of end values as anchors is a primary aspect of processing symbolic numerical information. PMID:26640436

  16. Attachment Patterns Trigger Differential Neural Signature of Emotional Processing in Adolescents

    PubMed Central

    Decety, Jean; Huepe, David; Cardona, Juan Felipe; Canales-Johnson, Andres; Sigman, Mariano; Mikulan, Ezequiel; Helgiu, Elena; Baez, Sandra; Manes, Facundo; Lopez, Vladimir; Ibañez, Agustín

    2013-01-01

    Background Research suggests that individuals with different attachment patterns process social information differently, especially in terms of facial emotion recognition. However, few studies have explored social information processes in adolescents. This study examined the behavioral and ERP correlates of emotional processing in adolescents with different attachment orientations (insecure attachment group and secure attachment group; IAG and SAG, respectively). This study also explored the association of these correlates to individual neuropsychological profiles. Methodology/Principal Findings We used a modified version of the dual valence task (DVT), in which participants classify stimuli (faces and words) according to emotional valence (positive or negative). Results showed that the IAG performed significantly worse than SAG on tests of executive function (EF attention, processing speed, visuospatial abilities and cognitive flexibility). In the behavioral DVT, the IAG presented lower performance and accuracy. The IAG also exhibited slower RTs for stimuli with negative valence. Compared to the SAG, the IAG showed a negative bias for faces; a larger P1 and attenuated N170 component over the right hemisphere was observed. A negative bias was also observed in the IAG for word stimuli, which was demonstrated by comparing the N170 amplitude of the IAG with the valence of the SAG. Finally, the amplitude of the N170 elicited by the facial stimuli correlated with EF in both groups (and negative valence with EF in the IAG). Conclusions/Significance Our results suggest that individuals with different attachment patterns process key emotional information and corresponding EF differently. This is evidenced by an early modulation of ERP components’ amplitudes, which are correlated with behavioral and neuropsychological effects. In brief, attachments patterns appear to impact multiple domains, such as emotional processing and EFs. PMID:23940552

  17. Chemical Heterogeneity of a Large Cluster IDP: Clues to its Formation History Using X-ray Fluorescence Mapping and XANES Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2013-01-01

    Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.

  18. New class of supersymmetric signatures in the processes gg{yields}HH', VH

    SciTech Connect

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2009-07-01

    Within the minimal supersymmetric model (MSSM) and standard model (SM) frameworks, we analyze the 1loop electroweak predictions for the helicity amplitudes describing the 17 processes gg{yields}HH', and the 9 processes gg{yields}VH; where H, H{sup '} denote Higgs or Goldstone bosons, while V=Z, W{sup {+-}}. Concentrating on MSSM, we then investigate how the asymptotic helicity conservation (HCns) property of supersymmetry (SUSY) affects the amplitudes at the LHC energy range and what is the corresponding situation in the SM, where no HCns theorem exists. HCns is subsequently used to construct many relations among the cross sections of the above MSSM processes, depending only on the standard MSSM angles {alpha} and {beta} characterizing the two Higgs doublets. These relations should be asymptotically exact but as the energy decreases toward the LHC range, mass-depending deviations should start appearing. Provided the SUSY scale is not too high, these relations may remain roughly correct, even at the LHC energy range.

  19. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  20. The Atmospheric Signatures of Terrestrial Ecosystem Processes: Results From a Coupled Atmosphere-Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Moorcroft, P. R.

    2003-12-01

    Global-scale analyses of weekly CO2 flask samples have shown that a number of terrestrial regions are significantly affecting the rate at which carbon dioxide is building up in the atmosphere. However, the observations used in these studies come primarily from stations that sample the marine boundary layer in order to eliminate variance due to terrestrial fluxes, making it difficult to identify the processes responsible for the observed patterns of terrestrial CO2 flux. To address this issue, we have developed a regional-scale, coupled atmosphere-ecosystem model capable of assimilating observations from a diverse array of data sources, including eddy-flux measurements of surface CO2 fluxes, measurements of atmospheric CO2 concentrations obtained from aircraft and tall towers, and observations of canopy structure and dynamics obtained from satellite observations and forest inventory data. The model consists of a newly-developed, mass-conserving version of the mesoscale Regional Atmospheric Modeling System model (RAMS) coupled to the Ecosystem Demography Model (ED), which is able to represent the influence of both long-term and short-term processes on patterns of terrestrial CO2 flux. We are using the coupled RAMS-ED model to perform forward and inverse modeling studies of regional carbon budgets within the North American continent. Preliminary results highlight the model's ability to connect regional patterns of atmospheric CO2 to the underlying state of the ecosystems within a region.

  1. Noble Gas Signatures in Antrim Shale Gas in the Michigan Basin - Assessing Compositional Variability and Transport Processes

    NASA Astrophysics Data System (ADS)

    Wen, T.; Castro, M. C.; Ellis, B. R.; Hall, C. M.; Lohmann, K. C.; Bouvier, L.

    2014-12-01

    Recent studies in the Michigan Basin looked at the atmospheric and terrigenic noble gas signatures of deep brines to place constraints on the past thermal history of the basin and to assess the extent of vertical transport processes within this sedimentary system. In this contribution, we present noble gas data of shale gas samples from the Antrim shale formation in the Michigan Basin. The Antrim shale was one of the first economic shale-gas plays in the U.S. and has been actively developed since the 1980's. This study pioneers the use of noble gases in subsurface shale gas in the Michigan Basin to clarify the nature of vertical transport processes within the sedimentary sequence and to assess potential variability of noble gas signatures in shales. Antrim Shale gas samples were analyzed for all stable noble gases (He, Ne, Ar, Kr, Xe) from samples collected at depths between 300 and 500m. Preliminary results show R/Ra values (where R and Ra are the measured and atmospheric 3He/4He ratios, respectively) varying from 0.022 to 0.21. Although most samples fall within typical crustal R/Ra range values (~0.02-0.05), a few samples point to the presence of a mantle He component with higher R/Ra ratios. Samples with higher R/Ra values also display higher 20Ne/22Ne ratios, up to 10.4, and further point to the presence of mantle 20Ne. The presence of crustally produced nucleogenic 21Ne and radiogenic 40Ar is also apparent with 21Ne/22Ne ratios up to 0.033 and 40Ar/36Ar ratios up to 312. The presence of crustally produced 4He, 21Ne and 40Ar is not spatially homogeneous within the Antrim shale. Areas of higher crustal 4He production appear distinct to those of crustally produced 21Ne and 40Ar and are possibly related the presence of different production levels within the shale with varying concentrations of parent elements.

  2. Reaction time signatures of discriminative processes: differential effects of stimulus similarity and incentive.

    PubMed

    Blough, Donald S

    2004-05-01

    In three experiments with pigeons, the similarity of unreinforced test stimuli to a reinforced stimulus and the frequency of reinforcement associated with a stimulus were varied. The stimulus on each trial was a small spot that appeared in different hues or, in Experiment 3, different forms. Differential response frequency and reaction time (RT) patterns emerged: Changes in similarity affected the percentage of stimuli responded to but left the shape of RT distributions about the same, whereas changes in reinforcement shifted RT distributions but had little effect on the percentage of responses. When the similarity and reinforcement variables were applied to the same stimuli (Experiment 2), their effects were largely independent. A generalization procedure (Experiment 3) replicated the similarity effects of the initial discrimination procedure. The RT distributions were modeled by a diffusion process, and implications for a memory-instance model were suggested.

  3. Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

    PubMed

    Bartlett, M K; Zhang, Y; Yang, J; Kreidler, N; Sun, S w; Lin, L; Hu, Y H; Cao, K F; Sack, L

    2016-02-01

    Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand. PMID:27145624

  4. Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

    PubMed

    Bartlett, M K; Zhang, Y; Yang, J; Kreidler, N; Sun, S w; Lin, L; Hu, Y H; Cao, K F; Sack, L

    2016-02-01

    Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand.

  5. Inplementation of an automated signal processing approach for the analysis of chemical spectral signatures collected from FT-IR mounted in an aircraft

    SciTech Connect

    Kroutil, Robert T

    2008-01-01

    The automated detection of chemical spectral signatures using a passive infrared Fourier Transform Infrared (FT-IR) Spectrometer mounted in an aircraft is a difficult challenge due to the small total infrared energy contribution of a particular chemical species compared to the background signature. The detection of spectral signatures is complicated by the fact that a large, widely varying infrared background is present that is coupled with the presence of a number of chemical interferents in the atmosphere. This paper describes a mathematical technique that has been demonstrated to automatically detect specific chemical species in an automated processing environment. The data analysis methodology has been demonstrated to be effective using data of low spectral resolution at low aircraft altitudes. An overview of the implementation and basic concepts of the approach are presented.

  6. Matched-field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations.

    PubMed

    Thode, A M; D'Spain, G L; Kuperman, W A

    2000-03-01

    Matched-field processing (MFP) and global inversion techniques have been applied to vocalizations from four whales recorded on a 48-element tilted vertical array off the Channel Islands in 1996. Global inversions from selected whale calls using as few as eight elements extracted information about the surrounding ocean bottom composition, array shape, and the animal's position. These inversion results were then used to conduct straightforward MFP on other calls. The sediment sound-speed inversion estimates are consistent with those derived from sediment samples collected in the area. In general, most animals swam from the east to west, but one animal remained within approximately 500 m of its original position over 45 min. All whales vocalized between 10 and 40 m depth. Three acoustic sequences are discussed in detail: the first illustrating a match between an acoustic track and visual sighting, the second tracking two whales to ranges out to 8 km, and the final sequence demonstrating high-resolution dive profiles from an animal that changed its course to avoid the research platform FLIP (floating instrument platform). This last whale displayed an unusual diversity of signals that include three strong frequency-modulated (FM) downsweeps which contain possible signs of an internal resonance. The arrival of this same whale coincided with a sudden change in oceanographic conditions.

  7. Neural signature of food reward processing in bulimic-type eating disorders.

    PubMed

    Simon, Joe J; Skunde, Mandy; Walther, Stephan; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2016-09-01

    Clinical observations and similarities to addiction suggest heightened reward sensitivity to food in patients with bulimic-type eating (BTE) disorders. Therefore, we investigated the expectation and receipt of food reward compared with monetary reward in patients with BTE. Fifty-six patients with BTE (27 patients with binge eating disorder and 29 with bulimia nervosa) and 55 matched healthy control participants underwent event-related functional magnetic resonance imaging while performing both food and monetary incentive delay tasks. BTE patients exhibited reduced brain activation in the posterior cingulate cortex during the expectation of food and increased activity in the medial orbitofrontal cortex, anterior medial prefrontal cortex and posterior cingulate cortex during the receipt of food reward. These findings were relevant to food because we found no significant group differences related to monetary reward. In the patients, higher brain activity in the medial orbitofrontal cortex during the receipt of food reward was related to higher levels of trait food craving and external eating. BTE patients exhibited increased hedonic processing during the receipt of food reward. These findings corroborate the notion that an altered responsiveness of the reward network to food stimuli is associated with BTE. PMID:27056455

  8. Plasma sheet dynamics in the Jovian magnetotail: Signatures For substorm-like processes ?

    NASA Astrophysics Data System (ADS)

    Woch, J.; Krupp, N.; Khurana, K. K.; Kivelson, M. G.; Roux, A.; Perraut, S.; Louarn, P.; Lagg, A.; Williams, D. J.; Livi, S.; Wilken, B.

    During Galileo's orbit G2 in 1996 the Energetic Particles Detector (EPD) onboard the spacecraft detected a number of particle bursts with large radial/antisunward anisotropies in the distant Jovian magnetotail [Krupp et al., 1998]. In this letter we focus on a detailed analysis of one of the bursts. Prior to the onset of the burst, particle intensities at low energies increase over several hours. This phase can be interpreted as a plasma loading phase. It ends after the onset of strong distortions in the magnetic field with a bipolar excursion of the north-south component being the most prominent feature. The subsequent plasma sheet encounters show that the plasma sheet has thinned considerably. Accelerated/heated ion beams first from the Jovian direction and then later from the tail direction are seen at the plasma sheet and lobe interfaces and intense radio and plasma wave emissions are detected. The event is tentatively interpreted as a dynamical process, where the Jovian magnetotail is internally driven unstable by mass loading of magnetic flux tubes.

  9. Neural signature of food reward processing in bulimic-type eating disorders.

    PubMed

    Simon, Joe J; Skunde, Mandy; Walther, Stephan; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2016-09-01

    Clinical observations and similarities to addiction suggest heightened reward sensitivity to food in patients with bulimic-type eating (BTE) disorders. Therefore, we investigated the expectation and receipt of food reward compared with monetary reward in patients with BTE. Fifty-six patients with BTE (27 patients with binge eating disorder and 29 with bulimia nervosa) and 55 matched healthy control participants underwent event-related functional magnetic resonance imaging while performing both food and monetary incentive delay tasks. BTE patients exhibited reduced brain activation in the posterior cingulate cortex during the expectation of food and increased activity in the medial orbitofrontal cortex, anterior medial prefrontal cortex and posterior cingulate cortex during the receipt of food reward. These findings were relevant to food because we found no significant group differences related to monetary reward. In the patients, higher brain activity in the medial orbitofrontal cortex during the receipt of food reward was related to higher levels of trait food craving and external eating. BTE patients exhibited increased hedonic processing during the receipt of food reward. These findings corroborate the notion that an altered responsiveness of the reward network to food stimuli is associated with BTE.

  10. Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing.

    PubMed

    Bjork, James M; Grant, Steven J; Chen, Gang; Hommer, Daniel W

    2014-02-01

    Dopamine (DA) neurotransmission is critical for motivational processing. We assessed whether disruption of DA synthesis in healthy controls using an amino-acid beverage devoid of catecholamine precursors (tyrosine-phenylalanine depletion (TPD)) would blunt recruitment of the nucleus accumbens (NAcc) by rewards. Sixteen controls ingested each of a tyr/phe-depleting beverage (DEP) or a tyr/phe-balanced (BAL) control beverage in two laboratory visits. Five hours after consumption of each drink, subjects underwent functional magnetic resonance imaging while they viewed anticipatory cues to respond to a target to either win money or avoid losing money. TPD did not exert main effects on mood or on task behavior, but affected brain activation. In right NAcc, TPD blunted activation by anticipation of high rewards. In left NAcc, recruitment anticipating high rewards was modulated by individual differences in mood change across the DEP drink day, where subjects whose mood worsened following TPD (relative to within-day mood change under BAL conditions) also showed lower activation under DEP conditions relative to BAL conditions. Exploratory analysis indicated that TPD qualitatively blunted the voxel-wise spatial extent of suprathreshold activation by reward anticipation. Finally, loss outcomes activated anterior insula under DEP conditions but not under BAL conditions. These data indicate that: (1) dietary depletion of catacholamine precursors will blunt dopaminergic mesolimbic activity, and (2) in controls, synthetic pathways of this neurocircuitry maintain sufficient buffering capacity to resist an effect on motivated behavior. Additional studies are needed to determine if clinical populations would show similar resistance to behavioral effects of TPD.

  11. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  12. Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing.

    PubMed

    Bjork, James M; Grant, Steven J; Chen, Gang; Hommer, Daniel W

    2014-02-01

    Dopamine (DA) neurotransmission is critical for motivational processing. We assessed whether disruption of DA synthesis in healthy controls using an amino-acid beverage devoid of catecholamine precursors (tyrosine-phenylalanine depletion (TPD)) would blunt recruitment of the nucleus accumbens (NAcc) by rewards. Sixteen controls ingested each of a tyr/phe-depleting beverage (DEP) or a tyr/phe-balanced (BAL) control beverage in two laboratory visits. Five hours after consumption of each drink, subjects underwent functional magnetic resonance imaging while they viewed anticipatory cues to respond to a target to either win money or avoid losing money. TPD did not exert main effects on mood or on task behavior, but affected brain activation. In right NAcc, TPD blunted activation by anticipation of high rewards. In left NAcc, recruitment anticipating high rewards was modulated by individual differences in mood change across the DEP drink day, where subjects whose mood worsened following TPD (relative to within-day mood change under BAL conditions) also showed lower activation under DEP conditions relative to BAL conditions. Exploratory analysis indicated that TPD qualitatively blunted the voxel-wise spatial extent of suprathreshold activation by reward anticipation. Finally, loss outcomes activated anterior insula under DEP conditions but not under BAL conditions. These data indicate that: (1) dietary depletion of catacholamine precursors will blunt dopaminergic mesolimbic activity, and (2) in controls, synthetic pathways of this neurocircuitry maintain sufficient buffering capacity to resist an effect on motivated behavior. Additional studies are needed to determine if clinical populations would show similar resistance to behavioral effects of TPD. PMID:23995581

  13. Model parameters conditioning on regional hydrologic signatures for process-based design flood estimation in ungauged basins.

    NASA Astrophysics Data System (ADS)

    Biondi, Daniela; De Luca, Davide Luciano

    2015-04-01

    The use of rainfall-runoff models represents an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation, and constitutes an answer to the increasing need for synthetic design hydrographs (SDHs) associated to a specific return period. However, the lack of streamflow observations and the consequent high uncertainty associated with parameter estimation, usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents the application of a Bayesian procedure that, for a predefined rainfall-runoff model, allows for the assessment of posterior parameters distribution, using the limited and uncertain information available for the response of an ungauged catchment (Bulygina et al. 2009; 2011). The use of regional estimates of river flow statistics, interpreted as hydrological signatures that measure theoretically relevant system process behaviours (Gupta et al. 2008), within this framework represents a valuable option and has shown significant developments in recent literature to constrain the plausible model response and to reduce the uncertainty in ungauged basins. In this study we rely on the first three L-moments of annual streamflow maxima, for which regressions are available from previous studies (Biondi et al. 2012; Laio et al. 2011). The methodology was carried out for a catchment located in southern Italy, and used within a Monte Carlo scheme (MCs) considering both event-based and continuous simulation approaches for design flood estimation. The applied procedure offers promising perspectives to perform model calibration and uncertainty analysis in ungauged basins; moreover, in the context of design flood estimation, process-based methods coupled with MCs approach have the advantage of providing simulated floods uncertainty analysis that represents an asset in risk-based decision

  14. [Military and political crises and the psycho-physical health of internally displaced persons (IDPs): the case of Côte d'Ivoire].

    PubMed

    Kouadio, Kouakou Jérôme; Beugre, Jean-Bertin; Djaha, Konan; Sonan, Kakou N'guessan

    2012-06-01

    People displaced by conflict who remain within the borders of their country are known as Internally Displaced Persons (IDPs). The physical and psychological health of IDPs, who have been forced to relocate to a new environment, has not been adequately studied. The objective of this study was to compare the physical and psychological health of IDPs and non-displaced populations. The study examined 580 subjects aged 18-59 years living in Côte d'Ivoire, including 290 IDPs and 290 non-displaced persons. The physical and psychological health of both groups was examined and compared using face-to-face questionnaires. The prevalence of physical illness and depression and anxiety disorders were found to be twice as high among IDPs (80% compared to 42% and 60% compared to 30%). This study provides evidence of the high prevalence of physical and psychological morbidity among IDPs. The results highlight the importance of providing better support to this highly vulnerable population.

  15. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  16. Search for the Higgs Boson and Rare Standard Model Processes in the ET+B-Jets Signature at the Collider Detector at Fermilab

    SciTech Connect

    Potamianos, Karolos Jozef

    2011-12-01

    We study rare processes of the standard model of particle physics (SM) in events with missing transverse energy ET, no leptons, and two or three jets, of which at least one is identified as originating from a $b$-quark (ET+b-jets signature). We present a search for the SM Higgs boson produced in association with a $W$ or $Z$ boson when the Higgs decays into \\bbbar. We consider the scenario where $Z \\to \

  17. A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery: Crop identification using vegetation phenology

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A. (Principal Investigator); Carlyle, S. M.; Haralick, R. M.; Yokoyama, R.

    1978-01-01

    The author has identified the following significant results. The phenological method of crop identification involves the creation of crop signatures which characterize multispectral observations as phenological growth states. The phenological signature models spectral reflectance explicitly as a function of crop maturity rather than as a function of date. A correspondence of time to growth state is established which minimizes the smallest difference between the given multispectral multitemporal vector and a category mean vector. The application of the method to the identification of winter wheat and corn shows (1) the method is capable of discriminating crop type with about the same degree of accuracy as more traditional classifiers; (2) the use of LANDSAT observations on two or more dates yields better results than the use of a single observation; and (3) some potential is demonstrated for labeling the degree of maturity of the crop, as well as the crop type.

  18. Improving the automated detection of refugee/IDP dwellings using the multispectral bands of the WorldView-2 satellite

    NASA Astrophysics Data System (ADS)

    Kemper, Thomas; Gueguen, Lionel; Soille, Pierre

    2012-06-01

    The enumeration of the population remains a critical task in the management of refugee/IDP camps. Analysis of very high spatial resolution satellite data proofed to be an efficient and secure approach for the estimation of dwellings and the monitoring of the camp over time. In this paper we propose a new methodology for the automated extraction of features based on differential morphological decomposition segmentation for feature extraction and interactive training sample selection from the max-tree and min-tree structures. This feature extraction methodology is tested on a WorldView-2 scene of an IDP camp in Darfur Sudan. Special emphasis is given to the additional available bands of the WorldView-2 sensor. The results obtained show that the interactive image information tool is performing very well by tuning the feature extraction to the local conditions. The analysis of different spectral subsets shows that it is possible to obtain good results already with an RGB combination, but by increasing the number of spectral bands the detection of dwellings becomes more accurate. Best results were obtained using all eight bands of WorldView-2 satellite.

  19. Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Piacentini, Luca; Chiesa, Mattia; Kesharwani, Rupesh K.; Frati, Caterina; Capogrossi, Maurizio C.; Gaetano, Carlo; Pompilio, Giulio

    2014-01-01

    MicroRNAs are key modulators at molecular level in different biological processes, including determination of cell fate and differentiation. Herein, microRNA expression profiling experiments were performed on syngeneic cardiac (CStC) and bone marrow (BMStC) mesenchymal stromal cells cultured in standard growth medium and then in vitro exposed to adipogenic, osteogenic, cardiomyogenic and endothelial differentiation media. Analysis identified a tissue-specific microRNA signature composed of 16 microRNAs that univocally discriminated cell type of origin and that were completely unaffected by in vitro differentiation media: 4 microRNAs were over-expressed in cardiac stromal cells, and 12 were overexpressed or present only in bone marrow stromal cells. Further, results revealed microRNA subsets specifically modulated by each differentiation medium, irrespective of the cell type of origin, and a subset of 7 microRNAs that were down-regulated by all media with respect to growth medium. Finally, we identified 16 microRNAs that were differentially modulated by the media when comparing the two tissues of origin. The existence of a tissue-specific microRNA signature surviving to any differentiation stimuli, strongly support the role if microRNAs determining cell identity related to tissue origin. Moreover, we identified microRNA subsets modulated by different culture conditions in a tissue-specific manner, pointing out their importance during differentiation processes. PMID:25232725

  20. Long range recognition and selection in IDPs: the interactions of the C-terminus of p53

    PubMed Central

    Kannan, Srinivasaraghavan; Lane, David P.; Verma, Chandra S.

    2016-01-01

    The C-terminal domain of p53 is an extensively studied IDP, interacting with different partners through multiple distinct conformations. To explore the interplay between preformed structural elements and intrinsic fluctuations in its folding and binding we combine extensive atomistic equilibrium and non-equilibrium simulations. We find that the free peptide segment rapidly interconverts between ordered and disordered states with significant populations of the conformations that are seen in the complexed states. The underlying global folding-binding landscape points to a synergistic mechanism in which recognition is dictated via long range electrostatic recognition which results in the formation of reactive structures as far away as 10 Å, and binding proceeds with the steering of selected conformations followed by induced folding at the target surface or within a close range. PMID:27030593

  1. Heat-Treatment of MgSiO Smokes of Astrophysical Interest: Possible Implications for Olivine-Pyroxene-Silica Assemblages in Chondritic Aggregate IDPs

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A., III; Hallenbeck, S. L.

    2001-01-01

    Anhydrous silicates in coarse-grained ferromagnesiosilica principal components (PCs) formed during atmospheric entry flash-heating also constrain the astromineralogy of astrophysical dust. This is because of the unique closed-system behavior of these PCs in chondritic aggregate interplanetary dust particles (IDPs). Additional information is contained in the original extended abstract.

  2. Predicting individual differences in decision-making process from signature movement styles: an illustrative study of leaders

    PubMed Central

    Connors, Brenda L.; Rende, Richard; Colton, Timothy J.

    2013-01-01

    There has been a surge of interest in examining the utility of methods for capturing individual differences in decision-making style. We illustrate the potential offered by Movement Pattern Analysis (MPA), an observational methodology that has been used in business and by the US Department of Defense to record body movements that provide predictive insight into individual differences in decision-making motivations and actions. Twelve military officers participated in an intensive 2-h interview that permitted detailed and fine-grained observation and coding of signature movements by trained practitioners using MPA. Three months later, these subjects completed four hypothetical decision-making tasks in which the amount of information sought out before coming to a decision, as well as the time spent on the tasks, were under the partial control of the subject. A composite MPA indicator of how a person allocates decision-making actions and motivations to balance both Assertion (exertion of tangible movement effort on the environment to make something occur) and Perspective (through movements that support shaping in the body to perceive and create a suitable viewpoint for action) was highly correlated with the total number of information draws and total response time—individuals high on Assertion reached for less information and had faster response times than those high on Perspective. Discussion focuses on the utility of using movement-based observational measures to capture individual differences in decision-making style and the implications for application in applied settings geared toward investigations of experienced leaders and world statesmen where individuality rules the day. PMID:24069012

  3. Strontium and neodymium isotopic signatures indicate the provenance and depositional process of loams intercalated in coastal dune sand, western Japan

    NASA Astrophysics Data System (ADS)

    Saitoh, Yu; Tamura, Toru; Kodama, Yoshinori; Nakano, Takanori

    2011-05-01

    Isotopic analyses of strontium and neodymium suggest that layers of loam intercalated in dune sand on the Japan Sea coast at Tottori, western Japan, consist of a mixture of Asian dust from China and locally derived sediment. An outcrop exposure shows a succession of late Pleistocene dune sand, a lower loam layer, Daisen-Kurayoshi Pumice (DKP; 50-55 ka or older), an upper loam, Aira-Tn tuff (ca. 30 ka), and Holocene dune sand, in ascending order. Bulk samples of the loam layers show an upward increase in 87Sr/ 86Sr, suggesting that the contribution of Asian dust increases upward. The Sr isotopic values also suggest a greater contribution of Asian dust in the silt fraction than in the bulk sample. Asian dust transported by westerly jet from the Taklamakan or Gobi desert is the main constituent of the upper part of the lower loam, of which isotopic values of silicate portion is isotopically identical to those of desert sand in China ( 87Sr/ 86Sr, 0.717-0.719; ɛNd, -9.5 to -9.4). In contrast, the Sr and Nd isotopic values of DKP ( 87Sr/ 86Sr, 0.705; ɛNd, -2.6 to 0.6) are close to those of the volcanic rocks of Mt. Daisen, which is regarded as the source of the tephra. The isotopic signature suggests that Asian dust also have contributed to the upper part of the upper loam layer. The upward increase of 87Sr/ 86Sr within each of the loam layers suggests that the contribution of Asian dust increased as the proportion of reworked deposits from the underlying layer (dune sand or DKP) decreased by burial. In contrast, 87Sr/ 86Sr in DKP shows little vertical change, suggesting very rapid deposition without entrainment of the underlying lower loam layer.

  4. Elucidating source processes of N2O fluxes following grassland-to-field-conversion using isotopologue signatures of soil-emitted N2O

    NASA Astrophysics Data System (ADS)

    Roth, G.; Giesemann, A.; Well, R.; Flessa, H.

    2012-04-01

    Conversion of grassland to arable land often causes enhanced nitrous oxide (N2O) emissions to the atmosphere. This is due to the tillage of the sward and subsequent decomposition of organic matter. Prediction of such effects is uncertain so far because emissions may differ depending on site and soil conditions. The processes of N2O turnover (nitrification, production by bacterial or fungal denitrifiers, bacterial reduction to N2) are difficult to identify, however. Isotopologue signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) can be used to characterize N2O turnover processes using the known ranges of isotope effects of the various N2O pathways. We aim to evaluate the impact of grassland-to-field-conversion on N2O fluxes and the governing processes using isotopic signatures of emitted N2O. At two sites, in Kleve (North Rhine-Westphalia, Germany, conventional farming) and Trenthorst (Schleswig-Holstein, Germany, organic farming), a four times replicated plot experiment with (i) mechanical conversion (ploughing, maize), (ii) chemical conversion (broadband herbicide, maize per direct seed) and (iii) continuous grassland as reference was started in April 2010. In Trenthorst we additionally established a (iv) field with continuous maize cultivation as further reference. Over a period of two years, mineral nitrogen (Nmin) content was measured weekly on soil samples taken from 0-10 cm and 10-30 cm depth. Soil water content and N2O emissions were measured weekly as well. Gas samples were collected using a closed chamber system. Isotope ratio mass spectrometry was carried out on gas samples from selected high flux events to determine δ18O, δ15Nbulk and SP of N2O. δ18O and SP of N2O exhibited a relatively large range (32 to 72 ‰ and 6 to 34 ‰, respectively) indicating highly variable process dynamics. The data-set is grouped

  5. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  6. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer

    PubMed Central

    An, Ning; Shi, Xiaoyu; Zhang, Yueming; Lv, Ning; Feng, Lin; Di, Xuebing; Han, Naijun; Wang, Guiqi

    2015-01-01

    Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan–Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four

  7. Discovery of a Novel Immune Gene Signature with Profound Prognostic Value in Colorectal Cancer: A Model of Cooperativity Disorientation Created in the Process from Development to Cancer.

    PubMed

    An, Ning; Shi, Xiaoyu; Zhang, Yueming; Lv, Ning; Feng, Lin; Di, Xuebing; Han, Naijun; Wang, Guiqi; Cheng, Shujun; Zhang, Kaitai

    2015-01-01

    Immune response-related genes play a major role in colorectal carcinogenesis by mediating inflammation or immune-surveillance evasion. Although remarkable progress has been made to investigate the underlying mechanism, the understanding of the complicated carcinogenesis process was enormously hindered by large-scale tumor heterogeneity. Development and carcinogenesis share striking similarities in their cellular behavior and underlying molecular mechanisms. The association between embryonic development and carcinogenesis makes embryonic development a viable reference model for studying cancer thereby circumventing the potentially misleading complexity of tumor heterogeneity. Here we proposed that the immune genes, responsible for intra-immune cooperativity disorientation (defined in this study as disruption of developmental expression correlation patterns during carcinogenesis), probably contain untapped prognostic resource of colorectal cancer. In this study, we determined the mRNA expression profile of 137 human biopsy samples, including samples from different stages of human colonic development, colorectal precancerous progression and colorectal cancer samples, among which 60 were also used to generate miRNA expression profile. We originally established Spearman correlation transition model to quantify the cooperativity disorientation associated with the transition from normal to precancerous to cancer tissue, in conjunction with miRNA-mRNA regulatory network and machine learning algorithm to identify genes with prognostic value. Finally, a 12-gene signature was extracted, whose prognostic value was evaluated using Kaplan-Meier survival analysis in five independent datasets. Using the log-rank test, the 12-gene signature was closely related to overall survival in four datasets (GSE17536, n = 177, p = 0.0054; GSE17537, n = 55, p = 0.0039; GSE39582, n = 562, p = 0.13; GSE39084, n = 70, p = 0.11), and significantly associated with disease-free survival in four

  8. Bilingual and monolingual brains compared: a functional magnetic resonance imaging investigation of syntactic processing and a possible "neural signature" of bilingualism.

    PubMed

    Kovelman, Ioulia; Baker, Stephanie A; Petitto, Laura-Ann

    2008-01-01

    Abstract Does the brain of a bilingual process language differently from that of a monolingual? We compared how bilinguals and monolinguals recruit classic language brain areas in response to a language task and asked whether there is a "neural signature" of bilingualism. Highly proficient and early-exposed adult Spanish-English bilinguals and English monolinguals participated. During functional magnetic resonance imaging (fMRI), participants completed a syntactic "sentence judgment task" [Caplan, D., Alpert, N., & Waters, G. Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10, 541-552, 1998]. The sentences exploited differences between Spanish and English linguistic properties, allowing us to explore similarities and differences in behavioral and neural responses between bilinguals and monolinguals, and between a bilingual's two languages. If bilinguals' neural processing differs across their two languages, then differential behavioral and neural patterns should be observed in Spanish and English. Results show that behaviorally, in English, bilinguals and monolinguals had the same speed and accuracy, yet, as predicted from the Spanish-English structural differences, bilinguals had a different pattern of performance in Spanish. fMRI analyses revealed that both monolinguals (in one language) and bilinguals (in each language) showed predicted increases in activation in classic language areas (e.g., left inferior frontal cortex, LIFC), with any neural differences between the bilingual's two languages being principled and predictable based on the morphosyntactic differences between Spanish and English. However, an important difference was that bilinguals had a significantly greater increase in the blood oxygenation level-dependent signal in the LIFC (BA 45) when processing English than the English monolinguals. The results provide insight into the decades-old question about the

  9. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    PubMed

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure. PMID:27277404

  10. Signatures of nonthermal melting.

    PubMed

    Zier, Tobias; Zijlstra, Eeuwe S; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E

    2015-09-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  11. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  12. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  13. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  14. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  15. Minority Language Development and Literacy among Internally Displaced Persons (IDPs), Refugees, and Wartime Communities

    ERIC Educational Resources Information Center

    Yoder, Joan Bomberger

    2008-01-01

    This article describes how minority language development and literacy activities were facilitated in a wartime context for Southern Sudanese language groups, particularly through the use of workshops. It also presents the voices of the language speakers themselves as they reflect on this process. A background discussion considers the importance of…

  16. Biomarker Sensors and Method for Multi-Color Imaging and Processing of Single-Molecule Life Signatures

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor); Collier, Charles Patrick (Inventor)

    2013-01-01

    The invention is a device including array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process, e.g., sequential reactions. The device has a transparent substrate member, which has a surface region and a silane material overlying the surface region. A first active region overlies a first portion of the silane material. The first region has a first dimension of less than 1 micron in size and has first molecules capable of binding to the first portion of the silane material. A second active region overlies a second portion of the silane material. The second region has a second dimension of less than 1 micron in size, second molecules capable of binding to the second portion of the active region, and a spatial distance separates the first active region and the second active region.

  17. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  18. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  19. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  20. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark; Gosnell, Tom B.; Ham, Cheryl; Perkins, Dwight; Wong, James

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  1. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  2. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  3. Controlling radar signature

    SciTech Connect

    Foulke, K.W. )

    1992-08-01

    Low observable technologies for military and tactical aircraft are reviewed including signature-reduction techniques and signal detection/jamming. Among the applications considered are low-signature sensors and the reduction of radar cross section in conjunction with radar-absorbing structures and materials. Technologies for reducing radar cross section are shown to present significant technological challenges, although they afford enhanced aircraft survivability.

  4. Nitrogen isotopes as indicators of streamflow generation processes in a headwater forested catchment: Focusing on atmospheric NO3- contribution using δ 18O signature

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Sebestyen, S. D.; Doctor, D. H.; Wankel, S. D.; Shanley, J. B.; Kendall, C.; Boyer, E. W.

    2003-12-01

    To quantify the contributions of atmospheric nitrogen deposition and mechanisms of nitrate discharge to stream, nitrogen chemistry and isotopes (δ 15N and δ 18O of NO3-) of streamwater were studied as part of an ongoing study of nutrient dynamics at the Sleepers River Research Watershed in Vermont, USA. We employed novel analytical procedures for high throughput of NO3- isotopic measurements. The denitrifier method for measurement of δ 15N and δ 18O of NO3- requires a smaller volume of water samples than previously applied methods, thus it enables fine resolution analysis of isotopes for stream, well, and soil water samples. Samples were collected throughout the spring 2003 snowmelt. Snowmelt runoff was initiated in the middle of March and peaked at the end of the month. Then, the runoff rate decreased gradually through April and May, and responded to several storm events. The highest concentration of NO3- in the stream was observed at the beginning of snowmelt (the end of March), and thereafter it declined continuously. The temporal course of NO3- discharge process during snowmelt period was divided into four phases based on changes in the relationship between runoff rate and NO3- concentration. During the earliest phase (very low runoff rate and highest NO3- concentration) isotope signatures, especially δ 18O of NO3-, indicated higher contribution of the atmospherically derived NO3-, meaning that the direct discharge from snow pack was the dominant source of NO3- to the stream. This also suggested that streamwater consisted only of a small volume of groundwater discharge and melt water of the in-stream snow pack and/or stream-covering snow pack. The δ 15N and δ 18O isotope compositions of NO3- during the middle phase of snowmelt indicated that the contribution of the NO3- generated by nitrifiers in soil increased gradually accompanied with increase of groundwater level. These detailed descriptions in the changes of NO3- discharge during snowmelt events

  5. Evolutionary Signatures of River Networks

    NASA Astrophysics Data System (ADS)

    Paik, K.

    2014-12-01

    River networks exhibit fractal characteristics and it has long been wondered how such regular patterns have been formed. This subject has been actively investigated mainly by two great schools of thoughts, i.e., chance and organization. Along this line, several fundamental questions have partially been addressed or remained. They include whether river networks pursue certain optimal conditions, and if so what is the ultimate optimality signature. Hydrologists have traditionally perceived this issue from fluvial-oriented perspectives. Nevertheless, geological processes can be more dominant in the formation of river networks in reality. To shed new lights on this subject, it is necessary to better understand complex feedbacks between various processes over different time scales, and eventually the emerging characteristic signature. Here, I will present highlights of earlier studies on this line and some noteworthy approaches being tried recently.

  6. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  7. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  8. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  9. Modeling the lexical morphology of Western handwritten signatures.

    PubMed

    Diaz-Cabrera, Moises; Ferrer, Miguel A; Morales, Aythami

    2015-01-01

    A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures.

  10. Modeling the Lexical Morphology of Western Handwritten Signatures

    PubMed Central

    Diaz-Cabrera, Moises; Ferrer, Miguel A.; Morales, Aythami

    2015-01-01

    A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures. PMID:25860942

  11. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  12. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  13. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  14. Assessment of the Interstellar Processes Leading to Deuterium Enrichment in Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason P.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low temperature gas phase ion-molecule reactions, low temperature gas-grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D-enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, 0, and N in the same compounds.

  15. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  16. Nonlinear control of magnetic signatures

    NASA Astrophysics Data System (ADS)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  17. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    SciTech Connect

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; de Wet, Dane; Bayram, Duygu

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  18. Magma Differentiation Processes That Develop an "Enriched" Signature in the Izu Bonin Rear Arc: Evidence from Drilling at IODP Site U1437

    NASA Astrophysics Data System (ADS)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.

    2015-12-01

    The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.

  19. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  20. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  1. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  2. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an "overall" mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  3. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  4. Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, S.

    2012-01-01

    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs.

  5. Signature, a web server for taxonomic characterization of sequence samples using signature genes.

    PubMed

    Dutilh, Bas E; He, Ying; Hekkelman, Maarten L; Huynen, Martijn A

    2008-07-01

    Signature genes are genes that are unique to a taxonomic clade and are common within it. They contain a wealth of information about clade-specific processes and hold a strong evolutionary signal that can be used to phylogenetically characterize a set of sequences, such as a metagenomics sample. As signature genes are based on gene content, they provide a means to assess the taxonomic origin of a sequence sample that is complementary to sequence-based analyses. Here, we introduce Signature (http://www.cmbi.ru.nl/signature), a web server that identifies the signature genes in a set of query sequences, and therewith phylogenetically characterizes it. The server produces a list of taxonomic clades that share signature genes with the set of query sequences, along with an insightful image of the tree of life, in which the clades are color coded based on the number of signature genes present. This allows the user to quickly see from which part(s) of the taxonomy the query sequences likely originate.

  6. Searching the Inclusive Lepton + Photon + Missing E(T) + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton ({ell}), a photon ({gamma}), significant transverse momentum imbalance (E{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}s = 1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 {ell}{gamma}bE{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, t{bar t} + {gamma}. In the data we observe 16 t{bar t}{gamma} candidate events versus an expectation from non-top-quark SM sources of 11.2{sub -2.1}{sup +2.3}. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the t{bar t} cross section to be 0.15 {+-} 0.08 pb.

  7. Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process.

    PubMed

    Yuan, Guo-Li; Wu, Ming-Zhe; Sun, Yong; Li, Jun; Han, Peng; Wang, Gen-Hou

    2015-11-01

    The fraction of trans-chlordane (TC) in chlordane was used to indicate racemic degradation while the enantiomer fractions (EFs) indicated enantioselective depletion. In 44 soils of the Central Tibetan Plateau, the fractions of TC ranged from 0.368 to 0.411. The EFs ranged from 0.174 to 0.696 for TC and from 0.483 to 0.672 for cis-chlordane (CC). (-) enantiomer excess (ee) was found to be 80.0% in the soils for TC and (+) ee was 86.5% for CC. The fraction of TC changed with the clay content while the EFs changed with the soil organic carbon. Meanwhile, the fractions of TC and the EFs were determined for the surficial sediments in Yamzhog Yumco Lake, which were compared with those in the soils at its catchment area. The composition and chiral signature of chlordane did not vary between soils and sediments. Our results will help to elucidate the transformation of chlordane in soils and in surficial transport.

  8. Terahertz signature characterization of bio-simulants

    NASA Astrophysics Data System (ADS)

    Majewski, Alexander J.; Miller, Peter; Abreu, Rene; Grotts, Jeffrey; Globus, Tatiana; Brown, Elliott

    2005-05-01

    Collaboration with the University of Virginia (UVa) and the University of California, Santa Barbara (UCSB) has resulted in the collection of signature data in the THz region of the spectrum for ovalbumin, Bacillus Subtilis (BG) and RNA from MS2 phage. Two independent experimental measurement systems were used to characterize the bio-simulants. Prior to our efforts, only a limited signature database existed. The goal was to evaluate a larger ensemble of biological agent simulants (BG, MS2 and ovalbumin) by measuring their THz absorption spectra. UCSB used a photomixer spectrometer and UVa a Fourier Transform spectrometer to measure absorption spectra. Each group used different sample preparation techniques and made multiple measurements to provide reliable statistics. Data processing culminated in applying proprietary algorithms to develop detection filters for each simulant. Through a covariance matrix approach, the detection filters extract signatures over regions with strong absorption and ignore regions with large signature variation (noise). The discrimination capability of these filters was also tested. The probability of detection and false alarm for each simulant was analyzed by each simulant specific filter. We analyzed a limited set of Bacillus thuringiensis (BT) data (a near neighbor to BG) and were capable of discriminating between BT and BG. The signal processing and filter construction demonstrates signature specificity and filter discrimination capabilities.

  9. Genetic signatures of heroin addiction

    PubMed Central

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-01-01

    Abstract Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086

  10. Genetic signatures of heroin addiction.

    PubMed

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-08-01

    Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study. PMID:27495086

  11. Automated Extraction of Gravity Wave Signatures from the Super Dual Auroral Radar Network (SuperDARN) Database Using Spatio-Temporal Process Discovery Algorithms

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Ramakrishnan, N.; Ruohoniemi, J. M.; Hossain, M.; Ribeiro, A.

    2011-12-01

    A major challenge in space physics research is the automated extraction of recurrent features from multi-dimensional datasets which tend to be irregularly gridded in both space and time. In many cases, the complexity of the datasets impedes their use by scientists who are often times most interested in extracting a simple time-series of higher level data product that can be easily compared with other measurements. As such, the collective archive of space physics measurements is vastly under-utilized at the present time. Application of cutting-edge computer-aided data mining and knowledge discovery techniques has the potential to improve this situation by making space physics datasets much more accessible to the scientific user community and accelerating the rate of research and collaboration. As a first step in this direction, we are applying the principles of feature extraction, sub-clustering and motif mining to the analysis of HF backscatter measurements from the Super Dual Auroral Radar Network (SuperDARN). The SuperDARN database is an ideal test-bed for development of space physics data mining algorithms because: (1) there is a richness of geophysical phenomena manifested in the data; (2) the data is multi-dimensional and exhibits a high degree of spatiotemporal sparseness; and (3) some of the radars have been operating continuously with infrequent outages for more than 25 years. In this presentation we discuss results obtained from the application of new data mining algorithms designed specifically to automate the extraction of gravity wave signatures from the SuperDARN database. In particular, we examine the occurrence statistics of gravity waves as a function of latitude, local time, and geomagnetic conditions.

  12. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  13. Evidence for Changes in 81PIWild 2 Organic Matter Since Collection and Comparison of 82PIWild 2 and IDP Organic Matter to Access the Thermal Effects of Aerogel Capture

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L.; Messenger, Nakamura; Sandford, S. A.; Zolensky, M. E.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    NASA s Stardust spacecraft collected cometary material during its passage through the dust coma of comet 81P/Wild 2 on January 2nd, 2004 and delivered this material to Earth on January 15th 2006. The first fragment we analyzed during the preliminary examination was partially vaporized by the X-ray beam. The carbonaceous material that survived was re-analysis approx.2 months later and the carbon spectrum for this material had significantly changed from what we first observed.. We have observed similar changes to the carbonaceous matter in some interplanetary dust particles ( IDPs). Some of the 81P/Wild 2 organic matter volatilized upon impact with the aerogel as observed using IR spectroscopy where IR spectra were collected several mms away from sample tracks [1]. The time-temperature profile experienced by any particular 81P/Wild 2 grain during aerogel capture is not known, although Brownlee, et al. suggest that fine-grained materials, <1 micron in size, fragmented and then partially vaporized during collection, while particles much larger then 1 micron in size were captured intact [2]. Nearly all organic matter is subject to thermal alteration. To assess the heating and alteration experienced by the 81P/Wild 2 organic matter during capture we are comparing 81P/Wild2 organic matter with IDP organic matter where we have evidence of heating in the IDP [3,4].

  14. Fluorescent taggants with temporally coded signatures.

    PubMed

    Wang, Siyang; Vyas, Raul; Dwyer, Chris

    2016-07-11

    In this paper, resonance energy transfer (RET) networks between chromophores are used to implement fluorescent taggants with temporally coded signatures. Because the temporal signature of such a fluorescent taggant is a phase-type distribution defined by the geometry of its RET network, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the detection process becomes highly efficient when the signatures are coded in the time domain. The taggant identification method is based on the multinomial distribution of detected photons and Maximum Likelihood Estimation, which guarantees high accuracy even with only a few hundred photons and also applies to a mixture of taggants in multiplex detection. Therefore, these temporally coded fluorescent taggants have great potential for both in situ and Lidar applications. PMID:27410827

  15. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  16. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  17. The Effects of Differentiated Instruction on the Literacy Process of Learners with Interrupted Schooling

    ERIC Educational Resources Information Center

    Niño Santisteban, Liliana

    2014-01-01

    This research study analyzes the literacy and foreign langauge processes of learners in the "Procesos Básicos" Program. The participants were 15 Spanish-speaking children and young adolescents, whose highest level of education was first grade. Eight of the 15 children were Internally Displaced Persons (IDPs), and the others were affected…

  18. Image processing and products for the Magellan mission to Venus

    NASA Technical Reports Server (NTRS)

    Clark, Jerry; Alexander, Doug; Andres, Paul; Lewicki, Scott; Mcauley, Myche

    1992-01-01

    The Magellan mission to Venus is providing planetary scientists with massive amounts of new data about the surface geology of Venus. Digital image processing is an integral part of the ground data system that provides data products to the investigators. The mosaicking of synthetic aperture radar (SAR) image data from the spacecraft is being performed at JPL's Multimission Image Processing Laboratory (MIPL). MIPL hosts and supports the Image Data Processing Subsystem (IDPS), which was developed in a VAXcluster environment of hardware and software that includes optical disk jukeboxes and the TAE-VICAR (Transportable Applications Executive-Video Image Communication and Retrieval) system. The IDPS is being used by processing analysts of the Image Data Processing Team to produce the Magellan image data products. Various aspects of the image processing procedure are discussed.

  19. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  20. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  1. Comment on "The enhanced quantum blind signature protocol"

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Min; Zhou, Yi-Hua; Yang, Yu-Guang

    2014-06-01

    Recently, Yang et al. (Quantum Inf Process 12:109-117, 2013) proposed an enhancement on a quantum blind signature based on the two-state vector formalism, afterward a special attack strategy on Yang et al.'s enhanced scheme is put forward, in which the dishonest signer can illegally reveal 25 % of the message of the blind signature requester, but an effective solution has not been presented in their paper. In this paper, we further analyze Yang el al.'s enhanced scheme and find that there is another potential loophole which the blind signature requester can forge the message signer's signature. Then, an improvement scheme is proposed. Finally, analysis results show that our improved scheme can withstand the blind signature requester's forgery attack and the above special attack strategy, and our quantum efficiency will still be the same as the primary scheme.

  2. Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines.

    PubMed

    Iyer, Shalini; Acharya, K Ravi

    2011-11-01

    The cystine-knot motif, made up of three intertwined disulfide bridges, is a unique feature of several toxins, cyclotides and growth factors, and occurs in a variety of species, including fungi, insects, molluscs and mammals. Growth factor molecules containing the cystine-knot motif serve as ligands for a diverse range of receptors and play an important role in extracellular signalling. This superfamily of polypeptides comprises several homodimeric and heterodimeric molecules that are central characters in both health and disease. Amongst these molecules are a group of proteins that belong to the vascular endothelial growth factor (VEGF) subfamily. The members of this family are known angiogenic factors that regulate processes leading to blood vessel formation in physiological and pathological conditions. The focus of the present review is on the structural characteristics of proteins that belong to the VEGF family and on signal-transduction pathways that become initiated via the VEGF receptors.

  3. Signature CERN-URSS

    ScienceCinema

    None

    2016-07-12

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  4. Signatures of Reputation

    NASA Astrophysics Data System (ADS)

    Bethencourt, John; Shi, Elaine; Song, Dawn

    Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.

  5. EUROPIUM s-PROCESS SIGNATURE AT CLOSE-TO-SOLAR METALLICITY IN STARDUST SiC GRAINS FROM ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.

  6. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  7. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  8. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  9. An Arbitrated Quantum Signature with Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  10. New online signature acquisition system

    NASA Astrophysics Data System (ADS)

    Oulefki, Adel; Mostefai, Messaoud; Abbadi, Belkacem; Djebrani, Samira; Bouziane, Abderraouf; Chahir, Youssef

    2013-01-01

    We present a nonconstraining and low-cost online signature acquisition system that has been developed to enhance the performances of an existing multimodal biometric authentication system (based initially on both voice and image modalities). A laboratory prototype has been developed and validated for an online signature acquisition.

  11. Improving interpretation of geoelectrical signatures arising from biomineralization process in porous media: Low-frequency dielectric spectroscopy measurements on Desulfovibrio vulgaris cell suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Prodan, C.; Slater, L. D.; Bot, C.; Ntarlagiannis, D.

    2009-12-01

    dilute suspension of polarizable spheres with the polarization attributed to the surface charge on the cell walls. Our results provide insights into the likely contribution of the cells themselves to biogeophysical signals observed during biomineralization processes.

  12. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  13. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  14. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  15. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  16. Harmonic 'signatures' of microorganisms.

    PubMed

    Blake-Coleman, B C; Hutchings, M J; Silley, P

    1994-01-01

    The frequency/amplitude effect of various microorganisms exposed to periodic (time varying) electric fields, when proximate to immersed electrodes, has been studied using a novel analytical instrument. The harmonic distribution, in complex signals caused by cells exposed to harmonic free waveforms and occupying part of the electrode/suspension interface volume, was shown to be almost entirely due to the change in the standing interfacial transfer function by the (dielectrically nonlinear) presence of cells. Thus, the characteristic interfacial non-linearity is viewed as variable, being uniquely modulated by the presence of particular cells in the interfacial region. Little can be attributed to bulk (far field) effects. The tendency for subtle (characteristic) signal distortion to occur as a function of particulate (cell or molecular) occupancy of the near electrode interfacial region under controlled current conditions leads to the method of sample characterisation by harmonic (Fourier) analysis. We report here, as a sequel to our original studies (Hutchings et al., 1993; Hutchings and Blake-Coleman, 1993), preliminary results of the harmonic analysis of microbial suspensions under controlled signal conditions using a three-electrode configuration. These data provide three-dimensional graphical representations producing harmonic 'surfaces' for various microorganisms. Thus, cell type differences are characterised by their 'harmonic signature'. The visual distinction provided by these 'surface' forming three-dimensional plots is striking and gives a convincing impression of the ability to identify and enumerate specific microorganisms by acquisition of cell-modulated electrode interfacial Fourier spectra. PMID:8060593

  17. Infrasound Rocket Signatures

    NASA Astrophysics Data System (ADS)

    Olson, J.

    2012-09-01

    This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.

  18. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  19. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  20. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  1. UHECR: Signatures and models

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2013-06-01

    The signatures of Ultra High Energy (E ≳ 1 EeV) proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible characteristics of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E1/2 in integral spectrum. Measured by HiRes and Telescope Array (TA) these characteristics agree with theoretical predictions. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The models based on the Auger and HiRes/TA data are considered independently and classified using the transition from galactic to extragalactic cosmic rays. The ankle cannot provide this transition. since data of all three detector at energy (1-3) EeV agree with pure proton composition (or at least not heavier than Helium). If produced in Galaxy these particles result in too high anisotropy. This argument excludes or strongly disfavours all ankle models with ankle energy Ea > 3 EeV. The calculation of elongation curves, Xmax(E), for different ankle models strengthens further this conclusion. Status of other models, the dip, mixed composition and Auger based models are discussed.

  2. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.

  3. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. PMID:25940384

  4. A proposed neutral line signature

    NASA Technical Reports Server (NTRS)

    Doxas, I.; Speiser, T. W.; Dusenbery, P. B.; Horton, W.

    1992-01-01

    An identifying signature is proposed for the existence and location of the neutral line in the magnetotail. The signature, abrupt density, and temperature changes in the Earthtail direction, was first discovered in test particle simulations. Such temperature variations have been observed in ISEE data (Huang et. al. 1992), but their connection to the possible existence of a neutral line in the tail has not yet been established. The proposed signature develops earlier than the ion velocity space ridge of Martin and Speiser (1988), but can only be seen by spacecraft in the vicinity of the neutral line, while the latter can locate a neutral line remotely.

  5. Signature detection and matching for document image retrieval.

    PubMed

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches. PMID:19762928

  6. Retail applications of signature verification

    NASA Astrophysics Data System (ADS)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  7. Using what you get: dynamic physiologic signatures of critical illness

    PubMed Central

    Holder, Andre L.; Clermont, Gilles

    2015-01-01

    A physiologic signature can be defined as a consistent and robust collection of physiologic measurements characterizing a disease process and its temporal evolution. If a library of physiologic signatures of impending cardiopulmonary instability were available to clinicians caring for inpatients, many episodes of clinical decompensation and their downstream effects could potentially be averted. The development and resolution of cardiopulmonary instability are processes that take time to become clinically apparent, and the treatments provided take time to have an impact. The characterization of dynamic changes in hemodynamic and metabolic variables is implicit in the concept of physiologic signatures. Changes in vital signs such as blood pressure and heart rate, as well as measures of flow such as cardiac output are some of the standard variables used by clinicians to determine cardiopulmonary instability. When these primary variables are collected with high enough frequency to derive new variables, this data hierarchy can be used to development physiologic signatures. The construction of new variables from primary variables, and therefore the creation of physiologic signatures requires no new information; additional knowledge is extracted from data that already exists. It is possible to create physiologic signatures for each stage in the process of clinical decompensation and recovery to improve patient outcomes. PMID:25435482

  8. Ballastic signature identification systems study

    NASA Technical Reports Server (NTRS)

    Reich, A.; Hine, T. L.

    1976-01-01

    The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.

  9. Color signatures in Amorsolo paintings

    NASA Astrophysics Data System (ADS)

    Soriano, Maricor N.; Palomero, Cherry May; Cruz, Larry; Yambao, Clod Marlan Krister; Dado, Julie Mae; Salvador-Campaner, Janice May

    2010-02-01

    We present the results of a two-year project aimed at capturing quantifiable color signatures of oil paintings of Fernando Amorsolo, the Philippine's first National Artists. Color signatures are found by comparing CIE xy measurements of skin color in portraits and ground, sky and foliage in landscapes. The results are compared with results of visual examination and art historical data as well as works done by Amorsolo's contemporaries and mentors.

  10. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  11. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  12. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  13. The topographic signature of a Major Typhoon

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Ming; Lin, Ching-Weei; Dalla Fontana, Giancarlo; Tarolli, Paolo

    2013-04-01

    In August 2009, Typhoon Morakot, characterized by a cumulative rainfall up to 3000 mm in about three days, triggered thousands of landslides and debris flows in Taiwan. The availability of detailed LiDAR surveys before and after the event offers a great opportunity to deeply investigate the topographic signatures of a major Thyphoon, thus providing a way to better understand the Earth Surface Processes and the landscape evolution in a region affected by these phenomena and where the uplift rate is significant. We considered six small catchments, located in the Central Taiwan, affected during the Typhoon Morakot by a different degree of slope failures (totally affected by shallow and deep-seated landslides, and not affected by any erosion). For each of these catchment high resolution Digital Terrain Model (DTM) was derived by LiDAR data, before and after the Thypoon. The scaling regimes of local slope (S) versus drainage area (A) in a loglog diagram served as the basis upon which recognize topographic signatures. The results suggested that for the catchments affected by landslides it is possible to recognize in the third SA scaling regime a characteristic signature of the SA relation: the topographic gradient of the relation tends to vary a little (or slightly increase) increasing the drainage areas. According to literature (Stock and Dietrich, 2003; Tarolli et al., 2009) this behavior of the relation is due to channels incised by landslides and debris flows. Differently, for the catchments without slope failures this signature is not present. These results are interesting because they offer a real example of landscape evolution under rainfall forcing, demonstrating that a Maior Typhoon may significantly affect, in a short time, the SA scaling regimes. The possibility to obtain these information, immediately after an intense event, really represent a strategic tool for a first quantification of the processes that affected and significantly changed the earth surface

  14. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  15. Understanding mutagenesis through delineation of mutational signatures in human cancer.

    PubMed

    Petljak, Mia; Alexandrov, Ludmil B

    2016-06-01

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposed for many of them. This review provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.

  16. Quantum blind dual-signature scheme without arbitrator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying

    2016-03-01

    Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology.

  17. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented.

  18. Understanding mutagenesis through delineation of mutational signatures in human cancer

    DOE PAGES

    Petljak, Mia; Alexandrov, Ludmil B.

    2016-05-04

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposedmore » for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.« less

  19. Ultrasonic Doppler methods to extract signatures of a walking human.

    PubMed

    Mehmood, Asif; Sabatier, James M; Damarla, Thyagaraju

    2012-09-01

    Extraction of Doppler signatures that characterize human motion has attracted a growing interest in recent years. These Doppler signatures are generated by various components of the human body while walking, and contain unique features that can be used for human detection and recognition. Although, a significant amount of research has been done in radio frequency regime for human Doppler signature extraction, considerably less has been done in acoustics. In this work, 40 kHz ultrasonic sonar is employed to measure the Doppler signature generated by the motion of body segments using different electronic and signal processing schemes. These schemes are based on both analog and digital demodulation with homodyne and heterodyne receiver circuitry. The results and analyses from these different schemes are presented. PMID:22979839

  20. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures.

    PubMed

    Stoddard, Mary Caswell; Kilner, Rebecca M; Town, Christopher

    2014-01-01

    Pattern-based identity signatures are commonplace in the animal kingdom, but how they are recognized is poorly understood. Here we develop a computer vision tool for analysing visual patterns, NATUREPATTERNMATCH, which breaks new ground by mimicking visual and cognitive processes known to be involved in recognition tasks. We apply this tool to a long-standing question about the evolution of recognizable signatures. The common cuckoo (Cuculus canorus) is a notorious cheat that sneaks its mimetic eggs into nests of other species. Can host birds fight back against cuckoo forgery by evolving highly recognizable signatures? Using NATUREPATTERNMATCH, we show that hosts subjected to the best cuckoo mimicry have evolved the most recognizable egg pattern signatures. Theory predicts that effective pattern signatures should be simultaneously replicable, distinctive and complex. However, our results reveal that recognizable signatures need not incorporate all three of these features. Moreover, different hosts have evolved effective signatures in diverse ways. PMID:24939367

  1. A coarse-grained spectral signature generator

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Austin, J. C.; Day, C. R.

    2007-01-01

    This paper investigates the method for object fingerprinting in the context of element specific x-ray imaging. In particular, the use of spectral descriptors that are illumination invariant and viewpoint independent for pattern identification was examined in some detail. To improve generating the relevant "signature", the spectral descriptor constructed is enhanced with a differentiator which has built-in noise filtration capability and good localisation properties, thus facilitating the extraction of element specific features at a coarse-grained level. In addition to the demonstrable efficacy in identifying significant image intensity transitions that are associated with the underlying physical process of interest, the method has the distinct advantage of being conceptually simple and computationally efficient. These latter properties allow the descriptor to be further utilised by an intelligent system capable of performing a fine-grained analysis of the extracted pattern signatures. The performance of the spectral descriptor has been studied in terms of the quality of the signature vectors that it generated, quantitatively based on the established framework of Spectral Information Measure (SIM). Early results suggested that such a multiscale approach of image sequence analysis offers a considerable potential for real-time applications.

  2. Accounting for dependencies in regionalized signatures for predictions in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Almeida, S.; Le Vine, N.; McIntyre, N.; Wagener, T.; Buytaert, W.

    2015-06-01

    A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information, and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall-runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be disinformative.

  3. Accounting for dependencies in regionalized signatures for predictions in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Le Vine, Nataliya; McIntyre, Neil; Wagener, Thorsten; Buytaert, Wouter

    2016-02-01

    A recurrent problem in hydrology is the absence of streamflow data to calibrate rainfall-runoff models. A commonly used approach in such circumstances conditions model parameters on regionalized response signatures. While several different signatures are often available to be included in this process, an outstanding challenge is the selection of signatures that provide useful and complementary information. Different signatures do not necessarily provide independent information and this has led to signatures being omitted or included on a subjective basis. This paper presents a method that accounts for the inter-signature error correlation structure so that regional information is neither neglected nor double-counted when multiple signatures are included. Using 84 catchments from the MOPEX database, observed signatures are regressed against physical and climatic catchment attributes. The derived relationships are then utilized to assess the joint probability distribution of the signature regionalization errors that is subsequently used in a Bayesian procedure to condition a rainfall-runoff model. The results show that the consideration of the inter-signature error structure may improve predictions when the error correlations are strong. However, other uncertainties such as model structure and observational error may outweigh the importance of these correlations. Further, these other uncertainties cause some signatures to appear repeatedly to be misinformative.

  4. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  5. Measurement of sniper infrared signatures

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2009-09-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.

  6. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  7. Materials with controllable signature properties

    NASA Astrophysics Data System (ADS)

    Dickman, O.; Holmberg, B.; Karlsson, T.; Savage, S.

    1995-02-01

    We have in this report considered some types of material with potential for use in signature control of structures. The material types selected for inclusion in this study were electrically conductive polymers, fullerenes, nanostructured materials and Langmuir-Blodgett films. To control the signature of a structure in real time it must be possible to vary the material emissivity, structural transmission, and reflection or absorption of electromagnetic radiation in the relevant wavelength region. This may be achieved by changes in temperature, pressure, electrical or magnetic field or by the concentration of a chemical substance within the material. It is concluded that it is feasible to develop electrically conductive polymeric materials with controllable properties for practical signature control application within 5 to 10 years.

  8. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  9. Topological Signatures for Population Admixture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  10. Graph signatures for visual analytics.

    PubMed

    Wong, Pak Chung; Foote, Harlan; Chin, George; Mackey, Patrick; Perrine, Ken

    2006-01-01

    We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper.

  11. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  12. Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume

    NASA Astrophysics Data System (ADS)

    Mourão, Cyntia; Moreira, Manuel; Mata, João; Raquin, Aude; Madeira, José

    2012-06-01

    We present and discuss noble gas compositions of minerals from silicate rocks (olivines) and carbonatites (apatites and calcites) from Brava Island. The presence of an almost ubiquitous atmosphere-derived fingerprint is explained as reflecting contamination by seawater. Because of the high U and Th content in apatites, which are responsible for 4He production by α-decay, the high measured 4He/3He ratios do not represent magmatic signatures. In contrast, low values of 4He/3He in calcites (≥61,223; R/ R a ≤ 11.80) and olivines (≥56,240; R/ R a ≤ 12.85) are considered to be representative of signatures trapped at the time of crystallization, given that there are no evidences for significant cosmogenic additions. These relatively low 4He/3He ratios depicted by silicate and carbonatite rocks imply the contribution of a reservoir that evolved under low (U + Th)/3He; this is considered a strong evidence for the genesis of Brava by a mantle plume deeply anchored in the lower mantle. The inferred low 4He/40Ar* ratio (≈0.3), before degassing, is thought to reflect the contribution to the carbonatites source of a mantle domain evolving under high K/U, which cannot be explained by recycling of crustal components. The possible link between the low 4He/40Ar* source and the "missing Ar reservoir" is discussed. The usually referred geochemical dichotomy between Northern and Southern Cape Verde islands, which is markedly evident from Sr, Nd, and Pb isotope signatures, is not apparent from Brava Island (Southern Cape Verde), where some samples present relatively unradiogenic 4He/3He signatures, similar to those reported for the Northern islands of the archipelago.

  13. Heterogeneous access and processing of EO-Data on a Cloud based Infrastructure delivering operational Products

    NASA Astrophysics Data System (ADS)

    Niggemann, F.; Appel, F.; Bach, H.; de la Mar, J.; Schirpke, B.; Dutting, K.; Rucker, G.; Leimbach, D.

    2015-04-01

    To address the challenges of effective data handling faced by Small and Medium Sized Enterprises (SMEs) a cloud-based infrastructure for accessing and processing of Earth Observation(EO)-data has been developed within the project APPS4GMES(www.apps4gmes.de). To gain homogenous multi mission data access an Input Data Portal (IDP) been implemented on this infrastructure. The IDP consists of an Open Geospatial Consortium (OGC) conformant catalogue, a consolidation module for format conversion and an OGC-conformant ordering framework. Metadata of various EO-sources and with different standards is harvested and transferred to an OGC conformant Earth Observation Product standard and inserted into the catalogue by a Metadata Harvester. The IDP can be accessed for search and ordering of the harvested datasets by the services implemented on the cloud infrastructure. Different land-surface services have been realised by the project partners, using the implemented IDP and cloud infrastructure. Results of these are customer ready products, as well as pre-products (e.g. atmospheric corrected EO data), serving as a basis for other services. Within the IDP an automated access to ESA's Sentinel-1 Scientific Data Hub has been implemented. Searching and downloading of the SAR data can be performed in an automated way. With the implementation of the Sentinel-1 Toolbox and own software, for processing of the datasets for further use, for example for Vista's snow monitoring, delivering input for the flood forecast services, can also be performed in an automated way. For performance tests of the cloud environment a sophisticated model based atmospheric correction and pre-classification service has been implemented. Tests conducted an automated synchronised processing of one entire Landsat 8 (LS-8) coverage for Germany and performance comparisons to standard desktop systems. Results of these tests, showing a performance improvement by the factor of six, proved the high flexibility and

  14. Dual function seal: visualized digital signature for electronic medical record systems.

    PubMed

    Yu, Yao-Chang; Hou, Ting-Wei; Chiang, Tzu-Chiang

    2012-10-01

    Digital signature is an important cryptography technology to be used to provide integrity and non-repudiation in electronic medical record systems (EMRS) and it is required by law. However, digital signatures normally appear in forms unrecognizable to medical staff, this may reduce the trust from medical staff that is used to the handwritten signatures or seals. Therefore, in this paper we propose a dual function seal to extend user trust from a traditional seal to a digital signature. The proposed dual function seal is a prototype that combines the traditional seal and digital seal. With this prototype, medical personnel are not just can put a seal on paper but also generate a visualized digital signature for electronic medical records. Medical Personnel can then look at the visualized digital signature and directly know which medical personnel generated it, just like with a traditional seal. Discrete wavelet transform (DWT) is used as an image processing method to generate a visualized digital signature, and the peak signal to noise ratio (PSNR) is calculated to verify that distortions of all converted images are beyond human recognition, and the results of our converted images are from 70 dB to 80 dB. The signature recoverability is also tested in this proposed paper to ensure that the visualized digital signature is verifiable. A simulated EMRS is implemented to show how the visualized digital signature can be integrity into EMRS.

  15. Twin signal signature sensing: Application to shorted winding monitoring, detection and localization

    SciTech Connect

    Streifel, R.J.; Marks, R.J.; El-Sharkawi, A.E.; Kerszenbaum, I.

    1995-12-31

    Using twin signal sensing we propose a method to monitor, detect and localize shorts in power system devices with windings: including rotors, transformers and motors. There has, to date, been no effective way to do so. The most obvious approach, time domain reflectometry, fails due to the reactive coupling of the windings. Twin signal signature sensing of shorts results from identical signals being simultaneously injected in both sides of the windings. The reflected signals are measured and the difference amplified to produce the signature signal. The signature signal characterizes the current state of the windings. When winding shorts are present, the electrical characteristics of the device will be different and thus the signature signal will also change. The changes in the signature signal can be monitored to detect shorted windings. While a device is in operation, the signature signals can be monitored and the development of winding shorts can be diagnosed through the process of novelty detection. After a device is cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can be collected which represent the healthy device. If a sufficient number of signals can be collected, the signal space representing healthy windings can be characterized. A detection surface can be placed around the healthy signature signals to provide a partition of the signal space into two regions: healthy and faulty. Any signature signal which is not within the healthy signature partition will indicate a faulted device.

  16. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  17. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  18. Multiple-resolution study of Ka-band HRR polarimetric signature data

    NASA Astrophysics Data System (ADS)

    Giles, Robert H.; Kersey, William T.; McFarlin, M. Shane; Woodruff, Bobby G.; Finley, Robbin; Nixon, William E.

    2000-08-01

    SAR resolution and polarization performance studies for ATR algorithms have been the source of recent attention. Thorough investigations are often hindered by the lack of rigorously consistent high-resolution full-polarimetric signature data for a sufficient number of targets across requisite viewing angles, articulations and environmental conditions. While some evaluative performance studies of high-value structures and conceptual radar systems may be effectively studied with limited field radar data, to minimize signature acquisition costs, pose-independent studies of ATR algorithm are best served by signature libraries fashioned to encompass the complexity of the collection scenario. In response to the above requirements, the U.S. Army's National Ground Intelligence Center and Targets Management Office originated, sponsored, and directed a signature project plan to acquire multiple target signature data at Eglin, AFB using a high resolution full-polarimetric Ka-band radar. TMO and NGIC have sponsored researchers at both the Submillimeter-Wave Technology Laboratory and Simulation Technologies to analyze the trade-off between signature resolution and polarimetric features (ongoing research) of this turntable data. The signature data was acquired at five elevations spanning 5 degree to 60 degree for a T-72M1, T-72B, M1, M60-A3 and one classified vehicle. Using signal processing software established in an NGIC/STL-based signature study, researchers executed an HRR and ISAR cross-correlation study involving multiple resolutions to evaluate peak performance levels and to effectively understand signature requirements through the variability of multiple target RCS characteristics. The signature-to-signature variability quantified on the four unclassified MBTs is presented in this report, along with a description and examples of the signature analysis techniques exploited. This signature data is available from NGIC/TMO on request for Government Agencies and Government

  19. 17 CFR 232.302 - Signatures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Signatures. 232.302 Section 232.302 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Preparation of Electronic Submissions § 232.302 Signatures. (a) Required signatures to, or within,...

  20. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...

  1. Signatures of a Shadow Biosphere

    NASA Astrophysics Data System (ADS)

    Davies, Paul C. W.; Benner, Steven A.; Cleland, Carol E.; Lineweaver, Charles H.; McKay, Christopher P.; Wolfe-Simon, Felisa

    2009-03-01

    Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.

  2. Signatures of a shadow biosphere.

    PubMed

    Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa

    2009-03-01

    Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere. PMID:19292603

  3. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  4. Toward a Signature Pedagogy in Educational Leadership Preparation and Program Assessment

    ERIC Educational Resources Information Center

    Black, William R.; Murtadha, Khaula

    2007-01-01

    In this article, we work towards developing a signature pedagogy for educational leadership preparation programs. A signature pedagogy that engenders theory-building processes and leadership practices includes complex case studies, inquiry-centered internships, collaborative and interdisciplinary leadership institutes, and continuous assessments…

  5. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  6. Selection signatures in Shetland ponies.

    PubMed

    Frischknecht, M; Flury, C; Leeb, T; Rieder, S; Neuditschko, M

    2016-06-01

    Shetland ponies were selected for numerous traits including small stature, strength, hardiness and longevity. Despite the different selection criteria, Shetland ponies are well known for their small stature. We performed a selection signature analysis including genome-wide SNPs of 75 Shetland ponies and 76 large-sized horses. Based upon this dataset, we identified a selection signature on equine chromosome (ECA) 1 between 103.8 Mb and 108.5 Mb. A total of 33 annotated genes are located within this interval including the IGF1R gene at 104.2 Mb and the ADAMTS17 gene at 105.4 Mb. These two genes are well known to have a major impact on body height in numerous species including humans. Homozygosity mapping in the Shetland ponies identified a region with increased homozygosity between 107.4 Mb and 108.5 Mb. None of the annotated genes in this region have so far been associated with height. Thus, we cannot exclude the possibility that the identified selection signature on ECA1 is associated with some trait other than height, for which Shetland ponies were selected. PMID:26857482

  7. Comparison of MMW ground vehicle signatures

    NASA Astrophysics Data System (ADS)

    Saylor, Ph. D., Annie V.; Kissell, Ann

    2006-05-01

    A continuing question asked of MMW target signature and model providers is the applicability of data from one frequency band to another. Recent monopulse Ka-band ground target signature measurements made by US Army programs provide an opportunity to do an in-depth comparison of signatures of several ground vehicles. The vehicles measured correspond to those measured at W-band by another Army program. This paper provides a comparison of vehicle signatures produced by models derived by AMRDEC from the measurements. The results have implications for missile programs that do not have an extensive measurement budget but require target signatures and models for algorithm development.

  8. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  9. Electronic health records: what does your signature signify?

    PubMed

    Victoroff Md, Michael S

    2012-01-01

    Electronic health records serve multiple purposes, including clinical communication, legal documentation, financial transaction capture, research and analytics. Electronic signatures attached to entries in EHRs have different logical and legal meanings for different users. Some of these are vestiges from historic paper formats that require reconsideration. Traditionally accepted functions of signatures, such as identity verification, attestation, consent, authorization and non-repudiation can become ambiguous in the context of computer-assisted workflow processes that incorporate functions like logins, auto-fill and audit trails. This article exposes the incompatibility of expectations among typical users of electronically signed information. PMID:22888846

  10. Automatic classification of spatial signatures on semiconductor wafermaps

    SciTech Connect

    Tobin, K.W.; Gleason, S.S.; Karnowski, T.P.; Cohen, S.L.; Lakhani, F.

    1997-03-01

    This paper describes Spatial Signature Analysis (SSA), a cooperative research project between SEMATECH and Oak Ridge National Laboratory for automatically analyzing and reducing semiconductor wafermap defect data to useful information. Trends toward larger wafer formats and smaller critical dimensions have caused an exponential increase in the volume of visual and parametric defect data which must be analyzed and stored, therefore necessitating the development of automated tools for wafer defect analysis. Contamination particles that did not create problems with 1 micron design rules can now be categorized as killer defects. SSA is an automated wafermap analysis procedure which performs a sophisticated defect clustering and signature classification of electronic wafermaps. This procedure has been realized in a software system that contains a signature classifier that is user-trainable. Known examples of historically problematic process signatures are added to a training database for the classifier. Once a suitable training set has been established, the software can automatically segment and classify multiple signatures form a standard electronic wafermap file into user-defined categories. It is anticipated that successful integration of this technology with other wafer monitoring strategies will result in reduced time-to-discovery and ultimately improved product yield.

  11. Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Huang, Dazu; Shi, Jinjing

    2016-04-01

    Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.

  12. Identification of selection signatures in livestock species

    PubMed Central

    de Simoni Gouveia, João José; da Silva, Marcos Vinicius Gualberto Barbosa; Paiva, Samuel Rezende; de Oliveira, Sônia Maria Pinheiro

    2014-01-01

    The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology. PMID:25071397

  13. Global network alignment using multiscale spectral signatures

    PubMed Central

    Patro, Rob; Kingsford, Carl

    2012-01-01

    Motivation: Protein interaction networks provide an important system-level view of biological processes. One of the fundamental problems in biological network analysis is the global alignment of a pair of networks, which puts the proteins of one network into correspondence with the proteins of another network in a manner that conserves their interactions while respecting other evidence of their homology. By providing a mapping between the networks of different species, alignments can be used to inform hypotheses about the functions of unannotated proteins, the existence of unobserved interactions, the evolutionary divergence between the two species and the evolution of complexes and pathways. Results: We introduce GHOST, a global pairwise network aligner that uses a novel spectral signature to measure topological similarity between subnetworks. It combines a seed-and-extend global alignment phase with a local search procedure and exceeds state-of-the-art performance on several network alignment tasks. We show that the spectral signature used by GHOST is highly discriminative, whereas the alignments it produces are also robust to experimental noise. When compared with other recent approaches, we find that GHOST is able to recover larger and more biologically significant, shared subnetworks between species. Availability: An efficient and parallelized implementation of GHOST, released under the Apache 2.0 license, is available at http://cbcb.umd.edu/kingsford_group/ghost Contact: rob@cs.umd.edu PMID:23047556

  14. Automatic human micro-Doppler signature separation by Hough transform

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jin, Tian; Qiu, Lei; Zhou, Zhimin

    2015-12-01

    The micro-Doppler signature is one of the most prominent information for target classification and identification. As Hough transform (HT) is an efficient tool for detecting weak straight target traces in the image, an HT based algorithm is proposed for micro-Doppler signature separation of multiple persons. Few seconds data is processed at one time to ensure human motion traces approximate to straight lines in the radar slow time-range image. Taking HT to the slow time-range image, each human's motion trace can be recovered through recursively searching the peaks in HT space. Applying time-frequency transform to the range cells around each recovered line, the human micro-Doppler signature can be achieved and separated. Experimental results are given to illustrate the validity of the proposed algorithm.

  15. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  16. Nonperturbative signatures in pair production for general elliptic polarization fields

    NASA Astrophysics Data System (ADS)

    Li, Z. L.; Lu, D.; Xie, B. S.; Shen, B. F.; Fu, L. B.; Liu, J.

    2015-06-01

    The momentum signatures in nonperturbative multiphoton pair production for general elliptic polarization electric fields are investigated by employing the real-time Dirac-Heisenberg-Wigner formalism. For a linearly polarized electric field we find that the positions of the nodes in momentum spectra of created pairs depend only on the electric-field frequency. The polarization of external fields could not only change the node structures or even make the nodes disappear but also change the thresholds of pair production. The momentum signatures associated to the node positions in which the even-number photon pair creation process is forbidden could be used to distinguish the orbital angular momentum of created pairs on the momentum spectra. These distinguishable momentum signatures could be relevant for providing the output information of created particles and also the input information of ultrashort laser pulses.

  17. Formal Definition and Construction of Nominative Signature

    NASA Astrophysics Data System (ADS)

    Liu, Dennis Y. W.; Wong, Duncan S.; Huang, Xinyi; Wang, Guilin; Huang, Qiong; Mu, Yi; Susilo, Willy

    Since the introduction of nominative signature in 1996, there are three problems that have still not been solved. First, there is no convincing application proposed; second, there is no formal security model available; and third, there is no proven secure scheme constructed, given that all the previous schemes have already been found flawed. In this paper, we give positive answers to these problems. First, we illustrate that nominative signature is a better tool for building user certification systems which were originally implemented using universal designated-verifier signature. Second, we propose a formal definition and adversarial model for nominative signature. Third, we show that Chaum's undeniable signature can be transformed to an efficient nominative signature by simply using a standard signature. The security of our transformation can be proven under the standard number-theoretic assumption.

  18. Thermal imaging as a biometrics approach to facial signature authentication.

    PubMed

    Guzman, A M; Goryawala, M; Wang, Jin; Barreto, A; Andrian, J; Rishe, N; Adjouadi, M

    2013-01-01

    A new thermal imaging framework with unique feature extraction and similarity measurements for face recognition is presented. The research premise is to design specialized algorithms that would extract vasculature information, create a thermal facial signature and identify the individual. The proposed algorithm is fully integrated and consolidates the critical steps of feature extraction through the use of morphological operators, registration using the Linear Image Registration Tool and matching through unique similarity measures designed for this task. The novel approach at developing a thermal signature template using four images taken at various instants of time ensured that unforeseen changes in the vasculature over time did not affect the biometric matching process as the authentication process relied only on consistent thermal features. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using the similarity measures showed an average accuracy of 88.46% for skeletonized signatures and 90.39% for anisotropically diffused signatures. The highly accurate results obtained in the matching process clearly demonstrate the ability of the thermal infrared system to extend in application to other thermal imaging based systems. Empirical results applying this approach to an existing database of thermal images proves this assertion.

  19. Thermal imaging as a biometrics approach to facial signature authentication.

    PubMed

    Guzman, A M; Goryawala, M; Wang, Jin; Barreto, A; Andrian, J; Rishe, N; Adjouadi, M

    2013-01-01

    A new thermal imaging framework with unique feature extraction and similarity measurements for face recognition is presented. The research premise is to design specialized algorithms that would extract vasculature information, create a thermal facial signature and identify the individual. The proposed algorithm is fully integrated and consolidates the critical steps of feature extraction through the use of morphological operators, registration using the Linear Image Registration Tool and matching through unique similarity measures designed for this task. The novel approach at developing a thermal signature template using four images taken at various instants of time ensured that unforeseen changes in the vasculature over time did not affect the biometric matching process as the authentication process relied only on consistent thermal features. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using the similarity measures showed an average accuracy of 88.46% for skeletonized signatures and 90.39% for anisotropically diffused signatures. The highly accurate results obtained in the matching process clearly demonstrate the ability of the thermal infrared system to extend in application to other thermal imaging based systems. Empirical results applying this approach to an existing database of thermal images proves this assertion. PMID:22801524

  20. Analysis of Forgery Attack on One-Time Proxy Signature and the Improvement

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Wei, Zong-Li

    2016-02-01

    In a recent paper, Yang et al. (Quant. Inf. Process. 13(9), 2007-2016, 2014) analyzed the security of one-time proxy signature scheme Wang and Wei (Quant. Inf. Process. 11(2), 455-463, 2012) and pointed out that it cannot satisfy the security requirements of unforgeability and undeniability because an eavesdropper Eve can forge a valid proxy signature on a message chosen by herself. However, we find that the so-called proxy message-signature pair forged by Eve is issued by the proxy signer in fact, and anybody can obtain it as a requester, which means that the forgery attack is not considered as a successful attack. Therefore, the conclusion that this scheme cannot satisfy the security requirements of proxy signature against forging and denying is not appropriate in this sense. Finally, we study the reason for the misunderstanding and clarify the security requirements for proxy signatures.

  1. Isotopologue signatures of N2O from denitrification in soil

    NASA Astrophysics Data System (ADS)

    Well, R.; Flessa, H.

    2009-04-01

    There is few information on N2 fluxes from denitrification in the field, because this process is difficult to measure in situ. Isotopologue signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) can be used to constrain the atmospheric N2O budget and to characterize N2O turnover processes including N2O reduction to N2. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotopologue fractionation factors (ɛ) for the various partial processes involved, e.g. N2O production by nitrification or denitrification, N2O reduction by denitrification and diffusive transport. The aim of our study was to investigate whether isotopologue signatures of soil-emitted N2O can be used to estimate N2O reduction, and accordingly N2 formation. Two arable soils were incubated in the laboratory under varying conditions in order to manipulate the partial processes of N2O turnover. ɛ of δ18O, δ15Nbulk and SP was determined in experiments, where only one of the partial processes was governing the isotopic signature of N2O in the incubation system of the respective treatment. ɛ of N2O reduction to N2 was derived by (i) comparing treatments with and without inhibition of N2O reduction (indirect approach) or (ii) by monitoring the time course of isotopic signatures of N2O applied to the headspace of NO3--depleted anaerobic soil (direct approach). Moreover, we incubated the soils under conditions favoring denitrification (high moisture, low O2 level, NO3- fertilization) and monitored isotopic signatures of emitted N2O. In parallel experiments with 15N-labeled NO3- pool we measured N2 fluxes directly. Isotopologue signatures were compared with 15N2 flux data in order to check their relationship with N2 production. References Well R, Kurganova, I., Lopes, V., Flessa H. (2006), Isotopomer signatures of N2O emitted from an arable

  2. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging. PMID:27676296

  3. Quantum signatures of chimera states

    NASA Astrophysics Data System (ADS)

    Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  4. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  5. Quantum signatures of chimera states.

    PubMed

    Bastidas, V M; Omelchenko, I; Zakharova, A; Schöll, E; Brandes, T

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  6. Field signature for apparently superluminal particle motion

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2015-05-01

    In the context of Stueckelberg's covariant symplectic mechanics, Horwitz and Aharonovich [1] have proposed a simple mechanism by which a particle traveling below light speed almost everywhere may exhibit a transit time that suggests superluminal motion. This mechanism, which requires precise measurement of the particle velocity, involves a subtle perturbation affecting the particle's recorded time coordinate caused by virtual pair processes. The Stueckelberg framework is particularly well suited to such problems, because it permits pair creation/annihilation at the classical level. In this paper, we study a trajectory of the type proposed by Horwitz and Aharonovich, and derive the Maxwell 4-vector potential associated with the motion. We show that the resulting fields carry a signature associated with the apparent superluminal motion, providing an independent test for the mechanism that does not require direct observation of the trajectory, except at the detector.

  7. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  8. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-06-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  9. Fractal signatures in analogs of interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Katyal, Nisha; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Interplanetary dust particles (IDPs) are an important constituent of the earths stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007) [1] to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension dm≃1.75. The same fractal dimension also characterizes clusters obtained from diffusion limited aggregation (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically transported silicate particles.

  10. The genomic signature of parallel adaptation from shared genetic variation.

    PubMed

    Roesti, Marius; Gavrilets, Sergey; Hendry, Andrew P; Salzburger, Walter; Berner, Daniel

    2014-08-01

    Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual-based simulations to demonstrate that comparisons between populations adapted in parallel to similar environments from shared variation reveal a characteristic genomic signature around a selected locus: a low-divergence valley centred at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing between derived populations in the broader neighbourhood of the selected locus (driving the high-divergence twin peaks) and shared haplotype tracts in the tight neighbourhood of the locus (driving the low-divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighbourhood. We next empirically confirm the peak-valley-peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome-wide screen for the peak-valley-peak signature to discover additional genome regions involved in parallel marine-freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbour divergently selected loci and that low-divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak-valley-peak divergence signatures will promote the discovery of adaptation genes in other organisms. PMID:24635356

  11. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  12. Theoretical Characterizaiton of Visual Signatures

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Chase, G. M.; di Nallo, O. E.; Scales, A. N.; Vanderley, D. L.; Byrd, E. F. C.

    2015-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet, and infrared spectra, as well as other properties, of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. Quantum chemistry methods at various levels of sophistication have been employed to optimize molecular geometries, compute unscaled vibrational frequencies, and determine the optical spectra of specific gas-phase species. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A full statistical analysis and reliability assessment of computational results is currently underway. A comparison of theoretical results to experimental values found in the literature is used to assess any affects of functional choice and basis set on calculation accuracy. The status of this work will be presented at the conference. Work supported by the ARL, DoD HPCMP, and USMA.

  13. Update on PIN or Signature

    NASA Astrophysics Data System (ADS)

    Matyas, Vashek

    We promised a year back some data on the experiment that we ran with chip and PIN. If you recall, it was the first phase that we reported on here last year, where we used the University bookstore, and two PIN pads, one with very solid privacy shielding, the other one without any. We ran 17 people through the first one, 15 people through the second one, and we also had the students do, about half of them forging the signature, half of them signing their own signature, on the back of the card that is used for purchasing books, or whatever.We had a second phase of the experiment, after long negotiations, and very complicated logistics, with a supermarket in Brno where we were able to do anything that we wanted through the experiment for five hours on the floor, with only the supermarket manager, the head of security, and the camera operators knowing about the experiment. So the shop assistants, the ground floor security, everybody basically on the floor, did not know about the experiment. That was one of the reasons why the supermarket, or management, agreed to take part, they wanted to control their own internal security procedures.

  14. (Convertible) Undeniable Signatures Without Random Oracles

    NASA Astrophysics Data System (ADS)

    Yuen, Tsz Hon; Au, Man Ho; Liu, Joseph K.; Susilo, Willy

    We propose a convertible undeniable signature scheme without random oracles. Our construction is based on Waters' and Kurosawa and Heng's schemes that were proposed in Eurocrypt 2005. The security of our scheme is based on the CDH and the decision linear assumption. Comparing only the part of undeniable signatures, our scheme uses more standard assumptions than the existing undeniable signatures without random oracles due to Laguillamie and Vergnaud.

  15. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    PubMed

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  16. Cryptanalysis of Quantum Blind Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zuo, Huijuan

    2013-01-01

    In this paper, we study the cryptanalysis of two quantum blind signature schemes and one quantum proxy blind signature protocol. We show that in these protocols the verifier can forge the signature under known message attack. The attack strategies are described in detail respectively. This kind of problem deserves more research attention in the following related study. We further point out that the arbitrator should be involved in the procedure of any dispute and some discussions of these protocols are given.

  17. Imaging radar polarization signatures - Theory and observation

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles

    1987-01-01

    Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.

  18. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... card; (iii) Digitized signature; or (iv) Biometrics, such as fingerprints, retinal patterns, and voice recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii)...

  19. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  20. Novel Quantum Proxy Signature without Entanglement

    NASA Astrophysics Data System (ADS)

    Xu, Guang-bao

    2015-08-01

    Proxy signature is an important research topic in classic cryptography since it has many application occasions in our real life. But only a few quantum proxy signature schemes have been proposed up to now. In this paper, we propose a quantum proxy signature scheme, which is designed based on quantum one-time pad. Our scheme can be realized easily since it only uses single-particle states. Security analysis shows that it is secure and meets all the properties of a proxy signature, such as verifiability, distinguishability, unforgeability and undeniability.

  1. Intrusion signature creation via clustering anomalies

    NASA Astrophysics Data System (ADS)

    Hendry, Gilbert R.; Yang, Shanchieh J.

    2008-03-01

    Current practices for combating cyber attacks typically use Intrusion Detection Systems (IDSs) to detect and block multistage attacks. Because of the speed and impacts of new types of cyber attacks, current IDSs are limited in providing accurate detection while reliably adapting to new attacks. In signature-based IDS systems, this limitation is made apparent by the latency from day zero of an attack to the creation of an appropriate signature. This work hypothesizes that this latency can be shortened by creating signatures via anomaly-based algorithms. A hybrid supervised and unsupervised clustering algorithm is proposed for new signature creation. These new signatures created in real-time would take effect immediately, ideally detecting new attacks. This work first investigates a modified density-based clustering algorithm as an IDS, with its strengths and weaknesses identified. A signature creation algorithm leveraging the summarizing abilities of clustering is investigated. Lessons learned from the supervised signature creation are then leveraged for the development of unsupervised real-time signature classification. Automating signature creation and classification via clustering is demonstrated as satisfactory but with limitations.

  2. Secure Obfuscation for Encrypted Group Signatures

    PubMed Central

    Fan, Hongfei; Liu, Qin

    2015-01-01

    In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686

  3. Target variability and exact signature reproduction requirements for Ka-band radar data

    NASA Astrophysics Data System (ADS)

    Giles, Robert H.; Kersey, William T.; McFarlin, M. Shane; Finley, Robbin; Neilson, H. J.; Nixon, William E.

    2001-08-01

    A variety of ATR algorithms have promise improved performance, not yet realized operationally. Typically, good results have been reported on data sets of limited size that have been tested in a laboratory environment, only to see the performance degrade when stressed with real-world target and environmental variability. To investigate exact signature reproduction requirements along with target and environment variability issues for stressing new ATR metrics, the U.S. Army's National Ground Intelligence Center (NGIC) and Targets Management Office (TMO) originated, sponsored, and directed a signature project plan to acquire multiple target full-polarimetric Ka-band radar signature data at Eglin AFB, as well as its submillimeter-wave compact radar range equivalent using high-fidelity exact 1/16th scale replicas fabricated by the ERADS program. To effectively understand signature reproduction requirements through the variability of multiple target RCS characteristics, TMO and NGIC sponsored researchers at U Mass Lowell's Submillimeter-Wave Technology Laboratory (STL) and Simulation Technologies (SimTech) to analyze the intra- class and inter-class variability of the full scale Ka-band turntable signature data. NGIC, TMO, STL and SimTech researchers then traveled to the location of the vehicles measured at Eglin AFB and conducted extensive documentation and mensuration on these vehicles. Using this information, ERADS built high fidelity, articulatable exact replicas for measurement in the NGIC's compact radar ranges. Signal processing software established by STL researchers in an NGIC directed signature study was used to execute an HRR and ISAR cross-correlation study of the field and scale-model signature data. The signature to signature variability quantified is presented, along with a description and examples of the signature analysis techniques exploited. This signature data is available from NGIC on request for Government Agencies and Government Contractors with an

  4. Raman Spectroscopic Signatures of Echovirus 1 Uncoating

    PubMed Central

    Ruokola, Päivi; Dadu, Elina; Kazmertsuk, Artur; Häkkänen, Heikki; Marjomäki, Varpu

    2014-01-01

    ABSTRACT In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to β-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion, our data reveal distinguishable Raman signatures of the intact, intermediate, and disrupted EV1 particles. These changes indicate structural, chemical, and solute-solvent alterations in the genome and in the capsid proteins and lay the essential groundwork for investigating the uncoating of EV1 and related viruses in real time. IMPORTANCE In order to combat virus infection, we need to know the details of virus uncoating. We present here the novel Raman signatures for opened and intact echovirus 1. This gives hope that the signatures may be used in the near future to evaluate the ambient conditions in endosomes leading to virus uncoating using, e.g., coherent anti-Stokes Raman spectroscopy (CARS) imaging. These

  5. Predicting cellular growth from gene expression signatures.

    PubMed

    Airoldi, Edoardo M; Huttenhower, Curtis; Gresham, David; Lu, Charles; Caudy, Amy A; Dunham, Maitreya J; Broach, James R; Botstein, David; Troyanskaya, Olga G

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  6. Towards Mechanism Classifiers: Expression-anchored Gene Ontology Signature Predicts Clinical Outcome in Lung Adenocarcinoma Patients

    PubMed Central

    Yang, Xinan; Li, Haiquan; Regan, Kelly; Li, Jianrong; Huang, Yong; Lussier, Yves A.

    2012-01-01

    We aim to provide clinically applicable, reproducible, mechanistic interpretations of gene expression changes that lack in gene overlap among predictive gene-signatures. Using a method we recently developed, Functional Analysis of Individual Microarray Expression (FAIME), we provide evidence that Gene Ontology-anchored signatures (GO-signatures) show reliable prognosis in lung cancer. In order to demonstrate the biological congruence and reproducibility of FAIME-derived mechanism classifiers, we chose a disease where gene expression classifiers signatures alone had failed to significantly stratify a larger collection of samples and that exhibited poor or no genetic overlap. For each patient in the two lung adenocarcinoma studies, personalized FAIME-profiles of GO biological processes are generated from genome-wide expression profiles. For both training studies, GO-signatures significantly associated to patient mortality were identified (Prediction Analysis for Microarrays; three-fold cross-validation). These two GO-signatures could effectively stratify patients from an independent validation cohort into sub-groups that show significant differences in disease-free survival (log-rank test P=0.019; P=0.001). Importantly, significant mechanism overlaps assessed by information-theory similarity were detected between the two GO-signatures (Fischer Exact Test p=0.001). Hence, together with machine learning technologies, FAIME could be utilized to develop an ontology-driven and expression-anchored prognostic signature that is personalized for an individual patient. PMID:23304380

  7. Metabolic Signatures of Bacterial Vaginosis

    PubMed Central

    Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.

    2015-01-01

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373

  8. Gunshot acoustic signature specific features and false alarms reduction

    NASA Astrophysics Data System (ADS)

    Donzier, Alain; Millet, Joel

    2005-05-01

    This paper provides a detailed analysis of the most specific parameters of gunshot signatures through models as well as through real data. The models for the different contributions to gunshot typical signature (shock and muzzle blast) are presented and used to discuss the variation of measured signatures over the different environmental conditions and shot configurations. The analysis is followed by a description of the performance requirements for gunshot detection systems, from sniper detection that was the main concern 10 years ago, to the new and more challenging conditions faced in today operations. The work presented examines the process of how systems are deployed and used as well as how the operational environment has changed. The main sources of false alarms and new threats such as RPGs and mortars that acoustic gunshot detection systems have to face today are also defined and discussed. Finally, different strategies for reducing false alarms are proposed based on the acoustic signatures. Different strategies are presented through various examples of specific missions ranging from vehicle protection to area protection. These strategies not only include recommendation on how to handle acoustic information for the best efficiency of the acoustic detector but also recommends some add-on sensors to enhance system overall performance.

  9. Polarimetric signatures of sea ice. 1: Theoretical model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  10. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  11. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...

  12. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Electronic signatures. 850.106 Section 850.106 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... password; (ii) Smart card; (iii) Digitized signature; or (iv) Biometrics, such as fingerprints,...

  13. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Electronic signatures. 850.106 Section 850.106 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... password; (ii) Smart card; (iii) Digitized signature; or (iv) Biometrics, such as fingerprints,...

  14. Signature Genes as a Phylogenomic Tool

    PubMed Central

    Snel, Berend; Ettema, Thijs J. G.; Huynen, Martijn A.

    2008-01-01

    Gene content has been shown to contain a strong phylogenetic signal, yet its usage for phylogenetic questions is hampered by horizontal gene transfer and parallel gene loss and until now required completely sequenced genomes. Here, we introduce an approach that allows the phylogenetic signal in gene content to be applied to any set of sequences, using signature genes for phylogenetic classification. The hundreds of publicly available genomes allow us to identify signature genes at various taxonomic depths, and we show how the presence of signature genes in an unspecified sample can be used to characterize its taxonomic composition. We identify 8,362 signature genes specific for 112 prokaryotic taxa. We show that these signature genes can be used to address phylogenetic questions on the basis of gene content in cases where classic gene content or sequence analyses provide an ambiguous answer, such as for Nanoarchaeum equitans, and even in cases where complete genomes are not available, such as for metagenomics data. Cross-validation experiments leaving out up to 30% of the species show that ∼92% of the signature genes correctly place the species in a related clade. Analyses of metagenomics data sets with the signature gene approach are in good agreement with the previously reported species distributions based on phylogenetic analysis of marker genes. Summarizing, signature genes can complement traditional sequence-based methods in addressing taxonomic questions. PMID:18492663

  15. Does Social Work Have a Signature Pedagogy?

    ERIC Educational Resources Information Center

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  16. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Electronic signatures. 850.106 Section 850.106 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) RETIREMENT SYSTEMS MODERNIZATION General Provisions § 850.106 Electronic signatures. (a) Subject to any provisions prescribed by...

  17. A Real Quantum Designated Verifier Signature Scheme

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Min; Zhou, Yi-Hua; Yang, Yu-Guang

    2015-09-01

    The effectiveness of most quantum signature schemes reported in the literature can be verified by a designated person, however, those quantum signature schemes aren't the real traditional designated verifier signature schemes, because the designated person hasn't the capability to efficiently simulate a signature which is indistinguishable from a signer, which cannot satisfy the requirements in some special environments such as E-voting, call for tenders and software licensing. For solving this problem, a real quantum designated verifier signature scheme is proposed in this paper. According to the property of unitary transformation and quantum one-way function, only a verifier designated by a signer can verify the "validity of a signature" and the designated verifier cannot prove to a third party that the signature was produced by the signer or by himself through a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies the main security requirements of designated verifier signature scheme and the major attack strategies.

  18. Redactable signatures for signed CDA Documents.

    PubMed

    Wu, Zhen-Yu; Hsueh, Chih-Wen; Tsai, Cheng-Yu; Lai, Feipei; Lee, Hung-Chang; Chung, Yufang

    2012-06-01

    The Clinical Document Architecture, introduced by Health Level Seven, is a XML-based standard intending to specify the encoding, structure, and semantics of clinical documents for exchange. Since the clinical document is in XML form, its authenticity and integrity could be guaranteed by the use of the XML signature published by W3C. While a clinical document wants to conceal some personal or private information, the document needs to be redacted. It makes the signed signature of the original clinical document not be verified. The redactable signature is thus proposed to enable verification for the redacted document. Only a little research does the implementation of the redactable signature, and there still not exists an appropriate scheme for the clinical document. This paper will investigate the existing web-technologies and find a compact and applicable model to implement a suitable redactable signature for the clinical document viewer. PMID:21181244

  19. Security Weaknesses in Arbitrated Quantum Signature Protocols

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Zhang, Kejia; Cao, Tianqing

    2014-01-01

    Arbitrated quantum signature (AQS) is a cryptographic scenario in which the sender (signer), Alice, generates the signature of a message and then a receiver (verifier), Bob, can verify the signature with the help of a trusted arbitrator, Trent. In this paper, we point out there exist some security weaknesses in two AQS protocols. Our analysis shows Alice can successfully disavow any of her signatures by a simple attack in the first protocol. Furthermore, we study the security weaknesses of the second protocol from the aspects of forgery and disavowal. Some potential improvements of this kind of protocols are given. We also design a new method to authenticate a signature or a message, which makes AQS protocols immune to Alice's disavowal attack and Bob's forgery attack effectively.

  20. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  1. Mineralogical signatures of stone formation mechanisms.

    PubMed

    Gower, Laurie B; Amos, Fairland F; Khan, Saeed R

    2010-08-01

    The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

  2. Nucleon-decay-like signatures of hylogenesis

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Gorbunov, D. S.

    2016-02-01

    We consider nucleon-decay-like signatures of hylogenesis, a variant of the antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate the rates of dark matter scatterings off a neutron which mimic neutron-decay processes n →ν γ and n →ν e+e- with richer kinematics. We obtain bounds on the model parameters from nonobservation of the neutron decays by applying the kinematical cuts adopted in the experimental analyses. The bounds are generally (much) weaker than those coming from the recently performed study of events with a single jet of high transverse momentum and missing energy observed at the LHC. Then we suggest several new nucleon-decay-like processes with two mesons in the final state and estimate (accounting for the LHC constraints) the lower limits on the nucleon lifetime with respect to these channels. The obtained values appear to be promising for probing the antibaryonic dark matter at future underground experiments like HyperK and DUNE.

  3. Slowflow Signatures of Sustainable Water Resources

    NASA Astrophysics Data System (ADS)

    Schwartz, S. S.; Smith, B.

    2012-12-01

    Land transformation changes the sustainability of water resources by (a) altering the vegetation, impervious landcover, and drainage of the land surface hydrology system; (b) increasing withdrawals from surface and groundwater systems to support human water use; and (c) re-engineering the water budget through water and wastewater infrastructure that conveys interbasin water transfers and modifies both recharge and subsurface drainage. Slowflow derived from observed streamflow integrates watershed-scale hydrologic forcings and cumulative landscape changes. Multiple slowflow indices derived from USGS streamflow records are used to frame an endpoint mixing model of dominant hydrologic processes and human hydrologic alteration. Multimetric slowflow fingerprints can support more refined process-based inferences, distinguishing, e.g., changes in hydrologic response - (runoff and recharge) from changes in hydraulic response (effective aquifer drainage) in regional streamflow analysis. Examples drawn from USGS streamflow records along the urban-rural landuse gradient in the watersheds of the Baltimore Ecosystem Study (an NSF Urban Long Term Ecological Research site in the Baltimore Metropolitan area) and piedmont Hydroclimatic Data Network (HCDN) basins in the Chesapeake Bay watershed, are used to illustrate multimetric fingerprinting of slowflow response. Within the inherent limits of equifinality in observed streamflow response, multimetric slowflow analysis can refine the signature and attribution of hydroclimatic variability and human hydrologic alteration inferred from regional streamflow information.

  4. Forgery attack on one-time proxy signature and the improvement

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Wei; Luo, Yi-Ping; Hwang, Tzonelih

    2014-09-01

    This paper points out that in Wang and Wei's scheme (Quantum Inf Process 11:455-463, 2012), an eavesdropper, Eve, can replace the original message of a proxy signature with a forged one of her choice without being detected by the verifier. Accordingly, one of the security requirements of a quantum signature, i.e., unforgeability, may not be satisfied in their scheme. An improvement is given to avoid this attack, and the comparisons with the existing quantum proxy signature are also demonstrated.

  5. Genomic signatures in microbes -- properties and applications.

    PubMed

    Bohlin, Jon

    2011-03-22

    The ratio of genomic oligonucleotide frequencies relative to the mean genomic AT/GC content has been shown to be similar for closely related species and, therefore, said to reflect a "genomic signature". The genomic signature has been found to be more similar within genomes than between closely related genomes. Furthermore, genomic signatures of closely related organisms are, in turn, more similar than more distantly related organisms. Since the genomic signature is remarkably stable within a genome, it can be extracted from only a fraction of the genomic DNA sequence. Genomic signatures, therefore, have many applications. The most notable examples include recognition of pathogenicity islands in microbial genomes and identification of hosts from arbitrary DNA sequences, the latter being of great importance in metagenomics. What shapes the genomic signature in microbial DNA has been readily discussed, but difficult to pinpoint exactly. Most attempts so far have mainly focused on correlations from in silico data. This mini-review seeks to summarize possible influences shaping the genomic signature and to survey a set of applications.

  6. SIRUS spectral signature analysis code

    NASA Astrophysics Data System (ADS)

    Bishop, Gary J.; Caola, Mike J.; Geatches, Rachel M.; Roberts, Nick C.

    2003-09-01

    The Advanced Technology Centre (ATC) is responsible for developing IR signature prediction capabilities for its parent body, BAE SYSTEMS. To achieve this, the SIRUS code has been developed and used on a variety of projects for well over a decade. SIRUS is capable of providing accurate IR predictions for air breathing and rocket motor propelled vehicles. SIRUS models various physical components to derive its predictions. A key component is the radiance reflected from the surface of the modeled vehicle. This is modeled by fitting parameters to the measured Bi-Directional Reflectance Function (BDRF) of the surface material(s). The ATC have successfully implemented a parameterization scheme based on the published OPTASM model, and this is described. However, inconsistencies between reflectance measurements and values calculated from the parameterized fit have led to an elliptical parameter enhancement. The implementation of this is also described. Finally, an end-to-end measurement-parameterization capability is described, based on measurements taken with SOC600 instrumentation.

  7. Experimental signatures of quantum annealing

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio

    2013-03-01

    Quantum annealing is a general strategy for solving optimization problems with the aid of quantum adiabatic evolution. How effective is rapid decoherence in precluding quantum effects in a quantum annealing experiment, and will engineered quantum annealing devices effectively perform classical thermalization when coupled to a decohering thermal environment? Using the D-Wave machine, we report experimental results for a simple problem which takes advantage of the fact that for quantum annealing the measurement statistics are determined by the energy spectrum along the quantum evolution, while in classical thermalization they are determined by the spectrum of the final Hamiltonian only. We establish an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization, in spite of a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. For larger and more difficult problems, we compare the measurements statistics of the D-Wave machine to large-scale numerical simulations of simulated annealing and simulated quantum annealing, implemented through classical and quantum Monte Carlo simulations. For our test cases the statistics of the machine are - within calibration uncertainties - indistinguishable from a simulated quantum annealer with suitably chosen parameters, but significantly different from a classical annealer. Work in collaboration with T. Albash, N. Chancellor, S. Isakov, D. Lidar, T. Roennow, F. Spedalieri, M. Troyer and Z. Wang.

  8. Signature geometry and quantum engineering

    NASA Astrophysics Data System (ADS)

    Samociuk, Stefan

    2013-09-01

    As the operating frequency of electromagnetic based devices increase, physical design geometry is playing an ever more important role. Evidence is considered in support of a relationship between the dimensionality of primitive geometric forms, such as transistors, and corresponding electromagnetic coupling efficiency. The industry of electronics is defined as the construction of devices by the patterning of primitive forms to physical materials. Examples are given to show the evolution of these primitives, down to nano scales, are requiring exacting geometry and three dimensional content. Consideration of microwave monolithic integrated circuits,(MMIC), photonics and metamaterials,(MM), support this trend and also add new requirements of strict geometric periodicity and multiplicity. Signature geometries,(SG), are characterized by distinctive attributes and examples are given. The transcendent form transcode algorithm, (TTA) is introduced as a multi dimensional SG and its use in designing photonic integrated circuits and metamaterials is discussed . A creative commons licensed research database, TRANSFORM, containing TTA geometries in OASIS file formats is described. An experimental methodology for using the database is given. Multidimensional SG and extraction of three dimensional cross sections as primitive forms is discussed as a foundation for quantum engineering and the exploitation of phenomena other than the electromagnetic.

  9. Molecular signatures of vaccine adjuvants.

    PubMed

    Olafsdottir, Thorunn; Lindqvist, Madelene; Harandi, Ali M

    2015-09-29

    Mass vaccination has saved millions of human lives and improved the quality of life in both developing and developed countries. The emergence of new pathogens and inadequate protection conferred by some of the existing vaccines such as vaccines for tuberculosis, influenza and pertussis especially in certain age groups have resulted in a move from empirically developed vaccines toward more pathogen tailored and rationally engineered vaccines. A deeper understanding of the interaction of innate and adaptive immunity at molecular level enables the development of vaccines that selectively target certain type of immune responses without excessive reactogenicity. Adjuvants constitute an imperative element of modern vaccines. Although a variety of candidate adjuvants have been evaluated in the past few decades, only a limited number of vaccine adjuvants are currently available for human use. A better understanding of the mode of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in shaping a desired immune response. Recent advancement in systems biology powered by the emerging cutting edge omics technology has led to the identification of molecular signatures rapidly induced after vaccination in the blood that correlate and predict a later protective immune response or vaccine safety. This can pave ways to prospectively determine the potency and safety of vaccines and adjuvants. This review is intended to highlight the importance of big data analysis in advancing our understanding of the mechanisms of actions of adjuvants to inform rational development of future human vaccines. PMID:25989447

  10. Imaging spectral signature satellite instrument for the real-time identification of ground scenes with a dedicated spectral signature

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Saari, Heikki; Viherkanto, Kai; Herrala, Esko; Harnisch, Bernd

    2007-05-01

    With hyperspectral pushbroom imaging spectrometers on Earth observation satellites it is possible to detect and identify dedicated ground pixels by their spectral signature. Conventional time consuming on-ground processing performs this selection by processing the measured hyperspectral data cube of the image. The Imaging Spectral Signature Instrument (ISSI) concept combines an optical on-board processing of the hyperspectral data cube with a thresholding algorithm, to identify pixels with a pre-defined and programmable spectral signature, such as water, forest and minerals, in the ground swath. The Imaging Spectral Signature Instrument consists of an imaging telescope, which images an object line on the entrance slit of a first imaging spectrometer, which disperses each pixel of the object line into its spectral content and images the hyperspectral image on the spatial light modulator. This spatial light modulator will be programmed with a spatial transmission or reflection behavior, which is constant along the spatial pixels and along the spectral pixels identical to a filter vector that corresponds to the spectral signature of the searched specific feature. A second inverted spectrometer reimages the by the first spectrometer dispersed and by the spatial light modulator transmitted or reflected flux into a line of pixels. In case the spectral content of the ground scene is identical to the searched signature, the flux traversing or reflecting the spatial light modulator will be maximum. The related pixel can be identified in the final image as a high signal by a threshold discriminator. A component test setup consists of an imaging lens, two Imspector™ spectrographs, a spatial light modulator, which is a programmable transmissible liquid crystal display and a CCD sensor as a detector. A mathematical model was developed for the instrument and its performance was evaluated in order to compare different concept variations. All components were measured and

  11. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  12. Arbitrated quantum signature with an untrusted arbitrator

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Zhou, Zheng; Teng, Yi-Wei; Wen, Qiao-Yan

    2011-02-01

    In an arbitrated signature scheme, all communications involve a so called arbitrator who has access to the contents of the messages. The security of most arbitrated signature schemes depends heavily on the trustworthiness of the arbitrators. In this paper we show how to construct an arbitrated quantum signature protocol of classical messages with an untrusted arbitrator. Its security is analyzed and it is proved to be secure even if the arbitrator is compromised. In addition, the proposed protocol does not require a direct quantum link between any two communicating users, which is an appealing advantage in the implementation of a practical quantum distributed communication network.

  13. Improved Quantum Signature Scheme with Weak Arbitrator

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Wen-Min

    2013-09-01

    In this paper, we find a man-in-the-middle attack on the quantum signature scheme with a weak arbitrator (Luo et al., Int. J. Theor. Phys., 51:2135, 2012). In that scheme, the authors proposed a quantum signature based on quantum one way function which contains both verifying the signer phase and verifying the signed message phase. However, after our analysis we will show that Eve can adopt different strategies in respective phases to forge the signature without being detected. Then we present an improved scheme to increase the security.

  14. Thermal surface signatures of ship propeller wakes in stratified waters

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-11-01

    When a ship moves in temperature stratified water, e.g., in the ocean diurnal thermocline, the propeller(s) as well as the turbulent boundary layer of the hull mix the surface water with underlying colder fluid. As a result, when observed from above, a temperature "wake signature" of ˜1-2 °C may be detected at the water surface. To quantify this phenomenon, theoretical modeling and physical experiments were conducted. The dominant processes responsible for thermal wake generation were identified and parameterized. Most important similarity parameters were derived and estimates for wake signature contrast were made. To verify model predictions, scaled experiments were conducted, with the water surface temperature measured using a sensitive infrared camera. Comparison of laboratory measurements with model estimates has shown satisfactory agreement, both qualitative and quantitatively. Estimates for ocean ship-wake scenarios are also given, which are supported by available field observations.

  15. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1987-01-01

    Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.

  16. Longitudinal analysis of whole blood transcriptomes to explore molecular signatures associated with acute renal allograft rejection.

    PubMed

    Shin, Heesun; Günther, Oliver; Hollander, Zsuzsanna; Wilson-McManus, Janet E; Ng, Raymond T; Balshaw, Robert; Keown, Paul A; McMaster, Robert; McManus, Bruce M; Isbel, Nicole M; Knoll, Greg; Tebbutt, Scott J

    2014-01-01

    In this study, we explored a time course of peripheral whole blood transcriptomes from kidney transplantation patients who either experienced an acute rejection episode or did not in order to better delineate the immunological and biological processes measureable in blood leukocytes that are associated with acute renal allograft rejection. Using microarrays, we generated gene expression data from 24 acute rejectors and 24 nonrejectors. We filtered the data to obtain the most unambiguous and robustly expressing probe sets and selected a subset of patients with the clearest phenotype. We then performed a data-driven exploratory analysis using data reduction and differential gene expression analysis tools in order to reveal gene expression signatures associated with acute allograft rejection. Using a template-matching algorithm, we then expanded our analysis to include time course data, identifying genes whose expression is modulated leading up to acute rejection. We have identified molecular phenotypes associated with acute renal allograft rejection, including a significantly upregulated signature of neutrophil activation and accumulation following transplant surgery that is common to both acute rejectors and nonrejectors. Our analysis shows that this expression signature appears to stabilize over time in nonrejectors but persists in patients who go on to reject the transplanted organ. In addition, we describe an expression signature characteristic of lymphocyte activity and proliferation. This lymphocyte signature is significantly downregulated in both acute rejectors and nonrejectors following surgery; however, patients who go on to reject the organ show a persistent downregulation of this signature relative to the neutrophil signature.

  17. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  18. The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study

    SciTech Connect

    Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.

    1999-03-15

    This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap

  19. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  20. Secure quantum signatures using insecure quantum channels

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  1. 42 CFR 424.36 - Signature requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... beneficiary's legal guardian. (2) A relative or other person who receives social security or other... Part B may be signed by the entity on the beneficiary's behalf. (e) Acceptance of other signatures...

  2. 42 CFR 424.36 - Signature requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... beneficiary's legal guardian. (2) A relative or other person who receives social security or other... Part B may be signed by the entity on the beneficiary's behalf. (e) Acceptance of other signatures...

  3. 15 CFR 908.16 - Signature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such...

  4. Experimental demonstration of photonic quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Clarke, Patrick J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2012-09-01

    Digital signature schemes are often used in interconnected computer networks to verify the origin and authenticity of messages. Current classical digital signature schemes based on so-called "one-way functions" rely on computational complexity to provide security over sufficiently long timescales. However, there are currently no mathematical proofs that such functions will always be computationally complex. Quantum digital signatures offers a means of confirming both origin and authenticity of a message with security verified by information theoretical limits. The message cannot be forged or repudiated. We have constructed, tested and analyzed the security of what is, to the best of our knowledge, the first example of an experimental quantum digital signature system.

  5. Microbial Signatures In Sulfate-Rich Playas

    NASA Astrophysics Data System (ADS)

    Glamoclija, M.; Steele, A.; Starke, V.; Zeidan, M.; Potochniak, S.; Sirisena, K.; Widanagamage, I. H.

    2016-05-01

    Microbes that live in playas represent organisms able to cope with transient environments, ranging from fresh to hyper-saline water settings and from wet to dry. We will try to identify mineral and chemical signatures of their presence.

  6. 15 CFR 908.16 - Signature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such...

  7. Hydrological Signature From River-Floodplain Interactions

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.

    2015-12-01

    Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.

  8. Acoustic Signature of Evaporation from Porous Media

    NASA Astrophysics Data System (ADS)

    Grapsas, N. K.; Shokri, N.

    2012-12-01

    During evaporation from saturated porous media, rapid interfacial jumps at the pore scale, known as Haines jumps, occur as air invades the pore network and displaces the evaporating fluid. This process produces crackling noises that can be detected using an acoustic emission (AE) machine. In this study, we investigated the acoustic signature of evaporation from porous media using Hele-Shaw cells packed with seven types of sand and glass beads differing in particle size distribution and surface roughness. Each sample was saturated with dyed water, left to evaporate under constant atmospheric conditions on a digital balance in an environmental chamber, and digitally imaged every 20 minutes to quantify phase distribution. An AE sensor was fixed to each column to record the features of observed AE events (hits) such as amplitude, absolute energy, and duration. Results indicate that the cumulative number of hits is strongly related to evaporative mass loss through time in all configurations. Additionally, the cumulative number of hits shares an inverse relationship with particle size and roughness. Finally, image analysis of the liquid phase distribution during evaporation reveals a strong correlation between the area invaded by air and the cumulative AE hits detected in each column. This confirms that AEs are generated by receding liquid menisci and the propagation of drying fronts in porous media. These results suggest that AE techniques may potentially be used to non-invasively analyze the drying of porous media.

  9. Photon signature analysis using template matching

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hashim, S.; Saripan, M. I.; Wells, K.; Dunn, W. L.

    2011-10-01

    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming γ photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP TM) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly.

  10. Advanced techniques in current signature analysis

    SciTech Connect

    Smith, S.F.; Castleberry, K.N.

    1992-03-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and an be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors ({approximately}3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed ({approximately}20 Hz) and high-frequency vibrational information (>1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable ``smart`` CSA instrumentation in the next several years. 3 refs.

  11. Signature scheme based on bilinear pairs

    NASA Astrophysics Data System (ADS)

    Tong, Rui Y.; Geng, Yong J.

    2013-03-01

    An identity-based signature scheme is proposed by using bilinear pairs technology. The scheme uses user's identity information as public key such as email address, IP address, telephone number so that it erases the cost of forming and managing public key infrastructure and avoids the problem of user private generating center generating forgery signature by using CL-PKC framework to generate user's private key.

  12. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  13. Quantum blind signature with an offline repository

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Souto, A.; Mateus, P.

    2015-04-01

    We propose a quantum blind signature scheme that achieves perfect security under the assumption of an honest offline repository. The security of the protocol also relies on perfect private quantum channels, which are achievable using quantum one-time pads with keys shared via a quantum key distribution (QKD) protocol. The proposed approach ensures that signatures cannot be copied and that the sender must compromise to a single message, which are important advantages over classical protocols for certain applications.

  14. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  15. Network Signatures of Survival in Glioblastoma Multiforme

    PubMed Central

    Patel, Vishal N.; Gokulrangan, Giridharan; Chowdhury, Salim A.; Chen, Yanwen; Sloan, Andrew E.; Koyutürk, Mehmet; Barnholtz-Sloan, Jill; Chance, Mark R.

    2013-01-01

    To determine a molecular basis for prognostic differences in glioblastoma multiforme (GBM), we employed a combinatorial network analysis framework to exhaustively search for molecular patterns in protein-protein interaction (PPI) networks. We identified a dysregulated molecular signature distinguishing short-term (survival<225 days) from long-term (survival>635 days) survivors of GBM using whole genome expression data from The Cancer Genome Atlas (TCGA). A 50-gene subnetwork signature achieved 80% prediction accuracy when tested against an independent gene expression dataset. Functional annotations for the subnetwork signature included “protein kinase cascade,” “IκB kinase/NFκB cascade,” and “regulation of programmed cell death” – all of which were not significant in signatures of existing subtypes. Finally, we used label-free proteomics to examine how our subnetwork signature predicted protein level expression differences in an independent GBM cohort of 16 patients. We found that the genes discovered using network biology had a higher probability of dysregulated protein expression than either genes exhibiting individual differential expression or genes derived from known GBM subtypes. In particular, the long-term survivor subtype was characterized by increased protein expression of DNM1 and MAPK1 and decreased expression of HSPA9, PSMD3, and CANX. Overall, we demonstrate that the combinatorial analysis of gene expression data constrained by PPIs outlines an approach for the discovery of robust and translatable molecular signatures in GBM. PMID:24068912

  16. Assessing the Quality of Bioforensic Signatures

    SciTech Connect

    Sego, Landon H.; Holmes, Aimee E.; Gosink, Luke J.; Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Anderson, Richard M.; Brothers, Alan J.; Corley, Courtney D.; Tardiff, Mark F.

    2013-06-04

    We present a mathematical framework for assessing the quality of signature systems in terms of fidelity, cost, risk, and utility—a method we refer to as Signature Quality Metrics (SQM). We demonstrate the SQM approach by assessing the quality of a signature system designed to predict the culture medium used to grow a microorganism. The system consists of four chemical assays designed to identify various ingredients that could be used to produce the culture medium. The analytical measurements resulting from any combination of these four assays can be used in a Bayesian network to predict the probabilities that the microorganism was grown using one of eleven culture media. We evaluated fifteen combinations of the signature system by removing one or more of the assays from the Bayes network. We demonstrated that SQM can be used to distinguish between the various combinations in terms of attributes of interest. The approach assisted in clearly identifying assays that were least informative, largely in part because they only could discriminate between very few culture media, and in particular, culture media that are rarely used. There are limitations associated with the data that were used to train and test the signature system. Consequently, our intent is not to draw formal conclusions regarding this particular bioforensic system, but rather to illustrate an analytical approach that could be useful in comparing one signature system to another.

  17. Chemical and Physical Signatures for Microbial Forensics

    SciTech Connect

    Cliff, John B.; Kreuzer, Helen W.; Ehrhardt, Christopher J.; Wunschel, David S.

    2012-01-03

    Chemical and physical signatures for microbial forensics John Cliff and Helen Kreuzer-Martin, eds. Humana Press Chapter 1. Introduction: Review of history and statement of need. Randy Murch, Virginia Tech Chapter 2. The Microbe: Structure, morphology, and physiology of the microbe as they relate to potential signatures of growth conditions. Joany Jackman, Johns Hopkins University Chapter 3. Science for Forensics: Special considerations for the forensic arena - quality control, sample integrity, etc. Mark Wilson (retired FBI): Western Carolina University Chapter 4. Physical signatures: Light and electron microscopy, atomic force microscopy, gravimetry etc. Joseph Michael, Sandia National Laboratory Chapter 5. Lipids: FAME, PLFA, steroids, LPS, etc. James Robertson, Federal Bureau of Investigation Chapter 6. Carbohydrates: Cell wall components, cytoplasm components, methods Alvin Fox, University of South Carolina School of Medicine David Wunschel, Pacific Northwest National Laboratory Chapter 7. Peptides: Peptides, proteins, lipoproteins David Wunschel, Pacific Northwest National Laboratory Chapter 8. Elemental content: CNOHPS (treated in passing), metals, prospective cell types John Cliff, International Atomic Energy Agency Chapter 9. Isotopic signatures: Stable isotopes C,N,H,O,S, 14C dating, potential for heavy elements. Helen Kreuzer-Martin, Pacific Northwest National Laboratory Michaele Kashgarian, Lawrence Livermore National Laboratory Chapter 10. Extracellular signatures: Cellular debris, heme, agar, headspace, spent media, etc Karen Wahl, Pacific Northwest National Laboratory Chapter 11. Data Reduction and Integrated Microbial Forensics: Statistical concepts, parametric and multivariate statistics, integrating signatures Kristin Jarman, Pacific Northwest National Laboratory

  18. ID-Based Blind Signature and Proxy Blind Signature without Trusted PKG

    NASA Astrophysics Data System (ADS)

    Yu, Yihua; Zheng, Shihui; Yang, Yixian

    Private key escrow is an inherent disadvantage for ID-based cryptosystem, i.e., the PKG knows each signer's private key and can forge the signature of any signer. Blind signature plays a central role in electronic cash system. Private key escrow is more severe in electronic cash system since money is directly involved. To avoid the key escrow problem, we propose an ID-based blind signature and proxy blind signature without trusted PKG. If the dishonest PKG impersonates an honest signer to sign a document, the signer can provide a proof to convince that the PKG is dishonest.

  19. Signature extension through the application of cluster matching algorithms to determine appropriate signature transformations

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.; Rice, D. P.

    1976-01-01

    Signature extension is intended to increase the space-time range over which a set of training statistics can be used to classify data without significant loss of recognition accuracy. A first cluster matching algorithm MASC (Multiplicative and Additive Signature Correction) was developed at the Environmental Research Institute of Michigan to test the concept of using associations between training and recognition area cluster statistics to define an average signature transformation. A more recent signature extension module CROP-A (Cluster Regression Ordered on Principal Axis) has shown evidence of making significant associations between training and recognition area cluster statistics, with the clusters to be matched being selected automatically by the algorithm.

  20. Geometric signature of reversal modes in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Ghaddar, A.; Gieraltowski, J.

    2010-07-01

    Magnetic nanowires are a good platform to study fundamental processes in magnetism and have many attractive applications in recording such as perpendicular storage and in spintronics such as non-volatile magnetic memory devices (MRAM) and magnetic logic devices. In this work, nanowires are used to study magnetization reversal processes through a novel geometric approach. Reversal modes imprint a definite signature on a parametric curve representing the locus of the critical switching field. We show how the different modes affect the geometry of this curve depending on the nature of the anisotropy (uniaxial or cubic anisotropy), demagnetization and exchange effects. The samples we use are electrochemically grown nickel and cobalt nanowires.

  1. MMW, IR, and SAM signature collection

    NASA Astrophysics Data System (ADS)

    Reichstetter, Fred; Ward, Mary E.

    2002-08-01

    During the development of smart weapon's seeker/sensors, it is imperative to collect high quality signatures of the targets the system is intended to engage. These signatures are used to support algorithm development so the system can find and engage the targets of interest in the specific kill area on the target. Englin AFB FL is the AF development center for munitions; and in support of the development effort, the 46th Test Wing (46 TW) has initiated significant improvements in collection capabilities for signatures in the MMW, Infrared and Seismic, Acoustic and Magnetic (SAM) spectrum. Additionally, the Joint Munitions Test and Evaluation program office maintains a fleet of foreign ground vehicle targets used for such signature collection including items such as tanks, SCUD missile launchers, air defense units such as SA-06, SA-8, SA-13, and associated ground support trucks and general purpose vehicles. The major test facility includes a 300 ft tower used for mounting the instrumentation suite that currently includes, 10, 35 and 94 GHz MMW and 2-5(mu) and 8-12(mu) IR instrumentation systems. This facility has undergone major improvements in terms of background signature reduction, construction of a high bay building to house the turntable on which the targets are mounted, and an additional in- ground stationary turntable primarily for IR signature collection. Our experience using this facility to collect signatures for the smart weapons development community has confirmed a significant improvement in quality and efficiency. The need for the stationary turntable signature collection capability was driven by the requirements of the IR community who are interested in collecting signatures in clutter. This tends to be contrary to the MMW community that desires minimum background clutter. The resulting location, adjacent to the MMW tower, allows variations in the type and amount of clutter background that could be incorporated and also provides maximum utilization of

  2. Electronic Signatures: They're Legal, Now What?

    ERIC Educational Resources Information Center

    Broderick, Martha A.; Gibson, Virginia R.; Tarasewich, Peter

    2001-01-01

    In the United States, electronic signatures recently became as legally binding as printed signatures. Reviews the status of electronic signatures in the United States, and compares it to work done by the United Nations. Summarizes the technology that can be used to implement electronic signatures. Discusses problems and open issues surrounding the…

  3. Signature verification by only single genuine sample in offline and online systems

    NASA Astrophysics Data System (ADS)

    Adamski, Marcin; Saeed, Khalid

    2016-06-01

    The paper presents innovatory methods and algorithms with experimental results on signature verification. It is mainly focused on applications where there is only one reference signature available for comparison. Such restriction is often present in practice and requires selection of specific methods. In this context, both offline and online approaches are investigated. In offline approach, binary image of the signature is initially thinned to obtain a one pixel-wide line. Then, a sampling technique is applied in order to form the signature feature vector. The identification and verification processes are based on comparing the reference feature vector with the questioned samples using Shape Context algorithm. In the case of online data, the system makes use of dynamic information such as trajectory, pen pressure, pen azimuth and pen altitude collected at the time of signing. After further preprocessing, these functional features are verified by means of Dynamic Time Warping method.

  4. The research of a new test method about dynamic target infrared spectral signature

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-hui; Gao, Jiao-bo; Chen, Qing; Luo, Yan-ling; Li, Jiang-jun; Gao, Ze-dong; Wang, Nan; Gao, Meng

    2014-11-01

    The research on infrared spectral target signature shows great military importance in the domain of IR detection Recognition, IRCM, IR image guide and ir stealth etc. The measurements of infrared spectral of tactical targets have been a direct but effective technique in providing signatures for both analysis and simulation to missile seeker designers for many years. In order to deal with the problem of dynamic target infrared spectral signature, this paper presents a new method for acquiring and testing ir spectral radiation signatures of dynamic objects, which is based on an IR imager guiding the target and acquiring the scene at the same time, a FOV chopping scan infrared spectral radiometer alternatively testing the target and its background around ir spectral signature.ir imager and spectral radiometer have the same optical axis. The raw test data was processed according to a new deal with method. Principles and data processing methods were described in detail, test error also analyzed. Field test results showed that the method described in the above is right; the test error was reduced smaller, and can better satisfy the needs of acquiring dynamic target ir spectral signature.

  5. Applying dynamic methods in off-line signature recognition

    NASA Astrophysics Data System (ADS)

    Igarza, Juan Jose; Hernaez, Inmaculada; Goirizelaia, Inaki; Espinosa, Koldo

    2004-08-01

    In this paper we present the work developed on off-line signature verification using Hidden Markov Models (HMM). HMM is a well-known technique used by other biometric features, for instance, in speaker recognition and dynamic or on-line signature verification. Our goal here is to extend Left-to-Right (LR)-HMM to the field of static or off-line signature processing using results provided by image connectivity analysis. The chain encoding of perimeter points for each blob obtained by this analysis is an ordered set of points in the space, clockwise around the perimeter of the blob. We discuss two different ways of generating the models depending on the way the blobs obtained from the connectivity analysis are ordered. In the first proposed method, blobs are ordered according to their perimeter length. In the second proposal, blobs are ordered in their natural reading order, i.e. from the top to the bottom and left to right. Finally, two LR-HMM models are trained using the parameters obtained by the mentioned techniques. Verification results of the two techniques are compared and some improvements are proposed.

  6. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  7. Microwave-Spectral Signatures Would Reveal Concealed Objects

    NASA Technical Reports Server (NTRS)

    Arndt, G.; Ngo, P.; Carl, J. R.; Byerly, K.; Stolarcyzk, L.

    2004-01-01

    A proposed technique for locating concealed objects (especially small antipersonnel land mines) involves the acquisition and processing of spectral signatures over broad microwave frequency bands. This technique was conceived to overcome the weaknesses of older narrow- band electromagnetic techniques like ground-probing radar and low-frequency electromagnetic induction. Ground-probing radar is susceptible to false detections and/or interference caused by rocks, roots, air pockets, soil inhomogeneities, ice, liquid water, and miscellaneous buried objects other than those sought. Moreover, if the radar frequency happens to be one for which the permittivity of a sought object matches the permittivity of the surrounding soil or there is an unfavorable complex-amplitude addition of the radar reflection at the receiver, then the object is not detected. Low-frequency electromagnetic induction works well for detecting metallic objects, but the amounts of metal in plastic mines are often too small to be detectable. The potential advantage of the proposed technique arises from the fact that wideband spectral signatures generally contain more relevant information than do narrow-band signals. Consequently, spectral signatures could be used to make better decisions regarding whether concealed objects are present and whether they are the ones sought. In some cases, spectral signatures could provide information on the depths, sizes, shapes, and compositions of objects. An apparatus to implement the proposed technique (see Figure 1) could be assembled from equipment already in common use. Typically, such an apparatus would include a radio-frequency (RF) transmitter/receiver, a broad-band microwave antenna, and a fast personal computer loaded with appropriate software. In operation, the counter would be turned on, the antenna would be aimed at the ground or other mass suspected to contain a mine or other sought object, and the operating frequency would be swept over the band of

  8. Geochemical signatures of tsunami deposits - what do they tell us?

    NASA Astrophysics Data System (ADS)

    Chague-Goff, Catherine; Goff, James R.

    2010-05-01

    In the last two and half decades, but even more since the 2004 Indian Ocean Tsunami (IOT), there has been a significant increase in the amount of literature dealing with recent, historical and palaeotsunamis. Much has been written and debated about the diagnostic criteria of historical and palaeotsunami deposits. Most of the diagnostic criteria or proxies used reflect the expertise of the researchers involved and thus tend to be biased towards sedimentology, stratigraphy and micropalaeontology, with some reference to geomorphology, archaeology, anthropology and palynology. It should however be noted that all criteria have never been reported from one site, and neither are they all found in one single deposit. Thus, the lack of one or more proxies should not be taken as unique evidence to refute the tsunamigenic origin of a specific deposit. Although geochemical signatures have long been used as indicators for palaeosalinity in sedimentary sequences, there appears to have been some reluctance to use them to help in the identification of historical and palaeotsunami deposits. Like other proxies, geochemistry alone may not provide a definite answer to the origin of a deposit. Furthermore, poor preservation due to environmental conditions or as a result of post-diagenetic processes, might complicate the interpretation of geochemical signatures left by tsunami inundation. Similar taphonomic problems are also faced for microfossil proxies. However, geochemistry provides another piece to the puzzle, and together with other proxies, it can help identify palaeotsunami deposits. Geochemical signatures can also provide clues about the landward limit of runup of a tsunami, beyond the area of sediment deposition. This was recently documented following the 2004 IOT and the 2009 South Pacific tsunami. A summary of examples of geochemical signatures recorded in interstitial water and sediment of recent, historical and palaeotsunami deposits is presented.

  9. [Vanguard Signature TKR--first experiences].

    PubMed

    Stempin, Radosław; Kotela, Andrzej; Ostrowska, Monika; Kotela, Ireneusz

    2011-01-01

    On 15th May 2010 in Poland first computer planned total knee arthroplasty Vanguard Signature was performed and until now, including Orthopedic Traumatology Department of Central Clinical Hospital Ministry of Interior and Administration in Warsaw and Orthopedic Surgery Department of Promienista Clinic in Poznan, 65 patients have been operated with this method. The new system includes programming technical parameters of operation on the basis of diagnostic analysis of lower extremity using CT or MRI scans. Data are transmitted on Signature Positioning Guides (SPG) which implements function of navigation during surgery. Minimal bone resection, implants sizing and placement with reconstruction of mechanical axis of the limb provides proper functioning of the knee joint and reduces the risk of implants loosening. Further benefits include: instrument reduction, lower degree of femur trauma and reduction of average postoperative blood transfusion volume. The operator using Signature technology is required to have advanced knowledge in the conventional method TKR and medium level computer skills. Access to the program and materials and online communication with the Signature team in the USA allows the surgeon to modify the parameters of the operation and the necessary expert feedback. The rapid increase in the number of registered surgeons in Signature system shows a considerable interest in this technology.

  10. Trace Element Signatures of Particles in the Fraser River Estuary

    NASA Astrophysics Data System (ADS)

    Snauffer, A. M.; Menard, O.; Kieffer, B.; Francois, R. H.; Weis, D. A.; Pcigr

    2010-12-01

    Characterization of trace element transport via particles at the estuarine boundary is critical to understanding the processes involved in translating these signatures to the ocean. The Fraser River in British Columbia, Canada, is the largest river by volume flowing from the Pacific coast and dumps 20 million tons of sediment into the ocean per year, yet its trace elements have not been studied extensively. The aim of this study is to determine the Sr, Nd, Hf and Pb signatures of suspended matter in the Fraser River estuary. We collected 20L water samples at 3m depth at 12 locations along the north arm of the Fraser River, along the salinity gradient from freshwater to saline water approaching open straight values of ~25 per mil. Samples were allowed to settle and then filtered. Settled particulate matter was taken from each sample and digested in high-pressure vessels. Sr, Nd, Hf, and Pb were separated using ion exchange chromatography columns. Sr and Nd isotopes were analyzed on a TIMS (Thermo Finnigan Triton-TI); Hf and Pb were measured with a MC-ICP-MS (Nu Plasma). The measured ratios were 87Sr/86Sr = 0.71051 to 0.71289, 143Nd/144Nd = 0.51203 to 0.51221 and 176Hf/177Hf = 0.28253 to 0.28267 in the river and 0.70961, 0.51220 and 0.28273 respectively in the open straight. They reflect the local terrane compositions [2.3]. The collected particles have relatively radiogenic signatures compared with those obtained by Cameron and Hattori [1] between Lillooet and Hope but similar to those from higher in the river, i.e. they have a signature similar to older terranes drained by the Fraser headwaters. Between Hope and Vancouver, the Fraser River drains younger mantle-derived batholiths (Coast Belt). Therefore a more juvenile signature was expected for the particles collected at the mouth of the river. A possible explanation for this unexpected radiogenic signature is a difference in flow rate between the 1993 sampling (~3000m3/s) and ours in 2010 (~5500m3/s). The

  11. A Nucleotide Signature for the Identification of Angelicae Sinensis Radix (Danggui) and Its Products

    PubMed Central

    Wang, Xiaoyue; Liu, Yang; Wang, Lili; Han, Jianping; Chen, Shilin

    2016-01-01

    It is very difficult to identify Angelicae sinensis radix (Danggui) when it is processed into Chinese patent medicines. The proposed internal transcribed spacer 2 (ITS2) is not sufficient to resolve heavily processed materials. Therefore, a short barcode for the identification of processed materials is urgently needed. In this study, 265 samples of Angelicae sinensis radix and adulterants were collected. The ITS2 region was sequenced, and based on one single nucleotide polymorphism(SNP) site unique to Angelica sinensis, a nucleotide signature consisting of 37-bp (5′-aatccgcgtc atcttagtga gctcaaggac ccttagg-3′) was developed. It is highly conserved and specific within Angelica sinensis while divergent among other species. Then, we designed primers (DG01F/DG01R) to amplify the nucleotide signature region from processed materials. 15 samples procured online were analysed. By seeking the signature, we found that 7 of them were counterfeits. 28 batches of Chinese patent medicines containing Danggui were amplified. 19 of them were found to contain the signature, and adulterants such as Ligusticum sinense, Notopterygium incisum, Angelica decursiva and Angelica gigas were detected in other batches. Thus, this nucleotide signature, with only 37-bp, will broaden the application of DNA barcoding to identify the components in decoctions, Chinese patent medicines and other products with degraded DNA. PMID:27713564

  12. Lipidome signatures in early bovine embryo development.

    PubMed

    Sudano, Mateus J; Rascado, Tatiana D S; Tata, Alessandra; Belaz, Katia R A; Santos, Vanessa G; Valente, Roniele S; Mesquita, Fernando S; Ferreira, Christina R; Araújo, João P; Eberlin, Marcos N; Landim-Alvarenga, Fernanda D C

    2016-07-15

    Mammalian preimplantation embryonic development is a complex, conserved, and well-orchestrated process involving dynamic molecular and structural changes. Understanding membrane lipid profile fluctuation during this crucial period is fundamental to address mechanisms governing embryogenesis. Therefore, the aim of the present work was to perform a comprehensive assessment of stage-specific lipid profiles during early bovine embryonic development and associate with the mRNA abundance of lipid metabolism-related genes (ACSL3, ELOVL5, and ELOVL6) and with the amount of cytoplasmic lipid droplets. Immature oocytes were recovered from slaughterhouse-derived ovaries, two-cell embryos, and eight- to 16-cell embryos, morula, and blastocysts that were in vitro produced under different environmental conditions. Lipid droplets content and mRNA transcript levels for ACSL3, ELOVL5, and ELOVL6, monitored by lipid staining and quantitative polymerase chain reaction, respectively, increased at morula followed by a decrease at blastocyst stage. Relative mRNA abundance changes of ACSL3 were closely related to cytoplasmic lipid droplet accumulation. Characteristic dynamic changes of phospholipid profiles were observed during early embryo development and related to unsaturation level, acyl chain length, and class composition. ELOVL5 and ELOVL6 mRNA levels were suggestive of overexpression of membrane phospholipids containing elongated fatty acids with 16, 18, and 20 carbons. In addition, putative biomarkers of key events of embryogenesis, embryo lipid accumulation, and elongation were identified. This study provides a comprehensive description of stage-specific lipidome signatures and proposes a mechanism to explain its potential relationship with the fluctuation of both cytoplasmic lipid droplets content and mRNA levels of lipid metabolism-related genes during early bovine embryo development. PMID:27107972

  13. Integrative Metabolic Signatures for Hepatic Radiation Injury

    PubMed Central

    Su, Gang; Meng, Fan; Liu, Laibin; Mohney, Robert; Kulkarni, Shilpa; Guha, Chandan

    2015-01-01

    Background Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. Methods Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. Results Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). Conclusions We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney. PMID:26046990

  14. Microbial Signatures in Ooids from the Bahamas

    NASA Astrophysics Data System (ADS)

    Diaz, M. R.; Swart, P. K.; Devlin, Q.; Oehlert, A. M.; Saied, A.; Eberli, G. P.; Klaus, J. S.; Altabet, M.

    2013-12-01

    Microbes are abundant in sedimentary systems where their metabolic capabilities can exert a profound impact on carbonate precipitation processes by altering the alkalinity of their immediate surrounding. Using a combination of clone analysis of 16SrRNA, functional gene analysis and both inorganic and organic stable isotopic analyses, we characterized the microbial community structure of ooids and their potential functional capabilities that could lead to precipitation of carbonates. Oolitic bacterial communities were highly diverse, representing 12 different prokaryotic lineages, among which Alphaproteobacteria, Gammaproteobacteria, Actinobacteria/Bacteroidetes and Deltaproteobacteria were the most abundant. Based on functional gene analysis, a large number of genes were associated with redox dependent microbial communities with putative functional capability for mineral precipitation such as aerobic/anoxygenic photosynthesis, denitrification, ammonification, and sulfate reduction. In addition, a broad diversity of genes related to organic carbon degradation and nitrogen fixation were present, implying metabolic plasticity that enables survival under oligotrophic conditions. Carbon and nitrogen isotopic analyses, which were conducted on both bulk and intracrystalline organic matter as well as in leachate sediments, identified geochemical signatures of microbial activity. δ13C values for organic C in the bulk (-11.94 to -16.71) and intracrystalline organic matter (-12.37 to -17.66), were similar and within the range of fractionation patterns associated with cyanobacteria, algae and photosynthesizers that employ the C4 carbon fixation pathway. Nitrogen isotopic values for both bulk (δ15N: -0.314 to - 0.706) and intracrystalline organic matter (δ15N: -0.343 -1.70) also showed fractionation patterns consistent with nitrogen fixation. In addition, positive δ15N and δ18O values of the NO3- leached from the ooids provided evidence of denitrification. These findings

  15. Selection Signatures in Worldwide Sheep Populations

    PubMed Central

    Fariello, Maria-Ines; Servin, Bertrand; Tosser-Klopp, Gwenola; Rupp, Rachel; Moreno, Carole; Cristobal, Magali San; Boitard, Simon

    2014-01-01

    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments. PMID:25126940

  16. Cryptanalysis of the arbitrated quantum signature protocols

    SciTech Connect

    Gao Fei; Qin Sujuan; Guo Fenzhuo; Wen Qiaoyan

    2011-08-15

    As a new model for signing quantum messages, arbitrated quantum signature (AQS) has recently received a lot of attention. In this paper we study the cryptanalysis of previous AQS protocols from the aspects of forgery and disavowal. We show that in these protocols the receiver, Bob, can realize existential forgery of the sender's signature under known message attack. Bob can even achieve universal forgery when the protocols are used to sign a classical message. Furthermore, the sender, Alice, can successfully disavow any of her signatures by simple attack. The attack strategies are described in detail and some discussions about the potential improvements of the protocols are given. Finally we also present several interesting topics on AQS protocols that can be studied in future.

  17. Quantum mechanical stabilization of Minkowski signature wormholes

    SciTech Connect

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  18. Biomarker Gene Signature Discovery Integrating Network Knowledge

    PubMed Central

    Cun, Yupeng; Fröhlich, Holger

    2012-01-01

    Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches. PMID:24832044

  19. Temporal shape analysis via the spectral signature.

    PubMed

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031

  20. Estimating physiological skin parameters from hyperspectral signatures

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  1. Cryptanalysis of the arbitrated quantum signature protocols

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qin, Su-Juan; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-08-01

    As a new model for signing quantum messages, arbitrated quantum signature (AQS) has recently received a lot of attention. In this paper we study the cryptanalysis of previous AQS protocols from the aspects of forgery and disavowal. We show that in these protocols the receiver, Bob, can realize existential forgery of the sender's signature under known message attack. Bob can even achieve universal forgery when the protocols are used to sign a classical message. Furthermore, the sender, Alice, can successfully disavow any of her signatures by simple attack. The attack strategies are described in detail and some discussions about the potential improvements of the protocols are given. Finally we also present several interesting topics on AQS protocols that can be studied in future.

  2. Nitrogen isotopic signatures in the Acapulco meteorite

    NASA Technical Reports Server (NTRS)

    Sturgeon, G.; Marti, K.

    1991-01-01

    N isotopic abundances are reported for a bulk sample of the unique meteorite Acapulco. Although the mineral chemistry indicates a high degree of recrystallization under redox conditions between those of H and E chondrites (Palme et al., 1981), the presence of two distinct N isotopic signatures shows that the carriers of these N components were not equilibrated. In stepwise pyrolysis, the larger (65 percent) N component is released mostly below 1000 C and reveals a signature of delta(N-15) = 8.9 + or - 1.2 per mil, which is within the range observed in chondrites. A second 'light' component appears above 1000 C and has a signature of delta(N-15) less than or equal to -110.5 + or - 4.0 per mil (uncorrected for spallation N-15).

  3. A Methodology for Calculating Radiation Signatures

    SciTech Connect

    Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  4. On leadership. Signature strenghths: achieving your destiny.

    PubMed

    Kerfoot, Karlene

    2005-12-01

    All of us have signature strengths that make us unique and valuable. There are talents we were born with and the ones we have perfected over the years. If these are utilized well it will allow us to live out our inborn destiny. The good news about nursing is that there are many very different kinds of positions where one can find a niche that fits her signature strengths. Without a match, we will live our lives as a sundial in the shade. Where there is a match, we will live as we were born to live, as sundials in the sun, creating value for those around us. Our task is to find that sunlight for ourselves and our staff and to position all of us to work in the light of our signature strengths.

  5. Neutral and adaptive genomic signatures of rapid poleward range expansion.

    PubMed

    Swaegers, J; Mergeay, J; Van Geystelen, A; Therry, L; Larmuseau, M H D; Stoks, R

    2015-12-01

    Many species are expanding their range polewards, and this has been associated with rapid phenotypic change. Yet, it is unclear to what extent this reflects rapid genetic adaptation or neutral processes associated with range expansion, or selection linked to the new thermal conditions encountered. To disentangle these alternatives, we studied the genomic signature of range expansion in the damselfly Coenagrion scitulum using 4950 newly developed genomic SNPs and linked this to the rapidly evolved phenotypic differences between core and (newly established) edge populations. Most edge populations were genetically clearly differentiated from the core populations and all were differentiated from each other indicating independent range expansion events. In addition, evidence for genetic drift in the edge populations, and strong evidence for adaptive genetic variation in association with the range expansion was detected. We identified one SNP under consistent selection in four of the five edge populations and showed that the allele increasing in frequency is associated with increased flight performance. This indicates collateral, non-neutral evolutionary changes in independent edge populations driven by the range expansion process. We also detected a genomic signature of adaptation to the newly encountered thermal regimes, reflecting a pattern of countergradient variation. The latter signature was identified at a single SNP as well as in a set of covarying SNPs using a polygenic multilocus approach to detect selection. Overall, this study highlights how a strategic geographic sampling design and the integration of genomic, phenotypic and environmental data can identify and disentangle the neutral and adaptive processes that are simultaneously operating during range expansions. PMID:26561985

  6. Spectral Signatures in the Classroom

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    2004-01-01

    Ensuring that students understand the basis behind their geography/science courses is an essential part of their education. This article looks at an inexpensive and rigorous way of teaching students how to develop the needed data for remote sensing work. The procedure shows instructors how to build a system to teach students the process of…

  7. Development of Asset Fault Signatures for Prognostic and Health Management in the Nuclear Industry

    SciTech Connect

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw

    2014-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: Diagnostic Advisor, Asset Fault Signature (AFS) Database, Remaining Useful Life Advisor, and Remaining Useful Life Database. This paper focuses on development of asset fault signatures to assess the health status of generator step-up generators and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. At the most basic level, fault signatures are comprised of an asset type, a fault type, and a set of one or more fault features (symptoms) that are indicative of the specified fault. The AFS Database is populated with asset fault signatures via a content development exercise that is based on the results of intensive technical research and on the knowledge and experience of technical experts. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  8. A genome signature derived from the interplay of word frequencies and symbol correlations

    NASA Astrophysics Data System (ADS)

    Möller, Simon; Hameister, Heike; Hütt, Marc-Thorsten

    2014-11-01

    Genome signatures are statistical properties of DNA sequences that provide information on the underlying species. It is not understood, how such species-discriminating statistical properties arise from processes of genome evolution and from functional properties of the DNA. Investigating the interplay of different genome signatures can contribute to this understanding. Here we analyze the statistical dependences of two such genome signatures: word frequencies and symbol correlations at short and intermediate distances. We formulate a statistical model of word frequencies in DNA sequences based on the observed symbol correlations and show that deviations of word counts from this correlation-based null model serve as a new genome signature. This signature (i) performs better in sorting DNA sequence segments according to their species origin and (ii) reveals unexpected species differences in the composition of microsatellites, an important class of repetitive DNA. While the first observation is a typical task in metagenomics projects and therefore an important benchmark for a genome signature, the latter suggests strong species differences in the biological mechanisms of genome evolution. On a more general level, our results highlight that the choice of null model (here: word abundances computed via symbol correlations rather than shorter word counts) substantially affects the interpretation of such statistical signals.

  9. Enhanced Cancelable Biometrics for Online Signature Verification

    NASA Astrophysics Data System (ADS)

    Muramatsu, Daigo; Inuma, Manabu; Shikata, Junji; Otsuka, Akira

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  10. Transient thermal camouflage and heat signature control

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  11. Cryptanalysis of the Quantum Group Signature Protocols

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Sun, Ying; Song, Ting-Ting; Zuo, Hui-Juan

    2013-11-01

    Recently, the researches of quantum group signature (QGS) have attracted a lot of attentions and some typical protocols have been designed for e-payment system, e-government, e-business, etc. In this paper, we analyze the security of the quantum group signature with the example of two novel protocols. It can be seen that both of them cannot be implemented securely since the arbitrator cannot solve the disputes fairly. In order to show that, some possible attack strategies, which can be used by the malicious participants, are proposed. Moreover, the further discussions of QGS are presented finally, including some insecurity factors and improved ideas.

  12. Security problem on arbitrated quantum signature schemes

    SciTech Connect

    Choi, Jeong Woon; Chang, Ku-Young; Hong, Dowon

    2011-12-15

    Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.

  13. Multisensor mine signature measurements at the JRC

    NASA Astrophysics Data System (ADS)

    Fortuny-Guasch, Joaquim; Dietrich, Bjoern A.; Hosgood, Brian; Nesti, Giuseppe; Dean, John T.; Sieber, Alois J.

    2000-08-01

    Mine signature measurements have been performed at the experimental facilities of the Joint Research Center of the European Commission, including far-field radar measurements in the European Microwave Signature Laboratory, thermal IR measurements in the Radiometry Laboratory and the European Goniometric Facility, and metal detector measurements. The targets were reference objects, army training surrogate anti-personnel mines, US Army simulants and mine-like objects. The environments were sand and soil with various moisture levels, gravel, mixtures of gravel and soil with and without vegetation cover.

  14. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  15. Security problem on arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Woon; Chang, Ku-Young; Hong, Dowon

    2011-12-01

    Many arbitrated quantum signature schemes implemented with the help of a trusted third party have been developed up to now. In order to guarantee unconditional security, most of them take advantage of the optimal quantum one-time encryption based on Pauli operators. However, in this paper we point out that the previous schemes provide security only against a total break attack and show in fact that there exists an existential forgery attack that can validly modify the transmitted pair of message and signature. In addition, we also provide a simple method to recover security against the proposed attack.

  16. Characterization of marine macroalgae by fluorescence signatures

    NASA Technical Reports Server (NTRS)

    Topinka, J. A.; Bellows, W. Korjeff; Yentsch, C. S.

    1990-01-01

    The feasibility of distinguishing macroalgal classes by their fluorescence signatures was investigated using narrow-waveband light to excite groups of accessory pigments in brown, red, and green macroalgae and measuring fluorescence emission at 685 nm. Results obtained on 20 marine macroalgae field-collected samples showed that fluorescence excitation signatures were relatively uniform within phylogenetic classes but were substantially different for different classes. It is suggested that it may be possible to characterize the type and the abundance of subtidal macroalgae from low-flying aircraft using existing laser-induced fluorescence methodology.

  17. Transient aspects of stream interface signatures

    SciTech Connect

    Crooker, N.U.; Shodhan, S.; Forsyth, R.J.; Burton, M.E.; Gosling, J.T.; Fitzenreiter, R.J.; Lepping, R.P.

    1999-06-01

    Although stream interfaces are steady-state, corotating boundaries between slow and fast solar wind, their signatures are sometimes associated with transient features. Here the authors illustrate two modes of association: interfaces trailing interplanetary coronal mass ejections (ICMEs) at 1 AU and interfaces within ICMEs in the range 4--5 AU. The former are readily understood as boundaries between transient slow wind and steady-state fast wind, where the ICMEs add variability to the interface signatures. The latter are puzzling and may be related to evolution of interfaces.

  18. Stochastic monotony signature and biomedical applications.

    PubMed

    Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha

    2015-12-01

    We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. PMID:26563556

  19. Plasma Signatures of Radial Field Power Dropouts

    SciTech Connect

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-10-04

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and {beta} during these events.

  20. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  1. Instrumentation for motor-current signature analysis using synchronous sampling

    SciTech Connect

    Castleberry, K.N.

    1996-07-01

    Personnel in the Instrumentation and Controls Division at Oak Ridge National Laboratory, in association with the United States Enrichment Corporation, the U.S. Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis for several years. In that time, innovation in the field has resulted in major improvements in signal processing, analysis, and system performance and capabilities. Recent work has concentrated on industrial implementation of one of the most promising new techniques. This report describes the developed method and the instrumentation package that is being used to investigate and develop potential applications.

  2. Quantum Signature of Analog Hawking Radiation in Momentum Space

    NASA Astrophysics Data System (ADS)

    Boiron, D.; Fabbri, A.; Larré, P.-É.; Pavloff, N.; Westbrook, C. I.; Ziń, P.

    2015-07-01

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  3. A Electronic Voting Scheme Achieved by Using Quantum Proxy Signature

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Ding, Li-Yuan; Yu, Yao-Feng; Li, Peng-Fei

    2016-09-01

    In this paper, we propose a new electronic voting scheme using Bell entangled states as quantum channels. This scheme is based on quantum proxy signature. The voter Alice, vote management center Bob, teller Charlie and scrutineer Diana only perform single particle measurement to realize the electronic voting process. So the scheme reduces the technical difficulty and increases operation efficiency. It can be easily realized. We use quantum key distribution and one-time pad to guarantee its unconditional security. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, unforgetability and undeniability.

  4. Aposition multiaperture optical systems operating in signature and pseudo space

    SciTech Connect

    Walters, R.A.; Mathews, B.E.

    1983-01-01

    Multiaperture optical systems are compared to the highly efficient insect eye, both providing wide fields of view with excellent resolution, fast parallel processing and no moving parts. A nomenclature useful in describing multiaperture systems is introduced. Superposition and aposition devices are discussed with respect to system characteristics and limits. A detection system was developed based on random aposition techniques. Point resolution of 2.5percent in a 59-degree field of view was obtained in pseudo space mapping. An extremely high resolution robotic vision system operating in signature space was developed. Characteristics of this device are cataloged. 5 references.

  5. Sputum RNA signature in allergic asthmatics following allergen bronchoprovocation test

    PubMed Central

    Zuiker, Rob G.J.A.; Tribouley, Catherine; Diamant, Zuzana; Boot, J. Diderik; Cohen, Adam F.; Van Dyck, K.; De Lepeleire, I.; Rivas, Veronica M.; Malkov, Vladislav A.; Burggraaf, Jacobus; Ruddy, Marcella K.

    2016-01-01

    Background Inhaled allergen challenge is a validated disease model of allergic asthma offering useful pharmacodynamic assessment of pharmacotherapeutic effects in a limited number of subjects. Objectives To evaluate whether an RNA signature can be identified from induced sputum following an inhaled allergen challenge, whether a RNA signature could be modulated by limited doses of inhaled fluticasone, and whether these gene expression profiles would correlate with the clinical endpoints measured in this study. Methods Thirteen non-smoking, allergic subjects with mild-to-moderate asthma participated in a randomised, placebo-controlled, 2-period cross-over study following a single-blind placebo run-in period. Each period consisted of three consecutive days, separated by a wash-out period of at least 3 weeks. Subjects randomly received inhaled fluticasone ((FP) MDI; 500 mcg BID×5 doses in total) or placebo. On day 2, house dust mite extract was inhaled and airway response was measured by FEV1 at predefined time points until 7 h post-allergen. Sputum was induced by NaCl 4.5%, processed and analysed at 24 h pre-allergen and 7 and 24 h post-allergen. RNA was isolated from eligible sputum cell pellets (<80% squamous of 500 cells), amplified according to NuGEN technology, and profiled on Affymetrix arrays. Gene expression changes from baseline and fluticasone treatment effects were evaluated using a mixed effects ANCOVA model at 7 and at 24 h post-allergen challenge. Results Inhaled allergen-induced statistically significant gene expression changes in sputum, which were effectively blunted by fluticasone (adjusted p<0.025). Forty-seven RNA signatures were selected from these responses for correlation analyses and further validation. This included Th2 mRNA levels for cytokines, chemokines, high-affinity IgE receptor FCER1A, histamine receptor HRH4, and enzymes and receptors in the arachidonic pathway. Individual messengers from the 47 RNA signatures correlated significantly

  6. Continental collisions and seismic signature

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Wever, Th.; Sadowiak, P.

    1991-04-01

    Reflection seismics in compressional belts has revealed the structure of crustal shortening and thickening processes, showing complex patterns of indentation and interfingering of colliding crusts and subcrustal lithospheres. Generally, in the upper crust large zones of detachments develop, often showing duplexes and 'crocodile' structures. The lower crust from zones of active collision (e.g. Alps, Pyrenees) is characterized by strongly dipping reflections. The base of the crust with the Moho must be continuously equilibrating after orogenic collapse as areas of former continental collision exhibit flat Mohos and subhorizontal reflections. The depth to the Moho increases during collision and decreases after the onset of post-orogenic extension, until finally the crustal root disappears completely together with the erosion of the mountains. Processes, active during continental collisions and orogenic collapse, create distinct structures which are imaged by reflection seismic profiling. Examples are shown and discussed.

  7. Signature neural networks: definition and application to multidimensional sorting problems.

    PubMed

    Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo

    2011-01-01

    In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.

  8. A group signature scheme based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Wen, Xiaojun; Tian, Yuan; Ji, Liping; Niu, Xiamu

    2010-05-01

    In this paper, we present a group signature scheme using quantum teleportation. Different from classical group signature and current quantum signature schemes, which could only deliver either group signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum teleportation. Security analysis proved that our scheme has the characteristics of group signature, non-counterfeit, non-disavowal, blindness and traceability. Our quantum group signature scheme has a foreseeable application in the e-payment system, e-government, e-business, etc.

  9. SPECTROSCOPIC SIGNATURES RELATED TO A SUNQUAKE

    SciTech Connect

    Matthews, S. A.; Harra, L. K.; Green, L. M.; Zharkov, S.

    2015-10-10

    The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode’s EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time–distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time–distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time–distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red

  10. Spectroscopic Signatures Related to a Sunquake

    NASA Astrophysics Data System (ADS)

    Matthews, S. A.; Harra, L. K.; Zharkov, S.; Green, L. M.

    2015-10-01

    The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode’s EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time-distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time-distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating

  11. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  12. Pickup Ion Signatures in the Vicinity of Titan

    NASA Astrophysics Data System (ADS)

    Regoli, L.; Coates, A. J.; Feyerabend, M.; Roussos, E.; Jones, G. H.; Krupp, N.; Thomsen, M. F.

    2015-12-01

    Being the only moon in the solar system with a significant atmosphere, Titan possesses an ionosphere that acts as a conducting obstacle to the incoming plasma from Saturn's magnetosphere. This creates a mass-loading of the magnetic field lines with freshly picked up ions from Titan's atmosphere on a process similar to that observed in comets (e.g. Coates et al. (1993), Journal of Geophysical Research, Vol. 98, No. A12, 20985-20994) and other moons like Jupiter's Io (e.g. Russell et al. (2003), Planetary and Space Science, Vol. 51, 233-238). However, while at other celestial bodies ion cyclotron waves arise as one of the main signatures of this process, this is not the case at Titan, with e.g. Cowee et al. (2010) (Journal of Geophysical Research, Vol. 115, A10224) attributing this to the local orientation of the magnetic field and the plasma flow preventing the waves to grow to levels detectable by the instruments on-board Cassini. For the reason above, the detection of pickup ions signatures needs to be approached through other methods. For this study, we analyze data from the CAPS/IMS instrument on-board Cassini. IMS is an ion mass spectrometer capable of detecting ion fluxes with energies from 1 eV to 50 keV with an atomic resolution of M/ΔM ~ 70. During many of the dedicated Titan flybys by Cassini, IMS was able to distinguish between ions of magnetospheric origin and of ionospheric origin, the latter being freshly picked up ions from Titan's ionosphere. With the help of ion spectrograms and time of flight (TOF) information, we carried out a survey of all the flybys for which IMS has data (the CAPS instrument was switched off after the 83th. dedicated flyby, named in the project as T83) in order to obtain information about the location and frequency of occurence for the signatures.

  13. Dynamical Signatures of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1999-01-01

    One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion

  14. Padlock and RCA signature predication software

    2005-10-24

    This software predicts DNA signatures compatible with padlock probe and rolling circle amplification (RCA) platforms. Specifically, the software takes a multiple sequence alignment, generates a consensus of conserved bases, and from these conserved regions selects forward and reverse primers that are immediately adjacent to one another, which is the desired orientation for assays such as padlock probes and RCA.

  15. Exploring Signature Pedagogies in Undergraduate Leadership Education

    ERIC Educational Resources Information Center

    Jenkins, Daniel M.

    2012-01-01

    This research explores the instructional strategies most frequently used by leadership educators who teach academic credit-bearing undergraduate leadership studies courses through a national survey and identifies signature pedagogies within the leadership discipline. Findings from this study suggest that class discussion--whether in the form of…

  16. The Pedagogic Signature of Special Needs Education

    ERIC Educational Resources Information Center

    Weiß, Sabine; Kollmannsberger, Markus; Lerche, Thomas; Oubaid, Viktor; Kiel, Ewald

    2014-01-01

    The goal of the following study is to identify a pedagogic signature, according to LS Shulman, for working with students who have special educational needs. Special educational needs are defined as significant limitations in personal development and learning which require particular educational measures beyond regular education. The development of…

  17. Observational signatures of self-destructive civilizations

    NASA Astrophysics Data System (ADS)

    Stevens, Adam; Forgan, Duncan; James, Jack O'malley

    2016-10-01

    We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

  18. Hyperspectral signature analysis of skin parameters

    NASA Astrophysics Data System (ADS)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  19. Quantum Signature Scheme with Weak Arbitrator

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Chen, Xiu-Bo; Yun, Deng; Yang, Yi-Xian

    2012-07-01

    In this paper, we propose one quantum signature scheme with a weak arbitrator to sign classical messages. This scheme can preserve the merits in the original arbitrated scheme with some entanglement resources, and provide a higher efficiency in transmission and reduction the complexity of implementation. The arbitrator is costless and only involved in the disagreement case.

  20. Ankle and Other Signatures in Uhecr

    NASA Astrophysics Data System (ADS)

    Berezinsky, Veniamin

    2015-03-01

    The interaction signatures of UHE protons propagating through CMB are discussed. Much attention is given to ankle, which starting from 1963 is usually interpreted as a feature of transition from galactic to extragalactic cosmic rays. We argue here that this interpretation is now excluded. It gives more credit to alternative explanation of the ankle as an intrinsic part of the pair-production dip.

  1. Comparison of metagenomic samples using sequence signatures

    PubMed Central

    2012-01-01

    Background Sequence signatures, as defined by the frequencies of k-tuples (or k-mers, k-grams), have been used extensively to compare genomic sequences of individual organisms, to identify cis-regulatory modules, and to study the evolution of regulatory sequences. Recently many next-generation sequencing (NGS) read data sets of metagenomic samples from a variety of different environments have been generated. The assembly of these reads can be difficult and analysis methods based on mapping reads to genes or pathways are also restricted by the availability and completeness of existing databases. Sequence-signature-based methods, however, do not need the complete genomes or existing databases and thus, can potentially be very useful for the comparison of metagenomic samples using NGS read data. Still, the applications of sequence signature methods for the comparison of metagenomic samples have not been well studied. Results We studied several dissimilarity measures, including d2, d2* and d2S recently developed from our group, a measure (hereinafter noted as Hao) used in CVTree developed from Hao’s group (Qi et al., 2004), measures based on relative di-, tri-, and tetra-nucleotide frequencies as in Willner et al. (2009), as well as standard lp measures between the frequency vectors, for the comparison of metagenomic samples using sequence signatures. We compared their performance using a series of extensive simulations and three real next-generation sequencing (NGS) metagenomic datasets: 39 fecal samples from 33 mammalian host species, 56 marine samples across the world, and 13 fecal samples from human individuals. Results showed that the dissimilarity measure d2S can achieve superior performance when comparing metagenomic samples by clustering them into different groups as well as recovering environmental gradients affecting microbial samples. New insights into the environmental factors affecting microbial compositions in metagenomic samples are obtained through

  2. The Los Alamos Science Pillars The Science of Signatures

    SciTech Connect

    Smith, Joshua E.; Peterson, Eugene J.

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  3. Observational signatures of binary supermassive black holes

    SciTech Connect

    Roedig, Constanze; Krolik, Julian H.; Miller, M. Coleman

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  4. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  5. Effect of Weather on the Predicted PMN Landmine Chemical Signature for Kabul, Afghanistan

    SciTech Connect

    WEBB, STEPHEN W.; PHELAN, JAMES M.

    2002-11-01

    Buried landmines are often detected through the chemical signature in the air above the soil surface by mine detection dogs. Environmental processes play a significant role in the chemical signature available for detection. Due to the shallow burial depth of landmines, the weather influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for Kabul, Afghanistan. Results for TNT and DNT gas-phase and soil solid-phase concentrations are presented as a function of time of the day and time of the year.

  6. Infrasonic signature of the 2009 major sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Evers, L. G.; Siegmund, P.

    2009-12-01

    The study of infrasound is experiencing a renaissance since it was chosen as a verification technique for the Comprehensive Nuclear-Test-Ban Treaty. The success of the verification technique strongly depends on knowledge of upper atmospheric processes. The ability of infrasound to probe the upper atmosphere starts to be exploited, taking the field beyond its monitoring application. Processes in the stratosphere couple to the troposphere and influence our daily weather and climate. Infrasound delivers actual observations on the state of the stratosphere with a high spatial and temporal resolution. Here we show the infrasonic signature, passively obtained, of a drastic change in the stratosphere due to the major sudden stratospheric warming (SSW) of January 2009. With this study, we infer the enormous capacity of infrasound in acoustic remote sensing of stratospheric processes on a global scale with surface based instruments.

  7. The effects of extrinsic motivation on signature authorship opinions in forensic signature blind trials.

    PubMed

    Dewhurst, Tahnee N; Found, Bryan; Ballantyne, Kaye N; Rogers, Doug

    2014-03-01

    Expertise studies in forensic handwriting examination involve comparisons of Forensic Handwriting Examiners' (FHEs) opinions with lay-persons on blind tests. All published studies of this type have reported real and demonstrable skill differences between the specialist and lay groups. However, critics have proposed that any difference shown may be indicative of a lack of motivation on the part of lay participants, rather than a real difference in skill. It has been suggested that qualified FHEs would be inherently more motivated to succeed in blinded validation trials, as their professional reputations could be at risk, should they perform poorly on the task provided. Furthermore, critics suggest that lay-persons would be unlikely to be highly motivated to succeed, as they would have no fear of negative consequences should they perform badly. In an effort to investigate this concern, a blind signature trial was designed and administered to forty lay-persons. Participants were required to compare known (exemplar) signatures of an individual to questioned signatures and asked to express an opinion regarding whether the writer of the known signatures wrote each of the questioned signatures. The questioned signatures comprised a mixture of genuine, disguised and simulated signatures. The forty participants were divided into two separate groupings. Group 'A' were requested to complete the trial as directed and were advised that for each correct answer they would be financially rewarded, for each incorrect answer they would be financially penalized, and for each inconclusive opinion they would receive neither penalty nor reward. Group 'B' was requested to complete the trial as directed, with no mention of financial recompense or penalty. The results of this study do not support the proposition that motivation rather than skill difference is the source of the statistical difference in opinions between individuals' results in blinded signature proficiency trials.

  8. The effects of extrinsic motivation on signature authorship opinions in forensic signature blind trials.

    PubMed

    Dewhurst, Tahnee N; Found, Bryan; Ballantyne, Kaye N; Rogers, Doug

    2014-03-01

    Expertise studies in forensic handwriting examination involve comparisons of Forensic Handwriting Examiners' (FHEs) opinions with lay-persons on blind tests. All published studies of this type have reported real and demonstrable skill differences between the specialist and lay groups. However, critics have proposed that any difference shown may be indicative of a lack of motivation on the part of lay participants, rather than a real difference in skill. It has been suggested that qualified FHEs would be inherently more motivated to succeed in blinded validation trials, as their professional reputations could be at risk, should they perform poorly on the task provided. Furthermore, critics suggest that lay-persons would be unlikely to be highly motivated to succeed, as they would have no fear of negative consequences should they perform badly. In an effort to investigate this concern, a blind signature trial was designed and administered to forty lay-persons. Participants were required to compare known (exemplar) signatures of an individual to questioned signatures and asked to express an opinion regarding whether the writer of the known signatures wrote each of the questioned signatures. The questioned signatures comprised a mixture of genuine, disguised and simulated signatures. The forty participants were divided into two separate groupings. Group 'A' were requested to complete the trial as directed and were advised that for each correct answer they would be financially rewarded, for each incorrect answer they would be financially penalized, and for each inconclusive opinion they would receive neither penalty nor reward. Group 'B' was requested to complete the trial as directed, with no mention of financial recompense or penalty. The results of this study do not support the proposition that motivation rather than skill difference is the source of the statistical difference in opinions between individuals' results in blinded signature proficiency trials. PMID

  9. Forward secure digital signature for electronic medical records.

    PubMed

    Yu, Yao-Chang; Huang, To-Yeh; Hou, Ting-Wei

    2012-04-01

    The Technology Safeguard in Health Insurance Portability and Accountability Act (HIPAA) Title II has addressed a way to maintain the integrity and non-repudiation of Electronic Medical Record (EMR). One of the important cryptographic technologies is mentioned in the ACT is digital signature; however, the ordinary digital signature (e.g. DSA, RSA, GQ...) has an inherent weakness: if the key (certificate) is updated, than all signatures, even the ones generated before the update, are no longer trustworthy. Unfortunately, the current most frequently used digital signature schemes are categorized into the ordinary digital signature scheme; therefore, the objective of this paper is to analyze the shortcoming of using ordinary digital signatures in EMR and to propose a method to use forward secure digital signature to sign EMR to ensure that the past EMR signatures remain trustworthy while the key (certificate) is updated.

  10. Methods and apparatus for multi-parameter acoustic signature inspection

    DOEpatents

    Diaz, Aaron A.; Samuel, Todd J.; Valencia, Juan D.; Gervais, Kevin L.; Tucker, Brian J.; Kirihara, Leslie J.; Skorpik, James R.; Reid, Larry D.; Munley, John T.; Pappas, Richard A.; Wright, Bob W.; Panetta, Paul D.; Thompson, Jason S.

    2007-07-24

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  11. Loop-Mediated Isothermal Amplification (LAMP) Signature Identification Software

    2009-03-17

    This is an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.

  12. Multi-Resolution and Wavelet Representations for Identifying Signatures of Disease

    PubMed Central

    Sajda, Paul; Laine, Andrew; Zeevi, Yehoshua

    2002-01-01

    Identifying physiological and anatomical signatures of disease in signals and images is one of the fundamental challenges in biomedical engineering. The challenge is most apparent given that such signatures must be identified in spite of tremendous inter and intra-subject variability and noise. Crucial for uncovering these signatures has been the development of methods that exploit general statistical properties of natural signals. The signal processing and applied mathematics communities have developed, in recent years, signal representations which take advantage of Gabor-type and wavelet-type functions that localize signal energy in a joint time-frequency and/or space-frequency domain. These techniques can be expressed as multi-resolution transformations, of which perhaps the best known is the wavelet transform. In this paper we review wavelets, and other related multi-resolution transforms, within the context of identifying signatures for disease. These transforms construct a general representation of signals which can be used in detection, diagnosis and treatment monitoring. We present several examples where these transforms are applied to biomedical signal and imaging processing. These include computer-aided diagnosis in mammography, real-time mosaicking of ophthalmic slit-lamp imagery, characterization of heart disease via ultrasound, predicting epileptic seizures and signature analysis of the electroencephalogram, and reconstruction of positron emission tomography data. PMID:14646044

  13. Condition monitoring of machinery using motor current signature analysis

    NASA Astrophysics Data System (ADS)

    Kryter, R. C.; Haynes, H. D.

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process downstream of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given.

  14. Exobiology and the search for biological signatures on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Schwartz, Deborah E.

    1988-01-01

    In preparation for a Mars Rover/Sample return mission, the mission goals and objectives must be identified. One of the most important objectives must address exobiology and the question of the possibility of the origin and evolution of life on Mars. In particular, key signatures or bio-markers of a possible extinct Martian biota must be defined. To that end geographic locations (sites) that are likely to contain traces of past life must also be identified. Sites and experiments are being defined in support of a Mars rover sample return mission. In addition, analyses based on computer models of abiotic processes of CO2 loss from Mars suggest that the CO2 from the atmosphere may have precipitated as carbonates and be buried within the Martian regolith. The carbon cycle of perennially frozen lakes in the dry valley of Antarctica are currently being investigated. These lakes were purported to be a model system for the ancient Martian lakes. By understanding the dynamic balance between the abiotic vs. biotic cycling of carbon within this system, information is gathered which will enable the interpretation of data obtained by a Mars rover with respect to possible carbonate deposits and the processing of carbon by biological systems. These ancient carbonate deposits, and other sedimentary units would contain traces of biological signatures that would hold the key to understanding the origin and evolution of life on Mars, as well as Earth.

  15. Condition monitoring of machinery using motor current signature analysis

    SciTech Connect

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs.

  16. Automatic activity estimation based on object behaviour signature

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, F. E.; González-Fraga, J. A.; Tentori, M.

    2010-08-01

    Automatic estimation of human activities is a topic widely studied. However the process becomes difficult when we want to estimate activities from a video stream, because human activities are dynamic and complex. Furthermore, we have to take into account the amount of information that images provide, since it makes the modelling and estimation activities a hard work. In this paper we propose a method for activity estimation based on object behavior. Objects are located in a delimited observation area and their handling is recorded with a video camera. Activity estimation can be done automatically by analyzing the video sequences. The proposed method is called "signature recognition" because it considers a space-time signature of the behaviour of objects that are used in particular activities (e.g. patients' care in a healthcare environment for elder people with restricted mobility). A pulse is produced when an object appears in or disappears of the observation area. This means there is a change from zero to one or vice versa. These changes are produced by the identification of the objects with a bank of nonlinear correlation filters. Each object is processed independently and produces its own pulses; hence we are able to recognize several objects with different patterns at the same time. The method is applied to estimate three healthcare-related activities of elder people with restricted mobility.

  17. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor; Delvaux, Claire; Hughes, Harold; Ronchi, Benedicta; Clymans, Wim; Barao, Ana Lucia; Govers, Gerard; Cornelis, Jean Thomas; André, Luc; Struyf, Eric

    2015-04-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61%), intermediate in pasture (+1.05%) and young cropland (+0.89%) and lowest in forest soil water (+0.62%). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential

  18. Landscape cultivation alters δ30Si signature in terrestrial ecosystems.

    NASA Astrophysics Data System (ADS)

    Vandevenne, F. I.; Delvaux, C.; Huyghes, H.; Ronchi, B.; Govers, G.; Barão, A. L.; Clymans, W.; Meire, P.; André, L.; Struyf, E.

    2014-12-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological properties (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61‰), intermediate in pasture (+1.05‰) and young cropland (+0.89 ‰) and lowest in forest soil water (+0.62‰). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have

  19. Imaging Reservoir Quality: Seismic Signatures of Geologic Processes

    SciTech Connect

    Department of Geophysics

    2008-06-30

    Lithofacies successions from diverse depositional environments show distinctive patterns in various rock-physics planes (velocity-porosity, velocity-density and porosity-clay). Four clear examples of decameter-scale lithofacies sequences are documented in this study: (1) Micocene fluvial deposits show an inverted-V pattern indicative of dispersed fabric, (2) a fining-upward sequence of mud-rich deep deposits shows a linear trend associated with laminated sand-clay mixtures, (3) sand-rich deposits show a pattern resulting from the scarcity of mixed lithofacies, and (4) a coarsening-upward sequence shows evidence of both dispersed and horizontally laminated mixed lithofacies, with predominating dispersed mixtures generated by bioturbation. It was observed that carbonate-cemented sandstones are extremely heterogeneous in the project deep-water study area. Those from the base of incisions are usually associated with lower shaliness, lower porosity and higher P-impedance, while from the top of flooding surfaces exhibit higher shaliness, higher porosity and lower P-impedance. One rock physics model that captures the observed impedance-porosity trend is the 'stiff-sand model'. For this model, the high-porosity end-member is unconsolidated sand whose initial porosity is a function of sorting and shaliness, while the low-porosity end-member is solid mineral. These two end points are joined with a Hashin-Shtrikman equation. A systematic variation of quartz:clay ratio from proximal to distal locations was observed in the study area even within a single facies. The quartz:clay ratio changes from [0.5:0.5] to [1:0] along the direction of flow, based on the trends of P-impedance vs. porosity as predicted by the rock model for uncemented sands. The results are in agreement with spill-and-fill sequence stratigraphic model in mini-basin setting. In addition, porosity at the distal location ({approx}25 % to 35%) is higher than the porosity at the proximal location ({approx}20 % to 23%). This trend is explained by a sequence stratigraphic model which predicts progressive increase in sorting by turbidity current along the flow, as well as, quantified by a rock model that heuristically accounts for sorting. The results can be applied to improve quantitative predication of sediment parameters from seismic impedance, away from well locations.

  20. Core Formation Under Dynamic Conditions: Physical Processes and Geochemical Signatures

    NASA Technical Reports Server (NTRS)

    Rushmer, T.; Gaetani, G.; Jones, J. H.; Sparks, J.

    2001-01-01

    We have experimentally investigated liquid metal segregation from a solid silicate matrix under conditions of applied stress. Liquid moves in fractures and formation of fayalitic olivine from orthopyroxene by migrating Fe-Ni-S-O liquids is observed. Additional information is contained in the original extended abstract.

  1. Brain oscillatory signatures of motor tasks.

    PubMed

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  2. Brain oscillatory signatures of motor tasks

    PubMed Central

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  3. Quantum Signature Scheme Using a Single Qubit Rotation Operator

    NASA Astrophysics Data System (ADS)

    Kang, Min-Sung; Hong, Chang-Ho; Heo, Jino; Lim, Jong-In; Yang, Hyung-Jin

    2015-02-01

    We present a quantum signature scheme using a single qubit rotation operator. In this protocol, the trusted center confirms the quantum signature and thus conforms with other quantum signature schemes. Utilizing the unitary properties of a single qubit rotation operator and Pauli operators, our protocol provides signature security and enhances the efficiency of communication. In addition, our protocol - using only a single qubit measurement - facilitates the ease of implementation and enhances convenience for users. The security of the protocol is analyzed.

  4. Signature modelling and radiometric rendering equations in infrared scene simulation systems

    NASA Astrophysics Data System (ADS)

    Willers, Cornelius J.; Willers, Maria S.; Lapierre, Fabian

    2011-11-01

    The development and optimisation of modern infrared systems necessitates the use of simulation systems to create radiometrically realistic representations (e.g. images) of infrared scenes. Such simulation systems are used in signature prediction, the development of surveillance and missile sensors, signal/image processing algorithm development and aircraft self-protection countermeasure system development and evaluation. Even the most cursory investigation reveals a multitude of factors affecting the infrared signatures of realworld objects. Factors such as spectral emissivity, spatial/volumetric radiance distribution, specular reflection, reflected direct sunlight, reflected ambient light, atmospheric degradation and more, all affect the presentation of an object's instantaneous signature. The signature is furthermore dynamically varying as a result of internal and external influences on the object, resulting from the heat balance comprising insolation, internal heat sources, aerodynamic heating (airborne objects), conduction, convection and radiation. In order to accurately render the object's signature in a computer simulation, the rendering equations must therefore account for all the elements of the signature. In this overview paper, the signature models, rendering equations and application frameworks of three infrared simulation systems are reviewed and compared. The paper first considers the problem of infrared scene simulation in a framework for simulation validation. This approach provides concise definitions and a convenient context for considering signature models and subsequent computer implementation. The primary radiometric requirements for an infrared scene simulator are presented next. The signature models and rendering equations implemented in OSMOSIS (Belgian Royal Military Academy), DIRSIG (Rochester Institute of Technology) and OSSIM (CSIR & Denel Dynamics) are reviewed. In spite of these three simulation systems' different application focus

  5. Meta-analysis of age-related gene expression profiles identifies common signatures of aging

    PubMed Central

    de Magalhães, João Pedro; Curado, João; Church, George M.

    2009-01-01

    Motivation: Numerous microarray studies of aging have been conducted, yet given the noisy nature of gene expression changes with age, elucidating the transcriptional features of aging and how these relate to physiological, biochemical and pathological changes remains a critical problem. Results: We performed a meta-analysis of age-related gene expression profiles using 27 datasets from mice, rats and humans. Our results reveal several common signatures of aging, including 56 genes consistently overexpressed with age, the most significant of which was APOD, and 17 genes underexpressed with age. We characterized the biological processes associated with these signatures and found that age-related gene expression changes most notably involve an overexpression of inflammation and immune response genes and of genes associated with the lysosome. An underexpression of collagen genes and of genes associated with energy metabolism, particularly mitochondrial genes, as well as alterations in the expression of genes related to apoptosis, cell cycle and cellular senescence biomarkers, were also observed. By employing a new method that emphasizes sensitivity, our work further reveals previously unknown transcriptional changes with age in many genes, processes and functions. We suggest these molecular signatures reflect a combination of degenerative processes but also transcriptional responses to the process of aging. Overall, our results help to understand how transcriptional changes relate to the process of aging and could serve as targets for future studies. Availability: http://genomics.senescence.info/uarrays/signatures.html Contact: jp@senescence.info Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19189975

  6. 17 CFR 1.4 - Use of electronic signatures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Use of electronic signatures... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Definitions § 1.4 Use of electronic signatures. For purposes of... pool participant or a client of a commodity trading advisor, an electronic signature executed by...

  7. 17 CFR 1.4 - Use of electronic signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Use of electronic signatures... REGULATIONS UNDER THE COMMODITY EXCHANGE ACT Definitions § 1.4 Use of electronic signatures. For purposes of... broker, a pool participant or a client of a commodity trading advisor, an electronic signature...

  8. 48 CFR 204.101 - Contracting officer's signature.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Contracting officer's signature. 204.101 Section 204.101 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... officer's signature. Follow the procedures at PGI 204.101 for signature of contract documents....

  9. Cryptanalysis of a Quantum Proxy Weak Blind Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Jia; Jia, Heng-Yue

    2015-02-01

    Recently, Cao et al. presented a weak blind signature scheme based on a genuinely entangled six -qubit state. However, we find there exists a security problem that the receiver of the signature can forge a valid signature without being caught. In order to show that, the detailed attack strategy and the potential improved ideas are proposed in this paper.

  10. 17 CFR 201.65 - Identity and signature.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Identity and signature. 201.65... of 1934 § 201.65 Identity and signature. Applications pursuant to this subpart may omit the identity, mailing address, and signature of the applicant; provided, that such identity, mailing address...

  11. Merger Signatures in the Dynamics of Star-forming Gas

    NASA Astrophysics Data System (ADS)

    Hung, Chao-Ling; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Lanz, Lauranne; Martínez-Galarza, Juan R.; Sanders, D. B.; Zezas, Andreas

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ˜0.2-0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ˜ 2-3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%-60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk properties such

  12. A Nucleotide Signature for the Identification of American Ginseng and Its Products.

    PubMed

    Liu, Yang; Wang, Xiaoyue; Wang, Lili; Chen, Xiaochen; Pang, Xiaohui; Han, Jianping

    2016-01-01

    American ginseng (derived from Panax quinquefolius) is one of the most widely used medicinal herbs in the world. Because of its high price and increasing demand, there are many adulterants on the market. The proposed internal transcribed spacer 2 (ITS2) has been used to identify raw medicinal materials, but it is not suitable for the identification of Chinese patent medicine ingredients. Therefore, a short barcode for the identification of processed American ginseng and its corresponding Chinese patent medicines would be profitable. In this study, 94 samples of American ginseng and Asian ginseng were collected from all over the world. The ITS2 region was sequenced, and a nucleotide signature was developed based on one single nucleotide polymorphism (SNP) site unique to American ginseng. The nucleotide signature (atcactcctt tgcgggagtc gaggcgg) consists of 27 bases over the length of the ITS2 sequence (420 bp). Furthermore, we also designed primer pairs to amplify the nucleotide signature; the specific primer pair 4F/4R has been found to be unique to the ginseng species and capable of amplifying the nucleotide signatures from Chinese patent medicines and decoctions. We used the nucleotide signature method to inspect ginseng products in Chinese patent medicines; 24 batches of Chinese patent medicine from stores in Beijing were amplified and sequenced successfully. Using the double peaks at the SNP sites of the nucleotide signature, 5 batches were found to be counterfeits, and 2 batches were found to contain adulterants. Thus, this nucleotide signature, with only 27 bp, has broadened the application of DNA barcoding in identification of decoctions, Chinese patent medicines and other ginseng products with degraded DNA. This method can rapidly identify ginseng products and could also be developed as an on-site detection method. PMID:27047504

  13. mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer

    PubMed Central

    Penney, Kathryn L.; Sinnott, Jennifer A.; Fall, Katja; Pawitan, Yudi; Hoshida, Yujin; Kraft, Peter; Stark, Jennifer R.; Fiorentino, Michelangelo; Perner, Sven; Finn, Stephen; Calza, Stefano; Flavin, Richard; Freedman, Matthew L.; Setlur, Sunita; Sesso, Howard D.; Andersson, Swen-Olof; Martin, Neil; Kantoff, Philip W.; Johansson, Jan-Erik; Adami, Hans-Olov; Rubin, Mark A.; Loda, Massimo; Golub, Todd R.; Andrén, Ove; Stampfer, Meir J.; Mucci, Lorelei A.

    2011-01-01

    Purpose Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis. Patients and Methods Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases. Results We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006). Conclusion Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment. PMID:21537050

  14. A Nucleotide Signature for the Identification of American Ginseng and Its Products

    PubMed Central

    Liu, Yang; Wang, Xiaoyue; Wang, Lili; Chen, Xiaochen; Pang, Xiaohui; Han, Jianping

    2016-01-01

    American ginseng (derived from Panax quinquefolius) is one of the most widely used medicinal herbs in the world. Because of its high price and increasing demand, there are many adulterants on the market. The proposed internal transcribed spacer 2 (ITS2) has been used to identify raw medicinal materials, but it is not suitable for the identification of Chinese patent medicine ingredients. Therefore, a short barcode for the identification of processed American ginseng and its corresponding Chinese patent medicines would be profitable. In this study, 94 samples of American ginseng and Asian ginseng were collected from all over the world. The ITS2 region was sequenced, and a nucleotide signature was developed based on one single nucleotide polymorphism (SNP) site unique to American ginseng. The nucleotide signature (atcactcctt tgcgggagtc gaggcgg) consists of 27 bases over the length of the ITS2 sequence (420 bp). Furthermore, we also designed primer pairs to amplify the nucleotide signature; the specific primer pair 4F/4R has been found to be unique to the ginseng species and capable of amplifying the nucleotide signatures from Chinese patent medicines and decoctions. We used the nucleotide signature method to inspect ginseng products in Chinese patent medicines; 24 batches of Chinese patent medicine from stores in Beijing were amplified and sequenced successfully. Using the double peaks at the SNP sites of the nucleotide signature, 5 batches were found to be counterfeits, and 2 batches were found to contain adulterants. Thus, this nucleotide signature, with only 27 bp, has broadened the application of DNA barcoding in identification of decoctions, Chinese patent medicines and other ginseng products with degraded DNA. This method can rapidly identify ginseng products and could also be developed as an on-site detection method. PMID:27047504

  15. Phenotypic signatures arising from unbalanced bacterial growth.

    PubMed

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  16. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  17. Cryptanalysis of fair quantum blind signatures

    NASA Astrophysics Data System (ADS)

    He, Li-Bao; Huang, Liu-Sheng; Yang, Wei; Xu, Rui

    2012-03-01

    We investigate the fair quantum blind signature scheme proposed by Wang and Wen [Wang T Y and Wen Q Y 2010 Chin. Phys. B 19 060307], which uses the fundamental properties of quantum mechanics and the availability of a trusted arbitrator. However, in this paper, we find that the protocol cannot satisfy the property of non-forgeability even under the condition that the trusted arbitrator is totally credible. Moreover, a simple feasible suggestion for improving the protocol is proposed.

  18. Constraining blazar physics with polarization signatures

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Boettcher, Markus; Li, Hui

    2016-01-01

    Blazars are active galactic nuclei whose jets are directed very close to our line of sight. They emit nonthermal-dominated emission from radio to gamma-rays, with the radio to optical emissions known to be polarized. Both radiation and polarization signatures can be strongly variable. Observations have shown that sometimes strong multiwavelength flares are accompanied by drastic polarization variations, indicating active participation of the magnetic field during flares. We have developed a 3D multi-zone time-dependent polarization-dependent radiation transfer code, which enables us to study the spectral and polarization signatures of blazar flares simultaneously. By combining this code with a Fokker-Planck nonthermal particle evolution scheme, we are able to derive simultaneous fits to time-dependent spectra, multiwavelength light curves, and time-dependent optical polarization signatures of a well-known multiwavelength flare with 180 degree polarization angle swing of the blazar 3C279. Our work shows that with detailed consideration of light travel time effects, the apparently symmetric time-dependent radiation and polarization signatures can be naturally explained by a straight, helically symmetric jet pervaded by a helical magnetic field, without the need of any asymmetric structures. Also our model suggests that the excess in the nonthermal particles during flares can originate from magnetic reconnection events, initiated by a shock propagating through the emission region. Additionally, the magnetic field should generally revert to its initial topology after the flare. We conclude that such shock-initiated magnetic reconnection event in an emission environment with relatively strong magnetic energy can be the driver of multiwavelength flares with polarization angle swings. Future statistics on such observations will constrain general features of such events, while magneto-hydrodynamic simulations will provide physical scenarios for the magnetic field evolution

  19. What are the ionospheric signatures of magnetotail reconnection?

    NASA Astrophysics Data System (ADS)

    Ostgaard, N.; Borg, A. L.; Asnes, A.; Pedersen, A.; Oieroset, M.; Phan, T.; Snekvik, K.

    2007-12-01

    In a recent case study based on the combined Cluster and Polar PIXIE data we reported that an inverted-V structure caused by a field aligned potential drop of 30 kV producing very strong X-ray aurora was found in connection with tail reconnection. However, the insitu particle measurements by Cluster indicate clearly that the particles responsible for the X-ray aurora were not accelerated by the reconection process. In this paper we report predicted and observed ionospheric signatures of 13 reconnection events where Cluster passed through the reconnection ion diffusion region. For the 6 events where global auroral imaging data were available our results indicate that reconnection is an azimuthally expanding (or extended) process observed along the poleward boundary of the aurora. Furthermore, the ionospheric emissions indicate that there has to be acceleration mechanism in addition to the local acceleration in the ion diffusion region.

  20. The magnetic signature of ultramafic-hosted hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.

    2013-12-01

    While the magnetic response of basalt-hosted hydrothermal sites is well known, that of ultramafic-hosted hydrothermal sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing hydrothermal fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (hydrothermal) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. Hydrothermal sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as

  1. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  2. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  3. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  4. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  5. Molecular signatures of thyroid follicular neoplasia.

    PubMed

    Borup, Rehannah; Rossing, Maria; Henao, Ricardo; Yamamoto, Yohei; Krogdahl, Annelise; Godballe, Christian; Winther, Ole; Kiss, Katalin; Christensen, Lise; Høgdall, Estrid; Bennedbaek, Finn; Nielsen, Finn Cilius

    2010-09-01

    The molecular pathways leading to thyroid follicular neoplasia are incompletely understood, and the diagnosis of follicular tumors is a clinical challenge. To provide leads to the pathogenesis and diagnosis of the tumors, we examined the global transcriptome signatures of follicular thyroid carcinoma (FC) and normofollicular adenoma (FA) as well as fetal/microFA (fetal adenoma). Carcinomas were strongly enriched in transcripts encoding proteins involved in DNA replication and mitosis corresponding to increased number of proliferating cells and depleted number of transcripts encoding factors involved in growth arrest and apoptosis. In the latter group, the combined loss of transcripts encoding the nuclear orphan receptors NR4A1 and NR4A3, which were recently shown to play a causal role in hematopoetic neoplasia, was noteworthy. The analysis of differentially expressed transcripts provided a mechanism for cancer progression, which is why we exploited the results in order to generate a molecular classifier that could identify 95% of all carcinomas. Validation employing public domain and cross-platform data demonstrated that the signature was robust and could diagnose follicular nodules originating from different geographical locations and platforms with similar accuracy. We came to the conclusion that down-regulation of factors involved in growth arrest and apoptosis may represent a decisive step in the pathogenesis of FC. Moreover, the described molecular pathways provide an accurate and robust genetic signature for the diagnosis of FA and FC. PMID:20668010

  6. Signature protein of the PVC superphylum.

    PubMed

    Lagkouvardos, Ilias; Jehl, Marc-André; Rattei, Thomas; Horn, Matthias

    2014-01-01

    The phyla Planctomycetes, Verrucomicrobia, Chlamydiae, Lentisphaerae, and "Candidatus Omnitrophica (OP3)" comprise bacteria that share an ancestor but show highly diverse biological and ecological features. Together, they constitute the PVC superphylum. Using large-scale comparative genome sequence analysis, we identified a protein uniquely shared among all of the known members of the PVC superphylum. We provide evidence that this signature protein is expressed by representative members of the PVC superphylum. Its predicted structure, physicochemical characteristics, and overexpression in Escherichia coli and gel retardation assays with purified signature protein suggest a housekeeping function with unspecific DNA/RNA binding activity. Phylogenetic analysis demonstrated that the signature protein is a suitable phylogenetic marker for members of the PVC superphylum, and the screening of published metagenome data indicated the existence of additional PVC members. This study provides further evidence of a common evolutionary history of the PVC superphylum and presents a unique case in which a single protein serves as an evolutionary link among otherwise highly diverse members of major bacterial groups.

  7. Measurement-device-independent quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  8. Multimedia event detection using visual concept signatures

    NASA Astrophysics Data System (ADS)

    Younessian, Ehsan; Quinn, Michael; Mitamura, Teruko; Hauptmann, Alex

    2013-03-01

    Multimedia Event Detection (MED) is a multimedia retrieval task with the goal of finding videos of a particular event in a large-scale Internet video archive, given example videos and text descriptions. In this paper, we mainly focus on an 'ad-hoc' scenario in MED where we do not use any example video. We aim to retrieve test videos based on their visual semantics using a Visual Concept Signature (VCS) generated for each event only derived from the event description provided as the query. Visual semantics are described using the Semantic INdexing (SIN) feature which represents the likelihood of predefined visual concepts in a video. To generate a VCS for an event, we project the given event description to a visual concept list using the proposed textual semantic similarity. Exploring SIN feature properties, we harmonize the generated visual concept signature and the SIN feature to improve retrieval performance. We conduct different experiments to assess the quality of generated visual concept signatures with respect to human expectation, and in the context of the MED task to retrieve the SIN feature of videos in the test dataset when we have no or only very few training videos.

  9. Active place recognition using image signatures

    NASA Astrophysics Data System (ADS)

    Engelson, Sean P.

    1992-11-01

    For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We previously described an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement functions over large blocks of pixels. One difficulty, though, is the large number of inherently ambiguous signatures which bloats the database and makes recognition more difficult. Furthermore, since small differences in orientation can produce very different images, reliable recognition requires many images. These problems can be ameliorated by using active methods to select the best signatures to use for the recognition. Two criteria for good images are distinctiveness (is the scene distinguishable from others?) and stability (how much do small viewpoint motions change image recognizability?). We formulate several heuristic distinctiveness metrics which are good predictors of real image distinctiveness. These functions are then used to direct the motion of the camera to find locally distinctive views for use in recognition. This method also produces some modicum of stability, since it uses a form of local optimization. We present the results of applying this method with a camera mounted on a pan-tilt platform.

  10. Lung Cancer Gene Signatures and Clinical Perspectives.

    PubMed

    Kuner, Ruprecht

    2013-01-01

    Microarrays have been used for more than two decades in preclinical research. The tumor transcriptional profiles were analyzed to select cancer-associated genes for in-deep functional characterization, to stratify tumor subgroups according to the histopathology or diverse clinical courses, and to assess biological and cellular functions behind these gene sets. In lung cancer-the main type of cancer causing mortality worldwide-biomarker research focuses on different objectives: the early diagnosis of curable tumor diseases, the stratification of patients with prognostic unfavorable operable tumors to assess the need for further therapy regimens, or the selection of patients for the most efficient therapies at early and late stages. In non-small cell lung cancer, gene and miRNA signatures are valuable to differentiate between the two main subtypes' squamous and non-squamous tumors, a discrimination which has further implications for therapeutic schemes. Further subclassification within adenocarcinoma and squamous cell carcinoma has been done to correlate histopathological phenotype with disease outcome. Those tumor subgroups were assigned by diverse transcriptional patterns including potential biomarkers and therapy targets for future diagnostic and clinical applications. In lung cancer, none of these signatures have entered clinical routine for testing so far. In this review, the status quo of lung cancer gene signatures in preclinical and clinical research will be presented in the context of future clinical perspectives.

  11. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    SciTech Connect

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A. E-mail: martinez@astro.unam.mx

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals were analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.

  12. Lung Cancer Gene Signatures and Clinical Perspectives

    PubMed Central

    Kuner, Ruprecht

    2013-01-01

    Microarrays have been used for more than two decades in preclinical research. The tumor transcriptional profiles were analyzed to select cancer-associated genes for in-deep functional characterization, to stratify tumor subgroups according to the histopathology or diverse clinical courses, and to assess biological and cellular functions behind these gene sets. In lung cancer—the main type of cancer causing mortality worldwide—biomarker research focuses on different objectives: the early diagnosis of curable tumor diseases, the stratification of patients with prognostic unfavorable operable tumors to assess the need for further therapy regimens, or the selection of patients for the most efficient therapies at early and late stages. In non-small cell lung cancer, gene and miRNA signatures are valuable to differentiate between the two main subtypes’ squamous and non-squamous tumors, a discrimination which has further implications for therapeutic schemes. Further subclassification within adenocarcinoma and squamous cell carcinoma has been done to correlate histopathological phenotype with disease outcome. Those tumor subgroups were assigned by diverse transcriptional patterns including potential biomarkers and therapy targets for future diagnostic and clinical applications. In lung cancer, none of these signatures have entered clinical routine for testing so far. In this review, the status quo of lung cancer gene signatures in preclinical and clinical research will be presented in the context of future clinical perspectives.

  13. Identity-Based Verifiably Encrypted Signatures without Random Oracles

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wu, Qianhong; Qin, Bo

    Fair exchange protocol plays an important role in electronic commerce in the case of exchanging digital contracts. Verifiably encrypted signatures provide an optimistic solution to these scenarios with an off-line trusted third party. In this paper, we propose an identity-based verifiably encrypted signature scheme. The scheme is non-interactive to generate verifiably encrypted signatures and the resulting encrypted signature consists of only four group elements. Based on the computational Diffie-Hellman assumption, our scheme is proven secure without using random oracles. To the best of our knowledge, this is the first identity-based verifiably encrypted signature scheme provably secure in the standard model.

  14. Progress in interpreting CO2 lidar signatures to obtain cirrus microphysical and optical properties

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    One cloud/radiation issue at FIRE 2 that has been addressed by the CO2 lidar team is the zenith-enhanced backscatter (ZEB) signature from oriented crystals. A second topic is narrow-beam optical depth measurements using CO2 lidar. This paper describes the theoretical models we have developed for these phenomena and the data-processing algorithms derived from them.

  15. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signatures of selection are regions in the genome that have been preferentially maintained because of their functional importance in specific processes. These regions can be detected because of their lower genetic variability and specific regional linkage disequilibrium patterns. The varLD methodol...

  16. Chili peppers: Challenges and advances in transitioning harvesting of New Mexico's signature crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New Mexico-type chile (Capsicum annuum L.), often referred to as ‘Anaheim’, is the signature crop of New Mexico. Both the red and green (fully sized, but physiologically immature) crops are celebrated in local cuisine, culture and art, and production and processing of chile is an integral contributo...

  17. Cryptanalysis of enhancement on "quantum blind signature based on two-state vector formalism"

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Wen-Min

    2014-05-01

    Recently, Yang et al. (Quantum Inf Process 12(1):109, 2013) proposed an enhanced quantum blind signature based on two-taste vector formalism. The protocol can prevent signatory Bob from deriving Alice's message with invisible photon eavesdropping attack or fake photon attack. In this paper, we show that the enhanced protocol also has a loophole that Alice can utilize an entanglement swapping attack to obtain Bob's secret key and forge Bob's valid signature at will later. Then, we reanalyze two existing protocols and try to find some further methods to fix them.

  18. Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions—An Overview

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Stolle, Claudia

    2016-09-01

    High-precision magnetic measurements taken by LEO satellites (flying at altitudes between 300 and 800 km) allow for studying the ionospheric and magnetospheric processes and electric currents that causes only weak magnetic signature of a few nanotesla during geomagnetic quiet conditions. Of particular importance for this endeavour are multipoint observations in space, such as provided by the Swarm satellite constellation mission, in order to better characterize the space-time-structure of the current systems. Focusing on geomagnetic quiet conditions, we provide an overview of ionospheric and magnetospheric sources and illustrate their magnetic signatures with Swarm satellite observations.

  19. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; Schuck, Peter; Uribe, Paulo; Yokoyama, Tatsuhiro

    2012-11-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfvén resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfvén wave propagation, and troposphere-ionosphere-magnetosphere coupling mechanisms.

  20. Fleet-Wide Prognostic and Health Management Suite: Asset Fault Signature Database

    SciTech Connect

    Vivek Agarwal; Nancy J. Lybeck; Randall Bickford; Richard Rusaw

    2015-06-01

    Proactive online monitoring in the nuclear industry is being explored using the Electric Power Research Institute’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. The FW-PHM Suite is a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. The FW-PHM Suite has four main modules: (1) Diagnostic Advisor, (2) Asset Fault Signature (AFS) Database, (3) Remaining Useful Life Advisor, and (4) Remaining Useful Life Database. The paper focuses on the AFS Database of the FW-PHM Suite, which is used to catalog asset fault signatures. A fault signature is a structured representation of the information that an expert would use to first detect and then verify the occurrence of a specific type of fault. The fault signatures developed to assess the health status of generator step-up transformers are described in the paper. The developed fault signatures capture this knowledge and implement it in a standardized approach, thereby streamlining the diagnostic and prognostic process. This will support the automation of proactive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  1. Modeling and Analysis of Scatterometry Signatures for Optical Critical Dimension Reference Material Applications

    NASA Astrophysics Data System (ADS)

    Patrick, Heather J.; Germer, Thomas A.; Cresswell, Michael W.; Allen, Richard A.; Dixson, Ronald G.; Bishop, Michael

    2007-09-01

    We use an optical critical dimension (OCD) technique, matching modeled to measured scatterometry signatures, to obtain critical dimension linewidth of lines in grating targets fabricated on SIMOX (separation by implantation of oxygen) substrates using the single-crystal critical dimension reference materials (SCCDRM) process. We first compare experimentally obtained reflectance signatures for areas of the unpatterned substrate with signatures modeled using Fresnel theory, and show that the buried oxide (BOX) layer of the SIMOX is not well described optically by a single homogeneous layer of SiO2, but can be so described if a mixed Si-SiO2 boundary layer is included between the Si wafer and the BOX layer. We then obtain linewidths from OCD measurements on a series of grating targets with a range of design linewidths and pitches, and show that the linewidth obtained from the OCD technique is linearly related to the linewidth obtained from scanning electron microscopy (SEM), with a slope near unity and zero offset. While these results are very promising, further work in improving the fit of the simulated signatures to the measured signatures for some of the targets, reducing the target line roughness, and analyzing the uncertainties for potential optical critical dimension reference materials, is anticipated.

  2. Molecular identification of vaginal fluid by microbial signature.

    PubMed

    Giampaoli, Saverio; Berti, Andrea; Valeriani, Federica; Gianfranceschi, Gianluca; Piccolella, Antonio; Buggiotti, Laura; Rapone, Cesare; Valentini, Alessio; Ripani, Luigi; Romano Spica, Vincenzo

    2012-09-01

    The discrimination of body fluids in forensic examinations can play an important role in crime scene reconstruction. Conventional methods rely on the detection of antigens or enzymatic activity, limiting detection sensitivity and specificity, particularly on old forensic samples. Methods based on human RNA analysis are not easily applicable to samples exposed to harsh and degrading environments. An alternative approach based on the identification of prokaryotic genomes was developed. Specific bacterial communities are characteristic typical of different human non-sterile body fluids: the molecular characterization of a microbial signature, and not the typing of single bacterial species, can effectively lead to univocal identification of these fluids. A multiplex real time PCR assay was developed using oligonucleotide mixtures targeting genomes specific for a selected group of bacteria. Microflora DNA (mfDNA) was extracted from vaginal, oral and fecal clinical swabs. In addition forensic samples were processed. Vaginal samples showed a strong specific signal for bacteria of the female genital tract. Oral samples clearly showed signal for bacteria present in saliva, and in fecal samples the main signal was from Enterococcaceae. Vaginal casework samples showed results comparable to freshly collected ones; moreover the DNA extracted was successfully used for STR typing. Also mixtures of body fluids were analyzed, providing a microbiological signature compatible with the presence of microbes of oral, fecal and vaginal origin. The presented method can be useful in identifying biological fluids, and it is based on DNA technologies already available in forensic laboratories and feasible for further high throughput automation. PMID:22364791

  3. Off-line signature recognition based on dynamic methods

    NASA Astrophysics Data System (ADS)

    Igarza, Juan J.; Hernaez, Inmaculada; Goirizelaia, Inaki; Espinosa, Koldo; Escolar, Jon

    2005-03-01

    In this paper we present the work developed on off-line signature verification as a continuation of a previous work using Left-to-Right Hidden Markov Models (LR-HMM) in order to extend those models to the field of static or off-line signature processing using results provided by image connectivity analysis. The chain encoding of perimeter points for each blob obtained by this analysis is an ordered set of points in the space, clockwise around the perimeter of the blob. Two models are generated depending on the way the blobs obtained from the connectivity analysis are ordered. In the first one, blobs are ordered according to their perimeter length. In the second proposal, blobs are ordered in their natural reading order, i.e. from the top to the bottom and left to right. Finally, two LR-HMM models are trained using the (x,y) coordinates of the chain codes obtained by the two mentioned techniques and a set of geometrical local features obtained from them such as polar coordinates referred to the center of ink, local radii, segment lengths and local tangent angle. Verification results of the two techniques are compared over a biometrical database containing skilled forgeries.

  4. Domain-Specific Languages for Composing Signature Discovery Workflows

    SciTech Connect

    Jacob, Ferosh; Gray, Jeff; Wynne, Adam S.; Liu, Yan; Baker, Nathan A.

    2012-10-23

    Domain-agnostic signature discovery entails investigation across multiple scientific disciplines. The breadth and cross-disciplinary nature of this work requires that existing executables be integrated with new capabilities into workflows, representing a wide range of user tasks. An algorithm may be written in multiple programming languages for various hardware platforms, and so workflow composition requires integrating executables from any number of remote hosts. This raises an engineering issue on how to generate web service wrappers for these heterogeneous executables and to compose them into a scientific workflow environment (e.g., Taverna). In this paper, we introduce two simple Domain-Specific Languages (DSLs) to automate these processes. Our Service Description Language (SDL) describes key elements of a signature discovery service and automatically generates its implementation code. The Workflow Description Language (WDL) describes the pipeline of services and generates deployable artifacts for the Taverna workflow management system. We demonstrate our approach with a real-world workflow composed of services wrapping remote executables.

  5. Frequency tagging yields an objective neural signature of Gestalt formation.

    PubMed

    Alp, Nihan; Kogo, Naoki; Van Belle, Goedele; Wagemans, Johan; Rossion, Bruno

    2016-04-01

    The human visual system integrates separate visual inputs into coherently organized percepts, going beyond the information given. A striking example is the perception of an illusory square when physically separated inducers are positioned and oriented in a square-like configuration (illusory condition). This illusory square disappears when the specific configuration is broken, for instance, by rotating each inducer (non-illusory condition). Here we used frequency tagging and electroencephalography (EEG) to identify an objective neural signature of the global integration required for illusory surface perception. Two diagonal inducers were contrast-modulated at different frequency rates f1 and f2, leading to EEG responses exactly at these frequencies over the occipital cortex. Most importantly, nonlinear intermodulation (IM) components (e.g., f1+f2) appeared in the frequency spectrum, and were much larger in response to the illusory square figure than the non-illusory control condition. Since the IMs reflect long-range interactions between the signals from the inducers, these data provide an objective (i.e., at a precise and predicted EEG frequency) signature of neural processes involved in the emergence of illusory surface perception. More generally, these findings help to establish EEG frequency-tagging as a highly valuable approach to investigate the underlying neural mechanisms of subjective Gestalt phenomena in an objective and quantitative manner, at the system level in humans.

  6. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect

    Gopalsami, N.

    1999-03-30

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  7. Thermal signatures of voluntary deception in ecological conditions

    PubMed Central

    Panasiti, Maria Serena; Cardone, Daniela; Pavone, Enea F.; Mancini, Alessandra; Merla, Arcangelo; Aglioti, Salvatore M.

    2016-01-01

    Deception is a pervasive phenomenon that greatly influences dyadic, groupal and societal interactions. Behavioural, physiological and neural signatures of this phenomenon have imporant implications for theoretical and applied research, but, because it is difficult for a laboratory to replicate the natural context in which deception occurs, contemporary research is still struggling to find such signatures. In this study, we tracked the facial temperature of participants who decided whether or not to deceive another person, in situations where their reputation was at risk or not. We used a high-sensitivity infrared device to track temperature changes to check for unique patterns of autonomic reactivity. Using a region-of-interest based approach we found that prior to any response there was a minimal increase in periorbital temperature (which indexes sympathetic activation, together with reduced cheek temperature) for the self-gain lies in the reputation-risk condition. Crucially, we found a rise in nose temperature (which indexes parasympathetic activation) for self-gain lies in the reputation-risk condition, not only during response preparation but also after the choice was made. This finding suggests that the entire deception process may be tracked by the nose region. Furthermore, this nasal temperature modulation was negatively correlated with machiavellian traits, indicating that sympathetic/parasympathetic regulation is less important for manipulative individuals who may care less about the consequences of lie-related moral violations. Our results highlight a unique pattern of autonomic reactivity for spontaneous deception in ecological contexts. PMID:27734927

  8. Exometabolom analysis of breast cancer cell lines: Metabolic signature

    PubMed Central

    Willmann, Lucas; Erbes, Thalia; Halbach, Sebastian; Brummer, Tilman; Jäger, Markus; Hirschfeld, Marc; Fehm, Tanja; Neubauer, Hans; Stickeler, Elmar; Kammerer, Bernd

    2015-01-01

    Cancer cells show characteristic effects on cellular turnover and DNA/RNA modifications leading to elevated levels of excreted modified nucleosides. We investigated the molecular signature of different subtypes of breast cancer cell lines and the breast epithelial cell line MCF-10A. Prepurification of cell culture supernatants was performed by cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. Samples were analyzed by application of reversed phase chromatography coupled to a triple quadrupole mass spectrometer. Collectively, we determined 23 compounds from RNA metabolism, two from purine metabolism, five from polyamine/methionine cycle, one from histidine metabolism and two from nicotinate and nicotinamide metabolism. We observed major differences of metabolite excretion pattern between the breast cancer cell lines and MCF-10A, just as well as between the different breast cancer cell lines themselves. Differences in metabolite excretion resulting from cancerous metabolism can be integrated into altered processes on the cellular level. Modified nucleosides have great potential as biomarkers in due consideration of the heterogeneity of breast cancer that is reflected by the different molecular subtypes of breast cancer. Our data suggests that the metabolic signature of breast cancer cell lines might be a more subtype-specific tool to predict breast cancer, rather than a universal approach. PMID:26293811

  9. Seismic signature analysis for discrimination of people from animals

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Mehmood, Asif; Sabatier, James M.

    2013-05-01

    Cadence analysis has been the main focus for discriminating between the seismic signatures of people and animals. However, cadence analysis fails when multiple targets are generating the signatures. We analyze the mechanism of human walking and the signature generated by a human walker, and compare it with the signature generated by a quadruped. We develop Fourier-based analysis to differentiate the human signatures from the animal signatures. We extract a set of basis vectors to represent the human and animal signatures using non-negative matrix factorization, and use them to separate and classify both the targets. Grazing animals such as deer, cows, etc., often produce sporadic signals as they move around from patch to patch of grass and one must characterize them so as to differentiate their signatures from signatures generated by a horse steadily walking along a path. These differences in the signatures are used in developing a robust algorithm to distinguish the signatures of animals from humans. The algorithm is tested on real data collected in a remote area.

  10. Signatures of quantum radiation reaction in laser-electron-beam collisions

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-09-15

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.

  11. Optimal compression and binarization of signature profiles for automated bullet identification systems

    NASA Astrophysics Data System (ADS)

    Chu, Wei; Song, John; Vorburger, Theodore; Thompson, Robert; Renegar, Thomas; Silver, Richard

    2010-06-01

    In some automated bullet identification systems, the similarity of striation marks between different bullets is measured using the cross correlation function of the compressed signature profile extracted from a land impression. Inclusion of invalid areas weakly striated by barrel features may lead to sub-optimal extraction of the signature profile and subsequent deterioration of correlation results. In this paper, a method for locating striation marks and selecting valid correlation areas based on an edge detection technique is proposed for the optimal extraction of the compressed signature profiles. Experimental results from correlating 48 bullets fired from 12 gun barrels of 6 manufacturers have demonstrated a higher correct matching rate than the previous study results without correlation area selection processing. Furthermore, an attempt to convert a traditional profile with multiple z-quantization (or gray scale) levels into a binary profile is made for the purpose of reducing storage space and increasing correlation speed.

  12. A framework for mining signatures from event sequences and its applications in healthcare data.

    PubMed

    Wang, Fei; Lee, Noah; Hu, Jianying; Sun, Jimeng; Ebadollahi, Shahram; Laine, Andrew F

    2013-02-01

    This paper proposes a novel temporal knowledge representation and learning framework to perform large-scale temporal signature mining of longitudinal heterogeneous event data. The framework enables the representation, extraction, and mining of high-order latent event structure and relationships within single and multiple event sequences. The proposed knowledge representation maps the heterogeneous event sequences to a geometric image by encoding events as a structured spatial-temporal shape process. We present a doubly constrained convolutional sparse coding framework that learns interpretable and shift-invariant latent temporal event signatures. We show how to cope with the sparsity in the data as well as in the latent factor model by inducing a double sparsity constraint on the β-divergence to learn an overcomplete sparse latent factor model. A novel stochastic optimization scheme performs large-scale incremental learning of group-specific temporal event signatures. We validate the framework on synthetic data and on an electronic health record dataset.

  13. Signature Based Detection of User Events for Post-mortem Forensic Analysis

    NASA Astrophysics Data System (ADS)

    James, Joshua Isaac; Gladyshev, Pavel; Zhu, Yuandong

    This paper introduces a novel approach to user event reconstruction by showing the practicality of generating and implementing signature-based analysis methods to reconstruct high-level user actions from a collection of low-level traces found during a post-mortem forensic analysis of a system. Traditional forensic analysis and the inferences an investigator normally makes when given digital evidence, are examined. It is then demonstrated that this natural process of inferring high-level events from low-level traces may be encoded using signature-matching techniques. Simple signatures using the defined method are created and applied for three popular Windows-based programs as a proof of concept.

  14. P-wave signatures and parameterization of transversely isotropic media: An overview

    SciTech Connect

    Tsvankin, I.

    1994-07-01

    Progress in seismic inversion and processing in anisotropic media depends on our ability to relate different seismic signatures to the anisotropic parameters. While the conventional notation (stiffness coefficients) is suitable for forward modeling, it is inconvenient in developing analytic insight into the influence of anisotropy on wave propagation. The author gives a consistent description of P-wave signatures in transversely isotropic media with arbitrary strength of the anisotropy, using the notation suggested by Thomsen (1986). The influence of transverse isotropy on P-wave propagation is shown to be practically independent of the vertical S-wave velocity V{sub S0}, even in models with strong velocity variations. Therefore, the contribution of transverse isotropy to P-wave kinematic and dynamic signatures is controlled by just two anisotropic parameters, {epsilon} and {delta}, with the vertical velocity V{sub P0} being no more than a scaling coefficient in homogeneous models.

  15. Statistical Signature of Deep-seated Landslides

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Foufoula-Georgiou, E.; Belmont, P.; Mackey, B. H.; Fuller, T. K.

    2014-12-01

    We investigate the statistical signature of deep-seated landslides using basin wide topographic data and flowpath arrangement and explore the extent to which these globally derived signatures can be used to locally map landslides. We used directed distance from the divide, which accounts for the distance traveled along flowpaths starting from significant ridgelines, as a scale parameter and demonstrate that local slope vs. directed distance and curvature vs. local slope offer powerful means for identifying the presence of landslides in a landscape. By exploring a threshold on the probability distribution of local slopes conditional on directed distance we show that mapping of landslide features is possible. We apply the methodology to three 0.5 to 2.5 km2 watersheds in northern California and document three regions of distinct geomorphic signatures [Gangodagamage et al., 2011, http://dx.doi.org/10.1029/2010WR009252]. In region A, hillslope gradient increases with distance from the divide and flowpaths are divergent or parallel. Region B corresponds to the zone with highly convergent flowpaths and exhibits the strongest signal of landslide related features. Region C is a moderately convergent zone that transitions into the fluvial channel network. Next, we use specific quantiles of the probability density function of local slopes conditioned on directed distance from the divide to map individual landslide features. This analysis allows us to explore the 3D morphometry of the landslide affected basins and to develop a supervised set of ensemble templates for landslides as a function of local slope vs. directed distance (DD) relationship. Then we use this template and demonstrate that the landslide affected basins can be identified by iterative matching the landslide signature template with the basin wide signatures of the tributary basins in the South Fork Eel River, CA. Finally, we perform a multiscale analysis of the contributing area parameterized by directed

  16. A Secure and Efficient Threshold Group Signature Scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Yansheng; Wang, Xueming; Qiu, Gege

    The paper presents a secure and efficient threshold group signature scheme aiming at two problems of current threshold group signature schemes: conspiracy attack and inefficiency. Scheme proposed in this paper takes strategy of separating designed clerk who is responsible for collecting and authenticating each individual signature from group, the designed clerk don't participate in distribution of group secret key and has his own public key and private key, designed clerk needs to sign part information of threshold group signature after collecting signatures. Thus verifier has to verify signature of the group after validating signature of the designed clerk. This scheme is proved to be secure against conspiracy attack at last and is more efficient by comparing with other schemes.

  17. An individuality model for online signatures using global Fourier descriptors

    NASA Astrophysics Data System (ADS)

    Kholmatov, Alisher; Yanikoglu, Berrin

    2008-03-01

    The discriminative capability of a biometric is based on its individuality/uniqueness and is an important factor in choosing a biometric for a large-scale deployment. Individuality studies have been carried out rigorously for only certain biometrics, in particular fingerprint and iris, while work on establishing handwriting and signature individuality has been mainly on feature level. In this study, we present a preliminary individuality model for online signatures using the Fourier domain representation of the signature. Using the normalized Fourier coefficients as global features describing the signature, we derive a formula for the probability of coincidentally matching a given signature. Estimating model parameters from a large database and making certain simplifying assumptions, the probability of two arbitrary signatures to match in 13 of the coefficients is calculated as 4.7x10 -4. When compared with the results of a verification algorithm that parallels the theoretical model, the results show that the theoretical model fits the random forgery test results fairly well. While online signatures are sometimes dismissed as not very secure, our results show that the probability of successfully guessing an online signature is very low. Combined with the fact that signature is a behavioral biometric with adjustable complexity, these results support the use of online signatures for biometric authentication.

  18. Identification of host response signatures of infection.

    SciTech Connect

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to the pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for

  19. Geophysical Signatures of Adjoining Lithospheric Domains

    NASA Astrophysics Data System (ADS)

    Gradmann, S.; Kaiser, J.

    2014-12-01

    Lithospheres of different age have distinctly different characteristics regarding their composition, thermal and density structure. Major differences exist between cratons and the Phanerozoic domains and mobile belts. We here investigate how the lateral transition from one lithospheric domain to another is reflected in the geophysical signatures, the seismic velocities, gravity, topography and geoid. We combine geophysical-petrological forward modeling with a comparison to worldwide occurrences of adjoining lithospheric domains. Three distinctly different mantle types (Archean, Proterozoic, Phanerozoic) are used to calculate the geophysical signatures of a range of possible lateral transition zones. The mantle types are characterized by their different elemental composition, from which stable mineral phases and bulk physical properties are derived. Usually, older SCLM (sub-lithospheric mantle) is more depleted in heavier minerals and thereby lighter, but this effect is mainly counterbalanced by the increased density caused by long-term thermal cooling. At the edges of cratons, changes in the thermal structure affect this balance. A range of models is tested for the effects of lateral variations in the crustal and SCLM structure (thickness, smoothness of thickness changes) and mantle compositions. Abrupt changes in composition and lithosphere thickness generally cause distinct topographic lows or ridges. In the real world, these may be offset by respective adjustments in Moho depth, crustal structure or sediment infill. Gradual variations in lithosphere thickness, however, only show minor geophysical signatures. A possible expression of adjoining lithospheric domains is the Scandinavian Mountain Belt in Norway at the edge of Proterozoic Baltica. Although many of the present-day topographic features are unlikely to have existed since the Precambrian, the evolution of the cratons (rejuvenation of the craton edges) may have assisted in shaping the present

  20. Distinctive genetic signatures in the Libyan Jews

    PubMed Central

    Rosenberg, Noah A.; Woolf, Eilon; Pritchard, Jonathan K.; Schaap, Tamar; Gefel, Dov; Shpirer, Isaac; Lavi, Uri; Bonné-Tamir, Batsheva; Hillel, Jossi; Feldman, Marcus W.

    2001-01-01

    Unlinked autosomal microsatellites in six Jewish and two non-Jewish populations were genotyped, and the relationships among these populations were explored. Based on considerations of clustering, pairwise population differentiation, and genetic distance, we found that the Libyan Jewish group retains genetic signatures distinguishable from those of the other populations, in agreement with some historical records on the relative isolation of this community. Our methods also identified evidence of some similarity between Ethiopian and Yemenite Jews, reflecting possible migration in the Red Sea region. We suggest that high-resolution statistical methods that use individual multilocus genotypes may make it practical to distinguish related populations of extremely recent common ancestry. PMID:11158561

  1. Oil pollution signatures by remote sensing.

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.; Mclean, J. T.

    1972-01-01

    Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.

  2. Transforming human gait for signature signals characterization

    NASA Astrophysics Data System (ADS)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    An integrated wireless inductive sensor is reported based on a system for monitoring human movement and body size. The proposed system senses the presence of human beings using electromagnetic field by making use of basic inductive coupling approach, hence analysing the performance of human monitoring. The amalgamation of the integrated system proposed will help in providing better services to the elderly people resided in healthcare centres. The developed sensing system is of low cost, flexible, robust, and easily implantable and capable of inductive sensing through marking signature waveforms as a result of human movements.

  3. Signatures for quark clustering in nuclei

    SciTech Connect

    Carlson, C.E.; Lassila, K.E.

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  4. Fractal signatures in the aperiodic Fibonacci grating.

    PubMed

    Verma, Rupesh; Banerjee, Varsha; Senthilkumaran, Paramasivam

    2014-05-01

    The Fibonacci grating (FbG) is an archetypal example of aperiodicity and self-similarity. While aperiodicity distinguishes it from a fractal, self-similarity identifies it with a fractal. Our paper investigates the outcome of these complementary features on the FbG diffraction profile (FbGDP). We find that the FbGDP has unique characteristics (e.g., no reduction in intensity with increasing generations), in addition to fractal signatures (e.g., a non-integer fractal dimension). These make the Fibonacci architecture potentially useful in image forming devices and other emerging technologies. PMID:24784044

  5. Signatures of human NK cell development and terminal differentiation.

    PubMed

    Luetke-Eversloh, Merlin; Killig, Monica; Romagnani, Chiara

    2013-01-01

    Natural killer (NK) cells are part of the innate lymphoid cell (ILC) family and represent the main cytotoxic population. NK cells develop from bone marrow common lymphoid progenitors and undergo terminal differentiation in the periphery, where they finally gain their cytotoxic competence as well as the ability to produce IFN-γ in response to engagement of activating receptors. This process has been at least partially elucidated and several markers have been identified to discriminate different NK cell stages and other ILC populations. NK cell terminal differentiation is not only associated with progressive phenotypic changes but also with defined effector signatures. In this essay, we will describe the phenotypic and functional characteristics of the main stages of NK cell development and terminal differentiation and discuss them in light of recent discoveries of novel ILC populations.

  6. Signatures of Human NK Cell Development and Terminal Differentiation

    PubMed Central

    Luetke-Eversloh, Merlin; Killig, Monica; Romagnani, Chiara

    2013-01-01

    Natural killer (NK) cells are part of the innate lymphoid cell (ILC) family and represent the main cytotoxic population. NK cells develop from bone marrow common lymphoid progenitors and undergo terminal differentiation in the periphery, where they finally gain their cytotoxic competence as well as the ability to produce IFN-γ in response to engagement of activating receptors. This process has been at least partially elucidated and several markers have been identified to discriminate different NK cell stages and other ILC populations. NK cell terminal differentiation is not only associated with progressive phenotypic changes but also with defined effector signatures. In this essay, we will describe the phenotypic and functional characteristics of the main stages of NK cell development and terminal differentiation and discuss them in light of recent discoveries of novel ILC populations. PMID:24416035

  7. Role of fermion exchanges in statistical signatures of composite bosons

    NASA Astrophysics Data System (ADS)

    Combescot, M.; Dubin, F.; Dupertuis, M. A.

    2009-07-01

    We study statistical signatures of composite bosons made of two fermions by extending number states to these quantum particles. Two-particle correlations as well as the dispersion of the probability distribution are analyzed. We show that the particle composite nature reduces the antibunching effect predicted for elementary bosons. Furthermore, the probability distribution exhibits a dispersion that is greater for composite bosons than for elementary bosons. This dispersion corresponds to the one of sub-Poissonian processes, as for a quantum state but, unlike its elementary boson counterpart, it is not minimum. In general, our work shows that it is necessary to take into account the Pauli exclusion principle, which acts between fermionic components of composite bosons—along the line used here—to possibly extract statistical properties in a precise way.

  8. Toward a hyperspectral optical signature of extra virgin olive oil

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Thienpont, H.; Ottevaere, H.; Attilio, C.; Cimato, A.

    2007-05-01

    Italian extra virgin olive oils bearing labels of certified area of origin were considered. Their multispectral digital signature was measured by means of absorption spectroscopy in the 200-1700 nm spectral range. The instrumentation was a fiber optic-based, cheap, and compact device. The spectral data were processed by means of multivariate analysis and plotted on a 2D classification map. The map showed sharp clusters according to the geographical origin of the oils, thus demonstrating the potentials of UV-VIS-NIR spectroscopy for optical fingerprinting. Then, the spectral data were correlated to the content of the most important fatty acids. The good fitting achieved demonstrated that the optical fingerprinting can be used also for predicting nutritional and chemical parameters.

  9. New Suns in the Cosmos. III. Multifractal Signature Analysis

    NASA Astrophysics Data System (ADS)

    de Freitas, D. B.; Nepomuceno, M. M. F.; de Moraes Junior, P. R. V.; Lopes, C. E. F.; Das Chagas, M. L.; Bravo, J. P.; Costa, A. D.; Canto Martins, B. L.; De Medeiros, J. R.; Leão, I. C.

    2016-11-01

    In the present paper, we investigate the multifractality signatures in hourly time series extracted from the CoRoTspacecraft database. Our analysis is intended to highlight the possibility that astrophysical time series can be members of a particular class of complex and dynamic processes, which require several photometric variability diagnostics to characterize their structural and topological properties. To achieve this goal, we search for contributions due to a nonlinear temporal correlation and effects caused by heavier tails than the Gaussian distribution, using a detrending moving average algorithm for one-dimensional multifractal signals (MFDMA). We observe that the correlation structure is the main source of multifractality, while heavy-tailed distribution plays a minor role in generating the multifractal effects. Our work also reveals that the rotation period of stars is inherently scaled by the degree of multifractality. As a result, analyzing the multifractal degree of the referred series, we uncover an evolution of multifractality from shorter to larger periods.

  10. Microbial community signature of high-solid content methanogenic ecosystems.

    PubMed

    Abbassi-Guendouz, Amel; Trably, Eric; Hamelin, Jérôme; Dumas, Claire; Steyer, Jean Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2013-04-01

    In this study, changes in bacterial and archaeal communities involved in anaerobic digestion processes operated with high solid contents were investigated. Batch tests were performed within a range of total solids (TS) of 10-35%. Between 10% and 25% TS, high methanogenic activity was observed and no overall specific structure of active bacterial communities was found. At 30% and 35%, methanogenesis was inhibited as a consequence of volatile fatty acids accumulation. Here, a specific bacterial signature was observed with three main dominant bacteria related to Clostridium sp., known for their ability to grow at low pH. Additionally, archaeal community was gradually impacted by TS content. Three archaeal community structures were observed with a gradual shift from Methanobacterium sp. to Methanosarcina sp., according to the TS content. Overall, several species were identified as biomarkers of methanogenesis inhibition, since bacterial and archaeal communities were highly specific at high TS contents.

  11. Detecting signatures of selection from DNA sequences using Datamonkey.

    PubMed

    Poon, Art F Y; Frost, Simon D W; Pond, Sergei L Kosakovsky

    2009-01-01

    Natural selection is a fundamental process affecting all evolving populations. In the simplest case, positive selection increases the frequency of alleles that confer a fitness advantage relative to the rest of the population, or increases its genetic diversity, and negative selection removes those alleles that are deleterious. Codon-based models of molecular evolution are able to infer signatures of selection from alignments of homologous sequences by estimating the relative rates of synonymous (dS) and non-synonymous substitutions (dN). Datamonkey (http://www.datamonkey.org) provides a user-friendly web interface to a wide collection of state-of-the-art statistical techniques for estimating dS and dN and identifying codons and lineages under selection, even in the presence of recombinant sequences.

  12. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing

    PubMed Central

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis. PMID:26884678

  13. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.

    PubMed

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis.

  14. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions

    PubMed Central

    Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  15. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.

    PubMed

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis. PMID:26884678

  16. Multi-study Integration of Brain Cancer Transcriptomes Reveals Organ-Level Molecular Signatures

    PubMed Central

    Sung, Jaeyun; Kim, Pan-Jun; Ma, Shuyi; Funk, Cory C.; Magis, Andrew T.; Wang, Yuliang; Hood, Leroy; Geman, Donald; Price, Nathan D.

    2013-01-01

    We utilized abundant transcriptomic data for the primary classes of brain cancers to study the feasibility of separating all of these diseases simultaneously based on molecular data alone. These signatures were based on a new method reported herein – Identification of Structured Signatures and Classifiers (ISSAC) – that resulted in a brain cancer marker panel of 44 unique genes. Many of these genes have established relevance to the brain cancers examined herein, with others having known roles in cancer biology. Analyses on large-scale data from multiple sources must deal with significant challenges associated with heterogeneity between different published studies, for it was observed that the variation among individual studies often had a larger effect on the transcriptome than did phenotype differences, as is typical. For this reason, we restricted ourselves to studying only cases where we had at least two independent studies performed for each phenotype, and also reprocessed all the raw data from the studies using a unified pre-processing pipeline. We found that learning signatures across multiple datasets greatly enhanced reproducibility and accuracy in predictive performance on truly independent validation sets, even when keeping the size of the training set the same. This was most likely due to the meta-signature encompassing more of the heterogeneity across different sources and conditions, while amplifying signal from the repeated global characteristics of the phenotype. When molecular signatures of brain cancers were constructed from all currently available microarray data, 90% phenotype prediction accuracy, or the accuracy of identifying a particular brain cancer from the background of all phenotypes, was found. Looking forward, we discuss our approach in the context of the eventual development of organ-specific molecular signatures from peripheral fluids such as the blood. PMID:23935471

  17. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2014-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its isotopic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars's history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  18. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Kass, David M.; Ehlmann, Bethany L.; Yung, Yuk

    2014-11-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars’s atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its iso-topic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospher-ic pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars’s atmosphere, recent orbiter, lander, and rover measurements of Mars’s surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a frac-tionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars’s atmos-phere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars’s history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  19. Persistence of virus lipid signatures upon silicification

    NASA Astrophysics Data System (ADS)

    Kyle, J.; Jahnke, L. L.; Stedman, K. M.

    2011-12-01

    To date there is no known evidence of viruses within the rock record. Their small size and absence of a metabolism has led to the hypothesis that they lack unique biological signatures, and the potential to become preserved. Biosignature research relevant to early Earth has focused on prokaryotic communities; however, the most abundant member of modern ecosystems, viruses, have been ignored. In order to establish a baseline for research on virus biosignatures, we have initiated laboratory research on known lipid-containing viruses. PRD1 is a lipid-containing virus that infects and replicates in Salmonella typhimurium LT2. PRD1 is a 65 nm spherical virus with an internal lipid membrane, which is a few nanometers thick. When the PRD1 virus stock was mixed with a 400 ppm SiO2 (final concentration) solution and incubated for six months. Fourier Transform Infrared Spectroscopy and lipid analysis using gas chromatography revealed that the virus lipids were still detectable despite complete removal of dissolved silica. Free fatty acids were also detected. Titers of infectious PRD1 viruses after six months in the presence of silica decreased 40 times more than without silica. Though virus biosignature research is in its incipient stages, the data suggest that virus lipid signatures are preserved under laboratory conditions and may offer the potential for contribution to the organic geochemical record.

  20. Theoretical Characterizaiton of Visual Signatures (Muzzle Flash)

    NASA Astrophysics Data System (ADS)

    Kashinski, D. O.; Scales, A. N.; Vanderley, D. L.; Chase, G. M.; di Nallo, O. E.; Byrd, E. F. C.

    2014-05-01

    We are investigating the accuracy of theoretical models used to predict the visible, ultraviolet and infrared spectra of product materials ejected from the muzzle of currently fielded systems. Recent advances in solid propellants has made the management of muzzle signature (flash) a principle issue in weapons development across the calibers. A priori prediction of the electromagnetic spectra of formulations will allow researchers to tailor blends that yield desired signatures and determine spectrographic detection ranges. We are currently employing quantum chemistry methods at various levels of sophistication to optimize molecular geometries, compute vibrational frequencies, and determine the optical spectra of specific gas-phase molecules and radicals of interest. Electronic excitations are being computed using Time Dependent Density Functional Theory (TD-DFT). A comparison of computational results to experimental values found in the literature is used to assess the affect of basis set and functional choice on calculation accuracy. The current status of this work will be presented at the conference. Work supported by the ARL, and USMA.