Science.gov

Sample records for idp signature processing

  1. NPOESS Interface Data Processing Segment (IDPS) Hardware

    NASA Astrophysics Data System (ADS)

    Sullivan, W. J.; Grant, K. D.; Bergeron, C.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. IDPS processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. IDPS will process environmental data products beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Within the overall NPOESS processing environment, the IDPS must process a data volume several orders of magnitude the size of current systems -- in one-quarter of the time. Further, it must support the calibration, validation, and data quality improvement initiatives of the NPOESS program to ensure the production of atmospheric and environmental products that meet strict requirements for accuracy and precision. This poster will illustrate and describe the IDPS HW architecture that is necessary to meet these challenging design requirements. In addition, it will illustrate the expandability features of the architecture in support of future data processing and data distribution needs.

  2. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  3. IDP: Image and data processing (software) in C++

    SciTech Connect

    Lehman, S.

    1994-11-15

    IDP++(Image and Data Processing in C++) is a complied, multidimensional, multi-data type, signal processing environment written in C++. It is being developed within the Radar Ocean Imaging group and is intended as a partial replacement for View. IDP++ takes advantage of the latest object-oriented compiler technology to provide `information hiding.` Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is being designed for real-time environment where interpreted signal processing packages are less efficient.

  4. IDP++: signal and image processing algorithms in C++ version 4.1

    SciTech Connect

    Lehman, S.K.

    1996-11-01

    IDP++ (Image and Data Processing in C++) is a collection of signal and image processing algorithms written in C++. It is a compiled signal processing environment which supports four data types of up to four dimensions. It is developed within Lawrence Livermore National Laboratory`s Image and Data Processing group as a partial replacement for View. IDP ++ takes advantage of the latest, implemented and actually working, object-oriented compiler technology to provide `information hiding.` Users need only know C, not C++. Signals are treated like any other variable with a defined set of operators and functions in an intuitive manner. IDP++ is designed for real-time environment where interpreted processing packages are less efficient. IDP++ exists for both SUNs and Silicon Graphics using their most current compilers.

  5. NPOESS IDPS

    NASA Astrophysics Data System (ADS)

    Mulligan, J.; Ripley, M.

    2009-12-01

    NPOESS, the National Polar-orbiting Operational Environmental Satellite System, represents the U.S., next generation, polar-orbiting, Low-Earth-Orbit [LEO] satellite constellation and end-to-end system for environmental remote sensing. The NPOESS program is comprised of the spacecraft, instruments and sensors on the spacecraft, the command, control and communications infrastructure, data processing software and hardware, and launch support capabilities. The NPOESS program also includes the NPOESS Preparatory Project (NPP), a risk reduction mission managed jointly by the NPOESS Integrated Program Office (IPO) and NASA. It provides an opportunity for NPOESS to demonstrate and validate new sensors, algorithms, and operational processing capabilities, and to test many components of the system prior to the first NPOESS flight. NPP also provides continuity between the current Earth Observing System (EOS) and NPOESS for select remotely sensed data that support global climate studies and research. The NPOESS Ground System will provide data to the DoD and DOC weather Centrals (the Air Force Weather Agency (AFWA), the Fleet Numerical Meteorology and Oceanography Center (FNMOC), the Naval Oceanographic Office (NAVOCEANO) and the National Environmental Satellite, Data, and Information Service (NESDIS)) in unprecedented latency. All Interface Data Processing Segment (IDPS) installations consist of the hardware and software necessary to receive and process raw satellite data into Environmental Data Records (EDRs). An architecture with an IDP at each of the four Centrals, each capable of generating all the products, was derived after studying the communications cost to transmit the products from a centralized location. Additionally, the data products will be provided to NOAA’s Comprehensive Large-Array data Stewardship System (CLASS) for distribution to the broader scientific user community.

  6. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin?

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Messenger, S.; Keller, L. P.

    2005-01-01

    Chondritic interplanetary dust particles (IDPs) are subdivided into (1) particles that form highly porous aggregates (chondritic porous "CP" IDPs), and (2) smooth particles ("CS" IDPs). Infrared (IR) spectroscopy has been a valuable tool for non-destructively determining the bulk mineralogy of IDPs. Most IDPs fall within three distinct IR groups: (1) olivine-rich particles, (2) pyroxene-rich particles, and (3) phyllosilicate-rich particles. From the IR studies, IDPs dominated by anhydrous minerals tend to be fine grained (CP), while phyllosilicate-rich IDPs are mostly CS. CP IDPs have been linked to cometary sources based on their compositions, spectral properties, and atmospheric entry velocities. Since no spectral signatures of hydrated minerals have been detected in comets, CS IDPs are thought to derive from primitive asteroids. Transmission electron microscopy (TEM) studies have revealed that the mineralogical distinctions between CP and CS IDPs are not always clear. Previous investigators have reported trace amounts of hydrous minerals in dominantly anhydrous particles. A better understanding of these particles will help to elucidate whether there is a genetic relationship between anhydrous and hydrated IDPs, provide insight into the earliest stages of aqueous alteration of primitive materials, and may help to determine whether comets have experienced any aqueous processing. Here we report a combined TEM and isotopic imaging study of an unusual anhydrous IDP with hydrated phases. Additional information is included in the original extended abstract.

  7. Continued Studies of Stardust in IDPs

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Walker, R. M.

    2003-01-01

    We recently reported the first identification of stardust in IDPs. Here we present the results of a detailed analysis of the original and subsequent O isotopic studies of anhydrous cluster IDPs. Anhydrous cluster IDPs were selected because they have preserved molecular cloud material, as evidenced by large enrichments in deuterium. Further, they have escaped aqueous and thermal processing, which could destroy or modify their mineralogy.

  8. Nonlinear image filtering within IDP++

    SciTech Connect

    Lehman, S.K.; Wieting, M.G.; Brase, J.M.

    1995-02-09

    IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

  9. IDPs and Stardust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Walker, Robert M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere and NASA Stardust mission samples constitute direct samples of diverse cometary bodies. These materials are among the least altered remnants of the original building blocks of the Solar System. Both cometary materials and primitive meteorites contain a broad diversity of organic compounds that appear to have formed in a range of environments, including the presolar cold molecular cloud, the solar nebula, asteroids and comet nuclei. Isotopic anomalies in H, C, and N are commonly observed in meteoritic organic matter, reflecting chemical processes at extremely low temperatures. These isotopic anomalies are also very heterogeneous on micrometer and even smaller spatial scales, suggesting that some presolar organic grains have survived the formation of the Solar System. Most recently, coordinated transmission electron microscopy and isotopic imaging studies have shown that isotopically anomalous organic globules having rounded and often hollow structures are abundant and widespread amongst the most primitive components of meteoritic materials. These studies suggest that such organic grains were among the most important primary building blocks of the Solar System.

  10. IDPs at Work

    ERIC Educational Resources Information Center

    Hirsh, Åsa

    2015-01-01

    The present study concerns Swedish teachers' practices with regard to individual development plans (IDPs), which are mandatory for all students in compulsory school. The conceptual points of departure are taken from Wartofsky's distinctions between primary, secondary, and tertiary artifacts and the concepts of inscription and translation. A total…

  11. Research towards a systematic signature discovery process

    SciTech Connect

    Baker, Nathan A.; Barr, Jonathan L.; Bonheyo, George T.; Joslyn, Cliff A.; Krishnaswami, Kannan; Oxley, Mark; Quadrel, Richard W.; Sego, Landon H.; Tardiff, Mark F.; Wynne, Adam S.

    2013-06-04

    In its most general form, a signature is a unique or distinguishing measurement, pattern, or collection of data that identifies a phenomenon (object, action, or behavior) of interest. The discovery of signatures is an important aspect of a wide range of disciplines from basic science to national security for the rapid and efficient detection and/or prediction of phenomena. Current practice in signature discovery is typically accomplished by asking domain experts to characterize and/or model individual phenomena to identify what might compose a useful signature. What is lacking is an approach that can be applied across a broad spectrum of domains and information sources to efficiently and robustly construct candidate signatures, validate their reliability, measure their quality, and overcome the challenge of detection -- all in the face of dynamic conditions, measurement obfuscation and noisy data environments. Our research has focused on the identification of common elements of signature discovery across application domains and the synthesis of those elements into a systematic process for more robust and efficient signature development. In this way, a systematic signature discovery process lays the groundwork for leveraging knowledge obtained from signatures to a particular domain or problem area, and, more generally, to problems outside that domain. This paper presents the initial results of this research by discussing a mathematical framework for representing signatures and placing that framework in the context of a systematic signature discovery process. Additionally, the basic steps of this process are described with details about the methods available to support the different stages of signature discovery, development, and deployment.

  12. Signatures of mutational processes in human cancer

    PubMed Central

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Aparicio, Samuel A.J.R.; Behjati, Sam; Biankin, Andrew V.; Bignell, Graham R.; Bolli, Niccolo; Borg, Ake; Børresen-Dale, Anne-Lise; Boyault, Sandrine; Burkhardt, Birgit; Butler, Adam P.; Caldas, Carlos; Davies, Helen R.; Desmedt, Christine; Eils, Roland; Eyfjörd, Jórunn Erla; Foekens, John A.; Greaves, Mel; Hosoda, Fumie; Hutter, Barbara; Ilicic, Tomislav; Imbeaud, Sandrine; Imielinsk, Marcin; Jäger, Natalie; Jones, David T.W.; Jones, David; Knappskog, Stian; Kool, Marcel; Lakhani, Sunil R.; López-Otín, Carlos; Martin, Sancha; Munshi, Nikhil C.; Nakamura, Hiromi; Northcott, Paul A.; Pajic, Marina; Papaemmanuil, Elli; Paradiso, Angelo; Pearson, John V.; Puente, Xose S.; Raine, Keiran; Ramakrishna, Manasa; Richardson, Andrea L.; Richter, Julia; Rosenstiel, Philip; Schlesner, Matthias; Schumacher, Ton N.; Span, Paul N.; Teague, Jon W.; Totoki, Yasushi; Tutt, Andrew N.J.; Valdés-Mas, Rafael; van Buuren, Marit M.; van ’t Veer, Laura; Vincent-Salomon, Anne; Waddell, Nicola; Yates, Lucy R.; Zucman-Rossi, Jessica; Futreal, P. Andrew; McDermott, Ultan; Lichter, Peter; Meyerson, Matthew; Grimmond, Sean M.; Siebert, Reiner; Campo, Elías; Shibata, Tatsuhiro; Pfister, Stefan M.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy. PMID:23945592

  13. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

  14. Changes in IDP mineralogy and composition by terrestrial factors

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    Major objectives in the study of interplanetary dust particles (IDP's) are to constrain the physical and chemical conditions in the early solar system, to characterize the particles making up the zodiacal cloud, and to infer the physical, chemical, mineralogical, and isotopic properties of IDP parent bodies: the comets and the asteroids. However, the effects of terrestrial interactions alter the properties of some IDP's from those of the zodiacal cloud particles. The interactions can be separated into four distinct phases: near-earth gravitational segregation, atmospheric entry deceleration, stratospheric residence, and the collection/curation process.

  15. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  16. Elemental Composition of Primitive Anhydrous IDPs

    NASA Astrophysics Data System (ADS)

    Flynn, G.; Wirick, S.; Sutton, S. R.; Lanzirotti, A.

    2015-10-01

    We measured elemental compositions of five large anhydrous cluster interplanetary dust particles (IDPs) that show no evidence of significant thermal alteration during atmospheric entry and found their mean composition to be very similar to that of primitive CI meteorites. Our results indicate that the enrichment in moderately volatile elements and the depletion in S found in the ~10 μm anhydrous, chondritic porous (CP) IDPs, the matrix of these cluster IDPs, are not representative of the composition of their parent body. The inclusion of larger (>10 μm) volatile-poor silicates as well as sulfides in the large anhydrous cluster IDPs, which sample the CP IDP parent body at a larger size scale, suggests the large cluster IDPs are unbiased samples of the condensable material of the Solar Nebula.

  17. Extracellular Signatures as Indicators of Processing Methods

    SciTech Connect

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  18. Chemical compositions of large cluster IDPs

    SciTech Connect

    Flynn, G.J.; Lanzirotti, A.; Sutton, S.R.

    2006-12-06

    We performed X-ray fluorescence spectroscopy on two large cluster IDPs, which sample the IDP parent body at a mass scale two orders-of-magnitude larger than {approx}10 {micro}m IDPs, allowing proper incorporation of larger mineral grains into the bulk composition of the parent body. We previously determined that {approx}10 {micro}m interplanetary dust particles (IDPs) collected from the Earth's stratosphere are enriched in many moderately volatile elements by a factor of {approx}3 over the CI meteorites. However, these IDP measurements provide no direct constraint on the bulk chemical composition of the parent body (or parent bodies) of the IDPs. Collisions are believed to be the major mechanism for dust production by the asteroids, producing dust by surface erosion, cratering and catastrophic disruption. Hypervelocity impact experiments at {approx}5 km/sec, which is the mean collision velocity in the main belt, performed by Flynn and Durda on ordinary chondrite meteorites and the carbonaceous chondrite meteorite Allende show that the 10 {micro}m debris is dominated by matrix material while the debris larger than {approx}25 {micro}m is dominated by chondrule fragments. Thus, if the IDP parent body is similar in structure to the chondritic meteorites, it is likely that the {approx}10 {micro}m IDPs oversample the fine-grained component of the parent body. We have examined the matrix material from the few meteorites that are sufficiently fine-grained to be samples of potential IDP parent bodies. This search has, thus far, not produced a compositional and mineralogical match to either the hydrous or anhydrous IDPs. This result, coupled with our recent mapping of the element distributions, which indicates the enrichment of moderately volatile elements is not due to contamination on their surfaces, suggests the IDPs represent a new type of extraterrestrial material. Nonetheless, the meteorite fragmentation results suggest that compositional measurements on 10 {micro

  19. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds.

    PubMed

    Clark, Sarah A; Jespersen, Nathan; Woodward, Clare; Barbar, Elisar

    2015-09-14

    A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly.

  20. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth

  1. Automated defect spatial signature analysis for semiconductor manufacturing process

    DOEpatents

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  2. High-Nickel Iron-Sulfides in Anhydrous, Gems-Rich CP IDPs

    NASA Technical Reports Server (NTRS)

    FLynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.

    2016-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) that were not severly heated during atmospheric deceleration are the best preserved samples of the solids that condensed from the Solar protoplanetary disk, as well as pre-Solar grains thatr survived incorporation into the disk, currently available for laboratory analysis [1]. These CP IDPs never experienced the aqueous and/or thermal processing, gravitational compaction, and shock effects that overprinted the record of Solar nebula processes in meteorites.

  3. Identification of cometary and asteroidal particles in stratospheric IDP collections

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Love, S. G.; Nier, A. O.; Schlutter, D. J.; Bradley, J. P.

    1993-01-01

    He release temperature curves were determined for a specially processed set of 5 microns to 15 microns stratospheric IDP's whose masses, densities, and compositions were accurately measured. The He release temperature in combination with atmospheric entry calculations yields a most probable entry velocity for each particle and association with either an asteroidal (low velocity) or cometary (high velocity) origin. It was found that over half of the 5-15 microns IDP's have entry velocities consistent with asteroidal origin and that at least 20 percent have cometary origins. A few of the asteroidal particles are porous aggregates and it appears that there may be close material similarities among some primitive asteroids and comets. In the processing of individual 5 microns IDP's and determination of entry velocities, a few dozen microtome slices that can be used for a variety of detailed TEM, IR, and ion probe studies were preserved. These procedures provide laboratory samples that can be generically associated with asteroids and comets and are in a sense a limited sample return mission from these primitive bodies.

  4. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials.

  5. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Werner, R. A.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Neubert, R. E. M.

    2011-02-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio-chemical compounds to

  6. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Neubert, R. E. M.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Werner, R. A.

    2008-11-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects in the order of about 26‰ became obvious, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original 18O signature of the material appeared to have little or no influence.

  7. Computer controlled processing of composites utilizing dielectric signature curves

    NASA Astrophysics Data System (ADS)

    Keller, L. B.; Dominski, Marty

    1992-10-01

    Three composite materials for aircraft applications are experimentally developed by using automated computer control of the autoclave fabrication process. The computer-control methodology is an expert system based on data regarding the correlation of dielectric information and physicochemical changes in polymer matrices during processing. Thermal and rheological analyses are conducted with thermocouples and dielectric sensors, and real-time data are sent to the computer to control the autoclave processing. Sample laminates including PEEK APC-2/AS-4, SC-1008 phenolic, and PMR-15 polyimide are studied for density, resin/void content, and fiber volume. Critical process events are identified which contribute to the production of high-quality composites, and the process-control technique is shown to reduce scrap and enhance uniformity in the samples. The study demonstrates the utility of dielectric signature curves as the basis for computer-controlled composite processing.

  8. Human topographic signatures and derived geomorphic processes across landscapes

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-02-01

    The Earth's surface morphology, in an abiotic context, is a consequence of major forcings such as tectonic uplift, erosion, sediment transport, and climate. Recently, however, it has become essential for the geomorphological community to also take into account biota as a geomorphological agent that has a role in shaping the landscape, even if at a different scale and magnitude from that of geology. Although the modern literature is flourishing on the impacts of vegetation on geomorphic processes, the study of anthropogenic pressures on geomorphology is still in its early stages. Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes. This review provides an overview of the recent literature on the role of humans as a geological agent in shaping the morphology of the landscape. We explore different contexts that are significantly characterized by anthropogenic topographic signatures: landscapes affected by mining activities, road networks and agricultural practices. We underline the main characteristics of those landscapes and the implications of human impacts on Earth surface processes. The final section considers future challenges wherein we explore recent novelties and trials in the concept of anthropogenic geomorphology. Herein, we focus on the role of high-resolution topographic and remote-sensing technologies. The reconstruction or identification of artificial or anthropogenic topographies provides a mechanism for quantifying anthropogenic changes to landscape systems. This study may allow an improved understanding and targeted mitigation of the processes driving geomorphic

  9. On-line infrared process signature measurements through combustion atmospheres

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Kozlowski, A. T.; Surette, W. E., Jr.

    1980-01-01

    A number of on-line infrared process signature measurements have been made through combustion atmospheres, including those in jet engines, piston engines, and coal gasification reactors. The difficulties involved include operation in the presence of pressure as high as 1800 psi, temperatures as high as 3200 F, and explosive, corrosive and dust-laden atmospheres. Calibration problems have resulted from the use of purge gases to clear the viewing tubes, and the obscuration of the view ports by combustion products. A review of the solutions employed to counteract the problems is presented, and areas in which better solutions are required are suggested.

  10. Fairness influences early signatures of reward-related neural processing.

    PubMed

    Massi, Bart; Luhmann, Christian C

    2015-12-01

    Many humans exhibit a strong preference for fairness during decision-making. Although there is evidence that social factors influence reward-related and affective neural processing, it is unclear if this effect is mediated by compulsory outcome evaluation processes or results from slower deliberate cognition. Here we show that the feedback-related negativity (FRN) and late positive potential (LPP), two signatures of early hedonic processing, are modulated by the fairness of rewards during a passive rating task. We find that unfair payouts elicit larger FRNs than fair payouts, whereas fair payouts elicit larger LPPs than unfair payouts. This is true both in the time-domain, where the FRN and LPP are related, and in the time-frequency domain, where the two signals are largely independent. Ultimately, this work demonstrates that fairness affects the early stages of reward and affective processing, suggesting a common biological mechanism for social and personal reward evaluation.

  11. Isotopic and Trace Element Compositions of Antarctic Micrometeorites and Comparison with IDPs

    NASA Astrophysics Data System (ADS)

    Stadermann, F. J.; Olinger, C. T.

    1992-07-01

    Antarctic micrometeorites (AMMs) show resemblances and differences to both stratospheric interplanetary dust particles (IDPs) and chondritic meteorites, but the exact nature of this relationship has yet to be established. We measured Ne, H, C, and N isotopic compositions, as well as trace element abundances in several AMMs in order to compare the results to similar measurements of IDPs (Stadermann, 1991). AMMs for this study were collected near Cap-Prudhomme (Maurette et al., 1989), and optically selected (Olinger et al., 1990). Noble gases of 23 selected AMMs were extracted through laser vaporization. Nine of these particles contained implanted solar Ne and one showed a clear signature from spallogenic Ne, confirming their extraterrestrial origin. We selected fragments from 6 of these particles, plus 2 containing apparent Ne excess and one with a roughly chondritic bulk chemistry but immeasurably low Ne, for further analyses. Secondary ion mass spectrometry (SIMS) was used to measure the H, C, and N isotopic compositions. These measurements turned out to be difficult, since the concentrations of H and C in the analyzed samples were significantly lower than in IDPs. The low concentration of C also affected the N isotopic measurements because N could only be measured as CN-. We were able to measure H in 9, as well as C and N in 3 AMMs. All measurements yielded isotopically normal results. Previous determinations of the O isotopic compositions of the same samples (Virag, pers. comm.) also gave no indication of isotopic anomalies. These results are significantly different from measurements of IDPs, where isotopic anomalies in H and N were found in roughly 1/2 and 1/3 of the particles, respectively. SIMS was also used to measure the rare earth and trace element abundances in up to 4 different fragments of 6 AMMs. Although most particles had roughly chondritic abundances, anomalous concentrations were found for Ca, Li, Co, Ni, and Ba. Significant Ca depletions up to 0

  12. Calculation of kinetic data for processes leading to UV signatures

    NASA Astrophysics Data System (ADS)

    Swaminathan, P. K.; Natanson, G. A.; Garrett, B. C.; Redmon, M. J.

    1989-03-01

    Novel state-of-the-art computational techniques were developed and validated for studying collisional processes responsible for producing infrared and ultraviolet signatures in rocket plumes. The promising new methods involve computation of cross sections and rates within a semiclassical methodology. Two of the key beneficiary programs are the SPURC and the CHARM programs which require detailed microscopic dynamical information (kinetic rates and cross sections) about such collisional processes for successful modeling of the chemistry within appropriate flowfield simulation codes. Successful prediction and interpretation of ultraviolet signatures require treating collision induced transitions between different electronic states caused by the coupling between electronic and nuclear motions in molecules during collisions. Electronic transitions bring in inherently quantum mechanical effects that have no analogs in classical mechanics. The task of numerically solving the quantum mechanical equations of motion is still an unsolvable computational problem for many realistic molecular systems. The semiclassical theory is accurate enough to reproduce specific necessary quantum mechanical features, because it leads to ordinary differential equations instead of the partial differential equations of quantum mechanics. Electronic structure information required in modelling the production of candidate excited species, nitrogen, nitric oxide, and hydroxyl radical molecules in some elementary reactions was analyzed.

  13. Bromine in Interplanetary Dust Particles (IDPs): Evidence for Stratospheric Contamination

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1992-07-01

    Chondritic IDPs that are collected in the lower stratosphere are enriched in bromine: up to 40 x CI in an individual IDP [1]. The average enrichment is 19 x CI [2]. Volatile element enrichments in chondritic IDPs show a general increase with increased element volatility [1,2] which is consistent with solar nebula condensation models. However, the bromine enrichment is markedly up from the general volatile element enrichment trend. Stratospheric bromine derives from anthropogenic and volcanic activities and micrometeoroid ablation and evaporation [3]. It is possible that a portion or all bromine in IDPs is stratospheric surface contamination. In this case there should be an inverse correlation between bromine content and IDP size [1,4]. This correlation is not obvious because it may be complicated by the different ability of exposed IDP surfaces to adsorb volatile elements [1]. To evaluate this model it is important to know whether bromine occurs in a distinct mineral phase [5] or in a surface layer that might not survive the curatorial rinsing procedure. Another factor is the IDP stratospheric residence time. In my continued AEM analyses of ultrathin CP IDP sections, I recently observed round Br-containing grains associated with CP IDP W7029E5. These grains (11.6-744 nm in diameter) have a volatile matrix with abundant nanocrystals. Their bulk composition shows the presence of Na, K, Br, Cl, and S. Polycrystalline rings in their diffraction patterns are consistent with KBrO(sub)3, KCl, Na(sub)2SO(sub)3 and Na(sub)2S(sub)2 [Gail Fraundorf, written comm., 1991]. These round grains resemble sulfuric acid droplets associated with silica grains in other CP IDPs [6]. The sulfuric acid was washed off the silica grain surface during curatorial hexane rinsing of IDPs. The AEM data confirm a Br-bearing layer on W7029E5. This study is the first, and so far only, observation of Br-bearing material associated with chondritic IDPs in support of a stratospheric bromine surface

  14. Mineralogical Study of Hydrated IDPs: X-Ray Diffraction and Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Zolensky, M. E.

    2004-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere [1]. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels [2,3]) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. Some hydrated IDPs exhibit large deuterium enrichments [4] similar to those observed in anhydrous IDPs. Both anhydrous and hydrated IDPs contain a variety of anhydrous minerals such as silicates, sulfides, oxides, and carbonates. Controversies on hydrated IDPs still exist regarding their formation, history, and relationship to other primitive solar system materials, because of the lack of a systematic series of analysis on individual hydrated IDPs. In this study, we combine our observations of the bulk mineralogy, mineral/ organic chemistry in order to derive a more complete picture of hydrated IDPs.

  15. Mineralogical Study of Hydrated IDPs: X-Ray Diffraction and Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Zolensky, M. E.

    2004-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere [1]. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels [2,3]) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. Some hydrated IDPs exhibit large deuterium enrichments [4] similar to those observed in anhydrous IDPs. Both anhydrous and hydrated IDPs contain a variety of anhydrous minerals such as silicates, sulfides, oxides, and carbonates. Controversies on hydrated IDPs still exist regarding their formation, history, and relationship to other primitive solar system materials, because of the lack of a systematic series of analysis on individual hydrated IDPs. In this study, we combine our observations of the bulk mineralogy, mineral/ organic chemistry in order to derive a more complete picture of hydrated IDPs.

  16. Process signatures in glatiramer acetate synthesis: structural and functional relationships.

    PubMed

    Campos-García, Víctor R; Herrera-Fernández, Daniel; Espinosa-de la Garza, Carlos E; González, German; Vallejo-Castillo, Luis; Avila, Sandra; Muñoz-García, Leslie; Medina-Rivero, Emilio; Pérez, Néstor O; Gracia-Mora, Isabel; Pérez-Tapia, Sonia Mayra; Salazar-Ceballos, Rodolfo; Pavón, Lenin; Flores-Ortiz, Luis F

    2017-09-21

    Glatiramer Acetate (GA) is an immunomodulatory medicine approved for the treatment of multiple sclerosis, whose mechanisms of action are yet to be fully elucidated. GA is comprised of a complex mixture of polypeptides with different amino acid sequences and structures. The lack of sensible information about physicochemical characteristics of GA has contributed to its comprehensiveness complexity. Consequently, an unambiguous determination of distinctive attributes that define GA is of highest relevance towards dissecting its identity. Herein we conducted a study of characteristic GA heterogeneities throughout its manufacturing process (process signatures), revealing a strong impact of critical process parameters (CPPs) on the reactivity of amino acid precursors; reaction initiation and polymerization velocities; and peptide solubility, susceptibility to hydrolysis, and size-exclusion properties. Further, distinctive GA heterogeneities were correlated to defined immunological and toxicological profiles, revealing that GA possesses a unique repertoire of active constituents (epitopes) responsible of its immunological responses, whose modification lead to altered profiles. This novel approach established CPPs influence on intact GA peptide mixture, whose physicochemical identity cannot longer rely on reduced properties (based on complete or partial GA degradation), providing advanced knowledge on GA structural and functional relationships to ensure a consistent manufacturing of safe and effective products.

  17. Group Interpersonal Psychotherapy for depressed youth in IDP camps in Northern Uganda: adaptation and training.

    PubMed

    Verdeli, Helen; Clougherty, Kathleen; Onyango, Grace; Lewandowski, Eric; Speelman, Liesbeth; Betancourt, Teresa S; Neugebauer, Richard; Stein, Traci R; Bolton, Paul

    2008-07-01

    This article reviews the use of Interpersonal Psychotherapy (IPT) with depressed youth living in Internally Displaced Persons (IDP) camps in North Uganda. This youth has been exposed to severe losses and disruptions in relationships with caregivers, family, and community members; limited access to formal education; exposure to malnutrition and infections; and pressure to prematurely assume adult family roles. The process of adaptation to the content and training of IPT for these youth is presented and illustrated with case examples.

  18. Association of Presolar Grains with Molecular Cloud Material in IDPs

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) collected in the stratosphere appear chemically, mineralogically, and texturally primitive in comparison to meteorites. Particles that escape significant atmospheric entry heating have highly unequilibrated mineralogy, are volatile element rich, and, overall, appear to have escaped significant parent body hydrothermal alteration. These IDPs are comprised of the building blocks of the solar system. The strongest evidence that anhydrous IDPs are primitive is that they contain abundant stardust and molecular cloud material. In particular, presolar silicates were first identified in IDPs and are present in abundances (450-5,500 ppm) that are well above that observed in primitive meteorites (less than 170 ppm). The most fragile (cluster) IDPs also commonly exhibit large H and N isotopic anomalies that likely originated by isotopic fractionation during extremely low temperature chemical reactions in a presolar cold molecular cloud. The D/H ratios exceed that of most primitive meteorites, and in rare cases reach values directly observed from simple gas phase molecules in cold molecular clouds. The most extreme D- and N-15-enrichments are usually observed at the finest spatial scales (0.5-2 microns) that can be measured. These observations suggest that D and N-15 hotspots are in fact preserved nuggets of molecular cloud material, and that the materials within them also have presolar origins. The advanced capabilities of the NanoSIMS ion microprobe now enable us to test this hypothesis. Here, we report two recent examples of presolar silicates found to be directly associated with molecular cloud material.

  19. Coordinated Chemical and Isotopic Studies of GEMS in IDPS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2008-01-01

    Cometary IDPs contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula [1]. Following their accretion, these materials have remained relatively unaltered because of the lack of parent body hydrothermal alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these IDPs because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars [e.g. 2]. Amorphous silicates (in the form of GEMS grains) are a major component of cometary IDPs and so a major objective of this work is to elucidate their origins. In rare cases, GEMS grains have highly anomalous O isotopic compositions that establish their origins as circumstellar condensates [3]. Here we present data on a systematic study of the silicate components within a primitive IDP.

  20. Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Wirick, S.; Jacobsen, C.

    2004-01-01

    Many anhydrous interplanetary dust particles (IDPs) are the most pristine samples of primitive solar system dust currently available for laboratory analysis. Their primitive nature is demonstrated by: 1) the high content of moderately volatile elements, indicating they have not been heated significantly since formation, 2) the absence of hydrated material, indicating they never experienced aqueous processing, 3) the presence of unequilibrated mineral assemblages, 4) the presence of large isotopic anomalies (e.g., D and 15N enrichment), in these IDPs.

  1. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  2. Laser microprobe study of cosmic dust (IDPs) and potential source materials

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Sommer, M. S., II

    1986-01-01

    The study of cosmic dust or interplanetary dust particles (IDP) can provide vital information about primitive materials derived primarily from comets and asteroids along with a small unknown fraction from the nearby interstellar medium. The study of these particles can enhance our understanding of comets along with the decoding of the history of the early solar system. In addition the study of the cosmic dust for IDP particles can assist in the elucidation of the cosmic history of the organogenic elements which are vital to life processes. Studies to date on these particles have shown that they are complex, heterogeneous assemblages of both amorphous and crystalline components. In order to understand the nature of these particles, any analytical measurements must be able to distinguish between the possible sources of these particles. A study was undertaken using a laser microprobe interfaced to a quadrupole mass spectrometer for the analysis of the volatile components present in cosmic dust particles, terrestrial contaminants present in the upper atmosphere, and primitive carbonaceous chondrites. From the study of the volatiles released from the carbonaceous materials it is hoped that one could distinguish between components and sources in the IDP particles analyzed. The technique is briefly described and results for the CI, CM, and CV chondrites and cosmic dust particle W7027B8 are presented.

  3. N-15-Rich Organic Globules in a Cluster IDP and the Bells CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, Lindsay P.

    2008-01-01

    Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and 15N/14N relative to terrestrial values [1-3]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [1]. Some meteorites and IDPs contain m-size inclusions with extreme H and N isotopic anomalies [2-4], possibly due to preserved pristine primordial organic grains. We recently showed that the in the Tagish Lake meteorite, the principle carriers of these anomalies are sub- m, hollow organic globules [5]. The globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. We proposed that similar materials should be common among primitive meteorites, IDPs, and comets. Similar objects have been observed in organic extracts of carbonaceous chondrites [6-8], however their N and H isotopic compositions are generally unknown. Bulk H and N isotopic compositions may indicate which meteorites best preserve interstellar organic compounds. Thus, we selected the Bells CM2 carbonaceous chondrites for study based on its large bulk 15N (+335 %) and D (+990 %) [9].

  4. The chemical composition of cluster IDPs using the XRF-Microprobe

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Sutton, S. R.

    1997-03-01

    The process of collecting interplanetary dust particles (IDPs) from the Earth's stratosphere by impact onto a rigid collection surface covered with a thin layer of silicone oil and carried by a high-speed aircraft separates the IDPs into two types, based crudely on structural strength: (1) those which remain intact and (2) those which fragment on collection (called 'cluster particles'). The authors have previously determined the element abundances in eight cluster fragments from the L2009 collector using the XRF-Microprobe at the National Synchrotron Light Source at Brookhaven National Laboratory (1996). To determine if the cluster fragments from other stratospheric collectors are chemically similar to the L2009 cluster fragments, measurements were made of the Fe normalized abundances of S, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Se, and Br in six cluster fragments from the L2005 collector using the XRF-Microprobe. Although the six fragments show abundance patterns consistent with chondritic IDPs, they appear to be somewhat different from the L2009 fragments previously examined. Each of these six fragments is analyzed in this paper.

  5. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H. H. G.; Gascuel-Odoux, C.

    2014-09-01

    Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus, ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by four calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by "prior constraints," inferred from expert knowledge to ensure a model which behaves well with respect to the modeler's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model setup exhibited increased performance in the independent test period and skill to better reproduce all tested signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge-driven strategy of constraining models.

  6. Forensic handwriting examiners' opinions on the process of production of disguised and simulated signatures.

    PubMed

    Bird, Carolyne; Found, Bryan; Ballantyne, Kaye; Rogers, Doug

    2010-02-25

    Large-scale blind testing of forensic handwriting examiners (FHEs) has shown that authorship opinions on disguised and simulated signatures attract higher misleading and inconclusive rates than genuine signatures do. To test whether this is due to the failure of FHEs to detect the indicators of disguise/simulation behaviours we examined their opinions regarding the 'process of production' (which in this case was a choice between written naturally or written using a disguise/simulation strategy) of the questioned disguised and simulated signatures in blinded skill testing trials. The relationship between their process opinions and authorship opinions is then assessed. It was found that the majority of the inconclusive authorship opinions for both disguised and simulated signatures had a correct process opinion (707 of 1241, 57.0% for disguised; 3838 of 4368, 87.9% for simulated), with only 7.3% (90 of 1241) of the disguised and 0.85% (37 of 4368) of the simulated signatures exhibiting incorrect process opinions. For the total misleading authorship opinions relating to disguised signatures, the majority of the process opinions were correct (167 of 241, 69.3%) indicating that a disguise/simulation process was detected, but misinterpreted as being by another writer. These results show the usefulness of FHEs offering a first stage simulation/disguise process opinion without going on to form an opinion on authorship, as the support for the proposition that a signature is something other than genuine may be, in itself, of strong evidential value.

  7. Arctic sea ice microwave signature and geophysical processes study

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Shuchman, Robert A.

    1993-01-01

    Studies on the validation and utilization of ERS-1 SAR (Synthetic Aperture Radar) derived liquid and solid ocean information and the study of the interregional, regional, and temporal variation of the microwave signatures of sea ice and snow, are reported. Initial interests are focused on the accuracy of the estimates of ice type, ice form, deformation state, or thickness, and the ability to retrieve ice physical property information. Two in situ campaigns were conducted for the purpose of 'truth' ERS-1 SAR products and to gather data in support of the above science studies.

  8. Process Consistency in Models: the Importance of System Signatures, Expert Knowledge and Process Complexity

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Gascuel-Odoux, Chantal; Savenije, Hubert

    2014-05-01

    Hydrological models are frequently characterized by what is often considered to be adequate calibration performances. In many cases, however, these models experience a substantial uncertainty and performance decrease in validation periods, thus resulting in poor predictive power. Besides the likely presence of data errors, this observation can point towards wrong or insufficient representations of the underlying processes and their heterogeneity. In other words, right results are generated for the wrong reasons. Thus ways are sought to increase model consistency and to thereby satisfy the contrasting priorities of the need a) to increase model complexity and b) to limit model equifinality. In this study a stepwise model development approach is chosen to test the value of an exhaustive and systematic combined use of hydrological signatures, expert knowledge and readily available, yet anecdotal and rarely exploited, hydrological information for increasing model consistency towards generating the right answer for the right reasons. A simple 3-box, 7 parameter, conceptual HBV-type model, constrained by 4 calibration objective functions was able to adequately reproduce the hydrograph with comparatively high values for the 4 objective functions in the 5-year calibration period. However, closer inspection of the results showed a dramatic decrease of model performance in the 5-year validation period. In addition, assessing the model's skill to reproduce a range of 20 hydrological signatures including, amongst others, the flow duration curve, the autocorrelation function and the rising limb density, showed that it could not adequately reproduce the vast majority of these signatures, indicating a lack of model consistency. Subsequently model complexity was increased in a stepwise way to allow for more process heterogeneity. To limit model equifinality, increase in complexity was counter-balanced by a stepwise application of "realism constraints", inferred from expert

  9. Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Chadwick, Oliver A.

    1996-01-01

    The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.

  10. An assessment of the contamination acquired by IDPs during atmospheric deceleration

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    The E-layer of the terrestrial mesosphere, between 80 and 110 km altitude, is derived from meteoric ablation. Concentrations of Na and Fe, contributed by meteoric vapor, have been monitored in the mesosphere, and both individual meteors and average concentration profiles have been measured. Individual interplanetary dust particles (IDP's) entering the earth's atmosphere must pass through the mesospheric layers rich in meteoric volatile elements. Limits on the extent to which individual IDP's can be contaminated by meteoric volatile elements during deceleration in the upper atmosphere can be established by considering the extreme cases: the direct passage of an IDP through a meteoric vapor trail or the passage of an IDP through the mesospheric layer rich in meteoric volatiles. It appears the interaction of IDP's with meteoric vapor during deceleration in the upper atmosphere does not produce significant contamination of IDP's as they decelerate in the upper atmosphere.

  11. Music, language and meaning: brain signatures of semantic processing.

    PubMed

    Koelsch, Stefan; Kasper, Elisabeth; Sammler, Daniela; Schulze, Katrin; Gunter, Thomas; Friederici, Angela D

    2004-03-01

    Semantics is a key feature of language, but whether or not music can activate brain mechanisms related to the processing of semantic meaning is not known. We compared processing of semantic meaning in language and music, investigating the semantic priming effect as indexed by behavioral measures and by the N400 component of the event-related brain potential (ERP) measured by electroencephalography (EEG). Human subjects were presented visually with target words after hearing either a spoken sentence or a musical excerpt. Target words that were semantically unrelated to prime sentences elicited a larger N400 than did target words that were preceded by semantically related sentences. In addition, target words that were preceded by semantically unrelated musical primes showed a similar N400 effect, as compared to target words preceded by related musical primes. The N400 priming effect did not differ between language and music with respect to time course, strength or neural generators. Our results indicate that both music and language can prime the meaning of a word, and that music can, as language, determine physiological indices of semantic processing.

  12. Comparing Wild 2 Particles to Chondrites and IDPS

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Nakamura-Messenger, Keiko; Rietmeijer, Frans; Leroux, Hugues; Mikouchi, Takashi; Ohsumi, Kazumasa; Simon, Steven; Grossman, Lawrence; Stephan, Thomas; Weisberg, Michael; hide

    2008-01-01

    We compare the observed composition ranges of olivine, pyroxene and Fe-Ni sulfides in Wild 2 grains, comparing these with chondritic IDPs and chondrite classes to explore whether these data suggest affinities to known hydrous materials in particular. Wild 2 olivine has an extremely wide composition range, from Fo4-100 with a pronounced frequency peak at Fo99. The composition range displayed by the low-calcium pyroxene is also very extensive, from En52 to En100, with a significant frequency peak centered at En95. These ranges are as broad or broader than those reported for any other extraterrestrial material. Wild 2 Fe-Ni sulfides mainly have compositions close to that of FeS, with less than 2 atom % Ni - to date, only two pentlandite grains have been found among the Wild-grains suggesting that this mineral is not abundant. The complete lack of compositions between FeS and pentlandite (with intermediate solid solution compositions) suggests (but does not require) that FeS and pentlandite condensed as crystalline species, i.e. did not form as amorphous phases, which later became annealed. While we have not yet observed any direct evidence of water-bearing minerals, the presence of Ni-bearing sulfides, and magnesium-dominated olivine and low-Ca pyroxene does not rule out their presence at low abundance. We do conclude that modern major and minor element compositions of chondrite matrix and IDPs are needed.

  13. IDP Camp and Reconstruction Monitoring Experience at SERTIT

    NASA Astrophysics Data System (ADS)

    Clandillon, Stephen; Allenbach, Bernard; Battiston, Stephanie; Caspard, Mathilde; Fellah, Kader; Giraud, Henri; Montabord, Myldred; Tholey, Nadine; Uribe, Carlos; Yesou, Herve; de Fraipont, Paul

    2010-12-01

    SERTIT's rapid mapping activities covering disasters and damage mapping after a major catastrophic event such as those realized within the framework of International Charter "Space and major disasters" (Charter) and GMES1 programmes are relatively well known, whereas the work carried since 2004 on the exploitation of Earth Observation data for humanitarian aid is less often presented. The aim of this paper is to present this work from mapping and monitoring IDP camp related emergencies to supporting recovery and reconstruction and the context, procedures and examples of this work. A brief introduction to the world of rapid mapping will be given within the context of emergency mapping and monitoring and why this need arises. This is combined with a word on the development of this service with respect to the Internally Displaced Persons (IDP) camp mapping. Then, the cases of Sudan 2004, Chad & Sudan 2008 and Yemen 2009 will be treated to show that the Emergency Mapping and Monitoring Service for Displaced Populations is operational. Afterwards, SERTIT's complementary Emergency Recovery Support Service will be demonstrated through the long- term reconstruction monitoring work carried out, post- disaster, following the 2003 Boumerdès earthquake event. Finally, the need for the availability and deployment of this kind of services is highlighted by the reconstruction planning and monitoring requirements in Haiti, amongst other places.

  14. Refractory grain processing in circumstellar shells Diagnostic infrared signatures

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Donn, Bertram; Nelson, Robert

    1986-01-01

    Recent advances in infrared speckle interferometry reported by Ridgway, et al. (1986) have made possible the determination of the temperatures at the inner radius of certain dusty outflows. When combined with recent data on the thermal annealing and hydrous alteration rates of amorphous magnesium silicate grains, this information allows one to predict that grains heated to high temperatures around stars such as NML Cygnus will be more crystalline than will cooler grains around stars like IRC +10420. In 1985, Jura and Morris (1985) showed that water vapor can condense on previously nucleated refractory grains in some stellar outflows. Stochastic heating events might provide sufficient energy to produce hydrated silicates from orginally amorphous grains provided that the loss of water from such materials does not occur too rapidly. Observable consequences of both types of grain processing are discussed.

  15. Presolar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) have been linked to comets by their fragile structure, primitive mineralogy, dynamics, and abundant interstellar materials. But differences have emerged between 'cometary' CP-IDPs and comet 81P/Wild 2 Stardust Mission samples. Particles resembling Ca-Al-rich inclusions (CAIs), chondrules, and amoeboid olivine aggregates (AOAs) in Wild 2 samples are rare in CP-IDPs. Unlike IDPs, presolar materials are scarce in Wild 2 samples. These differences may be due to selection effects, such as destruction of fine grained (presolar) components during the 6 km/s aerogel impact collection of Wild 2 samples. Large refractory grains observed in Wild 2 samples are also unlikely to be found in most (less than 30 micrometers) IDPs. Presolar materials provide a measure of primitive-ness of meteorites and IDPs. Organic matter in IDPs and chondrites shows H and N isotopic anomalies attributed to low-T interstellar or protosolar disk chemistry, where the largest anomalies occur in the most primitive samples. Presolar silicates are abundant in meteorites with low levels of aqueous alteration (Acfer 094 approximately 200 ppm) and scarce in altered chondrites (e.g. Semarkona approximately 20 ppm). Presolar silicates in minimally altered CP-IDPs range from approximately 400 ppm to 15,000 ppm, possibly reflecting variable levels of destruction in the solar nebula or statistical variations due to small sample sizes. Here we present preliminary isotopic and mineralogical studies of a very large CP-IDP. The goals of this study are to more accurately determine the abundances of presolar components of CP-IDP material for comparison with comet Wild 2 samples and meteorites. The large mass of this IDP presents a unique opportunity to accurately determine the abundance of pre-solar grains in a likely cometary sample.

  16. Exploring the geophysical signatures of microbial processes in the earth

    SciTech Connect

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  17. Atypical spatiotemporal signatures of working memory brain processes in autism

    PubMed Central

    Urbain, C M; Pang, E W; Taylor, M J

    2015-01-01

    Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed. PMID:26261885

  18. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  19. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  20. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  1. Nano-Diamonds in Interplanetary Dust Particles (IDPs), Micrometeorites, and Meteorites

    NASA Technical Reports Server (NTRS)

    Dai, Z. R.; Bradley, J. P.; Joswiak, D. J.; Brownlee, D. E.; Genge, M. J.

    2002-01-01

    Nano-diamonds have been identified in IDPs (Interplanetary Dust Particles), micrometeorites, and meteorites. They appear to be depleted in non-cluster IDPs suggesting that some nano-diamonds are not presolar. Additional information is contained in the original extended abstract.

  2. Nano-Diamonds in Interplanetary Dust Particles (IDPs), Micrometeorites, and Meteorites

    NASA Technical Reports Server (NTRS)

    Dai, Z. R.; Bradley, J. P.; Joswiak, D. J.; Brownlee, D. E.; Genge, M. J.

    2002-01-01

    Nano-diamonds have been identified in IDPs (Interplanetary Dust Particles), micrometeorites, and meteorites. They appear to be depleted in non-cluster IDPs suggesting that some nano-diamonds are not presolar. Additional information is contained in the original extended abstract.

  3. The Impact of Talibanization on the Education of IDP's in N. W. F. P. Pakistan

    ERIC Educational Resources Information Center

    Akhtar, Sajjad Hayat

    2009-01-01

    The study looked into a descriptive research to evaluate the impact of talibanization on the education of IDP's in NWFP (Pakistan). The study has defined the needs, problems and opportunities, contribution of NGO's and emerging trends of IDP's regarding maddrassa education/ general education. The main focus of the study was the needs and…

  4. Technology Gap Analysis for the Detection of Process Signatures Using Less Than Remote Methods

    SciTech Connect

    Hartman, John S.; Atkinson, David A.; Lind, Michael A.; Maughan, A. D.; Kelly, James F.

    2005-01-01

    Although remote sensing methods offer advantages for monitoring important illicit process activities, remote and stand-off technologies cannot successfully detect all important processes with the sensitivity and certainty that is desired. The main scope of the program is observables, with a primary focus on chemical signatures. A number of key process signatures elude remote or stand-off detection for a variety of reasons (e.g., heavy particulate emissions that do not propagate far enough for detection at stand-off distances, semi-volatile chemicals that do not tend to vaporize and remain in the environment near the source, etc.). Some of these compounds can provide persistent, process-specific information that is not available through remote techniques; however, the associated measurement technologies have their own set of advantages, disadvantages and technical challenges that may need to be overcome before additional signature data can be effectively and reliably exploited. The main objective of this report is to describe a process to identify high impact technology gaps for important less-than-remote detection applications. The subsequent analysis focuses on the technology development needed to enable exploitation of important process signatures. The evaluation process that was developed involves three interrelated and often conflicting requirements generation activities: • Identification of target signature chemicals with unique intelligence value and their associated attributes as mitigated by environmentally influenced fate and transport effects (i.e., what can you expect to actually find that has intelligence value, where do you need to look for it and what sensitivity and selectivity do you need to see it) • Identification of end-user deployment scenario possibilities and constraints with a focus on alternative detection requirements, timing issues, logistical consideration, and training requirements for a successful measurement • Identification of

  5. A Dynamic Time Warping based covariance function for Gaussian Processes signature identification

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-11-01

    Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.

  6. Energy-based approach as an example for a process signature for laser microprocessing

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Mehrafsun, Salar; Vollertsen, Frank

    2016-11-01

    Taking laser ablation and laser chemical machining as examples, this paper explores the challenges to implement the energy-based approach of process signature in laser micro processing. It is expected that laser processes and specific materials independent mechanisms can be found, which are deeper causes of the generation of the surface integrity behind the interactions among the specific energy sources, mediums, surface, subsurface, base material and environment. With the aim of dealing with the challenges, this paper discusses a new point of view, cumulation of modifications, concerning more effects in laser micro processing.

  7. Regional scale analysis of the topographic signatures of landslide/debris flow dominated processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Righetto, A.

    2012-04-01

    The morphology of alpine headwater basins is strongly influenced by erosion processes. The relationship between landforms and erosion processes has been analyzed based on the relationship between slope and drainage area (Montgomery and Foufoula-Georgiou, 1993), because among parameters derived from a DTM (Digital Terrain Model), slope and drainage area are deemed to be pertinent for studying overall erosion dynamics. Thanks to LiDAR and high resolution topography now is possible to reach a better representation of hillslope morphology, and then recognize in detail the topographic signature of valley incision by landslides and debris flows (Tarolli and Dalla Fontana, 2009). In this work we present a tentative of a regional scale analysis of such signature. In the analysis we derived the slope-area relationship using high-resolution DTMs with 2.5 m cells derived from LiDAR (Light Detection and Ranging) data. We considered 23 catchments, characterized by soil-mantled landscape, and where several debris flows occurred in the year 2009. The results showed that in 83% catchments the topographic signature of debris flow processes is clearly present, while in the remaining catchments only hillslopes, unchanneled valleys and alluvial channels regions are recognized. The slope-area relationships of few catchments where no debris flows were observed during 2009 events, nor reported in the historical database, were then analyzed. For these basins the slope-area relationship does not evidence the topographic signature of debris flow processes. According to these results the presented methodology really can help for a right preliminary analysis and classification of alpine catchments based on their dominant geomorphological processes. The methodology should be used for a first and quick interpretation, in support to field surveys and more complex physically based modeling analysis.

  8. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  9. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  10. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  11. Hydrological signatures of Critical Zone Processes: Developing targets for Critical Zone modeling.

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Karst, N.; Dralle, D.

    2015-12-01

    Water fluxes through the Critical Zone (CZ) are ubiquitous, and their behavior has the potential to reveal information about the structure and dynamics of the CZ. Models describing these fluxes implicitly propose hypotheses about the CZ which are encoded in the structure of the models. However, the certainty with which such hypotheses can be tested with observed hydrologic data is challenged by the well-known problem of equifinality - the tendency of multiple models, with very different model structures, to produce equally good representations of observed hydrologic dynamics. The project of modeling the CZ is thus challenged by the need to identify hydrologic signatures that are closely tied to the CZ structure and which could provide a stronger basis for hypothesis testing in model frameworks. Here I present one potential signature based on streamflow recession dynamics and the structure of their variability. Firstly, I present a technique to remove a mathematical artifact that is inherent in power-law representations of streamflow recessions. Secondly, I show that having removed this artifact, intriguing relationships emerge in the recession variability in the rivers near the Eel River Critical Zone Observatory. This relationship is interpreted in terms of how water is partitioned within the CZ. The close relationship between CZ processes and this part of the hydrologic response suggests that co-variation in recession parameters could provide a process-oriented hydrologic signature that CZ models should attempt to emulate.

  12. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    SciTech Connect

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  13. Signatures of dynamical processes in Raman lidar profiles of the atmosphere

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2017-05-01

    Raman lidar measurements provide profiles of several different tracers of spatial and temporal variations, which are excellent signatures for studies of dynamical processes in the atmosphere. An examination of Raman lidar data collected during the last four decades clearly show signatures of atmospheric planetary waves, gravity waves, low-level jets, weather fronts, turbulence from wind shear at surfaces and at the interface of the boundary layer with the free troposphere. Water vapor profiles are found to be important as a tracer of the sources of turbulence eddies associated with thermal convection, pressure waves, and wind shears, which result from surface heating, winds, weather systems, orographic forcing, and regions of reduced atmospheric stability. Examples of these processes are selected to show the influence of turbulence on profiles of atmospheric properties. Turbulence eddies generated in the wind shear region near the top of the boundary layer are found to mix into the atmospheric boundary layer. Results from several prior research projects are examined to gain a better understanding of processes impacting optical propagation through the many sources of turbulence observed in the lower atmosphere. Advances in lasers, detectors, and particularly in high-speed electronics now available are expected to provide important opportunities to improve our understanding of the formation processes, as well as for tracking of the sources and dissipation of turbulence eddies.

  14. Do Two Machine-Learning Based Prognostic Signatures for Breast Cancer Capture the Same Biological Processes?

    PubMed Central

    Drier, Yotam; Domany, Eytan

    2011-01-01

    The fact that there is very little if any overlap between the genes of different prognostic signatures for early-discovery breast cancer is well documented. The reasons for this apparent discrepancy have been explained by the limits of simple machine-learning identification and ranking techniques, and the biological relevance and meaning of the prognostic gene lists was questioned. Subsequently, proponents of the prognostic gene lists claimed that different lists do capture similar underlying biological processes and pathways. The present study places under scrutiny the validity of this claim, for two important gene lists that are at the focus of current large-scale validation efforts. We performed careful enrichment analysis, controlling the effects of multiple testing in a manner which takes into account the nested dependent structure of gene ontologies. In contradiction to several previous publications, we find that the only biological process or pathway for which statistically significant concordance can be claimed is cell proliferation, a process whose relevance and prognostic value was well known long before gene expression profiling. We found that the claims reported by others, of wider concordance between the biological processes captured by the two prognostic signatures studied, were found either to be lacking statistical rigor or were in fact based on addressing some other question. PMID:21423753

  15. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs

    PubMed Central

    Uversky, Vladimir N

    2014-01-01

    This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings. PMID:28232880

  16. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  17. Statistical signatures of structural organization: The case of long memory in renewal processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-04-01

    Identifying and quantifying memory are often critical steps in developing a mechanistic understanding of stochastic processes. These are particularly challenging and necessary when exploring processes that exhibit long-range correlations. The most common signatures employed rely on second-order temporal statistics and lead, for example, to identifying long memory in processes with power-law autocorrelation function and Hurst exponent greater than 1/2. However, most stochastic processes hide their memory in higher-order temporal correlations. Information measures-specifically, divergences in the mutual information between a process' past and future (excess entropy) and minimal predictive memory stored in a process' causal states (statistical complexity)-provide a different way to identify long memory in processes with higher-order temporal correlations. However, there are no ergodic stationary processes with infinite excess entropy for which information measures have been compared to autocorrelation functions and Hurst exponents. Here, we show that fractal renewal processes-those with interevent distribution tails ∝t-α-exhibit long memory via a phase transition at α = 1. Excess entropy diverges only there and statistical complexity diverges there and for all α < 1. When these processes do have power-law autocorrelation function and Hurst exponent greater than 1/2, they do not have divergent excess entropy. This analysis breaks the intuitive association between these different quantifications of memory. We hope that the methods used here, based on causal states, provide some guide as to how to construct and analyze other long memory processes.

  18. Iterative techniques to estimate signature vectors for mixture processing of multispectral data

    NASA Technical Reports Server (NTRS)

    Salvato, P., Jr.

    1973-01-01

    Two methods for obtaining the required spectral signatures for a particular mixture model are considered. For the model considered, the spectral signatures become signature vectors. The first method is based upon determination of the signature vectors in such a way that a measure of the inconsistency between the mixture model and the observed data is minimized. The second method is based upon determination of the signature vectors in such a way that the estimated mean percentage coverage of individual species matches apriori or ground truth estimates. The two methods proposed are applied to actual multispectral data in order to verify the concepts presented.

  19. Signal/Image Processing of Acoustic Flaw Signatures for Detection and Localization

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-06-01

    The timely, nondestructive evaluation (NDE) of critical optics in high energy, pulsed laser experiments is a crucial analysis that must be performed for the experiment to be successful. Failure to detect flaws of critical sizes in vacuum-loaded optical windows can result in a catastrophic failure jeopardizing the safety of both personnel and costly equipment. We discuss the development of signal/image processing techniques to both detect critical flaws and locate their position on the window. The data measured from two Orthogonal arrays of narrow beamwidth ultrasonic transducers are preprocessed using a model-based scheme based on the Green's function of the medium providing individual channel signatures. These signatures are then transformed to the two-dimensional image space using a power-based estimator. A 2D-replicant is then constructed based on the underlying physics of the material along with the geometry of the window. Correlating the replicant with the enhanced power image leads to the optimal 2D-matched filter solution detecting and localizing the flaw. Controlled experimental results on machined flaws are discussed.

  20. The molecular signature of AML mesenchymal stromal cells reveals candidate genes related to the leukemogenic process.

    PubMed

    Binato, Renata; de Almeida Oliveira, Nathalia Correa; Du Rocher, Barbara; Abdelhay, Eliana

    2015-12-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by myeloid precursor proliferation in the bone marrow, apoptosis reduction and differentiation arrest. Although there are several studies in this field, events related to disease initiation and progression remain unknown. The malignant transformation of hematopoietic stem cells (HSC) is thought to generate leukemic stem cells, and this transformation could be related to changes in mesenchymal stromal cell (hMSC) signaling. Thus, the aim of this work was to analyze the gene expression profile of hMSC from AML patients (hMSC-AML) compared to healthy donors hMSCs (hMSC-HD). The results showed a common molecular signature for all hMSC-AML. Other assays were performed with a large number of patients and the results confirmed a molecular signature that is capable of distinguishing hMSC-AML from hMSC-HD. Moreover, CCL2 and BMP4 genes encode secreted proteins that could affect HSCs. To verify whether these proteins are differentially expressed in AML patients, ELISA was performed with plasma samples. CCL2 and BMP4 proteins are differentially expressed in AML patients, indicating changes in hMSC-AML signaling. Altogether, hMSCs-AML signaling alterations could be an important factor in the leukemic transformation process.

  1. Investigation of environmental physical parameters and processes complementing the search for signatures of life

    NASA Astrophysics Data System (ADS)

    Richter, L.; Horneck, G.; Kochan, H.; Rabbow, E.; Rettberg, P.; Ulamec, S.

    In general, the search for signatures of life on other planets follows different lines: one is to study life in extreme natural environments on the Earth, another one is to perform laboratory experiments under simulated natural conditions in order define the limits for formation and survival of life, and finally space missions to perform in situ measurements on planetary surfaces outside the Earth to look for indicators of extinct or extant life. For the case of the planet Mars, relevant surface conditions are roughly known from orbiter as well as lander missions. In an extrapolation of terrestrial conditions, laboratory studies are conducted on terrestrial biota from extreme environments under various simulated planetary surface conditions in order to investigate general biological survivability as a function of physical and chemical parameters (radiation, UV flux, atmosphere, temperature, humidity, soil properties including mineralogy and toxicity, etc.). This way, physical parameters and processes acting on planetary bodies and their interrelations are studied in parallel with the search for surviving biota. Several suitable test chambers for physical and for biological investigations of this type are available at DLR Cologne. Ultimately, the same physical quantities should be measured concurrently with biological measurements during future planetary landing missions searching for signatures of life. The general question, however, remains whether life on Earth shows any biochemical resemblance with hypothetical life on ancient or modern Mars.

  2. Carbon analyses of IDP's sectioned in sulfur and supported on beryllium films

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Keller, L.; Thomas, K. L.; Vanderwood, T. B.; Brownlee, D. E.

    1993-01-01

    Carbon is the only major element in interplanetary dust whose abundance, distribution and chemical state are not well understood. Information about carbon could clarify the relationship between the various classes of IDP's, conventional meteorites, and sources (e.g., comets vs. asteroids). To date, the most reliable estimates of C abundance in Interplanetary Dust Particles (IDP's) have been obtained by analyzing particles on thick-flat Be substrates using thin-window energy-dispersive spectroscopy in the SEM. These estimates of C abundance are valid only if C is homogeneously distributed, because detected C x-rays originate from the outer 0.1 micrometers of the particle. An alternative and potentially more accurate method of measuring C abundances is to analyze multiple thin sections (each less than 0.1 less than 0.1 micrometers thick) of IDP's. These efforts however, have been stymied because of a lack of a suitable non-carbonaceous embedding medium and the availability of C-free conductive substrates. We have embedded and thin-sectioned IDP's in glassy sulfur, and transferred the thin sections to Be support films approximately 25 nm thick. The sections were then analyzed in a 200 KeV analytical TEM. S sublimes rapidly under vacuum in the TEM, leaving non-embedded sections supported on Be. Apart from quantitative C (and O) analyses, S sectioning dramatically expands the range of analytical measurements that can be performed on a single IDP.

  3. Cometary interplanetary dust particles? An update on carbon in anhydrous IDPS

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Keller, L. P.; Blanford, G. E.; Mckay, D. S.

    1993-01-01

    Chondritic anhydrous interplanetary dust particles (IDP's) are widely considered to be the most pristine samples available for the study of the early solar system because of their primitive mineralogy, chemistry, and isotopic characteristics. Previously, anhydrous IDP's were analyzed quantitatively for light elements and found that these particles have significantly higher bulk carbon abundances than known chondritic meteorites. A relationship between carbon abundance and silicate mineralogy was also identified which, in general, shows that particles dominated by pyroxenes have a higher carbon abundance than those dominated by olivines. Particles containing equal amounts of olivine and pyroxene show a range of carbon contents and can be grouped with either the pyroxene- or olivine-dominated particles based on their carbon abundance. It was suggested that high carbon pyroxene-rich IDP's are derived from cometary sources. Bulk compositions and mineralogy of our additional IDP's were determined; one particle has the highest carbon abundance reported in IDP's or any other chondritic material, with the possible exception of the carbon-rich Halley particles.

  4. Nebular and Interstellar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-01-01

    Comets contain a complex mixture of materials with presolar and Solar System origins. Chondritic porous interplanetary dust particles (CP-IDPs) are associated with comets by their fragile nature, unequilibrated anhydrous mineralogy and high abundances of circumstellar grains and isotopically anomalous organic materials. Comet 81P/Wild 2 samples returned by the Stardust spacecraft contain presolar materials as well as refractory 16O-rich Ca-Al-rich inclusion- (CAI), chondrule-, and AOA-like materials. We are conducting coordinated chemical, mineralogical, and isotopic studies of a giant cluster CP-IDP (U2-20-GCA) to determine the proportions of inner Solar System and interstellar materials. We previously found that this IDP contains abundant presolar silicates (approx. 1,800 ppm) and 15N-rich hotspots [6].

  5. Coordinated Chemical and Isotropic Studies of IDPS: Comparison of Circumstellar and Solar GEMS Grains

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2007-01-01

    Silicate stardust in IDPs and meteorites include forsterite, amorphous silicates, and GEMS grains [1]. Amorphous presolar silicates are much less abundant than expected based on astronomical models [2], possibly destroyed by parent body alteration. A more accurate accounting of presolar silicate mineralogy may be preserved in anhydrous IDPs. Here we present results of coordinated TEM and isotopic analyses of an anhydrous IDP (L2005AL5) that is comprised of crystalline silicates and sulfides, GEMS grains, and equilibrated aggregates embedded in a carbonaceous matrix. Nanometer-scale quantitative compositional maps of all grains in two microtome thin sections were obtained with a JEOL 2500SE. These sections were then subjected to O and N isotopic imaging with the JSC NanoSIMS 50L. Coordinated high resolution chemical maps and O isotopic com-positions were obtained on 11 GEMS grains, 8 crystalline grains, and 6 equilibrated aggregates.

  6. Improved validation of IDP ensembles by one-bond Cα-Hα scalar couplings.

    PubMed

    Gapsys, Vytautas; Narayanan, Raghavendran L; Xiang, ShengQi; de Groot, Bert L; Zweckstetter, Markus

    2015-11-01

    Intrinsically disordered proteins (IDPs) are best described by ensembles of conformations and a variety of approaches have been developed to determine IDP ensembles. Because of the large number of conformations, however, cross-validation of the determined ensembles by independent experimental data is crucial. The (1)JCαHα coupling constant is particularly suited for cross-validation, because it has a large magnitude and mostly depends on the often less accessible dihedral angle ψ. Here, we reinvestigated the connection between (1)JCαHα values and protein backbone dihedral angles. We show that accurate amino-acid specific random coil values of the (1)JCαHα coupling constant, in combination with a reparameterized empirical Karplus-type equation, allow for reliable cross-validation of molecular ensembles of IDPs.

  7. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  8. Organic Matter from Comet 81p/Wild 2, IDPS and Carbonaceous Meteorites; Similarities and Differences

    SciTech Connect

    Wirick, S.; Flynn, G; Keller, L; Nakamura Messenger, K; Peltzer, C; Jacobsen, C; Sandford, S; Zolensky, M

    2009-01-01

    During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.

  9. Crustal processes cause adakitic chemical signatures in syn-collision magmatism from SE Iran

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Kheirkhah, Monireh; Neill, Iain

    2015-04-01

    Dehaj magmatism may have developed its geochemical signature during deep fractionation as the ascent of the magmas was impeded by thick orogenic crust. The rocks may be seen as just another part of the widespread syn-collision magmatism that has affected widespread areas of Turkey, Iran, Armenia and neighbouring countries in the last ~10-15 Ma, and need not be used as markers for debateable geodynamic events such as break-off. Adakites are also present in NE Iran without any obvious association with subduction processes. We argue that magmatism across much of the plateau is linked at least in part to mantle upwelling following Miocene slab break-off, but also to small-scale convection beneath the collision zone, as predicted by numerical modelling. Particular compositions such as those at Dehaj are influenced by local sources and differentiation processes, but there is no need for independent triggers for initial melting across disparate locations.

  10. Studying IDP stability and dynamics by fast relaxation imaging in living cells.

    PubMed

    Dhar, Apratim; Prigozhin, Maxim; Gelman, Hannah; Gruebele, Martin

    2012-01-01

    Fast relaxation imaging (FReI) temperature-tunes living cells and applies small temperature jumps to them, to monitor biomolecular stability and kinetics in vivo. The folding or aggregation state of a target protein is monitored by Förster resonance energy transfer (FRET). Intrinsically disordered proteins near the structured-unstructured boundary are particularly sensitive to their environment. We describe, using the IDP α-synuclein as an example, how FReI can be used to measure IDP stability and folding inside the cell.

  11. C/N and other Elemental Ratios of Chondritic Porous IDPS and a Fluffy Concordia Micrometeorite

    NASA Technical Reports Server (NTRS)

    Smith, T.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Khodja, H.; Raepsaet, C.; Wirick, S.; Flynn, G. J.; Taylor, S.; Engrand, C.; Duprat, J.; Herzog, G. F.

    2013-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be cometary in origin [1], as may ultracarbona-ceous (UCAMMs) [2] and 'fluffy' [3] micrometeorites from the Concordia collection. They are all rich in organics, which can rim grains and may have helped glue grains together during accretion [4]. The organics also contain nitrogen the input of which to Earth has potential biological importance. We report C/N ratios, and other properties of CP-IDPs and a Concordia fluffy microme-teorite.

  12. Focused Ion Beam Recovery and Analysis of Interplanetary Dust Particles (IDPs) and Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Bradley, J. P.; Bernas, M.; Stroud, R. M.; Dai, Z. R.; Floss, C.; Stadermann, F. J.; Snead, C. J.; Westphal, A. J.

    2004-01-01

    Meteoritics research is a major beneficiary of recent developments in analytical instrumentation [1,2]. Integrated studies in which multiple analytical techniques are applied to the same specimen are providing new insight about the nature of IDPs [1]. Such studies are dependent on the ability to prepare specimens that can be analyzed in multiple instruments. Focused ion beam (FIB) microscopy has revolutionized specimen preparation in materials science [3]. Although FIB has successfully been used for a few IDP and meteorite studies [1,4-6], it has yet to be widely utilized in meteoritics. We are using FIB for integrated TEM/NanoSIMS/synchrotron infrared (IR) studies [1].

  13. Focused Ion Beam Recovery and Analysis of Interplanetary Dust Particles (IDPs) and Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Bradley, J. P.; Bernas, M.; Stroud, R. M.; Dai, Z. R.; Floss, C.; Stadermann, F. J.; Snead, C. J.; Westphal, A. J.

    2004-01-01

    Meteoritics research is a major beneficiary of recent developments in analytical instrumentation [1,2]. Integrated studies in which multiple analytical techniques are applied to the same specimen are providing new insight about the nature of IDPs [1]. Such studies are dependent on the ability to prepare specimens that can be analyzed in multiple instruments. Focused ion beam (FIB) microscopy has revolutionized specimen preparation in materials science [3]. Although FIB has successfully been used for a few IDP and meteorite studies [1,4-6], it has yet to be widely utilized in meteoritics. We are using FIB for integrated TEM/NanoSIMS/synchrotron infrared (IR) studies [1].

  14. Observing the signatures of the r-process in metal-poor stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-04-01

    In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H]<-2.5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation SN. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56process is universal -- a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. It is thus a crucial constraint for theoretical nuclear physices models. Among the heaviest elements are the long-lived radioactive isotopes ^232Th (half-life 14 Gyr) and ^238U (4.5 Gyr). While Th is often detectable in these stars, U poses a real challenge because only one, extremely weak line is available in the optical spectrum. In comparison with stable r-process nuclei, such as Eu, stellar ages can be derived from abundance ratios involving Th and/or U. Through individual age measurements, these objects become vital probes for observational ``near-field'' cosmology by providing an independent lower limit for the age of the Universe.

  15. Collection and curation of IDPs in the stratosphere and below. Part 2: The Greenland and Antarctic ice sheets

    NASA Technical Reports Server (NTRS)

    Maurette, Michel; Hammer, C.; Harvey, R.; Immel, G.; Kurat, G.; Taylor, S.

    1994-01-01

    In a companion paper, Zolensky discusses interplanetary dust particles (IDP's) collected in the stratosphere. Here, we describe the recovery of much larger unmelted to partially melted IDP's from the Greenland and Antarctica ice sheet, and discuss problems arising in their collection and curation, as well as future prospects for tackling these problems.

  16. Collection and curation of IDPs in the stratosphere and below. Part 2: The Greenland and Antarctic ice sheets

    NASA Technical Reports Server (NTRS)

    Maurette, Michel; Hammer, C.; Harvey, R.; Immel, G.; Kurat, G.; Taylor, S.

    1994-01-01

    In a companion paper, Zolensky discusses interplanetary dust particles (IDP's) collected in the stratosphere. Here, we describe the recovery of much larger unmelted to partially melted IDP's from the Greenland and Antarctica ice sheet, and discuss problems arising in their collection and curation, as well as future prospects for tackling these problems.

  17. Data Processing Explorations of Ionospheric Signatures from the August 24th, 2016 Central Italy Earthquake

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Pankratius, V.

    2016-12-01

    We explore a set of data processing techniques to visualize ionospheric phenomena during the August 24th, 2016 Central Italy Earthquake. The initial data set was drawn from MIT Haystack Observatory's database of global position system (GPS) total electron content (TEC) measurements and subsequently pruned to focus on the epicenter of the earthquake at 42.706°N, 13.223°E using a geographic window of 2 degrees in latitude and longitude. This area included 462 GPS stations within the geographic region for the day of the earthquake, and over 400 stations for the preceding and following days. Each satellite-station pair made a measurement of the line-of-sight TEC once every 30 s, which is processed to yield the 350 km altitude pierce point vertical TEC measurement. We explore different interpolation approaches and density models to highlight potentially visible features within the data points using both the TEC measurements and band-pass filtered TEC (time-differential TEC, dTEC) values. These explorations provide additional insight for ongoing research on ionospheric signatures associated with earthquakes and other environmental responses. Further studies and complementary observations will be needed to provide a better picture of underlying phenomena and to advance our understanding of their dynamic nature. We acknowledge support from NSF ACI-1442997 (PI Pankratius).

  18. Lesson 6: Signature Validation

    EPA Pesticide Factsheets

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  19. Nebular and Interstellar Materials in a Giant Cluster IDP of Probable Cometary Origin

    NASA Astrophysics Data System (ADS)

    Messenger, S.; Brownlee, D. E.; Joswiak, D. J.; Nguyen, A. N.

    2015-07-01

    We are conducting coordinated mineralogical, and isotopic studies of a giant cluster CP-IDP to determine proportions of inner solar system and interstellar materials. We have identified an 16O-rich enstatite grain that likely formed near the Sun.

  20. Assessment of Mobilization and Leadership Challenges in Azerbaijani IDP and Refugee Camps.

    ERIC Educational Resources Information Center

    Affolter, Friedrich W.; Findlay, Henry J.

    2002-01-01

    A study analyzed community mobilization and leadership challenges in Azerbaijan refugee and internally displaced people (IDP) camps. The research determined that there is a lack of capacity to mobilize the community to effective community action and learning. (Contains 21 references.) (Author/JOW)

  1. High-Nickel Iron-Sulfides in Anhydrous, GEMS-Rich IDPs

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.

    2016-08-01

    We used the new Hard X-ray Nanoprobe at the NSLS II to map the element distributions, with ~15 nm spatial resolution, in anhydrous, GEMS-rich IDPs and found high-Ni, Fe-sulfides, previously thought only to form by hydrous alteration on parent bodies.

  2. ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins.

    PubMed

    Song, Dong; Wang, Wei; Ye, Wei; Ji, Dingjue; Luo, Ray; Chen, Hai-Feng

    2017-01-01

    Intrinsically disordered proteins are proteins which lack of specific tertiary structure and unable to fold spontaneously without the partner binding. These intrinsically disordered proteins are found to associate with various diseases, such as diabetes, cancer, and neurodegenerative diseases. However, current widely used force fields, such as ff99SB, ff14SB, OPLS/AA, and Charmm27, are insufficient in sampling the conformational characters of intrinsically disordered proteins. In this study, the CMAP method was used to correct the φ/ψ distributions of disorder-promoting amino acids. The simulation results show that the force filed parameters (ff14IDPs) can improve the φ/ψ distributions of the disorder-promoting amino acids, with RMSD less than 0.10% relative to the benchmark data of intrinsically disordered proteins. Further test suggests that the calculated secondary chemical shifts under ff14IDPs are in quantitative agreement with the data of NMR experiment for five tested systems. In addition, the simulation results show that ff14IDPs can still be used to model structural proteins, such as tested lysozyme and ubiquitin, with better performance in coil regions than the original general Amber force field ff14SB. These findings confirm that the newly developed Amber ff14IDPs is a robust model for improving the conformation sampling of intrinsically disordered proteins.

  3. Assessment of Mobilization and Leadership Challenges in Azerbaijani IDP and Refugee Camps.

    ERIC Educational Resources Information Center

    Affolter, Friedrich W.; Findlay, Henry J.

    2002-01-01

    A study analyzed community mobilization and leadership challenges in Azerbaijan refugee and internally displaced people (IDP) camps. The research determined that there is a lack of capacity to mobilize the community to effective community action and learning. (Contains 21 references.) (Author/JOW)

  4. From Positivity to Negativity Bias: Ambiguity Affects the Neurophysiological Signatures of Feedback Processing.

    PubMed

    Gibbons, Henning; Schnuerch, Robert; Stahl, Jutta

    2016-04-01

    Previous studies on the neurophysiological underpinnings of feedback processing almost exclusively used low-ambiguity feedback, which does not fully address the diversity of situations in everyday life. We therefore used a pseudo trial-and-error learning task to investigate ERPs of low- versus high-ambiguity feedback. Twenty-eight participants tried to deduce the rule governing visual feedback to their button presses in response to visual stimuli. In the blocked condition, the same two feedback words were presented across several consecutive trials, whereas in the random condition feedback was randomly drawn on each trial from sets of five positive and five negative words. The feedback-related negativity (FRN-D), a frontocentral ERP difference between negative and positive feedback, was significantly larger in the blocked condition, whereas the centroparietal late positive complex indicating controlled attention was enhanced for negative feedback irrespective of condition. Moreover, FRN-D in the blocked condition was due to increased reward positivity (Rew-P) for positive feedback, rather than increased (raw) FRN for negative feedback. Our findings strongly support recent lines of evidence that the FRN-D, one of the most widely studied signatures of reinforcement learning in the human brain, critically depends on feedback discriminability and is primarily driven by the Rew-P. A novel finding concerned larger frontocentral P2 for negative feedback in the random but not the blocked condition. Although Rew-P points to a positivity bias in feedback processing under conditions of low feedback ambiguity, P2 suggests a specific adaptation of information processing in case of highly ambiguous feedback, involving an early negativity bias. Generalizability of the P2 findings was demonstrated in a second experiment using explicit valence categorization of highly emotional positive and negative adjectives.

  5. Deciphering seismic signatures of physical processes in dynamic complex systems: an experimental approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Dingwell, D. B.

    2012-12-01

    Seismic evaluation of well-controlled experimental simulations of volumetric sources (e.g. explosions, cavitations, burst, pressure drops) is a powerful tool for better understanding of the seismic wave field of complex systems. In this work, we describe two distinct well-constrained physical models, which under controlled laboratory conditions enable the simulation of complex systems; volcanic explosions and fluid-filled wells. For volcanic explosion simulations, several experiments were performed to study seismic signals associated with fragmentation processes of volcanic rocks by rapid decompression. These experiments were performed in a shock-tube apparatus at room temperature and a pressure range of 4 to 20 MPa. Pumice samples from Popocatepetl volcano of different porosity were studied. To investigate the elastic wave propagation inside a fluid-filled well, we present a hollow cylinder model surrounded by water, excited by a ultrasonic laser beam emitting pulses between 5 and 8 ns in duration, causing micro-cavitations. Adequate instrumentation of these mechanical systems, using high-precision sensors, enabled us to capture and to analyze seismic wave fields, characterizing also their source mechanism. Although these laboratory analogues have simplified geometries and media properties, these experimental investigations are based upon the hypothesis that, in comparable systems, any physical process (e.g. pressure drops, fragmentation, vibration, elastic deformation, etc) conducts to equivalent system responses, causing the same distinctive effects, which are independent on the scale. These effects engender particular seismic signatures, reflecting the dynamics of the process, and are comparable with numerical simulations and seismic field observations. Therefore, laboratory models can validate the inverse problem solution, indicating that the source mechanism and the system nature can both be inferred from field-based seismograms.

  6. 78 FR 43145 - Announcing Approval of Federal Information Processing Standard 186-4, Digital Signature Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... FIPS with Key Cryptography Standard (PKCS) 1. FIPS 186-4 is available at http://csrc.nist.gov... signature scheme with Public Key Cryptography Standard (PKCS) 1. NIST published a Federal Register Notice...

  7. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  8. Grain boundary traction signatures: Quantifying the asymmetrical dislocation emission processes under tension and compression

    NASA Astrophysics Data System (ADS)

    Li, Ruizhi; Chew, Huck Beng

    2017-06-01

    The disruption in crystallographic arrangement of atoms across a grain boundary interface generates local stress fields in the vicinity. Here, we reconstruct the continuum-equivalent grain boundary tractions from local atomic stresses near symmetrical-tilt <110> Ni grain boundaries. We show that the resolved shear stress contribution from the grain boundary tractions, τGB, along active slip-systems either assists or prevents the emission of dislocations, depending on its direction with respect to the resolved shear stress contribution from external loading, τext. When τGB acts in the same direction as τext, Shockley partial dislocations are readily emitted from the boundary once | τGB +τext | exceeds the critical barrier stress for shear-slip. When τGB opposes τext, the higher sustainable stresses in the grain boundary structure instead triggers: (a) emission of dislocations from the bulk, or (b) reconfiguration of the grain boundary atomic structure and subsequent emission of non-Schmid dislocations or formation of extrinsic stacking faults. Our results quantitatively explain the asymmetrical grain boundary dislocation emission processes observed in molecular dynamics (MD) simulations under applied tensile and compressive loads. The relationship between the traction signatures and periodic structural units along the grain boundary is discussed.

  9. Signatures of Dissipation Processes in Magnetically Dominated Regions in Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Li, Hui

    Modern observations have shown that disk-jet-lobe systems driven by supermassive black holes play an important feedback role in cosmic structure evolution, as well as in explaining cosmic magnetic fields and energetic cosmic rays. Highly collimated bi-polar jets can traverse tremendous distances, and energy carried by jets is further converted to accelerate particles to extraordinary energies, likely via both magnetic reconnection and shocks. These particles then radiate from radio to tens of TeV, including polarized signatures that are yielding intriguing constraints on jet properties. This proposal presents a systematic and integrated study of relativistic jets, utilizing our state-of-the-art three-dimensional relativistic magnetohydrodynamics (LA-COMPASS), particle-in-cell (VPIC), polarized radiation transport (3DPol) codes, as well as analytic tools. The proposed studies focus on the energy dissipation processes along three fronts: (1) the stability of relativistic jets, emphasizing the role of current-driven instabilities and their nonlinear saturation; (2) the particle acceleration processes through magnetic field dissipation with varying degrees of magnetic dominance, especially the role of relativistic turbulence and current sheet reconnection in jets; (3) the transport of temporal and spatial dependent polarized radiation as cooling of the relativistic plasmas. More importantly, we plan to integrate the studies of magnetic fields, particles and radiation evolution so that we derive physical constraints on the jets and their emission regions. We will provide useful predictions for the multi-wavelength spectral energy distributions and light curves of AGN jets, especially the polarized emission evolution. These results will be guided by and compared with available observations of AGN jets. The outcome from the proposed studies will be of direct relevance to a wide range of NASA missions, such as Fermi, Chandra and HST, in terms of interpreting the data from

  10. The prevalence of HBV infection in the cohort of IDPs of war against terrorism in Malakand Division of Northern Pakistan.

    PubMed

    Khan, Fawad; Akbar, Haji; Idrees, Muhammad; Khan, Hayat; Shahzad, Khuram; Kayani, Mahmood A

    2011-06-20

    Hepatitis B is an important public health problem in the Pakistani population and is the major cause of chronic hepatitis, cirrhosis, fibrosis and hepatocellular carcinoma. High prevalence of HBV infections has been observed especially in areas of low economic status. In spite of effective immunization programs, no significant change has been observed in the epidemiology of HBV in the rural areas of Pakistan (~67.5% of the total population) mainly due to lack of interest from government authorities and poor hygienic measures. The current study was aimed at estimating the prevalence and risk factors associated with HBV infection within internally displaced persons (IDPs) due to war against terrorism in the Malakand Division of Northern Pakistan. Blood samples from 950 IDPs suspected with HBV infection (including both males and females) were collected and processed with commercial ELISA kits for HBsAg, Anti HBs, HBeAg, Anti HBe antibodies. The samples positive by ELISA were confirmed for HBV DNA by real-time PCR analysis. The overall prevalence of HBV observed was 21.05% of which 78.5% were males and 21.5% were females. Most confirmed HBV patients belong to the Malakand and Dir (lower) district. High-risk of infection was found in the older subjects 29.13% (46-60 years), while a lower incidence (11.97%) was observed in children aged <15 years. Lack of awareness, socioecomic conditions, sexual activities and sharing of razor blades, syringes and tattooing needles were the most common risk factors of HBV infection observed during the cohort of patients. The present study, revealed for the first time a high degree of prevalence of HBV infection in rural areas of Northern Pakistan. The noticed prevalence is gender- and age-dependent that might be due to their high exposures to the common risk factors. To avoid the transmission of HBV infection proper awareness about the possible risk factors and extension of immunization to the rural areas are recommended.

  11. Voyager 2 Signatures of Important Processes/Dynamics in the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Intriligator, D. S.; Intriligator, J.; Miller, W. D.; Webber, W. R.; Decker, R. B.; Sittler, E. C.

    2011-12-01

    We continue investigating the Voyager 2 (V2) Plasma Subsystem (PLS) elevated readings in L-mode on energy/unit charge (E/Q) step 12 on the B-Cup we first reported (Intriligator et al., JGR, 2010) near the termination shock at 84 AU. These elevated B12 readings, which we previously referred to as "high energy ions (HEIs)", are found in the V2 PLS data on the sunward facing B-Cup at E/Q step 12 corresponding to 1610 volts and a proton speed of ~ 600 km/s. In the present paper we update our findings and present V2 data from three years earlier when V2 was in the solar wind in the outer heliosphere (OH) at 73 AU measuring the interplanetary (IP) effects from the October-November (Halloween) 2003 solar events. We also examine other V2 OH time intervals. We show links between solar activity and the elevated B12 readings in the V2 data. We present evidence that these elevated B12 readings appear to be accompanied by significant simultaneous changes in other V2 measurements, including: low energy ions, low energy cosmic rays, anomalous cosmic rays, cosmic ray electrons, interplanetary magnetic field (IMF), and convective solar wind plasma. Our results suggest that the V2 elevated B12 readings may be signatures, tracers, by-products, or indicators of important IP processes such as those associated with intervals of particle acceleration, changes in IMF turbulence, and perhaps local reconnection. This work was funded by NASA Grant NNX08AE40G and by Carmel Research Center, Inc.

  12. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  13. Neural Signatures of Number Processing in Human Infants: Evidence for Two Core Systems Underlying Numerical Cognition

    ERIC Educational Resources Information Center

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2011-01-01

    Behavioral research suggests that two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants by recording event-related potentials…

  14. Long-term effects of traumatic experience: Comparison study in the adolescent IDPs in Serbia.

    PubMed

    Matsunaga, Chieko; Ristic, Dragana; Niregi, Mitsuki

    2006-12-01

    The purpose of this study is to examine the long term psychological effects of war stress regarded as traumatic experience. The subjects are Serbian internally displaced people (IDP) of adolescent population from Kosovo. It is a very big concern whether the adolescents would overcome the social and psychological difficulties caused by the war stress in order to reconstruct the better society. The result came out that the long-term effects still exist in PTSD, depression and hopelessness, which affects self-esteem and the attitude in purpose in life that are important factors for personality development. This paper also examines the difference between IDPs with war stress and the adolescent sufferers of the big earthquake in Japan.

  15. Electron Energy Loss Spectroscopy Measurements of Titanium Valence States in Refractory Nodule Pyroxenes from a Likely Cometary IDP

    NASA Astrophysics Data System (ADS)

    Joswiak, D. J.; Brownlee, D. E.; Ishii, H. A.; Sutton, S. R.

    2015-07-01

    Mineralogical properties combined with Ti EELs measurements on fassaites from refractory nodules in an IDP of likely cometary origin are consistent with formation in a restricted nebular environment with variable ƒO2.

  16. Signature of magmatic processes in ground deformation signals from Phlegraean Fields (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, Matteo; Montagna, Chiara Paola; Longo, Antonella; Papale, Paolo

    2016-04-01

    Ground deformation signals such as dilatometric and tiltmetric ones, are nowadays well studied from the vulcanological community all over the world. These signals can be used to retrieve information on volcanoes state and to study the magma dynamics in their plumbing system. We compared synthetic signals in the Very Long Period (VLP, 10-2 - 10-1 Hz) and Ultra Long Period (ULP, 10-4 - 10-2 Hz) bands obtained from the simulation of magma mixing in shallow reservoirs ([3],[4]) with real data obtained from the dilatometers and tiltmeters network situated in the Phlegraean Fields near Naples (Italy), in order to define and constrain the relationships between them. Analyses of data from the October 2006 seismic swarm in the area show that the frequency spectrum of the synthetics is remarkably similar to the transient present in the real signals. In depth studies with accurated techniques for spectral analysis (i.e wavelet transform) and application of this method to other time windows have identified in the bandwidth around 10-4Hz (between 1h30m and 2h45m) peaks that are fairly stable and independent from the processing carried out on the full-band signal. These peaks could be the signature of ongoing convection at depth. It is well known that re-injection of juvenile magmas can reactivate the eruption dynamics ([1],[2]), thus being able to define mixing markers and detect them in the ground deformation signals is a relevant topic in order to understand the dynamics of active and quiescent vulcanoes and to eventually improve early-warning methods for impending eruptions. [1] Arienzo, I. et al. (2010). "The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios". In: Chemical Geology 270.1, pp. 135-147. [2] Bachmann, Olivier and George Bergantz (2008). "The magma reservoirs that feed supereruptions". In: Elements 4.1, pp. 17-21. [3] Longo, Antonella et al. (2012). "Magma convection and mixing

  17. Methods of extending signatures and training without ground information. [data processing, pattern recognition

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.

    1975-01-01

    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.

  18. Neural signatures of number processing in human infants: evidence for two core systems underlying numerical cognition

    PubMed Central

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2010-01-01

    Behavioral research suggests two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants, by recording event-related potentials (ERPs) as 6-7.5 month-old infants (n = 32) viewed dot arrays containing either small (1-3) or large (8-32) sets of objects in a number alternation paradigm. If small and large numbers are represented by the same neural system, then the brain response to the arrays should scale with ratio for both number ranges, a behavioral and brain signature of the approximate numerical magnitude system obtained in animals and in human adults. Contrary to this prediction, a mid-latency positivity (P500) over parietal scalp sites was modulated by the ratio between successive large, but not small, numbers. Conversely, an earlier peaking positivity (P400) over occipital-temporal sites was modulated by the absolute cardinal value of small, but not large, numbers. These results provide evidence for two early developing systems of non-verbal numerical cognition: one that responds to small quantities as individual objects and a second that responds to large quantities as approximate numerical values. These brain signatures are functionally similar to those observed in previous studies of non-symbolic number with adults, suggesting that this dissociation may persist over vast differences in experience and formal training in mathematics. PMID:21399717

  19. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  20. NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.

    PubMed

    Abolhassani, Nona; Iyama, Teruaki; Tsuchimoto, Daisuke; Sakumi, Kunihiko; Ohno, Mizuki; Behmanesh, Mehrdad; Nakabeppu, Yusaku

    2010-05-01

    Mammalian inosine triphosphatase encoded by ITPA gene hydrolyzes ITP and dITP to monophosphates, avoiding their deleterious effects. Itpa(-) mice exhibited perinatal lethality, and significantly higher levels of inosine in cellular RNA and deoxyinosine in nuclear DNA were detected in Itpa(-) embryos than in wild-type embryos. Therefore, we examined the effects of ITPA deficiency on mouse embryonic fibroblasts (MEFs). Itpa(-) primary MEFs lacking ITP-hydrolyzing activity exhibited a prolonged doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in nuclear DNA, compared with primary MEFs prepared from wild-type embryos. However, immortalized Itpa(-) MEFs had neither of these phenotypes and had a significantly higher ITP/IDP-hydrolyzing activity than Itpa(-) embryos or primary MEFs. Mammalian NUDT16 proteins exhibit strong dIDP/IDP-hydrolyzing activity and similarly low levels of Nudt16 mRNA and protein were detected in primary MEFs derived from both wild-type and Itpa(-) embryos. However, immortalized Itpa(-) MEFs expressed significantly higher levels of Nudt16 than the wild type. Moreover, introduction of silencing RNAs against Nudt16 into immortalized Itpa(-) MEFs reproduced ITPA-deficient phenotypes. We thus conclude that NUDT16 and ITPA play a dual protective role for eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.

  1. Impact of jerry can disinfection in a camp environment - experiences in an IDP camp in Northern Uganda.

    PubMed

    Steele, Andre; Clarke, Brian; Watkins, Owen

    2008-12-01

    In July 2007, a study by the Centre for Environmental Health Engineering, at the University of Surrey, assessed a modified method of jerry can cleaning in an internally displaced persons (IDP) camp in Kitgum, N. Uganda. The poor condition of drinking water vessels used in the camp was confirmed as a potential source for microbiological contamination both visually and by microbiological testing. Jerry cans were disinfected using high strength sodium hypochlorite (NaOCl) generated using an experimental AquaChlor Solar unit. The study suggested that regular jerry can cleaning, using a high strength chlorine based disinfectant, offers an effective method of alleviating the adverse effects of contamination in water collection and storage vessels. Results indicated that the method is capable of significantly reducing thermo-tolerant coliform numbers to below 5 cfu/100 ml in most cases. Chlorine strength depletion after repetitive cleaning confirms the impact of process. The method does not substitute for good hygiene practices, which are essential for maintaining water quality in the household. It is suggested that the process can play an important role during outbreaks of water-borne diseases, such as cholera, particularly if combined with regular water disinfection.

  2. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  3. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  4. Constraining recharge and groundwater flow processes in hard-rock aquifers in temperate maritime climate using stable isotope signatures.

    NASA Astrophysics Data System (ADS)

    Pilatova, Katarina; Ofterdinger, Ulrich

    2015-04-01

    Recharge estimates and in understanding flow process in hard rock aquifers pose significant challenges. These arise from structural complexities of the hardrock aquifers and are further complicated by variability of the superficial cover. A comparative study of three metamorphic catchments situated in the North of Ireland is presented in this study, each with contrasting geology, glaciation history and consequently superficial cover. The presented study focusses on two main strains. Firstly, due to lack of existing records, stable water isotopes in precipitation (δ18O and δ2H) were monitored at the research sites and their temporal and spatial variability was examined. Secondly, flow processes and dynamics of groundwater recharge based on continuous records of stable isotopes in groundwater, collected along catchment transects from various depths, and its variability in relation to the acquired precipitation signal were studied. Each precipitation station exhibited distinct isotopic signatures, where weather effect and proximity to coastline are the main controlling factors governing the isotope signatures. Moreover, in each of the stations the isotopic signature varied seasonally and thus stable isotopes proved a useful tool for assessing the dynamics of groundwater recharge. The analysis of isotope signatures in precipitation and groundwater from various depths within the hard rock aquifers allowed to evaluate the timescale of recharge, with rapid responses varying from few days up to several months. In general, the recharge appeared continuous over the hydrological year within wetter catchments with higher annual precipitation amounts purging the hardrock aquifers throughout the year. However, within comparatively dryer catchments recharge has a more seasonal character, predominantly taking place during the winter half of the year. Spatially, the recharge is highly localised within the elevated catchment areas, where superficial deposits are scarce and the

  5. What does the fine-scale petrography of IDPs reveal about grain formation and evolution in the early solar system?

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1994-01-01

    The 'pyroxene' interplanetary dust particles (IDP's) may be the best samples for investigation of primordial grain-forming reactions because they appear to have experienced negligible post-accretional alteration. They are likely to continue to yield information about gas-to-solid condensation and other grain-forming reactions that may have occurred either in the solar nebular or presolar interstellar environments. An immediate challenge lies in understanding the nanometer-scale petrography of the ultrafine-grained aggregates in 'pyroxene' IDP's. Whether these aggregates contain components from diverse grain-forming environments may ultimately be answered by systematic petrographic studies using electron microscopes capable of high spatial resolution microanalysis. It may be more difficult to decipher evidence of grain formation and evolution in 'olivine' and 'layer silicate' IDP's because they appear to have experienced post-accretional alteration. Most of the studied 'olivine' IDPs have been subjected to heating and equilibration, perhaps during atmospheric entry, while the 'layer silicate' IDP's have experienced aqueous alteration.

  6. Kabrit ki gen twòp mèt: understanding gaps in WASH services in Haiti's IDP camps.

    PubMed

    Schuller, Mark; Levey, Tania

    2014-04-01

    Despite the enormous infusion of post-quake aid to Haiti, cholera had killed more than 8,000 people by January 2013. Based on two mixed-method studies of a random sample of 108 internally displaced person (IDP) camps and 168 interviews with agency representatives and recipients, this article examines the prevalence of factors that have proven most relevant to the rapid spread of cholera, particularly the provision of water and sanitation services in IDP camps. The study reveals that 30% of IDP camps had no toilets and 40% had no access to water before the outbreak, with only minimal progress after three months. Using bivariate and multivariate statistical analyses, this article explores patterns in the gaps of services with a range of variables such as NGO camp management, municipality and land-owners. It offers several theoretical and policy explanations for low level of services, concluding with a series of recommendations for better coordination and management.

  7. Differential Volatile Signatures from Skin, Naevi and Melanoma: A Novel Approach to Detect a Pathological Process

    PubMed Central

    Abaffy, Tatjana; Duncan, Robert; Riemer, Daniel D.; Tietje, Olaf; Elgart, George; Milikowski, Clara; DeFazio, R. Anthony

    2010-01-01

    Background Early detection of melanoma is of great importance to reduce mortality. Discovering new melanoma biomarkers would improve early detection and diagnosis. Here, we present a novel approach to detect volatile compounds from skin. Methods and Findings We used Head Space Solid Phase Micro-Extraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) to identify volatile signatures from melanoma, naevi and skin samples. We hypothesized that the metabolic state of tissue alters the profile of volatile compounds. Volatiles released from fresh biopsy tissue of melanoma and benign naevus were compared based on their difference in frequency distribution and their expression level. We also analyzed volatile profiles from frozen tissue, including skin and melanoma. Conclusions Three volatiles, 4-methyl decane, dodecane and undecane were preferentially expressed in both fresh and frozen melanoma, indicating that they are candidate biomarkers. Twelve candidate biomarkers evaluated by fuzzy logic analysis of frozen samples distinguished melanoma from skin with 89% sensitivity and 90% specificity. Our results demonstrate proof-of-principle that there is differential expression of volatiles in melanoma. Our volatile metabolomic approach will lead to a better understanding of melanoma and can enable development of new diagnostic and treatment strategies based on altered metabolism. PMID:21079799

  8. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating?

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.; Thomas, K. L.; Keller, L. P.

    1993-01-01

    The degree of heating of interplanetary dust particles (IDP's) on Earth atmospheric entry is important in distinguishing cometary particles from main-belt asteroidal particles. Depletions in the volatile elements S and Zn were proposed as chemical indicators of significant entry heating. The S and Zn contents of cosmic dust particles were correlated with physical indicators of atmospheric entry heating, such as the production of magnetite and the loss of solar wind implanted He. The results indicate that the Zn content of IDP's is a useful indicator of entry heating, but the S content seems to be less useful.

  9. Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects

    NASA Astrophysics Data System (ADS)

    Zech, A.; Cerruti, M.; Mazin, D.

    2017-06-01

    Context. The wealth of recent data from Imaging Air Cherenkov telescopes (IACTs), ultra-high energy cosmic-ray experiments and neutrino telescopes have fuelled a renewed interest in hadronic emission models for γ-loud blazars. Aims: We explore physically plausible solutions for a lepto-hadronic interpretation of the stationary emission from high-frequency peaked BL Lac objects (HBLs). The modelled spectral energy distributions are then searched for specific signatures at very high energies that could help to distinguish the hadronic origin of the emission from a standard leptonic scenario. Methods: By introducing a few basic constraints on parameters of the model, such as assuming the co-acceleration of electrons and protons, we significantly reduced the number of free parameters. We then systematically explored the parameter space of the size of the emission region and its magnetic field for two bright γ-loud HBLs, PKS 2155-304 and Mrk 421. For all solutions close to equipartition between the energy densities of protons and of the magnetic field, and with acceptable jet power and light-crossing timescales, we inspected the spectral hardening in the multi-TeV domain from proton-photon induced cascades and muon-synchrotron emission inside the source. Very-high-energy spectra simulated with the available instrument functions from the future Cherenkov Telescope Array (CTA) were evaluated for detectable features as a function of exposure time, source redshift, and flux level. Results: A range of hadronic scenarios are found to provide satisfactory solutions for the broad band emission of the sources under study. The TeV spectrum can be dominated either by proton-synchrotron emission or by muon-synchrotron emission. The solutions for HBLs cover a parameter space that is distinct from the one found for the most extreme BL Lac objects in an earlier study. Over a large range of model parameters, the spectral hardening due to internal synchrotron-pair cascades, the

  10. Assisting Groundwater Exploration for Refugee/IDP Camps by Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Wendt, Lorenz; Robl, Jörg; Hilberg, Sylke; Braun, Andreas; Rogenhofer, Edith; Dirnberger, Daniel; Strasser, Thomas; Füreder, Petra; Lang, Stefan

    2015-04-01

    Refugee camps and camps of internally displaced people (IDP) often form spontaneously or have to be established rapidly in remote, rural areas, where little is known about the hydrogeological situation. This requires a rapid assessment of the availability of groundwater to enable humanitarian organisations like Médecins Sans Frontières (MSF) to supply the camp population with sufficient potable water. Within the project EO4HumEn, hydrogeological reconnaissance maps are produced for MSF by integrating remote sensing data like SRTM, Landsat, ASTER, optical very-high resolution (VHR) imagery, and SAR data. Depending on the specific situation of the camps, these maps contain topography, permanent and temporary water bodies, hard rock outcrops and their geological variability, locations of existing boreholes and wells (if available), potential contamination sources, roads and obstacles (e.g. swampland). In areas characterized by unconsolidated sediments, specific landforms like alluvial fans, meanders, levees, deltas or beach ridges are identified. Here, the reconnaissance map can be sufficient to plan drill sites for groundwater abstraction. In hard rock areas, the lithology is determined, if the vegetation cover allows it. Fractures, faults and karst features are mapped to resolve the structural setting. Anomalous vegetation patterns are interpreted in terms of near-surface groundwater. The maps provide an overview of the camp surroundings, and allow the field hydrogeologists to focus their investigations on the most promising locations. The maps are complemented by a literature review on geological maps, articles and reports available for the area of interest. Assisting groundwater exploration by remote sensing data analysis is not a new development, but it has not been widely adopted by the humanitarian community as interfaces between humanitarian organisations and GI-scientists were missing. EO4HumEn fills this gap by a strong interdisciplinary cooperation

  11. Brain signatures of artificial language processing: evidence challenging the critical period hypothesis.

    PubMed

    Friederici, Angela D; Steinhauer, Karsten; Pfeifer, Erdmut

    2002-01-08

    Adult second language learning seems to be more difficult and less efficient than first language acquisition during childhood. By using event-related brain potentials, we show that adults who learned a miniature artificial language display a similar real-time pattern of brain activation when processing this language as native speakers do when processing natural languages. Participants trained in the artificial language showed two event-related brain potential components taken to reflect early automatic and late controlled syntactic processes, whereas untrained participants did not. This result challenges the common view that late second language learners process language in a principally different way from native speakers. Our findings demonstrate that a small system of grammatical rules can be syntactically instantiated by the adult speaker in a way that strongly resembles native-speaker sentence processing.

  12. Neural signatures of conscious and unconscious emotional face processing in human infants.

    PubMed

    Jessen, Sarah; Grossmann, Tobias

    2015-03-01

    Human adults can process emotional information both with and without conscious awareness, and it has been suggested that the two processes rely on partly distinct brain mechanisms. However, the developmental origins of these brain processes are unknown. In the present event-related brain potential (ERP) study, we examined the brain responses of 7-month-old infants in response to subliminally (50 and 100 msec) and supraliminally (500 msec) presented happy and fearful facial expressions. Our results revealed that infants' brain responses (Pb and Nc) over central electrodes distinguished between emotions irrespective of stimulus duration, whereas the discrimination between emotions at occipital electrodes (N290 and P400) only occurred when faces were presented supraliminally (above threshold). This suggests that early in development the human brain not only discriminates between happy and fearful facial expressions irrespective of conscious perception, but also that, similar to adults, supraliminal and subliminal emotion processing relies on distinct neural processes. Our data further suggest that the processing of emotional facial expressions differs across infants depending on their behaviorally shown perceptual sensitivity. The current ERP findings suggest that distinct brain processes underpinning conscious and unconscious emotion perception emerge early in ontogeny and can therefore be seen as a key feature of human social functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modern Microbial Fossilization Processes as Signatures for Interpreting Ancient Terrestrial and Extraterrestrial Microbial Forms

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Nelman, Mayra; Byrne, Monica; Longazo, Teresa; Galindo, Charles; McKay, David S.; Sams, Clarence

    2003-01-01

    Terrestrial biotas from microbially dominated hypersaline environments will help us understand microbial fossilization processes. Hypersaline tolerant biota from Storr's Lake, San Salvador Island (Bahamas), Mono Lake (California), and the Dead Sea (Israel) represent marine and nonmarine sites for comparative studies of potential analogs for interpreting some Mars meteorites and Mars sample return rocks [1,2,3,4,5,6]. The purpose of this study is to compare microbial fossilization processes, the dominant associated minerals, and potential diagenic implications.

  14. Modern Microbial Fossilization Processes as Signatures for Interpreting Ancient Terrestrial and Extraterrestrial Microbial Forms

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Nelman, Mayra; Byrne, Monica; Longazo, Teresa; Galindo, Charles; McKay, David S.; Sams, Clarence

    2003-01-01

    Terrestrial biotas from microbially dominated hypersaline environments will help us understand microbial fossilization processes. Hypersaline tolerant biota from Storr's Lake, San Salvador Island (Bahamas), Mono Lake (California), and the Dead Sea (Israel) represent marine and nonmarine sites for comparative studies of potential analogs for interpreting some Mars meteorites and Mars sample return rocks [1,2,3,4,5,6]. The purpose of this study is to compare microbial fossilization processes, the dominant associated minerals, and potential diagenic implications.

  15. Stable isotope signatures in bulk samples from two soils with contrasting characteristics. What do they tell about ongoing pedogenic processes?

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.

    2014-05-01

    Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the

  16. Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves.

    PubMed

    Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2002-10-01

    Oaks emit large amounts of isoprene, a compound that plays an important role in tropospheric chemistry. Isopentenyl diphosphate isomerase (IDI, E.C. 5.3.3.2) catalyzes the isomerization of isopentenyl diphosphate (IDP) to dimethylallyl diphosphate (DMADP), and in isoprene-emitting plants, isoprene synthase (IS) converts the DMADP to isoprene. To study the role of IDI in isoprene biosynthesis of oak leaves, we compared IDI and IS activities in pedunculate oak (Quercus robur L.) and pubescent oak (Quercus pubescens Willd.) with the isoprene emission rates of these species. We developed a non-radioactive enzyme assay to detect IDI activity in crude leaf extracts of Q. robur. The substrate dependency of IDI activity showed biphasic kinetics with Michaelis constants (K(m)(IDP)) of 0.7 +/- 0.2 micro M for a high-affinity phase and 39.5 +/- 6.9 micro M for a low-affinity phase, potentially attributable to different IDI isoforms. Under standard assay conditions, the temperature optimum for IDI activity was about 42 degrees C, but IDI activity was detectable up to 60 degrees C. A sharp pH optimum appeared around pH 7, with 20 mM Mg(2+) also required for IDI activity. Neither IDI activity nor IS activity showed diurnal variation in Q. robur leaves. The sum of IDI activities showed a significant linear correlation with IS activity in both Q. robur and Q. pubescens leaves, and both enzyme activities showed a linear relationship to isoprene emission factors in leaves of these oak species, indicating the possible involvement of IDI in isoprene biosynthesis by oak leaves.

  17. TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder.

    PubMed

    Campen, Andrew; Williams, Ryan M; Brown, Celeste J; Meng, Jingwei; Uversky, Vladimir N; Dunker, A Keith

    2008-01-01

    Intrinsically disordered proteins carry out various biological functions while lacking ordered secondary and/or tertiary structure. In order to find general intrinsic properties of amino acid residues that are responsible for the absence of ordered structure in intrinsically disordered proteins we surveyed 517 amino acid scales. Each of these scales was taken as an independent attribute for the subsequent analysis. For a given attribute value X, which is averaged over a consecutive string of amino acids, and for a given data set having both ordered and disordered segments, the conditional probabilities P(s(o) | x) and P(s(d) | x) for order and disorder, respectively, can be determined for all possible values of X. Plots of the conditional probabilities P(s(o) | x) and P(s(o) | x) versus X give a pair of curves. The area between these two curves divided by the total area of the graph gives the area ratio value (ARV), which is proportional to the degree of separation of the two probability curves and, therefore, provides a measure of the given attribute's power to discriminate between order and disorder. As ARV falls between zero and one, larger ARV corresponds to the better discrimination between order and disorder. Starting from the scale with the highest ARV, we applied a simulated annealing procedure to search for alternative scale values and have managed to increase the ARV by more than 10%. The ranking of the amino acids in this new TOP-IDP scale is as follows (from order promoting to disorder promoting): W, F, Y, I, M, L, V, N, C, T, A, G, R, D, H, Q, K, S, E, P. A web-based server has been created to apply the TOP-IDP scale to predict intrinsically disordered proteins (http://www.disprot.org/dev/disindex.php).

  18. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  19. A Carbon-XANES Study of IDP Organic Diversity: Evidence for Multiple Sources of Early Solar System Organic Matter

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Wirick, S.; Keller, L. P.

    2013-09-01

    We identified >30 distinct C-XANES spectra, differing in positions, relative areas, and widths of C=O and C=C absorptions, in a single ultramicrotome section of a CP IDP, suggesting multiple sources for organic matter in the early solar system.

  20. Spatially Resolved Acid Dissolution of IDPs: The State of Carbon and the Abundance of Diamonds in the Dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Gezo, J. C.; Hill, H. G. M.

    2000-01-01

    Ultramicrotome sections of IDPs have been successfully etched with HF to isolate and reveal the microdistribution of carbonaceous material. The sections are evaluated for nanodiamonds, 3.4 micron feature, GEMS and the origin of low albedo in small interplanetary particles.

  1. Advanced SEM-EDX and Isotope Mapping of a Refractory Grain in a Fine-Grained IDP

    NASA Astrophysics Data System (ADS)

    Starkey, N. A.; Franchi, I. A.; Salge, T.; Brearley, A. J.

    2015-07-01

    We present high spatial resolution SEM-EDX and O isotope mapping to reveal the presence of a melilite-olivine refractory grain in a fine-grained IDP. We use this to discuss transport of material from the inner solar system and formation of comets.

  2. Spatially Resolved Acid Dissolution of IDPs: The State of Carbon and the Abundance of Diamonds in the Dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Gezo, J. C.; Hill, H. G. M.

    2000-01-01

    Ultramicrotome sections of IDPs have been successfully etched with HF to isolate and reveal the microdistribution of carbonaceous material. The sections are evaluated for nanodiamonds, 3.4 micron feature, GEMS and the origin of low albedo in small interplanetary particles.

  3. The Neural Signatures of Processing Semantic End Values in Automatic Number Comparisons.

    PubMed

    Pinhas, Michal; Buchman, Chananel; Lavro, Dmitri; Mesika, David; Tzelgov, Joseph; Berger, Andrea

    2015-01-01

    The brain activity associated with processing numerical end values has received limited research attention. The present study explored the neural correlates associated with processing semantic end values under conditions of automatic number processing. Event-related potentials (ERPs) were recorded while participants performed the numerical Stroop task, in which they were asked to compare the physical size of pairs of numbers, while ignoring their numerical values. The smallest end value in the set, which is a task irrelevant factor, was manipulated between participant groups. We focused on the processing of the lower end values of 0 and 1 because these numbers were found to be automatically tagged as the "smallest." Behavioral results showed that the size congruity effect was modulated by the presence of the smallest end value in the pair. ERP data revealed a spatially extended centro-parieto-occipital P3 that was enhanced for congruent versus incongruent trials. Importantly, over centro-parietal sites, the P3 congruity effect (congruent minus incongruent) was larger for pairs containing the smallest end value than for pairs containing non-smallest values. These differences in the congruency effect were localized to the precuneus. The presence of an end value within the pair also modulated P3 latency. Our results provide the first neural evidence for the encoding of numerical end values. They further demonstrate that the use of end values as anchors is a primary aspect of processing symbolic numerical information.

  4. The Neural Signatures of Processing Semantic End Values in Automatic Number Comparisons

    PubMed Central

    Pinhas, Michal; Buchman, Chananel; Lavro, Dmitri; Mesika, David; Tzelgov, Joseph; Berger, Andrea

    2015-01-01

    The brain activity associated with processing numerical end values has received limited research attention. The present study explored the neural correlates associated with processing semantic end values under conditions of automatic number processing. Event-related potentials (ERPs) were recorded while participants performed the numerical Stroop task, in which they were asked to compare the physical size of pairs of numbers, while ignoring their numerical values. The smallest end value in the set, which is a task irrelevant factor, was manipulated between participant groups. We focused on the processing of the lower end values of 0 and 1 because these numbers were found to be automatically tagged as the “smallest.” Behavioral results showed that the size congruity effect was modulated by the presence of the smallest end value in the pair. ERP data revealed a spatially extended centro-parieto-occipital P3 that was enhanced for congruent versus incongruent trials. Importantly, over centro-parietal sites, the P3 congruity effect (congruent minus incongruent) was larger for pairs containing the smallest end value than for pairs containing non-smallest values. These differences in the congruency effect were localized to the precuneus. The presence of an end value within the pair also modulated P3 latency. Our results provide the first neural evidence for the encoding of numerical end values. They further demonstrate that the use of end values as anchors is a primary aspect of processing symbolic numerical information. PMID:26640436

  5. Attachment Patterns Trigger Differential Neural Signature of Emotional Processing in Adolescents

    PubMed Central

    Decety, Jean; Huepe, David; Cardona, Juan Felipe; Canales-Johnson, Andres; Sigman, Mariano; Mikulan, Ezequiel; Helgiu, Elena; Baez, Sandra; Manes, Facundo; Lopez, Vladimir; Ibañez, Agustín

    2013-01-01

    Background Research suggests that individuals with different attachment patterns process social information differently, especially in terms of facial emotion recognition. However, few studies have explored social information processes in adolescents. This study examined the behavioral and ERP correlates of emotional processing in adolescents with different attachment orientations (insecure attachment group and secure attachment group; IAG and SAG, respectively). This study also explored the association of these correlates to individual neuropsychological profiles. Methodology/Principal Findings We used a modified version of the dual valence task (DVT), in which participants classify stimuli (faces and words) according to emotional valence (positive or negative). Results showed that the IAG performed significantly worse than SAG on tests of executive function (EF attention, processing speed, visuospatial abilities and cognitive flexibility). In the behavioral DVT, the IAG presented lower performance and accuracy. The IAG also exhibited slower RTs for stimuli with negative valence. Compared to the SAG, the IAG showed a negative bias for faces; a larger P1 and attenuated N170 component over the right hemisphere was observed. A negative bias was also observed in the IAG for word stimuli, which was demonstrated by comparing the N170 amplitude of the IAG with the valence of the SAG. Finally, the amplitude of the N170 elicited by the facial stimuli correlated with EF in both groups (and negative valence with EF in the IAG). Conclusions/Significance Our results suggest that individuals with different attachment patterns process key emotional information and corresponding EF differently. This is evidenced by an early modulation of ERP components’ amplitudes, which are correlated with behavioral and neuropsychological effects. In brief, attachments patterns appear to impact multiple domains, such as emotional processing and EFs. PMID:23940552

  6. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells.

    PubMed

    Gaspar, John Antonydas; Doss, Michael Xavier; Winkler, Johannes; Wagh, Vilas; Hescheler, Jürgen; Kolde, Raivo; Vilo, Jaak; Schulz, Herbert; Sachinidis, Agapios

    2012-09-01

    Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.

  7. New class of supersymmetric signatures in the processes gg{yields}HH', VH

    SciTech Connect

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2009-07-01

    Within the minimal supersymmetric model (MSSM) and standard model (SM) frameworks, we analyze the 1loop electroweak predictions for the helicity amplitudes describing the 17 processes gg{yields}HH', and the 9 processes gg{yields}VH; where H, H{sup '} denote Higgs or Goldstone bosons, while V=Z, W{sup {+-}}. Concentrating on MSSM, we then investigate how the asymptotic helicity conservation (HCns) property of supersymmetry (SUSY) affects the amplitudes at the LHC energy range and what is the corresponding situation in the SM, where no HCns theorem exists. HCns is subsequently used to construct many relations among the cross sections of the above MSSM processes, depending only on the standard MSSM angles {alpha} and {beta} characterizing the two Higgs doublets. These relations should be asymptotically exact but as the energy decreases toward the LHC range, mass-depending deviations should start appearing. Provided the SUSY scale is not too high, these relations may remain roughly correct, even at the LHC energy range.

  8. Electrophysiological signatures of event words: Dissociating syntactic and semantic category effects in lexical processing.

    PubMed

    Lapinskaya, Natalia; Uzomah, Uchechukwu; Bedny, Marina; Lau, Ellen

    2016-12-01

    Numerous theories have been proposed regarding the brain's organization and retrieval of lexical information. Neurophysiological dissociations in processing different word classes, particularly nouns and verbs, have been extensively documented, supporting the contribution of grammatical class to lexical organization. However, the contribution of semantic properties to these processing differences is still unresolved. We aim to isolate this contribution by comparing ERPs to verbs (e.g. wade), object nouns (e.g. cookie), and event nouns (e.g. concert) in a paired similarity judgment task, as event nouns share grammatical category with object nouns but some semantic properties with verbs. We find that event nouns pattern with verbs in eliciting a more positive response than object nouns across left anterior electrodes 300-500ms after word presentation. This time-window has been strongly linked to lexical-semantic access by prior electrophysiological work. Thus, the similarity of the response to words referring to concepts with more complex participant structure and temporal continuity extends across grammatical class (event nouns and verbs), and contrasts with the words that refer to objects (object nouns). This contrast supports a semantic, as well as syntactic, contribution to the differential neural organization and processing of lexical items. We also observed a late (500-800ms post-stimulus) posterior positivity for object nouns relative to event nouns and verbs at the second word of each pair, which may reflect the impact of semantic properties on the similarity judgment task.

  9. Syntax in a pianist's hand: ERP signatures of "embodied" syntax processing in music.

    PubMed

    Sammler, Daniela; Novembre, Giacomo; Koelsch, Stefan; Keller, Peter E

    2013-05-01

    Syntactic operations in language and music are well established and known to be linked in cognitive and neuroanatomical terms. What remains a matter of debate is whether the notion of syntax also applies to human actions and how those may be linked to syntax in language and music. The present electroencephalography (EEG) study explored syntactic processes during the observation, motor programming, and execution of musical actions. Therefore, expert pianists watched and imitated silent videos of a hand playing 5-chord sequences in which the last chord was syntactically congruent or incongruent with the preceding harmonic context. 2-chord sequences that diluted the syntactic predictability of the last chord (by reducing the harmonic context) served as a control condition. We assumed that behavioural and event-related potential (ERP) effects (i.e., differences between congruent and incongruent trials) that were significantly stronger in the 5-chord compared to the 2-chord sequences are related to syntactic processing. According to this criterion, the present results show an influence of syntactic context on ERPs related to (i) action observation and (ii) the motor programming for action imitation, as well as (iii) participants' execution times and accuracy. In particular, the occurrence of electrophysiological indices of action inhibition and reprogramming when an incongruent chord had to be imitated implies that the pianist's motor system anticipated (and revoked) the congruent chord during action observation. Notably, this well-known anticipatory potential of the motor system seems to be strongly based upon the observer's music-syntactic knowledge, thus suggesting the "embodied" processing of musical syntax. The combined behavioural and electrophysiological data show that the notion of musical syntax not only applies to the auditory modality but transfers--in trained musicians--to a "grammar of musical action". Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten

    2017-07-01

    Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.

  11. Signature of magmatic processes in strainmeter records at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, Matteo; Montagna, Chiara P.; Papale, Paolo

    2017-04-01

    Volcanic unrest at Campi Flegrei caldera is characterized by episodes of ground deformation, seismicity and enhanced fumarolic activity; whether its origin is purely hydrothermal or magmatic is highly debated. We have analyzed ground deformation patterns in strainmeter records, focusing on a heightened unrest period in late 2006. These data have been compared to synthetic signals obtained from simulations of shallow magma chamber replenishment and mixing at Campi Flegrei. Our results show that discrete transients can be identified in the monitoring records, that strongly resemble the synthetics in both time and frequency domains, pointing to a magmatic contribution to the unrest. Together with other recent findings, our results depict a situation whereby periodic arrivals of deep magma feed a shallow intrusion at 3-4 km depth. These results suggest that the analysis of strainmeter records, coupled with advanced numerical simulations of magma dynamics, could lead to new approaches in imaging subsurface dynamic processes in volcanic areas.

  12. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.

    2004-01-01

    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  13. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.

    2004-01-01

    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  14. Signature of magmatic processes in strainmeter records at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Bagagli, M.; Montagna, C. P.; Papale, P.; Longo, A.

    2017-01-01

    Volcanic unrest at Campi Flegrei caldera, Southern Italy, is characterized by episodes of ground deformation, seismicity, and enhanced fumarolic activity; whether its origin is purely hydrothermal or magmatic is highly debated. We have identified ground deformation patterns in strainmeter records from a heightened unrest period in late 2006, closely resembling synthetic signals from numerical simulations of shallow magma chamber replenishment and mixing. Together with other recent findings, our results depict a situation whereby periodic arrivals of deep magma feed a shallow intrusion at 3-4 km depth. These results suggest that the analysis of strainmeter records, coupled with advanced numerical simulations of magma dynamics, could lead to new approaches in imaging subsurface dynamic processes in volcanic areas.

  15. Inplementation of an automated signal processing approach for the analysis of chemical spectral signatures collected from FT-IR mounted in an aircraft

    SciTech Connect

    Kroutil, Robert T

    2008-01-01

    The automated detection of chemical spectral signatures using a passive infrared Fourier Transform Infrared (FT-IR) Spectrometer mounted in an aircraft is a difficult challenge due to the small total infrared energy contribution of a particular chemical species compared to the background signature. The detection of spectral signatures is complicated by the fact that a large, widely varying infrared background is present that is coupled with the presence of a number of chemical interferents in the atmosphere. This paper describes a mathematical technique that has been demonstrated to automatically detect specific chemical species in an automated processing environment. The data analysis methodology has been demonstrated to be effective using data of low spectral resolution at low aircraft altitudes. An overview of the implementation and basic concepts of the approach are presented.

  16. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a

  17. Neural signature of food reward processing in bulimic-type eating disorders.

    PubMed

    Simon, Joe J; Skunde, Mandy; Walther, Stephan; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2016-09-01

    Clinical observations and similarities to addiction suggest heightened reward sensitivity to food in patients with bulimic-type eating (BTE) disorders. Therefore, we investigated the expectation and receipt of food reward compared with monetary reward in patients with BTE. Fifty-six patients with BTE (27 patients with binge eating disorder and 29 with bulimia nervosa) and 55 matched healthy control participants underwent event-related functional magnetic resonance imaging while performing both food and monetary incentive delay tasks. BTE patients exhibited reduced brain activation in the posterior cingulate cortex during the expectation of food and increased activity in the medial orbitofrontal cortex, anterior medial prefrontal cortex and posterior cingulate cortex during the receipt of food reward. These findings were relevant to food because we found no significant group differences related to monetary reward. In the patients, higher brain activity in the medial orbitofrontal cortex during the receipt of food reward was related to higher levels of trait food craving and external eating. BTE patients exhibited increased hedonic processing during the receipt of food reward. These findings corroborate the notion that an altered responsiveness of the reward network to food stimuli is associated with BTE. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Matched-field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations.

    PubMed

    Thode, A M; D'Spain, G L; Kuperman, W A

    2000-03-01

    Matched-field processing (MFP) and global inversion techniques have been applied to vocalizations from four whales recorded on a 48-element tilted vertical array off the Channel Islands in 1996. Global inversions from selected whale calls using as few as eight elements extracted information about the surrounding ocean bottom composition, array shape, and the animal's position. These inversion results were then used to conduct straightforward MFP on other calls. The sediment sound-speed inversion estimates are consistent with those derived from sediment samples collected in the area. In general, most animals swam from the east to west, but one animal remained within approximately 500 m of its original position over 45 min. All whales vocalized between 10 and 40 m depth. Three acoustic sequences are discussed in detail: the first illustrating a match between an acoustic track and visual sighting, the second tracking two whales to ranges out to 8 km, and the final sequence demonstrating high-resolution dive profiles from an animal that changed its course to avoid the research platform FLIP (floating instrument platform). This last whale displayed an unusual diversity of signals that include three strong frequency-modulated (FM) downsweeps which contain possible signs of an internal resonance. The arrival of this same whale coincided with a sudden change in oceanographic conditions.

  19. Signature of nonlinear damping in geometric structure of a nonequilibrium process

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-02-01

    We investigate the effect of nonlinear interaction on the geometric structure of a nonequilibrium process. Specifically, by considering a driven-dissipative system where a stochastic variable x is damped either linearly (∝x ) or nonlinearly (∝x3 ) while driven by a white noise, we compute the time-dependent probability density functions (PDFs) during the relaxation towards equilibrium from an initial nonequilibrium state. From these PDFs, we quantify the information change by the information length L , which is the total number of statistically distinguishable states which the system passes through from the initial state to the final state. By exploiting different initial PDFs and the strength D of the white-noise forcing, we show that for a linear system, L increases essentially linearly with an initial mean value y0 of x as L ∝y0 , demonstrating the preservation of a linear geometry. In comparison, in the case of a cubic damping, L has a power-law scaling as L ∝y0m , with the exponent m depending on D and the width of the initial PDF. The rate at which information changes also exhibits a robust power-law scaling with time for the cubic damping.

  20. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  1. Ion distributions in the vicinity of Mars: Signatures of heating and acceleration processes

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Stenberg, G.; Futaana, Y.; Holmström, M.; Barabash, S.; Lundin, R.; Edberg, N. J. T.; Fedorov, A.

    2012-02-01

    More than three years of data from the ASPERA-3 instrument on-board Mars Express has been used to compile average distribution functions of ions in and around the Mars induced magnetosphere. We present samples of average distribution functions, as well as average flux patterns based on the average distribution functions, all suitable for detailed comparison with models of the near-Mars space environment. The average heavy ion distributions close to the planet form thermal populations with a temperature of 3 to 10 eV. The distribution functions in the tail consist of two populations, one cold which is an extension of the low altitude population, and one accelerated population of ionospheric origin ions. All significant fluxes of heavy ions in the tail are tailward. The heavy ions in the magnetosheath form a plume with the flow aligned with the bow shock, and a more radial flow direction than the solar wind origin flow. Summarizing the escape processes, ionospheric ions are heated close to the planet, presumably through wave-particle interaction. These heated populations are accelerated in the tailward direction in a restricted region. Another significant escape path is through the magnetosheath. A part of the ionospheric population is likely accelerated in the radial direction, out into the magnetosheath, although pick up of an oxygen exosphere may also be a viable source for this escape. Increased energy input from the solar wind during CIR events appear to mainly increase the number flux of escaping particles, the average energy of the escaping particles is not strongly affected. Heavy ions on the dayside may precipitate and cause sputtering of the atmosphere, though fluxes are likely lower than 0.4 × 1023 s-1.

  2. Autogenic processes and deposit signatures in laboratory submarine fan experiments with supercritical alluvial channels

    NASA Astrophysics Data System (ADS)

    Strom, Kyle; Hamilton, Paul; Hoyal, David; Fedele, Juan

    2017-04-01

    Submarine fans are an amalgamation of channels and lobes built over time on the continental slope and abyssal plain through multiple avulsion cycles. This research experimentally explores supercritical submarine fan building processes from a hydraulic and sediment transport perspective. Data for this was provided by a new methodology developed to measure the layer-averaged hydraulic variables of small-scale density currents that change with space and time as they construct the fan. In the presentation, we will present the autogenic avulsion cycle observed, discuss why steep systems can potentially produce "perched" lobes, show the characteristics of lobe and channel fill deposits resulting from a single avulsion cycle, and present data describing the overall development of the fan through multiple avulsion cycles. The experiments showed that the primary avulsion cycle consisted of the following phases: channel incision and basinward extension, cessation of channel extension and mouth bar formation, bar aggradation and hydraulic jump initiation, and upstream propagation of the channel-to-lobe transition. The transition from erosion or bypass in the channels to deposition in an expanded-flow region downstream led to a choked-flow condition that caused a hydraulic jump to initiate before reaching the basin floor. Each avulsion cycle was responsible for an associated lobe deposit. Since hydraulic jumps were common during avulsion cycles, they were used to predict the maximum thickness of the lobe deposits as a function of the upstream flow depth and Froude number. The lobes emplaced by discrete avulsion cycles stacked up over time to form the overall fan. Though each cycle contained elements of both basinward extension and upstream backfilling, the fans showed net progradation at a long-term rate that can be representatively modeled using a mass balance approach based on sediment supply and equilibrium fan slope.

  3. Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Glavin, Daniel P.; Kminek, Gerhard; Bada, Jeffrey L.

    2002-01-01

    Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from approx. 15,300 to approx. 5800 parts per billion (ppb), while the CIs show a total amino acid abundance of approx. 4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

  4. Annotator: Post-processing Software for generating function-based signatures from quantitative mass spectrometry

    PubMed Central

    Sylvester, Juliesta E.; Bray, Tyler S.; Kron, Stephen J.

    2012-01-01

    Mass spectrometry is used to investigate global changes in protein abundance in cell lysates. Increasingly powerful methods of data collection have emerged over the past decade, but this has left researchers with the task of sifting through mountains of data for biologically significant results. Often, the end result is a list of proteins with no obvious quantitative relationships to define the larger context of changes in cell behavior. Researchers are often forced to perform a manual analysis from this list or to fall back on a range of disparate tools, which can hinder the communication of results and their reproducibility. To address these methodological problems we developed Annotator, an application that filters validated mass spectrometry data and applies a battery of standardized heuristic and statistical tests to determine significance. To address systems-level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of analysis, yielding quantitative information about changes in abundance for an entire functional category. This provides a consistent and quantitative method for formulating conclusions about cellular behavior, independent of network models or standard enrichment analyses. Annotator allows for “bottom-up” annotations that are based on experimental data and not inferred by comparison to external or hypothetical models. Annotator was developed as an independent post-processing platform that runs on all common operating systems, thereby providing a useful tool for establishing the inherently dynamic nature of functional annotations, which depend on results from on-going proteomic experiments. Annotator is available for download at http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz. PMID:22224429

  5. Chemical Heterogeneity of a Large Cluster IDP: Clues to its Formation History Using X-ray Fluorescence Mapping and XANES Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2013-01-01

    Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.

  6. Stable Isotopic Signatures in the Isolated Brine Cyroecosystem of Lake Vida Reveal Evidence of both Abiotic and Biotic Processes

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Ostrom, N. E.; Glazer, B. T.; McKay, C.; Kenig, F.; Loeffler, F. E.; Fritsen, C. H.; Doran, P. T.

    2011-12-01

    Lake Vida in the Victoria Valley of East Antarctica harbors ice-entrained brine that has been isolated from surface processes for several thousand years. The brine conditions (permanently dark, temperature of -13.4 °C, lack of oxygen, and pH of 6.2) and geochemistry are highly unusual. As an example, the brine contains excessive quantities of both reduced and oxidized nitrogen in nearly all forms, which in several cases are the highest levels found among natural ecosystems on Earth. Though this cryoecosystem appears to be relatively inhospitable, we have evidence that microbial life persists in abundance (cell levels over 107 cells per mL), is capable of protein production at in situ temperatures, and harbors a unique, but not necessarily novel, assemblage of bacterial phylotypes spanning at least eight phyla. In order to assess in situ microbial activities occurring today and in the past, and test hypotheses concerning energy generation in the brine cryoecosystem, the stable isotope signatures of nitrogen, oxygen, and hydrogen have been characterized in liquid and dissolved gas phases of the brine. The data provide evidence for both biotic and potentially abiotic formation of different fractions. The site preference of 15N-nitrous oxide (-3.64) suggests that the primary source of this dissolved gas, which is found at levels as high as 86 μM, is biologically produced by denitrification pathways. This appears to be consistent with detection of Marinobacter and Psychrobacter-related bacterial rRNA gene sequences and isolates in the brine microbial community. On the other hand, dissolved hydrogen present in the brine harbors an δH-H2 isotope signature suggesting that abiotic (potentially via serpentinization) or biotic production is equivocal based on the significant levels of fractionation observed. We postulate however, that a serpentinization production route is more favorable in this system that lies in a basin comprised of Ferrar dolerite sills and granite

  7. Model parameters conditioning on regional hydrologic signatures for process-based design flood estimation in ungauged basins.

    NASA Astrophysics Data System (ADS)

    Biondi, Daniela; De Luca, Davide Luciano

    2015-04-01

    The use of rainfall-runoff models represents an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation, and constitutes an answer to the increasing need for synthetic design hydrographs (SDHs) associated to a specific return period. However, the lack of streamflow observations and the consequent high uncertainty associated with parameter estimation, usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents the application of a Bayesian procedure that, for a predefined rainfall-runoff model, allows for the assessment of posterior parameters distribution, using the limited and uncertain information available for the response of an ungauged catchment (Bulygina et al. 2009; 2011). The use of regional estimates of river flow statistics, interpreted as hydrological signatures that measure theoretically relevant system process behaviours (Gupta et al. 2008), within this framework represents a valuable option and has shown significant developments in recent literature to constrain the plausible model response and to reduce the uncertainty in ungauged basins. In this study we rely on the first three L-moments of annual streamflow maxima, for which regressions are available from previous studies (Biondi et al. 2012; Laio et al. 2011). The methodology was carried out for a catchment located in southern Italy, and used within a Monte Carlo scheme (MCs) considering both event-based and continuous simulation approaches for design flood estimation. The applied procedure offers promising perspectives to perform model calibration and uncertainty analysis in ungauged basins; moreover, in the context of design flood estimation, process-based methods coupled with MCs approach have the advantage of providing simulated floods uncertainty analysis that represents an asset in risk-based decision

  8. Stardust in Meteorites and IDPs: Current Status, Recent Advances, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Hoppe, P.

    2009-12-01

    Primitive meteorites and IDPs contain small quantities (up to several 100 ppm) of nanometer- to micrometer-sized presolar dust grains that formed in the winds of evolved stars or in the ejecta of stellar explosions. These stardust grains can be studied in the laboratory for their isotopic compositions, chemistry, mineralogy, and structure. Among the identified stardust grains are silicon carbide, graphite, silicon nitride, refractory oxides, iron oxide, and silicates. Recent advances were pushed ahead by the availability of new analytical instrumentation (NanoSIMS, RIMS) and by co-ordinated multi-analytical approaches (SIMS, RIMS, noble gas mass spectrometry, FIB, TEM, Auger spectroscopy) in the study of single grains. This has changed our knowledge on the inventory of presolar grains considerably (e.g., discovery of presolar silicates) and allowed to get much more detailed insights into all stages of the life cycle of presolar grains, from their formation around evolved stars (RGB/AGB stars, novae, supernovae) over the journey through the ISM to the incorporation into Solar System bodies.

  9. Quantifying nitrogen process rates in a constructed wetland using natural abundance stable isotope signatures and stable isotope amendment experiments.

    PubMed

    Erler, Dirk V; Eyre, Bradley D

    2010-01-01

    This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.

  10. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  11. Search for the Higgs Boson and Rare Standard Model Processes in the ET+B-Jets Signature at the Collider Detector at Fermilab

    SciTech Connect

    Potamianos, Karolos Jozef

    2011-12-01

    We study rare processes of the standard model of particle physics (SM) in events with missing transverse energy ET, no leptons, and two or three jets, of which at least one is identified as originating from a $b$-quark (ET+b-jets signature). We present a search for the SM Higgs boson produced in association with a $W$ or $Z$ boson when the Higgs decays into \\bbbar. We consider the scenario where $Z \\to \

  12. A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery: Crop identification using vegetation phenology

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A. (Principal Investigator); Carlyle, S. M.; Haralick, R. M.; Yokoyama, R.

    1978-01-01

    The author has identified the following significant results. The phenological method of crop identification involves the creation of crop signatures which characterize multispectral observations as phenological growth states. The phenological signature models spectral reflectance explicitly as a function of crop maturity rather than as a function of date. A correspondence of time to growth state is established which minimizes the smallest difference between the given multispectral multitemporal vector and a category mean vector. The application of the method to the identification of winter wheat and corn shows (1) the method is capable of discriminating crop type with about the same degree of accuracy as more traditional classifiers; (2) the use of LANDSAT observations on two or more dates yields better results than the use of a single observation; and (3) some potential is demonstrated for labeling the degree of maturity of the crop, as well as the crop type.

  13. Transcriptome analysis of the interferon-signature defining the autoimmune process of Sjögren's syndrome.

    PubMed

    Peck, A B; Nguyen, C Q

    2012-09-01

    Sjögren's syndrome (SS) of humans and SS-like (SjS-like) diseases in mouse models are characterized by chronic immune attacks against the salivary and lacrimal glands leading to exocrine dysfunction. One characteristic of SS and SjS-like diseases repeatedly observed is a strong upregulated expression of both the type I (α/β) and type II (γ) interferons (IFNs). In addition, recent global transcriptome studies have identified a variety of IFN-stimulated gene (ISG) transcripts differentially expressed in tissues of SS patients and mouse models exhibiting SjS-like disease. Analyses of these transcriptome databases indicate that the sets of differentially expressed genes are highly restricted, suggesting that there is a unique specificity in ISGs activated (or suppressed) during development and onset of disease. As a result, these observations have led to both SS and SjS-like diseases being designated as 'interferon-signature' diseases. While SS and SjS-like diseases may be designated as such, very little effort has been made to determine what an interferon-signature might signify relative to autoinflammation and whether it might point directly to an underlying etiopathological mechanism. Here, we review these limited data and provide a model of how the products of these genes interact molecularly and biologically to define critical details of SS pathology.

  14. IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing.

    PubMed

    Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai

    2016-11-28

    Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only.

  15. Loss of solar He and Ne from IDPS in subducting sediment: Diffusion and the effect of phase changes

    NASA Technical Reports Server (NTRS)

    Hiyagon, H.

    1994-01-01

    The results of the diffusion experiment for solar He and Ne in IDP's in a magnetic separate from Pacific Ocean sediment suggest that solar He and Ne would be easily released from IDP grains and hence lost from subducting slabs at shallow depths. However, since the diffusion experiments was conducted under high vacuum, there may be a possibility that magnetite grains, which are supposedly the main constituent of the magnetic fraction, might be partly reduced to form a metal phase due to low oxygen fugacity in the experimental condition. If this is the case, such a phase change might affect the gas release and hence the results of the diffusion coefficients. In order to examine whether or not such a phase change really occurred in the condition of the diffusion experiment, I conducted a heating experiment for a magnetic separate from Pacific Ocean sediment. In the same condition as in the diffusion experiment, and the run products were examined with an x ray diffraction method. Three samples were prepared: they were wrapped with platinum foil, put in a vacuum line, and heated in a molybdenum crucible for two hours at 500 C, 800 C,and 950 C, respectively. After cooling the furnace, the samples were taken out from the crucible and analyzed with an x ray diffraction method.

  16. Loss of solar He and Ne from IDPS in subducting sediment: Diffusion and the effect of phase changes

    NASA Technical Reports Server (NTRS)

    Hiyagon, H.

    1994-01-01

    The results of the diffusion experiment for solar He and Ne in IDP's in a magnetic separate from Pacific Ocean sediment suggest that solar He and Ne would be easily released from IDP grains and hence lost from subducting slabs at shallow depths. However, since the diffusion experiments was conducted under high vacuum, there may be a possibility that magnetite grains, which are supposedly the main constituent of the magnetic fraction, might be partly reduced to form a metal phase due to low oxygen fugacity in the experimental condition. If this is the case, such a phase change might affect the gas release and hence the results of the diffusion coefficients. In order to examine whether or not such a phase change really occurred in the condition of the diffusion experiment, I conducted a heating experiment for a magnetic separate from Pacific Ocean sediment. In the same condition as in the diffusion experiment, and the run products were examined with an x ray diffraction method. Three samples were prepared: they were wrapped with platinum foil, put in a vacuum line, and heated in a molybdenum crucible for two hours at 500 C, 800 C,and 950 C, respectively. After cooling the furnace, the samples were taken out from the crucible and analyzed with an x ray diffraction method.

  17. Improving the automated detection of refugee/IDP dwellings using the multispectral bands of the WorldView-2 satellite

    NASA Astrophysics Data System (ADS)

    Kemper, Thomas; Gueguen, Lionel; Soille, Pierre

    2012-06-01

    The enumeration of the population remains a critical task in the management of refugee/IDP camps. Analysis of very high spatial resolution satellite data proofed to be an efficient and secure approach for the estimation of dwellings and the monitoring of the camp over time. In this paper we propose a new methodology for the automated extraction of features based on differential morphological decomposition segmentation for feature extraction and interactive training sample selection from the max-tree and min-tree structures. This feature extraction methodology is tested on a WorldView-2 scene of an IDP camp in Darfur Sudan. Special emphasis is given to the additional available bands of the WorldView-2 sensor. The results obtained show that the interactive image information tool is performing very well by tuning the feature extraction to the local conditions. The analysis of different spectral subsets shows that it is possible to obtain good results already with an RGB combination, but by increasing the number of spectral bands the detection of dwellings becomes more accurate. Best results were obtained using all eight bands of WorldView-2 satellite.

  18. Pre-pulses: Signature of a trigger process in short (less than 60 secs) solar hard x ray flares

    NASA Technical Reports Server (NTRS)

    Deasi, U.; Orwig, Larry E.

    1989-01-01

    The continuing study of short hard x ray events (less than 60 sec duration) from the Solar Maximum Mission (SMM) Hard X ray Burst Spectrometer (HXRBS) instrument has revealed a unique feature. A well-separated distinctly identifiable, narrow (2 to 6 sec wide) pulse occurs prior to the start of the longer-flare lasting emission activity. Light curves are presented for eight events showing this feature. The pre-pulses show symmetrical rise and fall times. Spectral evolution of the pre-pulses are presented and their evolution compared to that of the main event spectra. It is argued that this feature be the elementary flare burst (de Jager, 1978). These pre-pulses could be a signature of the magnetic reconnection phenomenon discussed by Sturrock et al., (1984).

  19. Synthetic study on carbocyclic analogs of cyclic ADP-ribose, a novel second messenger: an efficient synthesis of cyclic IDP-carbocyclic-ribose.

    PubMed

    Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A

    1999-01-01

    An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).

  20. Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs.

    PubMed

    Li, Zhengcao; Chen, Jiucheng; Wang, Zhen; Pan, Yuchun; Wang, Qishan; Xu, Ningying; Wang, Zhengguang

    2016-12-01

    Chinese pigs have been undergoing both natural and artificial selection for thousands of years. Jinhua pigs are of great importance, as they can be a valuable model for exploring the genetic mechanisms linked to meat quality and other traits such as disease resistance, reproduction and production. The purpose of this study was to identify distinctive footprints of selection between Jinhua pigs and other breeds utilizing genome-wide SNP data. Genotyping by genome reducing and sequencing was implemented in order to perform cross-population extended haplotype homozygosity to reveal strong signatures of selection for those economically important traits. This work was performed at a 2% genome level, which comprised 152 006 SNPs genotyped in a total of 517 individuals. Population-specific footprints of selective sweeps were searched for in the genome of Jinhua pigs using six native breeds and three European breeds as reference groups. Several candidate genes associated with meat quality, health and reproduction, such as GH1, CRHR2, TRAF4 and CCK, were found to be overlapping with the significantly positive outliers. Additionally, the results revealed that some genomic regions associated with meat quality, immune response and reproduction in Jinhua pigs have evolved directionally under domestication and subsequent selections. The identified genes and biological pathways in Jinhua pigs showed different selection patterns in comparison with the Chinese and European breeds.

  1. Transcriptome Analysis of the Interferon-Signature Defining the Autoimmune Process of Sjögren’s Syndrome

    PubMed Central

    Peck, A. B.; Nguyen, C. Q.

    2015-01-01

    Sjögren’s syndrome (SS) of humans and SS-like (SjS-like) diseases in mouse models are characterized by chronic immune attacks against the salivary and lacrimal glands leading to exocrine dysfunction. One characteristic of SS and SjS-like diseases repeatedly observed is a strong upregulated expression of both the type I (α/β) and type II (γ) interferons (IFNs). In addition, recent global transcriptome studies have identified a variety of IFN-stimulated gene (ISG) transcripts differentially expressed in tissues of SS patients and mouse models exhibiting SjS-like disease. Analyses of these transcriptome databases indicate that the sets of differentially expressed genes are highly restricted, suggesting that there is a unique specificity in ISGs activated (or suppressed) during development and onset of disease. As a result, these observations have led to both SS and SjS-like diseases being designated as ‘interferon-signature’ diseases. While SS and SjS-like diseases may be designated as such, very little effort has been made to determine what an interferon-signature might signify relative to autoinflammation and whether it might point directly to an underlying etiopathological mechanism. Here, we review these limited data and provide a model of how the products of these genes interact molecularly and biologically to define critical details of SS pathology. PMID:22703193

  2. Conserved signatures indicate HIV-1 transmission is under strong selection and thus is not a "stochastic" process.

    PubMed

    Gonzalez, Mileidy; DeVico, Anthony L; Spouge, John L

    2017-02-24

    Recently, Oberle et al. published a paper in Retrovirology evaluating the question of whether selection plays a role in HIV transmission. The Oberle study found no obvious genotypic or phenotypic differences between donors and recipients of epidemiologically linked pairs from the Swiss cohort. Thus, Oberle et al. characterized HIV-1 B transmission as largely "stochastic", an imprecise and potentially misleading term. Here, we re-analyzed their data and placed them in the context of transmission data for over 20 other human and animal trials. The present study finds that the transmitted/founder (T/F) viruses from the Swiss cohort show the same non-random genetic signatures conserved in 118 HIV-1, 40 SHIV, and 12 SIV T/F viruses previously published by two independent groups. We provide alternative interpretations of the Swiss cohort data and conclude that the sequences of their donor viruses lacked variability at the specific sites where other studies were able to demonstrate genotypic selection. Oberle et al. observed no phenotypic selection in vitro, so the problem of determining the in vivo phenotypic mechanisms that cause genotypic selection in HIV remains open.

  3. Li-6/Li-7, B-10/B-11, and Li-7/B-11/Si-28 individual IDPs

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Song, L.-G.; Zhang, Y.-X.; Fan, C.-Y.

    1994-01-01

    At the initial stage of the development of our solar system, the solar nebula is presumably composed of H-1, H-2, He-3, He-4, and Li-7, which were made during the Big Band, and C, N, O, . . ., which are products of nearby supernova explosions. Li-6 nuclei (together with about equal amounts of Li-7), Be-9, B-10, and B-11 were produced later by cosmic ray particles bombarding the local interstellar C, N, O, . . . nuclei before the nebula condensed to become the Sun and the planets. Thus, the ratio Li-6/Li-7 is a measure of the length of the early epoch of the solar system. In this paper we shall report the measurement of Li-7/Li-6, B-11/B-10, and Li-7/B-11/Si-28 of four IDP's obtained from Johnson Space Center and discuss the findings.

  4. Long range recognition and selection in IDPs: the interactions of the C-terminus of p53

    PubMed Central

    Kannan, Srinivasaraghavan; Lane, David P.; Verma, Chandra S.

    2016-01-01

    The C-terminal domain of p53 is an extensively studied IDP, interacting with different partners through multiple distinct conformations. To explore the interplay between preformed structural elements and intrinsic fluctuations in its folding and binding we combine extensive atomistic equilibrium and non-equilibrium simulations. We find that the free peptide segment rapidly interconverts between ordered and disordered states with significant populations of the conformations that are seen in the complexed states. The underlying global folding-binding landscape points to a synergistic mechanism in which recognition is dictated via long range electrostatic recognition which results in the formation of reactive structures as far away as 10 Å, and binding proceeds with the steering of selected conformations followed by induced folding at the target surface or within a close range. PMID:27030593

  5. IDP camp evolvement analysis in Darfur using VHSR optical satellite image time series and scientific visualization on virtual globes

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    2010-11-01

    In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.

  6. IDP camp evolvement analysis in Darfur using VHSR optical satellite image time series and scientific visualization on virtual globes

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    2009-09-01

    In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.

  7. Heat-Treatment of MgSiO Smokes of Astrophysical Interest: Possible Implications for Olivine-Pyroxene-Silica Assemblages in Chondritic Aggregate IDPs

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A., III; Hallenbeck, S. L.

    2001-01-01

    Anhydrous silicates in coarse-grained ferromagnesiosilica principal components (PCs) formed during atmospheric entry flash-heating also constrain the astromineralogy of astrophysical dust. This is because of the unique closed-system behavior of these PCs in chondritic aggregate interplanetary dust particles (IDPs). Additional information is contained in the original extended abstract.

  8. Thermal Modification of Silicate Materials on Flash-heated Sulfide IDPs: The First Clues for Chemically Controlled, Early Silicate Mineral Evolution

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.

    2002-01-01

    Variable Ca-compositions of flash heated ferromagnesiosilica materials on massive sulfide IDPs provide the first clues for chemically controlled nucleation of pyroxenes during the earliest stages of silicate mineral evolution in solar nebula dust. Additional information is contained in the original extended abstract.

  9. Transcriptome profile analysis of flowering molecular processes of early flowering trifoliate orange mutant and the wild-type [Poncirus trifoliata (L.) Raf.] by massively parallel signature sequencing

    PubMed Central

    2011-01-01

    Background After several years in the juvenile phase, trees undergo flowering transition to become mature (florally competent) trees. This transition depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. However, relatively little is known about the molecular processes regulating flowering transition in woody plants compared with herbaceous plants. Results Comparative transcript profiling of spring shoots after self-pruning was performed on a spontaneously early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata) with a short juvenile phase and the wild-type (WT) tree by using massively parallel signature sequencing (MPSS). A total of 16,564,500 and 16,235,952 high quality reads were obtained for the WT and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed genes in the MT (31,468) was larger than in the WT (29,864), suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts revealed that 2735 genes had more than twofold expression difference in the MT compared with the WT. In addition, we identified 110 citrus flowering-time genes homologous with known elements of flowering-time pathways through sequencing and bioinformatics analysis. These genes are highly conserved in citrus and other species, suggesting that the functions of the related proteins in controlling reproductive development may be conserved as well. Conclusion Our results provide a foundation for comparative gene expression studies between WT and precocious trifoliate orange. Additionally, a number of candidate genes required for the early flowering process of precocious trifoliate orange were identified. These results provide new insight into the molecular processes regulating flowering time in citrus. PMID:21269450

  10. Predicting individual differences in decision-making process from signature movement styles: an illustrative study of leaders

    PubMed Central

    Connors, Brenda L.; Rende, Richard; Colton, Timothy J.

    2013-01-01

    There has been a surge of interest in examining the utility of methods for capturing individual differences in decision-making style. We illustrate the potential offered by Movement Pattern Analysis (MPA), an observational methodology that has been used in business and by the US Department of Defense to record body movements that provide predictive insight into individual differences in decision-making motivations and actions. Twelve military officers participated in an intensive 2-h interview that permitted detailed and fine-grained observation and coding of signature movements by trained practitioners using MPA. Three months later, these subjects completed four hypothetical decision-making tasks in which the amount of information sought out before coming to a decision, as well as the time spent on the tasks, were under the partial control of the subject. A composite MPA indicator of how a person allocates decision-making actions and motivations to balance both Assertion (exertion of tangible movement effort on the environment to make something occur) and Perspective (through movements that support shaping in the body to perceive and create a suitable viewpoint for action) was highly correlated with the total number of information draws and total response time—individuals high on Assertion reached for less information and had faster response times than those high on Perspective. Discussion focuses on the utility of using movement-based observational measures to capture individual differences in decision-making style and the implications for application in applied settings geared toward investigations of experienced leaders and world statesmen where individuality rules the day. PMID:24069012

  11. Electrical signature of modern and ancient tectonic processes in the crust of the Atlas mountains of Morocco

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo; Jones, Alan G.; Siniscalchi, Agata; Campanyà, Joan; Kiyan, Duygu; Romano, Gerardo; Rouai, Mohamed; TopoMed MT Team

    2011-04-01

    The Atlas Mountains in Morocco are considered as type examples of intracontinental mountain chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modelling suggest the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. To address this deficiency, magnetotelluric data were recently acquired that image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya plain and the High Atlas. All tectonic units show different, distinct and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust, electrical resistivity values and geometries can be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed likely during Cenozoic times. In the lower crust, the low resistivity anomaly found below the Moulouya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidences, infer the existence of a small degree of partial melt at the base of the crust. Resistivity values suggest a partial melt fraction of the order of 2-8%. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny (ca. 685 Ma).

  12. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  13. Indirect Signatures of CP Violation in the Processes {gamma}{gamma} {yields} {gamma}{gamma}, {gamma}Z, and ZZ

    SciTech Connect

    Petriello, Frank J

    2001-07-25

    This paper studies the utility of the processes {gamma}{gamma} {yields} {gamma}{gamma}, {gamma}Z, and ZZ in searching for sources of CP violation arising from energy scales beyond the production thresholds of planned future colliders. In the context of an effective Lagrangian approach we consider the most general set of CP odd SU(2) x U(1) operators that give rise to genuinely quartic gauge boson couplings which can be probed in 2 {yields} 2 scattering processes at a {gamma}{gamma} collider. We study each process in detail, emphasizing the complementary information that is obtained by varying the initial beam polarizations. Finally, we compare our results to other constraints in the literature on CP odd gauge boson interactions and quartic gauge boson couplings; the search reaches obtained here are typically stronger and nicely complement previous studies which have focused primarily on W boson, top quark, or Higgs production.

  14. Bilingual and monolingual brains compared: a functional magnetic resonance imaging investigation of syntactic processing and a possible "neural signature" of bilingualism.

    PubMed

    Kovelman, Ioulia; Baker, Stephanie A; Petitto, Laura-Ann

    2008-01-01

    Abstract Does the brain of a bilingual process language differently from that of a monolingual? We compared how bilinguals and monolinguals recruit classic language brain areas in response to a language task and asked whether there is a "neural signature" of bilingualism. Highly proficient and early-exposed adult Spanish-English bilinguals and English monolinguals participated. During functional magnetic resonance imaging (fMRI), participants completed a syntactic "sentence judgment task" [Caplan, D., Alpert, N., & Waters, G. Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10, 541-552, 1998]. The sentences exploited differences between Spanish and English linguistic properties, allowing us to explore similarities and differences in behavioral and neural responses between bilinguals and monolinguals, and between a bilingual's two languages. If bilinguals' neural processing differs across their two languages, then differential behavioral and neural patterns should be observed in Spanish and English. Results show that behaviorally, in English, bilinguals and monolinguals had the same speed and accuracy, yet, as predicted from the Spanish-English structural differences, bilinguals had a different pattern of performance in Spanish. fMRI analyses revealed that both monolinguals (in one language) and bilinguals (in each language) showed predicted increases in activation in classic language areas (e.g., left inferior frontal cortex, LIFC), with any neural differences between the bilingual's two languages being principled and predictable based on the morphosyntactic differences between Spanish and English. However, an important difference was that bilinguals had a significantly greater increase in the blood oxygenation level-dependent signal in the LIFC (BA 45) when processing English than the English monolinguals. The results provide insight into the decades-old question about the

  15. Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa

    NASA Astrophysics Data System (ADS)

    Beauvais, Anicet

    1999-12-01

    A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the "Haut-Mbomou" area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H + permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe-oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut-Mbomou area may result from different stages of weathering and erosion during climatic changes.

  16. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.

    PubMed

    Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H

    2016-01-01

    A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.

  17. β decay of nuclei around 90Se: Search for signatures of a N=56 subshell closure relevant to the r process

    NASA Astrophysics Data System (ADS)

    Quinn, M.; Aprahamian, A.; Pereira, J.; Surman, R.; Arndt, O.; Baumann, T.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Ginter, T.; Hausmann, M.; Hennrich, S.; Kessler, R.; Kratz, K.-L.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Pfeiffer, B.; Portillo, M.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.; Stolz, A.; Walters, W. B.; Wöhr, A.

    2012-03-01

    Background: Nuclear structure plays a significant role on the rapid neutron capture process (r process) since shapes evolve with the emergence of shells and subshells. There was some indication in neighboring nuclei that we might find examples of a new N=56 subshell, which may give rise to a doubly magic 3490Se56 nucleus.Purpose: β-decay half-lives of nuclei around 90Se have been measured to determine if this nucleus has in fact a doubly magic character.Method: The fragmentation of a 136Xe beam at the National Superconducting Cyclotron Laboratory at Michigan State University was used to create a cocktail of nuclei in the A=90 region.Results: We have measured the half-lives of 22 nuclei near the r-process path in the A=90 region. The half-lives of 88As and 90Se have been measured for the first time. The values were compared with theoretical predictions in the search for nuclear-deformation signatures of a N=56 subshell, and its possible role in the emergence of a potential doubly magic 90Se. The impact of such hypothesis on the synthesis of heavy nuclei, particularly in the production of Sr, Y, and Zr elements was investigated with a weak r-process network.Conclusions: The new half-lives agree with results obtained from a standard global QRPA model used in r-process calculations, indicating that 90Se has a quadrupole shape incompatible with a closed N=56 subshell in this region. The impact of the measured 90Se half-life in comparison with a former theoretical predication associated with a spherical half-life on the weak r process is shown to be strong.

  18. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  19. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  20. Experimental investigation of the link between geophysical signatures and biogeochemical properties and processes: experimental design, data collection and interpretation

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Blackwelder, B.; Radtke, C.; Silverman, H.

    2004-12-01

    Recent research indicates a correlation between geophysical data from a number of electrical methods (resistivity, induced polarization and self potential) and subsurface biogeochemical properties and processes. Thus, the hope is that electrical measurements will provide proxy indicators of the macroscopic changes in hydraulic and biogeochemical subsurface properties resulting from microbial activity at contaminated sites. A significant problem in making the link is the limited availability of well controlled three dimensional datasets: while field data is three dimensional, it provides little control, whereas most laboratory results are obtained from column experiments. We will report on out approach to highly controlled and automated experiments. In these experiments electrical geophysical data (SP and IP data) is being collected simultaneously and automatically with point measurement of aqueous geochemistry for both 2D and 3D environments. Integrated experimental control and data management for such experiment is critical as it allows transparent and reproducible acquisition and analysis, both of which are essential to build up baseline data for quantitative and qualitative correlation of geophysical data to biogeochemical properties and processes.

  1. Ballistic Signature Identification System Study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The first phase of a research project directed toward development of a high speed automatic process to be used to match gun barrel signatures imparted to fired bullets was documented. An optical projection technique has been devised to produce and photograph a planar image of the entire signature, and the phototransparency produced is subjected to analysis using digital Fourier transform techniques. The success of this approach appears to be limited primarily by the accuracy of the photographic step since no significant processing limitations have been encountered.

  2. Biomarker Sensors and Method for Multi-Color Imaging and Processing of Single-Molecule Life Signatures

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A. (Inventor); Collier, Charles Patrick (Inventor)

    2013-01-01

    The invention is a device including array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process, e.g., sequential reactions. The device has a transparent substrate member, which has a surface region and a silane material overlying the surface region. A first active region overlies a first portion of the silane material. The first region has a first dimension of less than 1 micron in size and has first molecules capable of binding to the first portion of the silane material. A second active region overlies a second portion of the silane material. The second region has a second dimension of less than 1 micron in size, second molecules capable of binding to the second portion of the active region, and a spatial distance separates the first active region and the second active region.

  3. Adaptive signal processing and higher order time- frequency analysis for acoustic and vibration signatures in condition monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kwon

    This thesis is concerned with the development of a useful engineering technique to detect and analyse faults in rotating machinery. The methods developed are based on the advanced signal processing such as the adaptive signal processing and higher-order time frequency methods. The two-stage Adaptive Line Enhancer (ALE), using adaptive signal processing, has been developed for increasing the Signal to Noise Ratio of impulsive signals. The enhanced signal can then be analysed using time frequency methods to identify fault characteristics. However, if after pre-processing by the two stage ALE, the SNR of the signals is low, the residual noise often hinders clear identification of the fault characteristics in the time-frequency domain. In such cases, higher order time-frequency methods have been proposed and studied. As examples of rotating machinery, the internal combustion engine and an industrial gear box are considered in this thesis. The noise signal from an internal combustion engine and vibration signal measured on a gear box are studied in detail. Typically an impulsive signal manifests itself when the fault occurs in the machinery and is embedded in background noise, such as the fundamental frequency and its harmonic orders of the rotation speed and broadband noise. The two-stage ALE is developed for reducing this background noise. Conditions for the choice of adaptive filter parameters are studied and suitable adaptive algorithms given. The enhanced impulsive signal is analysed in the time- frequency domain using the Wigner higher order moment spectra (WHOMS) and the multi-time WHOMS (which is a dual form of the WHOMS). The WHOMS suffers from unwanted cross-terms, which increase dramatically as the order increases. Novel expressions for the cross-terms in WHOMS have been presented. The number of cross-terms can be reduced by taking the principal slice of the WHOMS. The residual cross-terms are smoothed by using a general class of kernel functions and the

  4. Sediment transport dynamics in the Central Himalaya: assessing during monsoon the erosion processes signature in the daily suspended load of the Narayani river

    NASA Astrophysics Data System (ADS)

    Morin, Guillaume; Lavé, Jérôme; Lanord, Christian France; Prassad Gajurel, Ananta

    2017-04-01

    The evolution of mountainous landscapes is the result of competition between tectonic and erosional processes. In response to the creation of topography by tectonics, fluvial, glacial, and hillslope denudation processes erode topography, leading to rock exhumation and sediment redistribution. When trying to better document the links between climate, tectonic, or lithologic controls in mountain range evolution, a detailed understanding of the influence of each erosion process in a given environment is fundamental. At the scale of a whole mountain range, a systematic survey and monitoring of all the geomorphologic processes at work can rapidly become difficult. An alternative approach can be provided by studying the characteristics and temporal evolution of the sediments exported out of the range. In central Himalaya, the Narayani watershed presents contrasted lithologic, geochemical or isotopic signatures of the outcropping rocks as well as of the erosional processes: this particular setting allows conducting such type of approach by partly untangling the myopic vision of the spatial integration at the watershed scale. Based on the acquisition and analysis of a new dataset on the daily suspended load concentration and geochemical characteristics at the mountain outlet of one of the largest Himalayan rivers (drainage area = 30000 km2) bring several important results on Himalayan erosion, and on climatic and process controls. 1. Based on discrete depth sampling and on daily surface sampling of suspended load associated to flow characterization through ADCP measurements, we were first able to integrate sediment flux across a river cross-section and over time. We estimate for 2010 year an equivalent erosion rate of 1.8 +0.35/-0.2 mm/yr, and over the last 15 years, using past sediment load records from the DHM of Nepal, an equivalent erosion rate of 1.6 +0.3/-0.2 mm/yr. These rates are also in close agreement with the longer term ( 500 yrs) denudation rates of 1.7 mm

  5. Albedos and spectral signatures determination and it connection to geological processes: Simile between Earth and other solar system bodies

    NASA Astrophysics Data System (ADS)

    Suarez, J.; Ochoa, L.; Saavedra, F.

    2017-07-01

    Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.

  6. Geomorphic signature of an Antarctic palaeo-ice stream: implications for understanding subglacial processes and grounding line retreat

    NASA Astrophysics Data System (ADS)

    Livingstone, S. J.; Jamieson, S.; Vieli, A.; O'Cofaigh, C.; Stokes, C. R.; Hillenbrand, C.

    2010-12-01

    The ability to capture the complex spatial and temporal variability exhibited by ice streams in Antarctica and Greenland at short (decadal) time-scales, remains one of the key challenges in numerical modelling and underlies current uncertainties with predicting future contributions of ice sheets to sea-level rise. This has made ice streams a major focus for current glaciological research, particularly with regard to the processes occurring at the ice-bed interface. Such studies unfortunately, only provide a ‘snap-shot’ of the life-cycle of an ice stream, limited to the last few decades, and so there is a need for complementary investigations of former zones of fast flow in palaeo-ice sheets. The ability to observe directly the former beds of palaeo-ice streams has allowed important spatial and temporal information to be obtained on the processes that occurred at the ice-bed interface and on ice dynamics associated with the evolution of palaeo-ice streams. We present new glacial geomorphological evidence from a marine palaeo-ice stream in Marguerite Bay, Antarctic Peninsula (Ó Cofaigh et al. 2002, 2005). The landform assemblage of this palaeo-ice stream system has been derived from the mapping of over 16,000 glacial landforms from high-resolution multibeam swath-bathymetry and input into a GIS database. Analysis of the spatial distribution and geomorphic relationships between landforms and landform assemblages has revealed a complex basal régime, while the overall geomorphic imprint, constrained by radiocarbon dates, has been used to reconstruct the retreat style and history of the palaeo-ice stream. Mapping of relict subglacial meltwater channels has revealed an intricate hydrological system characterised by multiple network types (cf. Anderson & Oakes-Fretwell, 2008) that are strongly dependent on the underlying substrate and which show progressive organisation seaward. Grounding zone wedges (GZWs), formed by the subglacial transport and then deposition of

  7. Field signatures of non-Fickian transport processes: transit time distributions, spatial correlations, reversibility and hydrogeophysical imaging

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Kang, P. K.; Guihéneuf, N.; Shakas, A.; Bour, O.; Linde, N.; Dentz, M.

    2015-12-01

    Non-Fickian transport phenomena are observed in a wide range of scales across hydrological systems. They are generally manifested by a broad range of transit time distributions, as measured for instance in tracer breakthrough curves. However, similar transit time distributions may be caused by different origins, including broad velocity distributions, flow channeling or diffusive mass transfer [1,2]. The identification of these processes is critical for defining relevant transport models. How can we distinguish the different origins of non-Fickian transport in the field? In this presentation, we will review recent experimental developments to decipher the different causes of anomalous transport, based on tracer tests performed at different scales in cross borehole and push pull conditions, and time lapse hydrogeophysical imaging of tracer motion [3,4]. References:[1] de Anna-, P., T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy (2013) Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett., 110, 184502 [2] Le Borgne T., Dentz M., and Carrera J. (2008) Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields. Phys. Rev. Lett. 101, 090601 [3] Kang, P. K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes (2015), Impact of velocity correlation and distribution on transport in fractured media : Field evidence and theoretical model, Water Resour. Res., 51, 940-959 [4] Dorn C., Linde N., Le Borgne T., O. Bour and L. Baron (2011) Single-hole GPR reflection imaging of solute transport in a granitic aquifer Geophys. Res. Lett. Vol.38, L08401

  8. UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere

    NASA Astrophysics Data System (ADS)

    Moores, J.; Schuerger, A.; Barlow, N. G.

    2012-12-01

    Reanalysis of the results from the Viking Landers by Navarro-Gonzales et al in 2010 suggested detection of organic carbon in the soil at both VL1 and VL2 sites at the level of a few ppm. By using a numerical radiative transfer code for the martian atmosphere, we will show how this level of carbon can be explained if the source of the organic carbon is Interplanetary Dust Particles (IDPs) undergoing UV Photolysis. The breakdown of IDPs by UV radiation will also produce significant quantities of methane. The amount of carbon expected to be present on the surface of Mars, if converted largely to methane, would explain the background signal of ~10ppbv reported by Mars Express. Furthermore, this methane would allow emissions from surface concentrations of organics to be tracked from orbit by a TGO-like spacecraft yeilding insights on the production and destruction mechanisms of methane on Mars and acting as a tracer to observe the circulation of the martian atmosphere. However, the rate of accretion and conversion of IDP Organics at Mars cannot explain the large 45 ppbv plumes observed by Mumma et al (2009). Instead, limits will be presented that describe the limiting case of a sudden influx of organic carbon to the surface by an atmospheric airburst of a loosely consolidated organic-rich body.

  9. Minority Language Development and Literacy among Internally Displaced Persons (IDPs), Refugees, and Wartime Communities

    ERIC Educational Resources Information Center

    Yoder, Joan Bomberger

    2008-01-01

    This article describes how minority language development and literacy activities were facilitated in a wartime context for Southern Sudanese language groups, particularly through the use of workshops. It also presents the voices of the language speakers themselves as they reflect on this process. A background discussion considers the importance of…

  10. Structural signature of tectonic processes in the Calabrian Arc, southern Italy: Evidence from the oceanic-derived Diamante-Terranova unit

    NASA Astrophysics Data System (ADS)

    Cello, Giuseppe; Invernizzi, Chiara; Mazzoli, Stefano

    1996-02-01

    The Diamante-Terranova unit is an oceanic-derived element within the thrust and nappe structure of the northern sector of the Calabrian Arc. Its metamorphic and structural signature reveals a long history of SE dipping subduction and collision-related deformation of an oceanic lithospheric section underlying the narrow Diamante-Terranova basin. The deformation history of the Diamante-Terranova unit may be related to three main tectonic phases. The first one is characterized by a structural association which includes features that developed during a progressive deformation related to the evolution of a deep-seated shear zone. Kinematic indicators characterizing subduction-related structures clearly show a top-to-the-northwest sense of overthrust shear. The second tectonic phase that can be recognized in the area is characterized by structures that may be related to the onset of shear deformation induced by a postcollisional northeastward motion of the overriding plate. The third tectonic phase is recorded by brittle features related to the latest tectonic events affecting the Calabrian Arc during the opening of the Tyrrhenian Sea. Shear sense indicators and available radiometric and stratigraphic information, together with plate kinematic data, allowed us to infer the time evolution of this sector of the Calabrian Arc and to assess that the Diamante-Terranova unit cannot be considered as an "Eoalpine" element since its deformation, related to subduction-collision processes, occurred prior to the end of the Cretaceous.

  11. Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures.

    PubMed

    Comas-Vives, Aleix

    2016-03-14

    In this contribution, realistic amorphous SiO2 models of 2.1 × 2.1 nm with silanol densities ranging 1.1-7.2 OH per nm(2) are obtained by means of ab initio calculations via the dehydroxylation of a fully hydroxylated silica surface. The dehydroxyation process is considered to take place via direct condensation of adjacent silanol groups and silica migration steps. The latter reconstructions are needed in order to obtain highly dehydroxylated silica surfaces with favorable energetics and without the formation of defects. The obtained surface phase diagram of different silica models as a function of temperature and PH2O is able to correctly describe the silanol density under different conditions, and the IR spectroscopic signatures of the silanols are in qualitative agreement with the experiment. The amorphous silica models presented here have a high degree of heterogeneity as found from the big variability obtained in the energetics of the dehydroxylation steps. It was also found that the resulting average Si-O distance of the newly formed siloxane bridges serves as a descriptor of the strain introduced in the silica surface. All these factors can be crucial in order to simulate the activity of catalysts grafted onto silica with different silanol densities, especially the one containing ca. 1 OH per nm(2), which can serve as a model for the SiO2 surface pretreated under high vacuum and at 700 °C.

  12. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  13. Improved method of signature extraction

    NASA Technical Reports Server (NTRS)

    Christianson, D.; Gordon, M.; Kistler, R.; Kriegler, F. J.; Lampert, S.; Marshall, R. E.; Mclaughlin, R.; Smith, V.

    1977-01-01

    System promises capability of rapidly processing large amounts of data generated by currently available and planned multispectral sensors, such as those utilized on aircraft and spacecraft. Techniques developed for system, greatly decrease operator time required for signature extraction from multispectral data base.

  14. Temperature effects on airgun signatures

    SciTech Connect

    Langhammer, J.; Landroe, M. )

    1993-08-01

    Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu. in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5 C and 45 C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modeling of airguns with chamber volumes of 1.6 and 40 cu. in. was performed. In modeling the same behavior of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.

  15. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  16. Signature molecular descriptor : advanced applications.

    SciTech Connect

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  17. Landsat Signature Development Program

    NASA Technical Reports Server (NTRS)

    Hall, R. N.; Mcguire, K. G.; Bland, R. A.

    1976-01-01

    The Landsat Signature Development Program, LSDP, is designed to produce an unsupervised classification of a scene from a Landsat tape. This classification is based on the clustering tendencies of the multispectral scanner data processed from the scene. The program will generate a character map that, by identifying each of the general classes of surface features extracted from the scene data with a specific line printer symbol, indicates the approximate locations and distributions of these general classes within the scene. Also provided with the character map are a number of tables each of which describes either some aspect of the spectral properties of the resultant classes, some inter-class relationship, the incidence of picture elements assigned to the various classes in the character map classification of the scene, or some significant intermediate stage in the development of the final classes.

  18. Micro-analyses of Interplanetary Dust Particles (IDPs) and Micrometeorites (MMs): Implications for sample return missions to undifferentiated protoplanets

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F.

    The good news is that the original, typically non-chondritic, presolar dust had an extremely simple mineralogy of predominantly Mg-rich olivines and -pyroxenes, pyrrhotite (Fe7 S8 ), Fe-o xides and Fe,Ni-metal. This unique property is preserved in the least modified protoplanets for in situ sampling (e.g. STARDUST, MUSES-C) and in their debris in the form of stratospheric IDPs and MMs. The corollary is that mineralogical complexity in all extraterrestrial materials is an evolved secondary property. The earliest stages of solar system evolution were defined by hierarchical dust accretion whereby the accreting dust was recycled prior to the formation of the final surviving protoplanets. This recycling concentrated initially minor elements so they could form new minerals , e.g. alkali-feldspars and plagioclase. The least- modified protoplanets are comet nuclei, i.e. random mixtures of rubble piles and dirty snowballs, and the icy (ultra)carbonaceous asteroids. Second best are the dormant, extinct and rare active comet nuclei among the near-Earth asteroids that are relatively easy to access by sample return missions. Third are the anhydrous CO/CV carbonaceous chondrites and the low metamorphic grade, unequilibrated ordinary chondrites from the main asteroid belt. Lithification of the original rubble piles in these asteroids erased all structural properties but not the mineralogy and chemistry of the accreted entities, i.e. matrix, chondrules and CAIs.Consequently , returned samples of small chips, fragments or powders from the surface of undifferentiated protoplanets will amply suffice for a full mineralogical and chemical characterization of these small bodies, including modifications from interactions with the space environment, e.g. space weathering, regolith formation and the black mantle on icy-protoplanets. Major improvements in the sensitivity of available micro-analytical tools means that in situ acquired samples can be analyzed at scales of individual, n m-s i

  19. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  20. Signature simulation of mixed materials

    NASA Astrophysics Data System (ADS)

    Carson, Tyler D.; Salvaggio, Carl

    2015-05-01

    Soil target signatures vary due to geometry, chemical composition, and scene radiometry. Although radiative transfer models and function-fit physical models may describe certain targets in limited depth, the ability to incorporate all three signature variables is difficult. This work describes a method to simulate the transient signatures of soil by first considering scene geometry synthetically created using 3D physics engines. Through the assignment of spectral data from the Nonconventional Exploitation Factors Data System (NEFDS), the synthetic scene is represented as a physical mixture of particles. Finally, first principles radiometry is modeled using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. With DIRSIG, radiometric and sensing conditions were systematically manipulated to produce and record goniometric signatures. The implementation of this virtual goniometer allows users to examine how a target bidirectional reflectance distribution function (BRDF) will change with geometry, composition, and illumination direction. By using 3D computer graphics models, this process does not require geometric assumptions that are native to many radiative transfer models. It delivers a discrete method to circumnavigate the significant cost of time and treasure associated with hardware-based goniometric data collections.

  1. Electronic Signatures for Public Procurement across Europe

    NASA Astrophysics Data System (ADS)

    Ølnes, Jon; Andresen, Anette; Arbia, Stefano; Ernst, Markus; Hagen, Martin; Klein, Stephan; Manca, Giovanni; Rossi, Adriano; Schipplick, Frank; Tatti, Daniele; Wessolowski, Gesa; Windheuser, Jan

    The PEPPOL (Pan-European Public Procurement On-Line) project is a large scale pilot under the CIP programme of the EU, exploring electronic public procurement in a unified European market. An important element is interoperability of electronic signatures across borders, identified today as a major obstacle to cross-border procurement. PEPPOL will address use of signatures in procurement processes, in particular tendering but also post-award processes like orders and invoices. Signature policies, i.e. quality requirements and requirements on information captured in the signing process, will be developed. This as well as technical interoperability of e-signatures across Europe will finally be piloted in demonstrators starting late 2009 or early 2010.

  2. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  3. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  4. Evolutionary Signatures of River Networks

    NASA Astrophysics Data System (ADS)

    Paik, K.

    2014-12-01

    River networks exhibit fractal characteristics and it has long been wondered how such regular patterns have been formed. This subject has been actively investigated mainly by two great schools of thoughts, i.e., chance and organization. Along this line, several fundamental questions have partially been addressed or remained. They include whether river networks pursue certain optimal conditions, and if so what is the ultimate optimality signature. Hydrologists have traditionally perceived this issue from fluvial-oriented perspectives. Nevertheless, geological processes can be more dominant in the formation of river networks in reality. To shed new lights on this subject, it is necessary to better understand complex feedbacks between various processes over different time scales, and eventually the emerging characteristic signature. Here, I will present highlights of earlier studies on this line and some noteworthy approaches being tried recently.

  5. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  6. NPOESS Interface Data Processing Segment Product Generation

    NASA Astrophysics Data System (ADS)

    Grant, K. D.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. The IDPS will process environmental data products beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Within the overall NPOESS processing environment, the IDPS must process a data volume nearly 1000 times the size of current systems -- in one-quarter of the time. Further, it must support the calibration, validation, and data quality improvement initiatives of the NPOESS program to ensure the production of atmospheric and environmental products that meet strict requirements for accuracy and precision. This paper will describe the architecture approach that is necessary to meet these challenging, and seemingly exclusive, NPOESS IDPS design requirements, with a focus on the processing relationships required to generate the NPP products.

  7. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  8. Twin Signature Schemes, Revisited

    NASA Astrophysics Data System (ADS)

    Schäge, Sven

    In this paper, we revisit the twin signature scheme by Naccache, Pointcheval and Stern from CCS 2001 that is secure under the Strong RSA (SRSA) assumption and improve its efficiency in several ways. First, we present a new twin signature scheme that is based on the Strong Diffie-Hellman (SDH) assumption in bilinear groups and allows for very short signatures and key material. A big advantage of this scheme is that, in contrast to the original scheme, it does not require a computationally expensive function for mapping messages to primes. We prove this new scheme secure under adaptive chosen message attacks. Second, we present a modification that allows to significantly increase efficiency when signing long messages. This construction uses collision-resistant hash functions as its basis. As a result, our improvements make the signature length independent of the message size. Our construction deviates from the standard hash-and-sign approach in which the hash value of the message is signed in place of the message itself. We show that in the case of twin signatures, one can exploit the properties of the hash function as an integral part of the signature scheme. This improvement can be applied to both the SRSA based and SDH based twin signature scheme.

  9. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  10. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  11. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  12. An archaeal genomic signature

    PubMed Central

    Graham, David E.; Overbeek, Ross; Olsen, Gary J.; Woese, Carl R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal “design fabric.” Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org). PMID:10716711

  13. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  14. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  15. Modeling the lexical morphology of Western handwritten signatures.

    PubMed

    Diaz-Cabrera, Moises; Ferrer, Miguel A; Morales, Aythami

    2015-01-01

    A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures.

  16. Modeling the Lexical Morphology of Western Handwritten Signatures

    PubMed Central

    Diaz-Cabrera, Moises; Ferrer, Miguel A.; Morales, Aythami

    2015-01-01

    A handwritten signature is the final response to a complex cognitive and neuromuscular process which is the result of the learning process. Because of the many factors involved in signing, it is possible to study the signature from many points of view: graphologists, forensic experts, neurologists and computer vision experts have all examined them. Researchers study written signatures for psychiatric, penal, health and automatic verification purposes. As a potentially useful, multi-purpose study, this paper is focused on the lexical morphology of handwritten signatures. This we understand to mean the identification, analysis, and description of the signature structures of a given signer. In this work we analyze different public datasets involving 1533 signers from different Western geographical areas. Some relevant characteristics of signature lexical morphology have been selected, examined in terms of their probability distribution functions and modeled through a General Extreme Value distribution. This study suggests some useful models for multi-disciplinary sciences which depend on handwriting signatures. PMID:25860942

  17. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe

    2017-06-01

    Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was

  18. Sulfur isotope signatures in gypsiferous sediments of the Estancia and Tularosa Basins as indicators of sulfate sources, hydrological processes, and microbial activity

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Moore, Craig H.; Glamoclija, Mihaela; Pratt, Lisa M.

    2009-10-01

    In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved SO42- ions in modern surface water, groundwater, and SO42- precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ 34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ 34S values of -1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ 34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ 34S values (-42.3‰ to -20.3‰) compared to co-existing gypsum (-3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ 34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H 2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon

  19. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  20. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  1. President Signature Onboard Curiosity

    NASA Image and Video Library

    2012-09-21

    This view of Curiosity deck shows a plaque bearing several signatures of US officials, including that of President Obama and Vice President Biden. The image was taken by the rover Mars Hand Lens Imager MAHLI.

  2. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; MaNGA-GMOS Team

    2017-01-01

    Feedback from actively accreting SMBHs (Active Galactic Nuclei, AGN) is now widely considered to be the main driver in regulating the growth of massive galaxies. Observational proof for this scenario has, however, been hard to come by. Many attempts at finding a conclusive observational proof that AGN may be able to quench star formation and regulate the host galaxies' growth have shown that this problem is highly complex.I will present results from several projects that focus on understanding the power, reach and impact of feedback processes exerted by AGN. I will describe recent efforts in our group of relating feedback signatures to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history (Wylezalek+2016a,b). Furthermore, I will show that powerful AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of the galaxy. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and outflows that are potentially very relevant for understanding the role of AGN in galaxy evolution (Wylezalek+2016c)!

  3. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  4. Cryptanalysis of a sessional blind signature based on quantum cryptography

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Wen-Min

    2014-09-01

    A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or document. A blind signature is a form of digital signature in which the content of a message is disguised (blinded) before it is signed to protect the privacy of the message from the signatory. For signing quantum messages, some quantum blind signature protocols have been proposed. Recently, Khodambashi et al. (Quantum Inf Process 13:121, 2014) proposed a sessional blind signature based on quantum cryptography. It was claimed that these protocol could guarantee unconditional security. However, after our analysis, we find that the signature protocol will cause the key information leakage in the view of information theory. Taking advantage of loophole, the message sender can succeed in forging the signature without the knowledge of the whole exact key between the verifier and him. To conquer this shortcoming, we construct an improved protocol based on it and the new protocol can resist the key information leakage attacks.

  5. Assessment of the Interstellar Processes Leading to Deuterium Enrichment in Meteoritic Organics

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Dworkin, Jason P.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low temperature gas phase ion-molecule reactions, low temperature gas-grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D-enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, 0, and N in the same compounds.

  6. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  7. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    SciTech Connect

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; de Wet, Dane; Bayram, Duygu

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  8. Magma Differentiation Processes That Develop an "Enriched" Signature in the Izu Bonin Rear Arc: Evidence from Drilling at IODP Site U1437

    NASA Astrophysics Data System (ADS)

    Heywood, L. J.; DeBari, S. M.; Schindlbeck, J. C.; Escobar-Burciaga, R. D.

    2015-12-01

    The Izu Bonin rear arc represents a unique laboratory to study the development of continental crust precursors at an intraoceanic subduction zone., Volcanic output in the Izu Bonin rear arc is compositionally distinct from the Izu Bonin main volcanic front, with med- to high-K and LREE-enrichment similar to the average composition of the continental crust. Drilling at IODP Expedition 350 Site U1437 in the Izu Bonin rear arc obtained volcaniclastic material that was deposited from at least 13.5 Ma to present. IODP Expedition 350 represents the first drilling mission in the Izu Bonin rear arc region. This study presents fresh glass and mineral compositions (obtained via EMP and LA-ICP-MS) from unaltered tephra layers in mud/mudstone (Lithostratigraphic Unit I) and lapillistone (Lithostratigraphic Unit II) <4.5 Ma to examine the geochemical signature of Izu Bonin rear arc magmas. Unit II samples are coarse-grained tephras that are mainly rhyolitic in composition (72.1-77.5 wt. % SiO2, 3.2-3.9 wt. % K2O and average Mg# 24) and LREE-enriched. These rear-arc rhyolites have an average La/Sm of 2.6 with flat HREEs, average Th/La of 0.15, and Zr/Y of 4.86. Rear-arc rhyolite trace element signature is distinct from felsic eruptive products from the Izu Bonin main volcanic front, which have lower La/Sm and Th/La as well as significantly lower incompatible element concentrations. Rear arc rhyolites have similar trace element ratios to rhyolites from the adjacent but younger backarc knolls and actively-extending rift regions, but the latter is typified by lower K2O, as well as a smaller degree of enrichment in incompatible elements. Given these unique characteristics, we explore models for felsic magma formation and intracrustal differentiation in the Izu Bonin rear arc.

  9. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  10. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  11. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  12. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an ;overall; mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  13. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  14. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  15. Current Signature Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  16. Searching the Inclusive Lepton + Photon + Missing E(T) + b-quark Signature for Radiative Top Quark Decay and Non-Standard-Model Processes

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton ({ell}), a photon ({gamma}), significant transverse momentum imbalance (E{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}s = 1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 {ell}{gamma}bE{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, t{bar t} + {gamma}. In the data we observe 16 t{bar t}{gamma} candidate events versus an expectation from non-top-quark SM sources of 11.2{sub -2.1}{sup +2.3}. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the t{bar t} cross section to be 0.15 {+-} 0.08 pb.

  17. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  18. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  19. Dynamic Signature Verification System Based on One Real Signature.

    PubMed

    Diaz, Moises; Fischer, Andreas; Ferrer, Miguel A; Plamondon, Rejean

    2016-12-06

    The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.

  20. Terahertz signature characterization of bio-simulants

    NASA Astrophysics Data System (ADS)

    Majewski, Alexander J.; Miller, Peter; Abreu, Rene; Grotts, Jeffrey; Globus, Tatiana; Brown, Elliott

    2005-05-01

    Collaboration with the University of Virginia (UVa) and the University of California, Santa Barbara (UCSB) has resulted in the collection of signature data in the THz region of the spectrum for ovalbumin, Bacillus Subtilis (BG) and RNA from MS2 phage. Two independent experimental measurement systems were used to characterize the bio-simulants. Prior to our efforts, only a limited signature database existed. The goal was to evaluate a larger ensemble of biological agent simulants (BG, MS2 and ovalbumin) by measuring their THz absorption spectra. UCSB used a photomixer spectrometer and UVa a Fourier Transform spectrometer to measure absorption spectra. Each group used different sample preparation techniques and made multiple measurements to provide reliable statistics. Data processing culminated in applying proprietary algorithms to develop detection filters for each simulant. Through a covariance matrix approach, the detection filters extract signatures over regions with strong absorption and ignore regions with large signature variation (noise). The discrimination capability of these filters was also tested. The probability of detection and false alarm for each simulant was analyzed by each simulant specific filter. We analyzed a limited set of Bacillus thuringiensis (BT) data (a near neighbor to BG) and were capable of discriminating between BT and BG. The signal processing and filter construction demonstrates signature specificity and filter discrimination capabilities.

  1. Genetic signatures of heroin addiction.

    PubMed

    Chen, Shaw-Ji; Liao, Ding-Lieh; Shen, Tsu-Wang; Yang, Hsin-Chou; Chen, Kuang-Chi; Chen, Chia-Hsiang

    2016-08-01

    Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study.

  2. Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, S.

    2012-01-01

    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs.

  3. Maximum likelihood signature estimation

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1975-01-01

    Maximum-likelihood estimates are discussed which are based on an unlabeled sample of observations, of unknown parameters in a mixture of normal distributions. Several successive approximation procedures for obtaining such maximum-likelihood estimates are described. These procedures, which are theoretically justified by the local contractibility of certain maps, are designed to take advantage of good initial estimates of the unknown parameters. They can be applied to the signature extension problem, in which good initial estimates of the unknown parameters are obtained from segments which are geographically near the segments from which the unlabeled samples are taken. Additional problems to which these methods are applicable include: estimation of proportions and adaptive classification (estimation of mean signatures and covariances).

  4. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  5. SMAWT Signature Test

    DTIC Science & Technology

    1974-10-01

    were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components

  6. Bayesian Separation of Lamb Wave Signatures

    SciTech Connect

    Kercel, SW

    2001-07-19

    A persistent problem in the analysis of Lamb wave signatures in experimental data is the fact that several different modes appear simultaneously in the signal. The modes overlap in both the frequency and time domains. Attempts to separate the overlapping Lamb wave signatures by conventional signal processing methods have been unsatisfactory. This paper reports an exciting alternative to conventional methods. Severely overlapping Lamb waves are found to be readily separable by Bayesian parameter estimation. The authors have used linear-chirped Gaussian-windowed sinusoids as models of each Lamb wave mode. The separation algorithm allows each mode to be examined individually.

  7. Aircraft plume signature suppression and stealth

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Gao, Jiaobo; Wang, Weina; Wang, Jilong; Xie, Junhu

    2005-01-01

    How to turning down the heat of aircraft infrared picture, how to get stealthy. To make a stealthy aircraft, designers had to consider a lot of key ingredients. This paper mainly introduces aircraft stealthy and discussed the efficiency of aircraft signature suppression. We describe testing process, measure and analyze the characteristics of aerosol scattering and absorption and present testing data of aircraft plume signature suppression. It covers the waveband from 2μm to 14μm. Another, infrared radiation temperature be minimized by a combination of temperature reduction and masking radiation temperature.

  8. Molecular signature in HCV-positive lymphomas.

    PubMed

    De Re, Valli; Caggiari, Laura; Garziera, Marica; De Zorzi, Mariangela; Repetto, Ombretta

    2012-01-01

    Hepatitis C virus (HCV) is a positive, single-stranded RNA virus, which has been associated to different subtypes of B-cell non-Hodgkin lymphoma (B-NHL). Cumulative evidence suggests an HCV-related antigen driven process in the B-NHL development. The underlying molecular signature associated to HCV-related B-NHL has to date remained obscure. In this review, we discuss the recent developments in this field with a special mention to different sets of genes whose expression is associated with BCR coupled to Blys signaling which in turn was found to be linked to B-cell maturation stages and NF-κb transcription factor. Even if recent progress on HCV-B-NHL signature has been made, the precise relationship between HCV and lymphoma development and phenotype signature remain to be clarified.

  9. Visual signatures in video visualization.

    PubMed

    Chen, Min; Botchen, Ralf P; Hashim, Rudy R; Weiskopf, Daniel; Ertl, Thomas; Thornton, Ian M

    2006-01-01

    Video visualization is a computation process that extracts meaningful information from original video data sets and conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion events.

  10. Knowledge Signatures for Information Integration

    SciTech Connect

    Thomson, Judi; Cowell, Andrew J.; Paulson, Patrick R.; Butner, R. Scott; Whiting, Mark A.

    2003-10-25

    This paper introduces the notion of a knowledge signature: a concise, ontologically-driven representation of the semantic characteristics of data. Knowledge signatures provide programmatic access to data semantics while allowing comparisons to be made across different types of data such as text, images or video, enabling efficient, automated information integration. Through observation, which determines the degree of association between data and ontological concepts, and refinement, which uses the axioms and structure of the domain ontology to place the signature more accurately within the context of the domain, knowledge signatures can be created. A comparison of such signatures for two different pieces of data results in a measure of their semantic separation. This paper discusses the definition of knowledge signatures along with the design and prototype implementation of a knowledge signature generator.

  11. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  12. Molecular signatures of ribosomal evolution.

    PubMed

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  13. Molecular signatures of ribosomal evolution

    PubMed Central

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R.; Luthey-Schulten, Zaida

    2008-01-01

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome. PMID:18768810

  14. Evidence for Changes in 81PIWild 2 Organic Matter Since Collection and Comparison of 82PIWild 2 and IDP Organic Matter to Access the Thermal Effects of Aerogel Capture

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L.; Messenger, Nakamura; Sandford, S. A.; Zolensky, M. E.; Peltzer, C.; Jacobsen, C.

    2009-01-01

    NASA s Stardust spacecraft collected cometary material during its passage through the dust coma of comet 81P/Wild 2 on January 2nd, 2004 and delivered this material to Earth on January 15th 2006. The first fragment we analyzed during the preliminary examination was partially vaporized by the X-ray beam. The carbonaceous material that survived was re-analysis approx.2 months later and the carbon spectrum for this material had significantly changed from what we first observed.. We have observed similar changes to the carbonaceous matter in some interplanetary dust particles ( IDPs). Some of the 81P/Wild 2 organic matter volatilized upon impact with the aerogel as observed using IR spectroscopy where IR spectra were collected several mms away from sample tracks [1]. The time-temperature profile experienced by any particular 81P/Wild 2 grain during aerogel capture is not known, although Brownlee, et al. suggest that fine-grained materials, <1 micron in size, fragmented and then partially vaporized during collection, while particles much larger then 1 micron in size were captured intact [2]. Nearly all organic matter is subject to thermal alteration. To assess the heating and alteration experienced by the 81P/Wild 2 organic matter during capture we are comparing 81P/Wild2 organic matter with IDP organic matter where we have evidence of heating in the IDP [3,4].

  15. Investigating geophysical signatures of microbial cells, processes, and degradation: Implications for the geophysical monitoring of microbial activity and degradation in the subsurface

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, Dimitrios

    An integral part of soil remediation is the efficient monitoring of geochemical and microbial processes in the subsurface. The shallow subsurface environment is a dynamic system undergoing continuous change. The chemical and physical properties are affected by natural processes and by anthropogenic impacts, especially in the case of contaminated soils. Subsurface monitoring is hindered by our inability to directly observe any geochemical or microbiological process in real time and in situ. High resolution geophysical methods can be used for efficient shallow subsurface monitoring in real time and with high spatial variability. I investigated the use of common geophysical methods to detect and/or monitor microbial cells, microbial processes, and degradation in the subsurface. In chapter 2, I investigate the use of geoelectrical methods to monitor microbial presence within a simple system. Real and imaginary conductivity measurements are associated with the presence of metabolically inactive but alive microbial cells in sand media. Imaginary conductivity appears to be very sensitive in cell density changes whereas the real conductivity is not affected. The limitations of the method and possible mechanisms are discussed. In chapter 3, I investigate the use of geoelectrical methods to detect and monitor metal sulfide mineralization due to microbial activity. Imaginary conductivity changes are coupled with metal - fluid interfacial area changes and the biomineral formation. The mineral precipitants structure and aging influence both imaginary and real conductivity. This study shows the potential of geoelectrical methods to monitor microbial processes involving sequestration of heavy metals as insoluble precipitants. In chapter 4, the self potential method is used as a method to monitor abiotic DNAPL degradation. Geochemical monitoring indicated that DNAPL degradation is intensified due to HgCl2 presence in abiotic columns; the SP measurements are sensitive to these

  16. Modem Signature Analysis.

    DTIC Science & Technology

    1982-10-01

    RADC-TR-82-269 A. A 9 q _ ___ ___ __ 4. TITLE (and Subtitle) S . TYPE or REPORT & PERIOD COVERED] Final Technical Report MODEM SIGNATURE ANALYSIS Sep 80...Nov 81 a. PERFORMING 011G. REPORT NME N/A 7. AUTI4OR( s ) 4. CONTRACT DOR GRANT oMumEalr) Thomas V. Edwards Dr. Robert J. Dick Dr. James W. Modestino...3-7 3-2 Second NSA Data Collection System . ....... ... 3-8 3-3 Time Plot Paradyne MP-96 AGN 20 dB S /N ..... .... 3-11 3-4 Power Spectral Density

  17. Signature CERN-URSS

    SciTech Connect

    2006-01-24

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  18. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  19. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  20. Optical signature modeling at FOI

    NASA Astrophysics Data System (ADS)

    Nelsson, C.; Hermansson, P.; Nyberg, S.; Persson, A.; Persson, R.; Sjökvist, S.; Winzell, T.

    2006-09-01

    Computer programs for prediction of optical signatures of targets and backgrounds are valuable tools for signature assessment and signature management. Simulations make it possible to study optical signatures from targets and backgrounds under conditions where measured signatures are missing or incomplete. Several applications may be identified: Increase understanding, Design and assessment of low signature concepts, Assessment of tactics, Design and assessment of sensor systems, Duel simulations of EW, and Signature awareness. FOI (the Swedish Defence Research Agency) study several methods and modeling programs for detailed physically based prediction of the optical signature of targets in backgrounds. The most important commercial optical signature prediction programs available at FOI are CAMEO-SIM, RadThermIR, and McCavity. The main tasks of the work have been: Assembly of a database of input data, Gain experience of different computer programs, In-house development of complementary algorithms and programs, and Validation and assessment of the simulation results. This paper summarizes the activities and the results obtained. Some application examples will be given as well as results from validations. The test object chosen is the MTLB which is a tracked armored vehicle. It has been used previously at FOI for research purposes and therefore measurement data is available.

  1. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  2. EUROPIUM s-PROCESS SIGNATURE AT CLOSE-TO-SOLAR METALLICITY IN STARDUST SiC GRAINS FROM ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.

  3. Image processing and products for the Magellan mission to Venus

    NASA Technical Reports Server (NTRS)

    Clark, Jerry; Alexander, Doug; Andres, Paul; Lewicki, Scott; Mcauley, Myche

    1992-01-01

    The Magellan mission to Venus is providing planetary scientists with massive amounts of new data about the surface geology of Venus. Digital image processing is an integral part of the ground data system that provides data products to the investigators. The mosaicking of synthetic aperture radar (SAR) image data from the spacecraft is being performed at JPL's Multimission Image Processing Laboratory (MIPL). MIPL hosts and supports the Image Data Processing Subsystem (IDPS), which was developed in a VAXcluster environment of hardware and software that includes optical disk jukeboxes and the TAE-VICAR (Transportable Applications Executive-Video Image Communication and Retrieval) system. The IDPS is being used by processing analysts of the Image Data Processing Team to produce the Magellan image data products. Various aspects of the image processing procedure are discussed.

  4. Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1α with CBP.

    PubMed

    De Sancho, David; Best, Robert B

    2012-01-01

    Intrinsically disordered proteins that acquire their three dimensional structures only upon binding to their targets are very important in cellular signal regulation. While experimental studies have been made on the structures of both bound (structured) and unbound (disordered) states, less is known about the actual folding-binding transition. Coarse grained simulations using native-centric (i.e. Gō) potentials have been particularly useful in addressing this problem, given the large search space for IDP binding, but have well-known deficiencies in reproducing the unfolded state structure and dynamics. Here, we investigate the interaction of HIF1α with CBP using a hierarchy of coarse-grained models, in each case matching the binding affinity at 300 K to the experimental value. Starting from a pure Gō-like model based on the native structure of the complex we go on to consider a more realistic model of helix propensity in the HIF1α, and finally the effect of non-native interactions between binding partners. We find structural disorder (i.e."fuzziness") in the bound state of HIF1α in all models which is supported by the results of atomistic simulations. Correcting the over-stabilized helices in the unbound state gives rise to a more cooperative folding-binding transition (destabilizing partially bound intermediates). Adding non-native contacts lowers the free energy barrier for binding to an almost barrierless scenario, leading to higher binding/unbinding rates relative to the other models, in better agreement with the near diffusion-limited binding rates measured experimentally. Transition state structures for the three models are highly disordered, supporting a fly-casting mechanism for binding.

  5. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Flynn, David S.; Wellfare, Michael R.; Richards, Mike; Prestwood, Lee

    1995-06-01

    The Irma synthetic signature model was one of the first high resolution synthetic infrared (IR) target and background signature models to be developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory (WL/MN), the Irma model was used exclusively to generate IR scenes for smart weapons research and development. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser channel. This two channel version, Irma 3.0, was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model which supported correlated frame-to-frame imagery. This and other improvements were released in Irma 2.2. Recently, Irma 3.2, a passive IR/millimeter wave (MMW) code, was completed. Currently, upgrades are underway to include an active MMW channel. Designated Irma 4.0, this code will serve as a cornerstone of sensor fusion research in the laboratory from 6.1 concept development to 6.3 technology demonstration programs for precision guided munitions. Several significant milestones have been reached in this development process and are demonstrated. The Irma 4.0 software design has been developed and interim results are available. Irma is being developed to facilitate multi-sensor smart weapons research and development. It is currently in distribution to over 80 agencies within the U.S. Air Force, U.S. Army, U.S. Navy, ARPA, NASA, Department of Transportation, academia, and industry.

  6. The Effects of Differentiated Instruction on the Literacy Process of Learners with Interrupted Schooling

    ERIC Educational Resources Information Center

    Niño Santisteban, Liliana

    2014-01-01

    This research study analyzes the literacy and foreign langauge processes of learners in the "Procesos Básicos" Program. The participants were 15 Spanish-speaking children and young adolescents, whose highest level of education was first grade. Eight of the 15 children were Internally Displaced Persons (IDPs), and the others were affected…

  7. An Arbitrated Quantum Signature with Bell States

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  8. Tagging a monotop signature in natural SUSY

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Sakurai, Kazuki; Takeuchi, Michihisa

    2017-01-01

    We study the feasibility of probing a region of natural supersymmetry where the stop and Higgsino masses are compressed. Although this region is most effectively searched for in the monojet channel, this signature is present in many other nonsupersymmetric frameworks. Therefore, another channel that carries orthogonal information is required to confirm the existence of the light stop and Higgsinos. We show that a supersymmetric version of the t t ¯H process, p p →t t˜ 1χ˜1 (2 ) 0 , can have an observably large rate when both the stop and Higgsinos are significantly light, and it leads to a distinctive monotop signature in the compressed mass region. We demonstrate that the hadronic channel of the monotop signature can effectively discriminate the signal from backgrounds by tagging a hadronic top jet. We show that the hadronic channel of the monotop signature offers a significant improvement over the leptonic channel and the sensitivity reaches mt˜1≃420 GeV at the 13 TeV LHC with 3 ab-1 luminosity.

  9. Signatures of aging revisited

    SciTech Connect

    Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.

    1998-03-18

    This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.

  10. Signature CERN-URSS

    ScienceCinema

    None

    2016-07-12

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  11. Signatures of Reputation

    NASA Astrophysics Data System (ADS)

    Bethencourt, John; Shi, Elaine; Song, Dawn

    Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.

  12. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  13. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  14. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  15. Development of a model community to evaluate efficient removal of genetic signatures from spacecraft surfaces: issues pertaining to sampling, sample processing, and molecular analyses

    NASA Astrophysics Data System (ADS)

    La Duc, Myron; Kwan, Kelly; Cooper, Moogega; Stam, Christina; Vaishampayan, Parag; Benardini, James Nick; Moissl-Eichinger, Christine; Andersen, Gary; Spry, James A.; Venkateswaran, Kasthuri

    Despite advances in the specificity and sensitivity of molecular biological technologies, the ef-ficient recovery of DNA from low-biomass samples remains extremely challenging. Optimal methods to extract these biomolecules should 1) achieve the greatest total yield; 2) reflect comprehensive microbial diversity of the sampled environment; and 3) assert reproducible re-sults. For an in-depth assessment of the wide spectrum of microorganisms present in the low-biomass spacecraft assembly clean room environment, technologies facilitating efficient col-lection, sample processing, and analysis are needed. To this end, a homogenous mixture of equal concentrations of 11 distinct microbial lineages having significant relevance to planetary protection (bacteria, archaea, and fungi; aerobes and anaerobes; cells and spores; rods and cocci) was prepared. Suitable aliquots of this "model" community were then characterized us-ing a parallel set of downstream molecular analyses which revealed the level of microbial DNA, extracellular DNA, dissolved organic matter, and particulate non-microbial substances present in the community. Appropriate subsamples of this model community were dried on stainless steel metal surfaces, and procedures targeting the efficient removal and recovery of community member DNAs were evaluated. The collection and release of genetic materials from cotton and flocked nylon swabs were compared. Several automated nucleic acid extraction methods were assessed for both total DNA yield and conservation of microbial community structure. Uni-versal small subunit rrn Q-PCR, species-specific Q-PCR, and DNA microarray methodologies were used in concert to estimate the recovery of both individual members, and the community as a whole. Results of this study will enable consideration of future planetary protection policy amendments based on modern molecular methods.

  16. Improving interpretation of geoelectrical signatures arising from biomineralization process in porous media: Low-frequency dielectric spectroscopy measurements on Desulfovibrio vulgaris cell suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Prodan, C.; Slater, L. D.; Bot, C.; Ntarlagiannis, D.

    2009-12-01

    dilute suspension of polarizable spheres with the polarization attributed to the surface charge on the cell walls. Our results provide insights into the likely contribution of the cells themselves to biogeophysical signals observed during biomineralization processes.

  17. Cell short circuit, preshort signature

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  18. Index of Spectrum Signature Data

    DTIC Science & Technology

    1985-05-01

    Frederick Research Corporation. Alexandria. VA 163 AN/APG-030 Radar Receiver Heasureaents Electromagnetic Coapatibilitv Analysis Center, US Navv Marine ... Electromagnetic Compatibility Characteristics of the W 86 Gun Fire Control Svstem. Naval HEapons Lab, Dahlgren, VA 501 Partial Spectrum Signature...ECAC-I-IO-(SS) DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402 INDEX OF SPECTRUM SIGNATURE DATA

  19. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  20. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  1. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  2. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  3. On the signature of LINCOS

    NASA Astrophysics Data System (ADS)

    Ollongren, Alexander

    2010-12-01

    Suppose the international SETI effort yields the discovery of some signal of evidently non-natural origin. Could it contain linguistic information formulated in some kind of Lingua Cosmica? One way to get insight into this matter is to consider what specific (bio) linguistic signature( s) could be attached to a cosmic language for interstellar communication—designed by humans or an alien society having reached a level of intelligence (and technology) comparable to or surpassing ours. For this purpose, we consider in the present paper the logico-linguistic system LINCOS for ( A)CETI, developed during a number of years by the author in several papers and a monograph [1]. The system has a two-fold signature, which distinguishes it significantly from natural languages. In fact abstract and concrete signatures can be distinguished. That an abstract kind occurs is due to the manner in which abstractions of reality are represented in LINCOS-texts. They can take compound forms because the system is multi-expressive—partly due to the availability of inductive (recursive) entities. On the other hand, the concrete signature of LINCOS is related to the distribution of delimiters and predefined tokens in texts. Assigning measures to concrete signatures will be discussed elsewhere. The present contribution concentrates on the abstract signature of the language. At the same time, it is realized that an alien Lingua Cosmica might, but not necessarily needs to have this kind of signatures.

  4. Dissecting genetic and environmental mutation signatures with model organisms.

    PubMed

    Segovia, Romulo; Tam, Annie S; Stirling, Peter C

    2015-08-01

    Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.

  5. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  6. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Popa, Maria Elena; Krol, Maarten; Hofmann, Magdalena

    2016-04-01

    High precision measurements of molecules containing more than one heavy isotope in environmental samples are becoming available with new instrumentation and may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk isotopic composition of the molecule, which for rare heavy isotopes is approximated by the arithmetic average of the isotope ratios of single substituted atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies when the indistinguishable atoms are from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule and these anomalies have to be taken into account in data interpretation. The size of the signal is closely related to the relative standard deviation of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  7. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  8. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser.

    PubMed

    Wu, Jia-Gui; Xia, Guang-Qiong; Tang, Xi; Lin, Xiao-Dong; Deng, Tao; Fan, Li; Wu, Zheng-Mao

    2010-03-29

    The time delay (TD) signature concealment of optical feedback induced chaos in an external cavity semiconductor laser is experimentally demonstrated. Both the evolution curve and the distribution map of TD signature are obtained in the parameter space of external feedback strength and injection current. The optimum parameter scope of the TD signature concealment is also specified. Furthermore, the approximately periodic evolution relation between TD signature and external cavity length is observed and indicates that the intrinsic relaxation oscillation of semiconductor laser may play an important role during the process of TD signature suppression.

  9. Signature detection and matching for document image retrieval.

    PubMed

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.

  10. Using what you get: dynamic physiologic signatures of critical illness

    PubMed Central

    Holder, Andre L.; Clermont, Gilles

    2015-01-01

    A physiologic signature can be defined as a consistent and robust collection of physiologic measurements characterizing a disease process and its temporal evolution. If a library of physiologic signatures of impending cardiopulmonary instability were available to clinicians caring for inpatients, many episodes of clinical decompensation and their downstream effects could potentially be averted. The development and resolution of cardiopulmonary instability are processes that take time to become clinically apparent, and the treatments provided take time to have an impact. The characterization of dynamic changes in hemodynamic and metabolic variables is implicit in the concept of physiologic signatures. Changes in vital signs such as blood pressure and heart rate, as well as measures of flow such as cardiac output are some of the standard variables used by clinicians to determine cardiopulmonary instability. When these primary variables are collected with high enough frequency to derive new variables, this data hierarchy can be used to development physiologic signatures. The construction of new variables from primary variables, and therefore the creation of physiologic signatures requires no new information; additional knowledge is extracted from data that already exists. It is possible to create physiologic signatures for each stage in the process of clinical decompensation and recovery to improve patient outcomes. PMID:25435482

  11. Retail applications of signature verification

    NASA Astrophysics Data System (ADS)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  12. Transcriptional Signatures in Huntington's Disease

    PubMed Central

    2007-01-01

    While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of post-mortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease. PMID:17467140

  13. Bilepton signatures at the LHC

    NASA Astrophysics Data System (ADS)

    Corcella, Gennaro; Corianò, Claudio; Costantini, Antonio; Frampton, Paul H.

    2017-10-01

    We discuss the main signatures of the Bilepton Model at the Large Hadron Collider, focusing on its gauge boson sector. The model is characterised by five additional gauge bosons, four charged and one neutral, beyond those of the Standard Model, plus three exotic quarks. The latter turn into ordinary quarks with the emission of bilepton doublets (Y++ ,Y+) and (Y- ,Y-) of lepton number L = - 2 and L = + 2 respectively, with the doubly-charged bileptons decaying into same-sign lepton pairs. We perform a phenomenological analysis investigating processes with two doubly-charged bileptons and two jets at the LHC and find that, setting suitable cuts on pseudorapidities and transverse momenta of final-states jets and leptons, the model yields a visible signal and the main Standard Model backgrounds can be suppressed. Compared to previous studies, our investigation is based on a full Monte Carlo implementation of the model and accounts for parton showers, hadronization and an actual jet-clustering algorithm for both signal and Standard Model background, thus providing an optimal framework for an actual experimental search.

  14. Reliability of signature and sensor models

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Flynn, David S.

    1996-06-01

    The reliability of computer models of both signatures and effects introduced as the signatures are measured is of critical importance in the development of seekers and other devices which use EO sensors. Typically the models consist of many independent modules or programs, each of which models many different physical processes and requires many different types of input data. Due to the models' complexity, their reliability is commonly not well established, and the domains within which the models are valid are commonly not understood. Efforts at establishing the reliability of the models frequently only address a very limited number of characteristics of the outputs and seldom characterize the reliability of the input parameters. Figures-of-merit usually address specific characteristics of certain outputs and often do not attempt to evaluate the performance of the model in the complete system. This paper discusses the problem of establishing the reliability of computer models of passive imaging sensors and the signatures they observe. General question about the process of comparing measurements with model results to determine how well the model works are examined, and methods for establishing reliability are presented. The physical models and types of input data required to describe the signatures and sensors are enumerated. Quantities used to describe the outputs of the different physical models are identified, and different types of figures-of-merit are identified to evaluate how well the computer model outputs compare with true/measured values. The Irma passive model is used as an example and several examples of validation completed for this code are presented.

  15. Ballastic signature identification systems study

    NASA Technical Reports Server (NTRS)

    Reich, A.; Hine, T. L.

    1976-01-01

    The results are described of an attempt to establish a uniform procedure for documenting (recording) expended bullet signatures as effortlessly as possible and to build a comprehensive library of these signatures in a form that will permit the automated comparison of a new suspect bullet with the prestored library. The ultimate objective is to achieve a standardized format that will permit nationwide interaction between police departments, crime laboratories, and other interested law enforcement agencies.

  16. Color signatures in Amorsolo paintings

    NASA Astrophysics Data System (ADS)

    Soriano, Maricor N.; Palomero, Cherry May; Cruz, Larry; Yambao, Clod Marlan Krister; Dado, Julie Mae; Salvador-Campaner, Janice May

    2010-02-01

    We present the results of a two-year project aimed at capturing quantifiable color signatures of oil paintings of Fernando Amorsolo, the Philippine's first National Artists. Color signatures are found by comparing CIE xy measurements of skin color in portraits and ground, sky and foliage in landscapes. The results are compared with results of visual examination and art historical data as well as works done by Amorsolo's contemporaries and mentors.

  17. Lorentzian and signature changing branes

    SciTech Connect

    Mars, Marc; Senovilla, Jose M. M.; Vera, Rauel

    2007-08-15

    General hypersurface layers are considered in order to describe braneworlds and shell cosmologies. No restriction is placed on the causal character of the hypersurface which may thus have internal changes of signature. Strengthening the results in our previous paper [M. Mars, J. M. M. Senovilla, and R. Vera, Phys. Rev. Lett. 86, 4219 (2001).], we confirm that a good, regular, and consistent description of signature change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk completely regular. Our formalism allows for a unified description of the traditional timelike branes/shells together with the signature changing, or pure null, ones. This allows for a detailed comparison of the results in both situations. An application to the case of hypersurface layers in static bulks is presented, leading to the general Robertson-Walker geometry on the layer--with a possible signature change. Explicit examples on anti-de Sitter bulks are then studied. The permitted behaviors in different settings (Z{sub 2}-mirror branes, asymmetric shells, signature changing branes) are analyzed in detail. We show, in particular, that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the energy density within the brane vanishes when approaching a change of signature. The description of a signature change as a ''singularity'' seen from within the brane is considered. We also find new relations between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational constants of the bulk, independently of the existence or not of a change of signature.

  18. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  19. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  20. Quantum blind dual-signature scheme without arbitrator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying

    2016-03-01

    Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology.

  1. Understanding mutagenesis through delineation of mutational signatures in human cancer

    SciTech Connect

    Petljak, Mia; Alexandrov, Ludmil B.

    2016-05-04

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposed for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.

  2. Understanding mutagenesis through delineation of mutational signatures in human cancer

    DOE PAGES

    Petljak, Mia; Alexandrov, Ludmil B.

    2016-05-04

    Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposedmore » for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.« less

  3. Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis.

    PubMed

    Lee, Eunjee; de Ridder, Jeroen; Kool, Jaap; Wessels, Lodewyk F A; Bussemaker, Harmen J

    2014-04-15

    Retroviral insertional mutagenesis is a powerful tool for identifying putative cancer genes in mice. To uncover the regulatory mechanisms by which common insertion loci affect downstream processes, we supplemented genotyping data with genome-wide mRNA expression profiling data for 97 tumors induced by retroviral insertional mutagenesis. We developed locus expression signature analysis, an algorithm to construct and interpret the differential gene expression signature associated with each common insertion locus. Comparing locus expression signatures to promoter affinity profiles allowed us to build a detailed map of transcription factors whose protein-level regulatory activity is modulated by a particular locus. We also predicted a large set of drugs that might mitigate the effect of the insertion on tumorigenesis. Taken together, our results demonstrate the potential of a locus-specific signature approach for identifying mammalian regulatory mechanisms in a cancer context.

  4. Compound signature detection on LINCS L1000 big data

    PubMed Central

    Liu, Chenglin; Su, Jing; Yang, Fei; Wei, Kun; Ma, Jinwen; Zhou, Xiaobo

    2015-01-01

    The Library of Integrated Network-based Cellular Signatures (LINCS) L1000 big data provide gene expression profiles induced by over 10,000 compounds, shRNAs, and kinase inhibitors using the L1000 platform. We developed csNMF, a systematic compound signature discovery pipeline covering from raw L1000 data processing to drug screening and mechanism generation. The csNMF pipeline demonstrated better performance than the original L1000 pipeline. The discovered compound signatures of breast cancer were consistent with the LINCS KINOMEscan data and were clinically relevant. The csNMF pipeline provided a novel and complete tool to expedite signature-based drug discovery leveraging the LINCS L1000 resources. PMID:25609570

  5. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures.

    PubMed

    Stoddard, Mary Caswell; Kilner, Rebecca M; Town, Christopher

    2014-06-18

    Pattern-based identity signatures are commonplace in the animal kingdom, but how they are recognized is poorly understood. Here we develop a computer vision tool for analysing visual patterns, NATUREPATTERNMATCH, which breaks new ground by mimicking visual and cognitive processes known to be involved in recognition tasks. We apply this tool to a long-standing question about the evolution of recognizable signatures. The common cuckoo (Cuculus canorus) is a notorious cheat that sneaks its mimetic eggs into nests of other species. Can host birds fight back against cuckoo forgery by evolving highly recognizable signatures? Using NATUREPATTERNMATCH, we show that hosts subjected to the best cuckoo mimicry have evolved the most recognizable egg pattern signatures. Theory predicts that effective pattern signatures should be simultaneously replicable, distinctive and complex. However, our results reveal that recognizable signatures need not incorporate all three of these features. Moreover, different hosts have evolved effective signatures in diverse ways.

  6. Visual attention and expertise for forensic signature analysis.

    PubMed

    Dyer, Adrian G; Found, Bryan; Rogers, Doug

    2006-11-01

    Eye tracking was used to measure visual attention of nine forensic document examiners (FDEs) and 12 control subjects on a blind signature comparison trial. Subjects evaluated 32 questioned signatures (16 genuine, eight disguised, and eight forged) which were compared, on screen, with four known signatures of the specimen provider while their eye movements, response times, and opinions were recorded. FDEs' opinions were significantly more accurate than controls, providing further evidence of FDE expertise. Both control and FDE subjects looked at signature features in a very similar way and the difference in the accuracy of their opinions can be accounted for by different cognitive processing of the visual information that they extract from the images. In a separate experiment the FDEs re-examined a reordered set of the same 32 questioned signatures. In this phase each signature was presented for only 100 msec to test if eye movements are relevant in forming opinions; performance significantly dropped, but not to chance levels indicating that the examination process comprises a combination of both global and local feature extraction strategies.

  7. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-02-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme.

  8. Spectral dimension with deformed spacetime signature

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-07-01

    Studies of the effective regime of loop quantum gravity (LQG) revealed that, in the limit of Planckian curvature scales, spacetime may undergo a transition from the Lorentzian to Euclidean signature. This effect is a consequence of quantum modifications of the hypersurface deformation algebra, which in the linearized case is equivalent to a deformed version of the Poincaré algebra. In this paper the latter relation is explored for the LQG-inspired hypersurface deformation algebra that is characterized by the above mentioned signature change. While the exact form of the deformed Poincaré algebra is not uniquely determined, the algebra under consideration is representative enough to capture a number of qualitative features. In particular, the analysis reveals that the signature change can be associated with two symmetric invariant energy scales, which separate three physically disconnected momentum subspaces. Furthermore, the invariant measure on momentum space is derived, which allows to properly define the average return probability, characterizing a fictitious diffusion process on spacetime. The diffusion is subsequently studied in the momentum representation for all possible variants of the model. Finally, the spectral dimension of spacetime is calculated in each case as a function of the scale parameter. In the most interesting situation the deformation is of the asymptotically ultralocal type and the spectral dimension reduces to dS=1 in the UV limit.

  9. Significance Analysis of Prognostic Signatures

    PubMed Central

    Beck, Andrew H.; Knoblauch, Nicholas W.; Hefti, Marco M.; Kaplan, Jennifer; Schnitt, Stuart J.; Culhane, Aedin C.; Schroeder, Markus S.; Risch, Thomas; Quackenbush, John; Haibe-Kains, Benjamin

    2013-01-01

    A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that “random” gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated

  10. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  11. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  12. A parallel and incremental algorithm for efficient unique signature discovery on DNA databases.

    PubMed

    Lee, Hsiao Ping; Sheu, Tzu-Fang; Tang, Chuan Yi

    2010-03-16

    DNA signatures are distinct short nucleotide sequences that provide valuable information that is used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments. Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases, biologists typically select factor values based on experience, or even by guessing. If the discovered result is unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the signatures of length < or = l with mismatch tolerance > or = d. A discovery algorithm that could discover all implicit signatures, such that those that meet the requirements concerning the results, would be more helpful than one that depends on trial and error. However, existing discovery algorithms do not address the need to discover all implicit signatures. This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently discovering signatures under a certain discovery condition. The algorithm finds new results by using previously discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures efficiently. It uses the PISD algorithm as a kernel routine to discover implicit signatures

  13. An efficient synthesis of cyclic IDP- and cyclic 8-bromo-IDP-carbocyclic-riboses using a modified Hata condensation method to form an intramolecular pyrophosphate linkage as a key step. An entry to a general method for the chemical synthesis of cyclic ADP-ribose analogues

    PubMed

    Fukuoka; Shuto; Minakawa; Ueno; Matsuda

    2000-08-25

    An efficient synthesis of cyclic IDP-carbocyclic-ribose (3) and its 8-bromo derivative 6, as stable mimics of cyclic ADP-ribose, was achieved, and a condensation reaction with phenylthiophosphate-type substrate 15 or 16 to form an intramolecular pyrophosphate linkage was a key step. N-1-Carbocyclic-ribosylinosine derivative 28 and the corresponding 8-bromo congener 24 were prepared via condensation between N-1-(2,4-dinitrophenyl)inosine derivative 17 and a known optically active carbocyclic amine 18. Compounds 24 and 28 were then converted to the corresponding 5"-phosphoryl-5'-phenylthiophosphate derivatives 15 and 16, respectively, which were substrates for the condensation reaction to form an intramolecular pyrophosphate linkage. Treatment of 8-bromo substrate 15 with I2 or AgNO3 in the presence of molecular sieves 3A (MS 3A) in pyridine at room temperature gave the desired cyclic product 12 quantitatively, while the yield was quite low without MS. The similar reaction of 8-unsubstituted substrate 16 gave the corresponding cyclized product 32 in 81% yield. Acidic treatment of these cyclic pyrophosphates 12 and 32 readily gave the targets 6 and 3, respectively. This result suggests that the construction of N-1-substituted hypoxanthine nucleoside structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation by activation of the phenylthiophosphate group with I2 or AgNO3/MS 3A combine to provide a very efficient route for the synthesis of analogues of cyclic ADP-ribose such as 3 and 6. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.

  14. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  15. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  16. Measurement of sniper infrared signatures

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2009-09-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper and background in typical scenarios has been presented. We take into consideration sniper activities in open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement class devices with high accuracy and speed. The others are microbolometer cameras with FPA detector similar to those used in real commercial counter-sniper systems. The registration was made in SWIR and LWIR spectral bands simultaneously. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented.

  17. Multidimensional signatures in antimicrobial peptides

    PubMed Central

    Yount, Nannette Y.; Yeaman, Michael R.

    2004-01-01

    Conventional analyses distinguish between antimicrobial peptides by differences in amino acid sequence. Yet structural paradigms common to broader classes of these molecules have not been established. The current analyses examined the potential conservation of structural themes in antimicrobial peptides from evolutionarily diverse organisms. Using proteomics, an antimicrobial peptide signature was discovered to integrate stereospecific sequence patterns and a hallmark three-dimensional motif. This striking multidimensional signature is conserved among disulfide-containing antimicrobial peptides spanning biological kingdoms, and it transcends motifs previously limited to defined peptide subclasses. Experimental data validating this model enabled the identification of previously unrecognized antimicrobial activity in peptides of known identity. The multidimensional signature model provides a unifying structural theme in broad classes of antimicrobial peptides, will facilitate discovery of antimicrobial peptides as yet unknown, and offers insights into the evolution of molecular determinants in these and related host defense effector molecules. PMID:15118082

  18. Subduction signature in backarc mantle?

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Snow, J. E.; Brandon, A. D.; Ohara, Y.

    2013-12-01

    Abyssal peridotites exposed during seafloor extension provide a rare glimpse into the processes occurring within the oceanic mantle. Whole rock and mineral-scale major element data from abyssal peridotites record processes intimately associated with melt-depletion and melt-rock interaction occurring just prior to exposure of the mantle at the surface. Isotopic data, however, can provide insight into the long-term evolution of the oceanic mantle. A number of studies of mantle material exposed along mid-ocean ridges have demonstrated that abyssal peridotites from Mid-Atlantic Ridge, Gakkel Ridge, and Southwest Indian Ridge commonly display a range of whole rock Os isotopic ratios (187Os/188Os = 0.118- 0.130; Brandon et al., 2000; Standish et al., 2002; Alard et al., 2005; Harvey et al., 2006; Liu et al., 2008). The range of isotopic values in each region demonstrates that the oceanic mantle does not melt uniformly over time. Instead, anciently depleted regions (187Os/188Os ≈ 0.118) are juxtaposed against relatively fertile regions (187Os/188Os ≈ 0.130) that are isotopically similar to established primitive mantle values (187Os/188Os = 0.1296; Meisel et al. 2001). Abyssal peridotites from the Godzilla Megamullion and Chaotic Terrain in the backarc Parece Vela Basin (Philippine Sea) display a range of Os isotopic values extending to similar unradiogenic values. However, some of the backarc basin abyssal peridotites record more radiogenic 187Os/188Os values (0.135-0.170) than mid-ocean ridge peridotites. Comparable radiogenic signatures are reported only in highly weathered abyssal peridotites (187Os/188Os ≤ 0.17, Standish et al., 2002) and subduction-related volcanic arc peridotites (187Os/188Os ≤ 0.16, Brandon et al., 1996; Widom et al., 2003). In both the weathered peridotites and arc peridotites, the 187Os/188Os value is negatively correlated with Os abundance: the most radiogenic value has the lowest Os abundance (< 1 ppb) making them highly susceptible to

  19. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  20. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland.

    PubMed

    Migaszewski, Zdzisław M; Gałuszka, Agnieszka; Dołęgowska, Sabina

    2016-12-01

    A detailed hydrogeochemical study was performed in the Wiśniówka mining area (south-central Poland). This covered three acid pit bodies, historic tailings acid ponds, acid pools, and additionally two neighboring rivers. All these acid mine drainage (AMD) waters are characterized by the pH in the range of 1.7 (pools) to 3.5 (tailings ponds). The most interesting is the Podwiśniówka acid pit lake that shows a very low pH (2.2-2.5) and very high concentrations of SO4(2-) (2720-5460 mg/L), Fe (545-1140 mg/L), Al (86.2 mg/L), As (9603-24,883 μg/L), Co (1317-3458 μg/L), Cr (753-2047 μg/L), Cu (6307-18,879 μg/L), Ni (1168-3127 μg/L), and rare earth element (REE) (589-1341 μg/L). In addition, seeps that drain the Podwiśniówka mine tailings and partly aggregate piles form strong acid pools in the mining area. Along with these pools, in which As and REE contents reach 369,726 and 6288 μg/L, respectively, these waters are among the most distinctive As- and REE-rich AMD surface waters across the world. It is noteworthy that the Podwiśniówka acid pit lake and Wiśniówka Duża acid pit sump exhibit different element signatures and REE concentration patterns normalized to North American Composite Shale (NASC): the Podwiśniówka acid pit lake always shows a characteristic roof-shaped medium REE (MREE) profile with distinct enrichments in Gd, Eu, and Tb whereas the other one displays a step-shaped heavy REE (HREE) profile with positive Tb and Gd anomalies. The REE undergo fractionation during weathering and the subsequent leaching of dissolved and suspended fractions from rocks to acid water bodies where these and other elements are further fractionated by geochemical processes. This study shows that the individual REE have greater affinities for Mn, HREE for Fe and SO4(2-), and only La and Ce for Al. This specific water geochemistry has enabled us to (i) pinpoint the location of AMD "hot spots" originated from quartzite mining and processing operations

  1. Multi-omic network signatures of disease

    PubMed Central

    Gibbs, David L.; Gralinski, Lisa; Baric, Ralph S.; McWeeney, Shannon K.

    2013-01-01

    To better understand dynamic disease processes, integrated multi-omic methods are needed, yet comparing different types of omic data remains difficult. Integrative solutions benefit experimenters by eliminating potential biases that come with single omic analysis. We have developed the methods needed to explore whether a relationship exists between co-expression network models built from transcriptomic and proteomic data types, and whether this relationship can be used to improve the disease signature discovery process. A naïve, correlation based method is utilized for comparison. Using publicly available infectious disease time series data, we analyzed the related co-expression structure of the transcriptome and proteome in response to SARS-CoV infection in mice. Transcript and peptide expression data was filtered using quality scores and subset by taking the intersection on mapped Entrez IDs. Using this data set, independent co-expression networks were built. The networks were integrated by constructing a bipartite module graph based on module member overlap, module summary correlation, and correlation to phenotypes of interest. Compared to the module level results, the naïve approach is hindered by a lack of correlation across data types, less significant enrichment results, and little functional overlap across data types. Our module graph approach avoids these problems, resulting in an integrated omic signature of disease progression, which allows prioritization across data types for down-stream experiment planning. Integrated modules exhibited related functional enrichments and could suggest novel interactions in response to infection. These disease and platform-independent methods can be used to realize the full potential of multi-omic network signatures. The data (experiment SM001) are publically available through the NIAID Systems Virology (https://www.systemsvirology.org) and PNNL (http://omics.pnl.gov) web portals. Phenotype data is found in the

  2. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  3. MK 66 Rocket Signature Reduction

    DTIC Science & Technology

    1982-04-01

    Indian Head, Maryland. ’The objec- tive of the study was to reduce the visible signature of the rocket motor. The rocket motor used for demonstration tests...15 6. Actual Emmiissions . . . . . . ........... . 16 7. Human Eye Adjusted Emmissions ..................... .. 16 8. Cross...altered. Additives are commonly used in gun propellants for elimination of muzzle flash. Their use in tactical rockets has been very limited, and

  4. Disaster relief through composite signatures

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.; Hyde, Brian; Carpenter, Tom; Nichols, Steve

    2012-06-01

    A composite signature is a group of signatures that are related in such a way to more completely or further define a target or operational endeavor at a higher fidelity. This paper builds on previous work developing innovative composite signatures associated with civil disasters, including physical, chemical and pattern/behavioral. For the composite signature approach to be successful it requires effective data fusion and visualization. This plays a key role in both preparedness and the response and recovery which are critical to saving lives. Visualization tools enhance the overall understanding of the crisis by pulling together and analyzing the data, and providing a clear and complete analysis of the information to the organizations/agencies dependant on it for a successful operation. An example of this, Freedom Web, is an easy-to-use data visualization and collaboration solution for use in homeland security, emergency preparedness, situational awareness, and event management. The solution provides a nationwide common operating picture for all levels of government through a web based, map interface. The tool was designed to be utilized by non-geospatial experts and is easily tailored to the specific needs of the users. Consisting of standard COTS and open source databases and a web server, users can view, edit, share, and highlight information easily and quickly through a standard internet browser.

  5. Topological Signatures for Population Admixture

    USDA-ARS?s Scientific Manuscript database

    Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...

  6. Twin signal signature sensing: Application to shorted winding monitoring, detection and localization

    SciTech Connect

    Streifel, R.J.; Marks, R.J.; El-Sharkawi, A.E.; Kerszenbaum, I.

    1995-12-31

    Using twin signal sensing we propose a method to monitor, detect and localize shorts in power system devices with windings: including rotors, transformers and motors. There has, to date, been no effective way to do so. The most obvious approach, time domain reflectometry, fails due to the reactive coupling of the windings. Twin signal signature sensing of shorts results from identical signals being simultaneously injected in both sides of the windings. The reflected signals are measured and the difference amplified to produce the signature signal. The signature signal characterizes the current state of the windings. When winding shorts are present, the electrical characteristics of the device will be different and thus the signature signal will also change. The changes in the signature signal can be monitored to detect shorted windings. While a device is in operation, the signature signals can be monitored and the development of winding shorts can be diagnosed through the process of novelty detection. After a device is cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can be collected which represent the healthy device. If a sufficient number of signals can be collected, the signal space representing healthy windings can be characterized. A detection surface can be placed around the healthy signature signals to provide a partition of the signal space into two regions: healthy and faulty. Any signature signal which is not within the healthy signature partition will indicate a faulted device.

  7. Unusual ISS Rate Signature

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  8. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  9. Investigating forensic document examiners' skill relating to opinions on photocopied signatures.

    PubMed

    Found, B; Rogers, D K

    2005-01-01

    Many forensic document examiners are hesitant to express authorship opinions on photocopied handwriting as the photocopying process results in less feature information than original writing. This study aimed to test the accuracy of 15 examiners' opinions regarding whether photocopied questioned signatures were genuine or simulated. Each examiner received the same set of original signature exemplars, from one individual, and a set of eighty questioned photocopied signatures comprising of genuine and simulated signatures. The overall misleading (error) rate for the grouped examiners' opinions was 0.9% providing strong evidence that examiners can make accurate observations regarding the authorship of non-original handwriting.

  10. Partially Blind Signatures Based on Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Qiu; Niu, Hui-Fang

    2012-12-01

    In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.

  11. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed,...

  12. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Contractor's signature. 4... ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with an... be signed by that individual, and the signature shall be followed by the individual's typed, stamped...

  13. Heterogeneous access and processing of EO-Data on a Cloud based Infrastructure delivering operational Products

    NASA Astrophysics Data System (ADS)

    Niggemann, F.; Appel, F.; Bach, H.; de la Mar, J.; Schirpke, B.; Dutting, K.; Rucker, G.; Leimbach, D.

    2015-04-01

    To address the challenges of effective data handling faced by Small and Medium Sized Enterprises (SMEs) a cloud-based infrastructure for accessing and processing of Earth Observation(EO)-data has been developed within the project APPS4GMES(www.apps4gmes.de). To gain homogenous multi mission data access an Input Data Portal (IDP) been implemented on this infrastructure. The IDP consists of an Open Geospatial Consortium (OGC) conformant catalogue, a consolidation module for format conversion and an OGC-conformant ordering framework. Metadata of various EO-sources and with different standards is harvested and transferred to an OGC conformant Earth Observation Product standard and inserted into the catalogue by a Metadata Harvester. The IDP can be accessed for search and ordering of the harvested datasets by the services implemented on the cloud infrastructure. Different land-surface services have been realised by the project partners, using the implemented IDP and cloud infrastructure. Results of these are customer ready products, as well as pre-products (e.g. atmospheric corrected EO data), serving as a basis for other services. Within the IDP an automated access to ESA's Sentinel-1 Scientific Data Hub has been implemented. Searching and downloading of the SAR data can be performed in an automated way. With the implementation of the Sentinel-1 Toolbox and own software, for processing of the datasets for further use, for example for Vista's snow monitoring, delivering input for the flood forecast services, can also be performed in an automated way. For performance tests of the cloud environment a sophisticated model based atmospheric correction and pre-classification service has been implemented. Tests conducted an automated synchronised processing of one entire Landsat 8 (LS-8) coverage for Germany and performance comparisons to standard desktop systems. Results of these tests, showing a performance improvement by the factor of six, proved the high flexibility and

  14. Toward a Signature Pedagogy in Educational Leadership Preparation and Program Assessment

    ERIC Educational Resources Information Center

    Black, William R.; Murtadha, Khaula

    2007-01-01

    In this article, we work towards developing a signature pedagogy for educational leadership preparation programs. A signature pedagogy that engenders theory-building processes and leadership practices includes complex case studies, inquiry-centered internships, collaborative and interdisciplinary leadership institutes, and continuous assessments…

  15. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  16. Signatures of a shadow biosphere.

    PubMed

    Davies, Paul C W; Benner, Steven A; Cleland, Carol E; Lineweaver, Charles H; McKay, Christopher P; Wolfe-Simon, Felisa

    2009-03-01

    Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.

  17. Genomic signatures of specialized metabolism in plants.

    PubMed

    Chae, Lee; Kim, Taehyong; Nilo-Poyanco, Ricardo; Rhee, Seung Y

    2014-05-02

    All plants synthesize basic metabolites needed for survival (primary metabolism), but different taxa produce distinct metabolites that are specialized for specific environmental interactions (specialized metabolism). Because evolutionary pressures on primary and specialized metabolism differ, we investigated differences in the emergence and maintenance of these processes across 16 species encompassing major plant lineages from algae to angiosperms. We found that, relative to their primary metabolic counterparts, genes coding for specialized metabolic functions have proliferated to a much greater degree and by different mechanisms and display lineage-specific patterns of physical clustering within the genome and coexpression. These properties illustrate the differential evolution of specialized metabolism in plants, and collectively they provide unique signatures for the potential discovery of novel specialized metabolic processes.

  18. Electronic health records: what does your signature signify?

    PubMed Central

    2012-01-01

    Electronic health records serve multiple purposes, including clinical communication, legal documentation, financial transaction capture, research and analytics. Electronic signatures attached to entries in EHRs have different logical and legal meanings for different users. Some of these are vestiges from historic paper formats that require reconsideration. Traditionally accepted functions of signatures, such as identity verification, attestation, consent, authorization and non-repudiation can become ambiguous in the context of computer-assisted workflow processes that incorporate functions like logins, auto-fill and audit trails. This article exposes the incompatibility of expectations among typical users of electronically signed information. PMID:22888846

  19. Molecular signatures database (MSigDB) 3.0.

    PubMed

    Liberzon, Arthur; Subramanian, Aravind; Pinchback, Reid; Thorvaldsdóttir, Helga; Tamayo, Pablo; Mesirov, Jill P

    2011-06-15

    Well-annotated gene sets representing the universe of the biological processes are critical for meaningful and insightful interpretation of large-scale genomic data. The Molecular Signatures Database (MSigDB) is one of the most widely used repositories of such sets. We report the availability of a new version of the database, MSigDB 3.0, with over 6700 gene sets, a complete revision of the collection of canonical pathways and experimental signatures from publications, enhanced annotations and upgrades to the web site. MSigDB is freely available for non-commercial use at http://www.broadinstitute.org/msigdb.

  20. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  1. Infrared signature studies of aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  2. Automatic classification of spatial signatures on semiconductor wafermaps

    SciTech Connect

    Tobin, K.W.; Gleason, S.S.; Karnowski, T.P.; Cohen, S.L.; Lakhani, F.

    1997-03-01

    This paper describes Spatial Signature Analysis (SSA), a cooperative research project between SEMATECH and Oak Ridge National Laboratory for automatically analyzing and reducing semiconductor wafermap defect data to useful information. Trends toward larger wafer formats and smaller critical dimensions have caused an exponential increase in the volume of visual and parametric defect data which must be analyzed and stored, therefore necessitating the development of automated tools for wafer defect analysis. Contamination particles that did not create problems with 1 micron design rules can now be categorized as killer defects. SSA is an automated wafermap analysis procedure which performs a sophisticated defect clustering and signature classification of electronic wafermaps. This procedure has been realized in a software system that contains a signature classifier that is user-trainable. Known examples of historically problematic process signatures are added to a training database for the classifier. Once a suitable training set has been established, the software can automatically segment and classify multiple signatures form a standard electronic wafermap file into user-defined categories. It is anticipated that successful integration of this technology with other wafer monitoring strategies will result in reduced time-to-discovery and ultimately improved product yield.

  3. ARMOR Dual-Polarimetric Radar Observations of Tornadic Debris Signatures

    NASA Technical Reports Server (NTRS)

    Petersen, W. A,; Carey, L. D.; Knupp, K. R.; Schultz, C.; Johnson, E.

    2008-01-01

    During the Super-Tuesday tornado outbreak of 5-6 February 2008, two EF-4 tornadoes occurred in Northern Alabama within 75 km range of the University of Alabama in Huntsville (UAH) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). This study will present an analysis of ARMOR radar-indicated dual-polarimetric tornadic debris signatures. The debris signatures were associated with spatially-confined large decreases in the copolar correlation coefficient (rho(hv)hv) that were embedded within broader mesocyclone "hook" signatures. These debris signatures were most obviously manifest during the F-3 to F-4 intensity stages of the tornado(s) and extended to altitudes of approximately 3 km. The rho(hv) signatures of the tornadic debris were the most easily distinguished relative to other polarimetric and radial velocity parameters (e.g., associated with large hail and/or the incipient mesocyclone). Based on our analysis, and consistent with the small number of studies found in the literature, we conclude that dual-polarimetric radar data offer at least the possibility for enhancing specificity and confidence in the process of issuing tornado warnings based only on radar detection of threatening circulation features.

  4. Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Huang, Dazu; Shi, Jinjing

    2016-04-01

    Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.

  5. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  6. Shape Signatures: speeding up computer aided drug discovery.

    PubMed

    Meek, Peter J; Liu, ZhiWei; Tian, LiFeng; Wang, Ching Y; Welsh, William J; Zauhar, Randy J

    2006-10-01

    Identifying potential lead molecules is becoming a more automated process. We review Shape Signatures, a tool that is effective and easy to use compared with most computer aided drug design techniques. Laboratory researchers can apply this in silico technique cost-effectively without the need for specialized computer backgrounds. Identifying a potential lead molecule requires database screening, and this becomes rate-limiting once the database becomes too large. The use of Shape Signatures eliminates this concern and offers molecule screening rates that are in advance of any currently available method. Shape Signatures provides a conduit for researchers to conduct rapid identification of potential active molecules, and studies with this tool can be initiated with only one bioactive lead or receptor site.

  7. Network-based Arbitrated Quantum Signature Scheme with Graph State

    NASA Astrophysics Data System (ADS)

    Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying

    2017-08-01

    Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.

  8. Automatic human micro-Doppler signature separation by Hough transform

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jin, Tian; Qiu, Lei; Zhou, Zhimin

    2015-12-01

    The micro-Doppler signature is one of the most prominent information for target classification and identification. As Hough transform (HT) is an efficient tool for detecting weak straight target traces in the image, an HT based algorithm is proposed for micro-Doppler signature separation of multiple persons. Few seconds data is processed at one time to ensure human motion traces approximate to straight lines in the radar slow time-range image. Taking HT to the slow time-range image, each human's motion trace can be recovered through recursively searching the peaks in HT space. Applying time-frequency transform to the range cells around each recovered line, the human micro-Doppler signature can be achieved and separated. Experimental results are given to illustrate the validity of the proposed algorithm.

  9. Identification of selection signatures in livestock species.

    PubMed

    de Simoni Gouveia, João José; da Silva, Marcos Vinicius Gualberto Barbosa; Paiva, Samuel Rezende; de Oliveira, Sônia Maria Pinheiro

    2014-06-01

    The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.

  10. Identification of selection signatures in livestock species

    PubMed Central

    de Simoni Gouveia, João José; da Silva, Marcos Vinicius Gualberto Barbosa; Paiva, Samuel Rezende; de Oliveira, Sônia Maria Pinheiro

    2014-01-01

    The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology. PMID:25071397

  11. Neurofunctional Signature of Hyperfamiliarity for Unknown Faces

    PubMed Central

    Negro, Elisa; D’Agata, Federico; Caroppo, Paola; Coriasco, Mario; Ferrio, Federica; Celeghin, Alessia; Diano, Matteo; Rubino, Elisa; de Gelder, Beatrice; Rainero, Innocenzo; Pinessi, Lorenzo; Tamietto, Marco

    2015-01-01

    Hyperfamiliarity for unknown faces is a rare selective disorder that consists of the disturbing and abnormal feeling of familiarity for unknown faces, while recognition of known faces is normal. In one such patient we investigated with a multimodal neuroimaging design the hitherto undescribed neural signature associated with hyperfamiliarity feelings. Behaviorally, signal detection methods revealed that the patient’s discrimination sensitivity between familiar and unfamiliar faces was significantly lower than that of matched controls, and her response criterion for familiarity decisions was significantly more liberal. At the neural level, while morphometric analysis and single-photon emission CT (SPECT) showed the atrophy and hypofunctioning of the left temporal regions, functional magnetic resonance imaging (fMRI) revealed that hyperfamiliarity feelings were selectively associated to enhanced activity in the right medial and inferior temporal cortices. We therefore characterize the neurofunctional signature of hyperfamiliarity for unknown faces as related to the loss of coordinated activity between the complementary face processing functions of the left and right temporal lobes. PMID:26154253

  12. Spectral signature selection for mapping unvegetated soils

    NASA Technical Reports Server (NTRS)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  13. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  14. Photonic quantum digital signatures operating over kilometer ranges in installed optical fiber

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Fujiwara, Mikio; Amiri, Ryan; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Andersson, Erika; Buller, Gerald S.; Sasaki, Masahide

    2016-10-01

    The security of electronic communications is a topic that has gained noteworthy public interest in recent years. As a result, there is an increasing public recognition of the existence and importance of mathematically based approaches to digital security. Many of these implement digital signatures to ensure that a malicious party has not tampered with the message in transit, that a legitimate receiver can validate the identity of the signer and that messages are transferable. The security of most digital signature schemes relies on the assumed computational difficulty of solving certain mathematical problems. However, reports in the media have shown that certain implementations of such signature schemes are vulnerable to algorithmic breakthroughs and emerging quantum processing technologies. Indeed, even without quantum processors, the possibility remains that classical algorithmic breakthroughs will render these schemes insecure. There is ongoing research into information-theoretically secure signature schemes, where the security is guaranteed against an attacker with arbitrary computational resources. One such approach is quantum digital signatures. Quantum signature schemes can be made information-theoretically secure based on the laws of quantum mechanics while comparable classical protocols require additional resources such as anonymous broadcast and/or a trusted authority. Previously, most early demonstrations of quantum digital signatures required dedicated single-purpose hardware and operated over restricted ranges in a laboratory environment. Here, for the first time, we present a demonstration of quantum digital signatures conducted over several kilometers of installed optical fiber. The system reported here operates at a higher signature generation rate than previous fiber systems.

  15. Thermal imaging as a biometrics approach to facial signature authentication.

    PubMed

    Guzman, A M; Goryawala, M; Wang, Jin; Barreto, A; Andrian, J; Rishe, N; Adjouadi, M

    2013-01-01

    A new thermal imaging framework with unique feature extraction and similarity measurements for face recognition is presented. The research premise is to design specialized algorithms that would extract vasculature information, create a thermal facial signature and identify the individual. The proposed algorithm is fully integrated and consolidates the critical steps of feature extraction through the use of morphological operators, registration using the Linear Image Registration Tool and matching through unique similarity measures designed for this task. The novel approach at developing a thermal signature template using four images taken at various instants of time ensured that unforeseen changes in the vasculature over time did not affect the biometric matching process as the authentication process relied only on consistent thermal features. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using the similarity measures showed an average accuracy of 88.46% for skeletonized signatures and 90.39% for anisotropically diffused signatures. The highly accurate results obtained in the matching process clearly demonstrate the ability of the thermal infrared system to extend in application to other thermal imaging based systems. Empirical results applying this approach to an existing database of thermal images proves this assertion.

  16. On the information content of hydrological signatures and their relationship to catchment attributes

    NASA Astrophysics Data System (ADS)

    Addor, N.; Clark, M. P.; Prieto, C.; Newman, A. J.; Mizukami, N.; Nearing, G. S.; Le Vine, N.

    2016-12-01

    Hydrological signatures, which are indices characterizing hydrologic behavior, are increasingly used for the evaluation, calibration and selection of hydrological models. Their key advantage is to provide more direct insights into specific hydrological processes than aggregated metrics (e.g., the Nash-Sutcliffe efficiency). A plethora of signatures now exists, which enable characterizing a variety of hydrograph features, but also makes the selection of signatures for new studies challenging. Here we claim that the selection of signatures should be based on their information content, which we estimated using several approaches, all leading to similar conclusions. To explore the relationship between hydrological signatures and catchment attributes, we used a previously published data set of 671 catchments in the contiguous United States, that we expanded by characterizing the climatic conditions, topography, soil and vegetation of each catchment. We then used a data-learning algorithm (random forests) to explore whether hydrological signatures could be inferred from catchment attributes alone. We find that some signatures can be predicted remarkably well by random forests and, interestingly, the same signatures are well captured when simulating discharge using a conceptual hydrological model. We discuss what this result reveals about our understanding of hydrological processes shaping hydrological signatures. We also identify which catchment attributes exert the strongest control on catchment behavior, in particular during extreme hydrological events. Overall, climatic attributes have the most significant influence, and strongly condition how well hydrological signatures can be predicted by random forests and simulated by the hydrological model. In contrast, soil characteristics at the catchment scale are not found to be significant predictors by random forests, which raises questions on how to best use soil data for hydrological modeling, for instance for parameter

  17. Forensic handwriting examiners' expertise for signature comparison.

    PubMed

    Sita, Jodi; Found, Bryan; Rogers, Douglas K

    2002-09-01

    This paper reports on the performance of forensic document examiners (FDEs) in a signature comparison task that was designed to address the issue of expertise. The opinions of FDEs regarding 150 genuine and simulated questioned signatures were compared with a control group of non-examiners' opinions. On the question of expertise, results showed that FDEs were statistically better than the control group at accurately determining the genuineness or non-genuineness of questioned signatures. The FDE group made errors (by calling a genuine signature simulated or by calling a simulated signature genuine) in 3.4% of their opinions while 19.3% of the control group's opinions were erroneous. The FDE group gave significantly more inconclusive opinions than the control group. Analysis of FDEs' responses showed that more correct opinions were expressed regarding simulated signatures and more inconclusive opinions were made on genuine signatures. Further, when the complexity of a signature was taken into account, FDEs made more correct opinions on high complexity signatures than on signatures of lower complexity. There was a wide range of skill amongst FDEs and no significant relationship was found between the number of years FDEs had been practicing and their correct, inconclusive and error rates.

  18. Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.

    2017-09-01

    A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.

  19. Infrared signatures for remote sensing

    SciTech Connect

    McDowell, R.S.; Sharpe, S.W.; Kelly, J.F.

    1994-04-01

    PNL`s capabilities for infrared and near-infrared spectroscopy include tunable-diode-laser (TDL) systems covering 300--3,000 cm{sup {minus}1} at <10-MHz bandwidth; a Bruker Fourier-transform infrared (FTIR) spectrometer for the near- to far-infrared at 50-MHz resolution; and a stable line-tunable, 12-w cw CO{sub 2} laser. PNL also has a beam expansion source with a 12-cm slit, which provides a 3-m effective path for gases at {approximately}10 K, giving a Doppler width of typically 10 MHz; and long-path static gas cells (to 100 m). In applying this equipment to signatures work, the authors emphasize the importance of high spectral resolution for detecting and identifying atmospheric interferences; for identifying the optimum analytical frequencies; for deriving, by spectroscopic analysis, the molecular parameters needed for modeling; and for obtaining data on species and/or bands that are not in existing databases. As an example of such spectroscopy, the authors have assigned and analyzed the C-Cl stretching region of CCl{sub 4} at 770--800 cm{sup {minus}1}. This is an important potential signature species whose IR absorption has remained puzzling because of the natural isotopic mix, extensive hot-band structure, and a Fermi resonance involving a nearby combination band. Instrument development projects include the IR sniffer, a small high-sensitivity, high-discrimination (Doppler-limited) device for fence-line or downwind monitoring that is effective even in regions of atmospheric absorption; preliminary work has achieved sensitivities at the low-ppb level. Other work covers trace species detection with TDLs, and FM-modulated CO{sub 2} laser LIDAR. The authors are planning a field experiment to interrogate the Hanford tank farm for signature species from Rattlesnake Mountain, a standoff of ca. 15 km, to be accompanied by simultaneous ground-truthing at the tanks.

  20. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  1. Detection of signatures of selection using Fst.

    PubMed

    Porto-Neto, Laercio R; Lee, Seung Hwan; Lee, Hak Kyo; Gondro, Cedric

    2013-01-01

    Natural selection has molded the evolution of species across all taxa. Much more recently, on an evolutionary scale, human-oriented selection started to play an important role in shaping organisms, markedly so after the domestication of animals and plants. These selection processes have left traceable marks in the genome. Following from the recent advances in molecular genetics technologies, a number of methods have been developed to detect such signals, termed genomic signatures of selection. In this chapter we discuss a straightforward protocol based on the F ST statistic to identify genomic regions that exhibit high variation in allelic frequency between groups, which is a characteristic of genomic regions that have gone through differential selection. How to define the borders of these regions and further explore its genetic content is then discussed.

  2. The electrophysiological signature of deliberate rule violations.

    PubMed

    Pfister, Roland; Wirth, Robert; Schwarz, Katharina A; Foerster, Anna; Steinhauser, Marco; Kunde, Wilfried

    2016-12-01

    Humans follow rules by default, and violating even simple rules induces cognitive conflict for the rule breaker. Previous studies revealed this conflict in various behavioral measures, including response times and movement trajectories. Based on these experiments, we investigated the electrophysiological signature of deliberately violating a simple stimulus-response mapping rule. Such rule violations were characterized by a delayed and attenuated P300 component when evaluating a rule-relevant stimulus, most likely reflecting increased response complexity. This parietal attenuation was followed by a frontal positivity for rule violations relative to correct response trials. Together, these results reinforce previous findings on the need to inhibit automatic S-R translation when committing a rule violation, and they point toward additional factors involved in rule violation. Candidate processes such as negative emotional responses and increased monitoring should be targeted by future investigations.

  3. Quantum signatures of chimera states

    NASA Astrophysics Data System (ADS)

    Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.

    2015-12-01

    Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

  4. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  5. Satellite signatures in SLR observations

    NASA Technical Reports Server (NTRS)

    Appleby, G. M.

    1993-01-01

    We examine the evidence for the detection of satellite-dependent signatures in the laser range observations obtained by the UK single-photon Satellite Laser Ranging (SLR) System models of the expected observation distributions from Ajisai and Lageos are developed from the published satellite spread functions and from the characteristics of the SLR System and compared with the observations. The effects of varying return strengths are discussed using the models and by experimental observations of Ajisai, during which a range of return levels from single to multiple photons is achieved. The implications of these results for system-dependent center for mass corrections are discussed.

  6. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  7. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging.

  8. An HEVC compressed domain content-based video signature for copy detection and video retrieval

    NASA Astrophysics Data System (ADS)

    Tahboub, Khalid; Gadgil, Neeraj J.; Comer, Mary L.; Delp, Edward J.

    2014-03-01

    Video sharing platforms and social networks have been growing very rapidly for the past few years. The rapid increase in the amount of video content introduces many challenges in terms of copyright violation detection and video search and retrieval. Generating and matching content-based video signatures, or fingerprints, is an effective method to detect copies or "near-duplicate" videos. Video signatures should be robust to changes in the video features used to characterize the signature caused by common signal processing operations. Recent work has focused on generating video signatures based on the uncompressed domain. However, decompression is a computationally intensive operation. In large video databases, it becomes advantageous to create robust signatures directly from the compressed domain. The High Efficiency Video Coding (HEVC) standard has been recently ratified as the latest video coding standard and wide spread adoption is anticipated. We propose a method in which a content-based video signature is generated directly from the HEVC-coded bitstream. Motion vectors from the HEVC-coded bitstream are used as the features. A robust hashing function based on projection on random matrices is used to generate the hashing bits. A sequence of these bits serves as the signature for the video. Our experimental results show that our proposed method generates a signature robust to common signal processing techniques such as resolution scaling, brightness scaling and compression.

  9. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  10. Sea Surface Salinity signature of tropical Atlantic interannual modes

    NASA Astrophysics Data System (ADS)

    Awo, Mesmin; Alory, Gael; Da-Allada, Casimir; Jouanno, Julien; Delcroix, Thierry; Baloitcha, Ezinvi

    2017-04-01

    Interannual climate variability in the tropical Atlantic is dominated by two internal modes: an equatorial and a meridional mode. The equatorial mode is partly responsible for sea surface temperature (SST) anomalies observed in boreal summer in the Gulf of Guinea. The meridional mode peaks in boreal spring as an inter-hemispheric SST fluctuation. Previous studies show that these modes affect the migration of the inter tropical convergence zone which drives regional precipitation. In this study, we extracted the Sea Surface Salinity (SSS) signature of these modes from in situ data. The results indicate strong SSS anomalies in the equatorial, north west and south east tropical Atlantic related to the equatorial mode. Moreover, the results also indicate the existence of a meridional SSS dipole in the equatorial region, strong SSS anomalies in north and south tropical Atlantic and in runoff regions, related to the meridional mode. Using a mixed-layer salt budget in a realistic model, we investigated the oceanic and/or atmospheric processes responsible for this signature: For the equatorial mode, both fresh water flux and horizontal advection explain the observed signature in the north equatorial region, but in the south equatorial region, the signature is explained by the combined contribution of total (horizontal and vertical) advection and vertical diffusion. For the meridional mode, changes in fresh water flux explain the observed equatorial dipole while the signature in runoff regions is explained by the total advection. In the north west and south east tropical Atlantic, only horizontal advection is important for explaining the signature of these two modes.

  11. Modeling scanner signatures in the context of OPC

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaolin; Tyminski, Jacek K.; Lucas, Kevin

    2007-10-01

    The requirement for OPC modeling accuracy becomes increasingly stringent as the semiconductor industry enters sub- 0.1um regime. Targeting at capturing the IC pattern printing characteristics through the lithography process, an OPC model is usually in the form of the first principle optical imaging component, refined by some phenomenological components such as resist and etch. The phenomenological components can be adjusted appropriately in order to fit the OPC model to the silicon measurement data. The optical imaging component is the backbone for the OPC model, and it is the key to a stable and physics-centric OPC model. Scanner systematic signatures such as illuminator pupil-fill, illuminator polarization, lens aberration, lens apodization, flare, etc., previously ignored without significant accuracy sacrifice at previous technology nodes, but are playing non-negligible roles at 45nm node and beyond. In order to ensure that the OPC modeling tool can accurately model these important scanner systematic signatures, the core engine (i.e. the optical imaging simulator) of OPC simulator must be able to model these signatures with sufficient accuracy. In this paper, we study the impact on optical proximity effect (OPE) of the aforementioned scanner systematic signatures on several 1D (simple line space, doublet line and doublet space) and 2D (dense line end pullback, isolated line end pullback and T-bar line end pullback) OPC test patterns. We demonstrate that the scanner systematic signatures have significant OPE impact on the level of several nanometers. The predicted OPEs and impact from our OPC simulator matches well with results from an industry standard lithography simulator, and this has laid the foundation of accurate and physics-centric OPC model with the systematic scanner signatures incorporated.

  12. Influence of a harmonic in the response on randomdec signature

    NASA Astrophysics Data System (ADS)

    Modak, S. V.

    2011-10-01

    Operational Modal Analysis (OMA) extracts modal parameters of a structure using their output response, during operation in general. OMA, when applied to mechanical engineering structures is often faced with the problem of harmonics present in the output response, and can cause erroneous modal extraction. The random decrement (RD) method of OMA helps extract randomdec signature data that can be further processed to obtain modal parameters of a structure. This paper for the first time analyses influence of a harmonic in the response on randomdec signature. Fundamental equations based on probability are derived for analyzing the influence of a harmonic on randomdec signature. These probabilistic equations are then used to predict the amplitude of the harmonic in randomdec signature. Randomdec signature of a pure harmonic signal is also derived and it is shown that it is of the same frequency as that of the harmonic signal, but has an amplitude equal to the trigger level used to find the randomdec. Based on the developed theory, new insights into the influence of harmonic on randomdec are presented based on an example. It is shown that the influence of the harmonic on randomdec is characterized by the conditional probability density function of the harmonic. It is found that more unsymmetrical is this PDF, more is the amplitude of the harmonic that is present in the randomdec signature. The amplitude of the harmonic in the randomdec is shown to be the conditional expected value of the harmonic. It is also shown that as the random component of the response increases then the amplitude of the harmonic in the randomdec decreases and in the limit can be completely eliminated.

  13. The genomic signature of parallel adaptation from shared genetic variation

    PubMed Central

    Roesti, Marius; Gavrilets, Sergey; Hendry, Andrew P.; Salzburger, Walter; Berner, Daniel

    2014-01-01

    Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual-based simulations to demonstrate that comparisons among populations adapted in parallel from shared variation reveal a characteristic genomic signature around a selected locus: a low divergence valley centered at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing among derived populations in the broader neighborhood of the selected locus (driving the high divergence twin peaks) and shared haplotype tracts in the tight neighborhood of the locus (driving the low divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighborhood. We next empirically confirm the peak-valley-peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome-wide screen for the peak-valley-peak signature to discover additional genome regions involved in parallel marine-freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbor divergently selected loci, and that low-divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak-valley-peak divergence signatures will promote the discovery of adaptation genes in other organisms. PMID:24635356

  14. Epigenetic signatures of invasive status in populations of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  15. Epigenetic signatures of invasive status in populations of marine invertebrates

    PubMed Central

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-01-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions. PMID:28205577

  16. Epigenetic signatures of invasive status in populations of marine invertebrates.

    PubMed

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-16

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  17. Exoplanet environments and radio signatures

    NASA Astrophysics Data System (ADS)

    Jardine, Moira

    2017-05-01

    The nature of a star's magnetic field is determined primarily by the stellar mass and rotation rate. Using spectropolarimetric techniques, we have now mapped the surface magnetic fields of some 100 stars across a wide range of these fundamental parameters. Some of the biggest surprises have been in the nature of the magnetic fields of low mass, fully convective stars. These appear to show a different type of field geometry to higher mass stars, with a larger ratio of poloidal to toroidal field. Their lower surface differential rotation also leads to a more slowly evolving coronal field and a longer timescale to form and eject the flux ropes believed to be the precursors of coronal mass ejections. Searches are ongoing for the radio signature of the interaction of exoplanets with the winds and coronal mass ejections of their parent star. For low mass stars, this is a particularly pressing issue, as the habitable zone is very close to the star and the probability of impact with a coronal mass ejection is high.In this talk I will review the current state of our knowledge of stellar magnetic field geometry, winds and coronal mass ejections and discuss how this informs searches for exoplanetary radio signatures.

  18. (Convertible) Undeniable Signatures Without Random Oracles

    NASA Astrophysics Data System (ADS)

    Yuen, Tsz Hon; Au, Man Ho; Liu, Joseph K.; Susilo, Willy

    We propose a convertible undeniable signature scheme without random oracles. Our construction is based on Waters' and Kurosawa and Heng's schemes that were proposed in Eurocrypt 2005. The security of our scheme is based on the CDH and the decision linear assumption. Comparing only the part of undeniable signatures, our scheme uses more standard assumptions than the existing undeniable signatures without random oracles due to Laguillamie and Vergnaud.

  19. Secure Obfuscation for Encrypted Group Signatures

    PubMed Central

    Fan, Hongfei; Liu, Qin

    2015-01-01

    In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686

  20. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  1. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii) Public/private key (asymmetric) cryptography, also known as digital signatures; (3) Any combination of methods...

  2. An Arbitrated Quantum Signature Scheme without Entanglement*

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Peng, Dai-Yuan; Wang, Xiao-Jun

    2017-09-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.

  3. Fractal signatures in analogs of interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Katyal, Nisha; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Interplanetary dust particles (IDPs) are an important constituent of the earths stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007) [1] to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension dm≃1.75. The same fractal dimension also characterizes clusters obtained from diffusion limited aggregation (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically transported silicate particles.

  4. Multiparametric Geophysical Signature of Vulcanian Explosions

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.; de Angelis, S.; Fournier, N.; van Camp, M. J.; Sacks, S. I.; Linde, A. T.; Ripepe, M.

    2010-12-01

    Extrusion of viscous magma leading to lava dome-formation is a common phenomenon at arc volcanoes recently demonstrated at Mount St. Helens (USA), Chaiten (Chile), and SoufriËre Hills Volcano (British West Indies). The growth of lava domes is frequently accompanied by vigorous eruptions, commonly referred to as Vulcanian-style, characterized by sequences of short-lived (tens of seconds to tens of minutes) explosive pulses, reflecting the violent explosive nature of arc volcanism. Vulcanian eruptions represent a significant hazard, and an understanding of their dynamics is vital for risk mitigation. While eruption parameters have been mostly constrained from observational evidence, as well as from petrological, theoretical, and experimental studies, our understanding on the physics of the subsurface processes leading to Vulcanian eruptions is incomplete. We present and interpret a unique set of multi-parameter geophysical data gathered during two Vulcanian eruptions in July and December, 2008 at SoufriËre Hills Volcano from seismic, geodetic, infrasound, barometric, and gravimetric instrumentation. These events document the spectrum of Vulcanian eruptions in terms of their explosivity and nature of erupted products. Our analysis documents a pronounced difference in the geophysical signature of the two events associated with priming timescales and eruption triggering suggesting distinct differences in the mechanics involved. The July eruption has a signature related to shallow conduit dynamics including gradual system destabilisation, syn-eruptive decompression of the conduit by magma fragmentation, conduit emptying and expulsion of juvenile pumice. In contrast, sudden pressurisation of the entire plumbing system including the magma chambers resulted in dome carapace failure, a violent cannon-like explosion, propagation of a shock wave and pronounced ballistic ejection of dome fragments. We demonstrate that with lead times of between one and six minutes to the

  5. Raman Spectroscopic Signatures of Echovirus 1 Uncoating

    PubMed Central

    Ruokola, Päivi; Dadu, Elina; Kazmertsuk, Artur; Häkkänen, Heikki; Marjomäki, Varpu

    2014-01-01

    ABSTRACT In recent decades, Raman spectroscopy has entered the biological and medical fields. It enables nondestructive analysis of structural details at the molecular level and has been used to study viruses and their constituents. Here, we used Raman spectroscopy to study echovirus 1 (EV1), a small, nonenveloped human pathogen, in two different uncoating states induced by heat treatments. Raman signals of capsid proteins and RNA genome were observed from the intact virus, the uncoating intermediate, and disrupted virions. Transmission electron microscopy data revealed general structural changes between the studied particles. Compared to spectral characteristics of proteins in the intact virion, those of the proteins of the heat-treated particles indicated reduced α-helix content with respect to β-sheets and coil structures. Changes observed in tryptophan and tyrosine signals suggest an increasingly hydrophilic environment around these residues. RNA signals revealed a change in the environment of the genome and in its conformation. The ionized-carbonyl vibrations showed small changes between the intact virion and the uncoating intermediate, which points to cleavage of salt bridges in the protein structure during the uncoating process. In conclusion, our data reveal distinguishable Raman signatures of the intact, intermediate, and disrupted EV1 particles. These changes indicate structural, chemical, and solute-solvent alterations in the genome and in the capsid proteins and lay the essential groundwork for investigating the uncoating of EV1 and related viruses in real time. IMPORTANCE In order to combat virus infection, we need to know the details of virus uncoating. We present here the novel Raman signatures for opened and intact echovirus 1. This gives hope that the signatures may be used in the near future to evaluate the ambient conditions in endosomes leading to virus uncoating using, e.g., coherent anti-Stokes Raman spectroscopy (CARS) imaging. These

  6. Somatic ERCC2 Mutations Are Associated with a Distinct Genomic Signature in Urothelial Tumors

    PubMed Central

    Braunstein, Lior Z; Kamburov, Atanas; Kwiatkowski, David J; Rosenberg, Jonathan E; Van Allen, Eliezer M; D'Andrea, Alan; Getz, Gad

    2016-01-01

    Alterations in DNA repair pathways are common in tumors and can result in characteristic mutational signatures; however, a specific mutational signature associated with somatic alterations in the nucleotide excision repair (NER) pathway has not yet been identified. Here, we examine the mutational processes operating in urothelial cancer, a tumor type in which the core NER gene ERCC2 is significantly mutated. Analysis of three independent urothelial tumor cohorts reveals a strong association between somatic ERCC2 mutations and activity of a mutational signature characterized by a broad spectrum of base changes. In addition, we note an association between activity of this signature and smoking that is independent of ERCC2 mutation status, providing genomic evidence of tobacco-related mutagenesis in urothelial cancer. Together, these analyses identify the first NER-related mutational signature and highlight the related roles of DNA damage and subsequent DNA repair in shaping the tumor mutational landscape. PMID:27111033

  7. [Detecting selection signatures on X chromosome in pig through high density SNPs].

    PubMed

    Ma, Yun-Long; Zhang, Qin; Ding, Xiang-Dong

    2012-10-01

    In the process of domestic pig breeding, many important economic traits were subject to strong artificial se-lection pressure. With the availability of high density single nucleotide polymorphism (SNP) markers in farm animals, selection occurring in those traits could be traced by detecting selection signatures on genome, and the genes experiencing selection can also be further mined based on selection signatures. Due to the special characteristic of X chromosome, many approaches of genetic analysis fitted for autosome are not plausible for X chromosome. Fortunately, detecting selection signature provides an effective tool to settle such situation. In this study, the Cross Population Extend Haplotype Homozygosity Test (XP-EHH) was implemented to identify selection signatures on chromosome X in three pig breeds (Landrace, Songliao, and Yorkshire) using high density SNPs, and the genes located within selection signature regions were revealed through bioinformatic analysis. In total, 29, 13, and 15 selection signature regions, with 3.59, 4.92, and 4.07 SNPs on average in each region, were identified in Landrace, Songliao, and Yorkshire, respectively. Some overlaps of selection signature regions were observed between Songliao and Landrace, and between Landrace and Yorkshire, while no overlaps between Yorkshire and Songliao were found. Bioinformatic analysis revealed that many genes in the selection signature regions were related to reproduction and immune traits, and some of them have not been reported in pigs, which might serve as important candidate genes in future study.

  8. Selection for complex traits leaves little or no classic signatures of selection.

    PubMed

    Kemper, Kathryn E; Saxton, Sarah J; Bolormaa, Sunduimijid; Hayes, Benjamin J; Goddard, Michael E

    2014-03-28

    Selection signatures aim to identify genomic regions underlying recent adaptations in populations. However, the effects of selection in the genome are difficult to distinguish from random processes, such as genetic drift. Often associations between selection signatures and selected variants for complex traits is assumed even though this is rarely (if ever) tested. In this paper, we use 8 breeds of domestic cattle under strong artificial selection to investigate if selection signatures are co-located in genomic regions which are likely to be under selection. Our approaches to identify selection signatures (haplotype heterozygosity, integrated haplotype score and FST) identified strong and recent selection near many loci with mutations affecting simple traits under strong selection, such as coat colour. However, there was little evidence for a genome-wide association between strong selection signatures and regions affecting complex traits under selection, such as milk yield in dairy cattle. Even identifying selection signatures near some major loci was hindered by factors including allelic heterogeneity, selection for ancestral alleles and interactions with nearby selected loci. Selection signatures detect loci with large effects under strong selection. However, the methodology is often assumed to also detect loci affecting complex traits where the selection pressure at an individual locus is weak. We present empirical evidence to suggests little discernible 'selection signature' for complex traits in the genome of dairy cattle despite very strong and recent artificial selection.

  9. Spectral analysis of multiplex Raman probe signatures.

    PubMed

    Lutz, Barry R; Dentinger, Claire E; Nguyen, Lienchi N; Sun, Lei; Zhang, Jingwu; Allen, April N; Chan, Selena; Knudsen, Beatrice S

    2008-11-25

    Raman nanoparticle probes are an emerging new class of optical labels for interrogation of physiological and pathological processes in bioassays, cells, and tissues. Although their unique emission signatures are ideal for multiplexing, the full potential of these probes has not been realized because conventional analysis methods are inadequate. We report a novel spectral fitting method that exploits the entire spectral signature to quantitatively extract individual probe signals from multiplex spectra. We evaluate the method in a series of multiplex assays using unconjugated and antibody-conjugated composite organic-inorganic nanoparticles (COINs). Results show sensitive multiplex detection of small signals (<2% of total signal) and similar detection limits in corresponding 4-plex and singlet plate binding assays. In a triplex assay on formalin-fixed human prostate tissue, two antibody-conjugated COINs and a conventional fluorophore are used to image expression of prostate-specific antigen, cytokeratin-18, and DNA. The spectral analysis method effectively removes tissue autofluorescence and other unknown background, allowing accurate and reproducible imaging (area under ROC curve 0.89 +/- 0.03) at subcellular spatial resolution. In all assay systems, the error attributable to spectral analysis constitutes

  10. Contextualising the topographic signature of historic mining, a scaling analysis

    NASA Astrophysics Data System (ADS)

    Reinhardt, Liam

    2017-04-01

    Mining is globally one of the most significant means by which humans alter landscapes; we do so through erosion (mining), transport, and deposition of extracted sediments (waste). The iconic Dartmoor mountain landscape of SW England ( 700km2) has experienced over 1000 years of shallow (Cu & Sn) mining that has left a pervasive imprint on the landscape. The availability of high resolution digital elevation models (<=1m) and aerial photographs @12.5 cm resolution) combined with historic records of mining activity and output make this an ideal location to investigate the topographic signature of mining. Conceptually I ask the question: how much (digital elevation model) smoothing is required to remove the human imprint from this landscape ? While we may have entered the Anthropocene other gravity driven process have imparted distinct scale-dependant signatures. How might the human signature differ from these processes and how pervasive is it at the landscape scale? Spatial scaling analysis (curvature & semi-variance) was used to quantify the topographic signature of historic mining and to determine how it differs to a) natural landforms such as bedrock tors; and b) the morphology of biological activity (e.g. peat formation). Other forms of historic activity such as peat cutting and quarrying were also investigated. The existence of 400 years of mine activity archives also makes it possible to distinguish between the imprint of differing forms of mine technology and their spatio-temporal signature. Interestingly the higher technology 19th C mines have left a much smaller topographic legacy than Medieval miners; though the former had a much greater impact in terms of heavy metal contamination.

  11. A parallel and incremental algorithm for efficient unique signature discovery on DNA databases

    PubMed Central

    2010-01-01

    Background DNA signatures are distinct short nucleotide sequences that provide valuable information that is used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments. Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases, biologists typically select factor values based on experience, or even by guessing. If the discovered result is unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the signatures of length ≤ l with mismatch tolerance ≥ d. A discovery algorithm that could discover all implicit signatures, such that those that meet the requirements concerning the results, would be more helpful than one that depends on trial and error. However, existing discovery algorithms do not address the need to discover all implicit signatures. Results This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently discovering signatures under a certain discovery condition. The algorithm finds new results by using previously discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures efficiently. It uses the PISD algorithm as a kernel routine to discover implicit

  12. Gunshot acoustic signature specific features and false alarms reduction

    NASA Astrophysics Data System (ADS)

    Donzier, Alain; Millet, Joel

    2005-05-01

    This paper provides a detailed analysis of the most specific parameters of gunshot signatures through models as well as through real data. The models for the different contributions to gunshot typical signature (shock and muzzle blast) are presented and used to discuss the variation of measured signatures over the different environmental conditions and shot configurations. The analysis is followed by a description of the performance requirements for gunshot detection systems, from sniper detection that was the main concern 10 years ago, to the new and more challenging conditions faced in today operations. The work presented examines the process of how systems are deployed and used as well as how the operational environment has changed. The main sources of false alarms and new threats such as RPGs and mortars that acoustic gunshot detection systems have to face today are also defined and discussed. Finally, different strategies for reducing false alarms are proposed based on the acoustic signatures. Different strategies are presented through various examples of specific missions ranging from vehicle protection to area protection. These strategies not only include recommendation on how to handle acoustic information for the best efficiency of the acoustic detector but also recommends some add-on sensors to enhance system overall performance.

  13. Frontal theta is a signature of successful working memory manipulation

    PubMed Central

    Itthipuripat, Sirawaj; Wessel, Jan R.; Aron, Adam R.

    2012-01-01

    It has been proposed that working memory (WM) is updated/manipulated via a fronto-basal-ganglia circuit. One way that this could happen is via the synchronization of neural oscillations. A first step towards testing this hypothesis is to clearly establish a frontal scalp EEG signature of WM manipulation. Although many EEG studies have indeed revealed frontal EEG signatures for WM, especially in the theta frequency band (3–8 Hz), few of them required subjects to manipulate WM, and of those that did, none specifically tied the EEG signature to the manipulation process per se. Here we employed a WM manipulation task that has been shown with imaging to engage the prefrontal cortex and the striatum. We adapted this task to titrate the success of WM manipulation to approximately 50%. Using time-frequency analysis of EEG, we showed that theta power is increased over frontal cortex for successful versus failed WM manipulation, specifically at the time of the manipulation event. This establishes a clear-cut EEG signature of WM manipulation. Future studies could employ this to test the fronto-basal-ganglia hypothesis of WM updating/manipulation. PMID:23109082

  14. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  15. Polarimetric signatures of sea ice. 1: Theoretical model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  16. Signature spectrale des grains interstellaires.

    NASA Astrophysics Data System (ADS)

    Léger, A.

    Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.

  17. Timing signatures of solar flares

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Lynch, C.; Henry, T.; Nitta, N.; Hurlburt, N. E.; Slater, G. L.

    2016-12-01

    We compare the timing signatures of solar flares observed with the GOES X-ray and the SDO/AIA instruments between the years 2010-2015. From this comparison we find that: (i) the rise-time of flares (time difference from the background to peak) is inversely correlated with the solar cycle, i.e. longer lasting rise times occur during the solar minimum. This implies that a higher thermal state of the outer solar atmosphere, during solar maximum, is far more receptive to being heated than during a solar minimum. (ii) From an analysis of rise-times, statistically, we find that 171 A appears to detect the earliest flares, providing clues to fact that this might be layer where reconnections are first triggered. We discuss the implications of these and other statistical results in terms of forecasting of solar flares.

  18. Metabolic Signatures of Bacterial Vaginosis

    PubMed Central

    Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.

    2015-01-01

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373

  19. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Wellfare, Michael R.; Foster, Joseph; Owens, Monte A.; Vechinski, Douglas A.; Richards, Mike; Resnick, Andrew; Underwood, Vincent

    1998-07-01

    The Irma synthetic signature model was one of the first high resolution infrared (IR) target and background signature models to be developed for tactical weapons application. Originally developed in 1980 by the Munitions Directorate of the Air Force Research Laboratory, the Irma model was used exclusively to generate IR scenes for smart weapons research and development. In 1988, a number of significant upgrades to Irma were initiated including the addition of a laser channel. This two channel version, Irma 3.0, was released to the user community in 1990. In 1992, an improved scene generator was incorporated into the Irma model which supported correlated frame-to-frame imagery. This and other improvements were released in Irma 2.2. Irma 3.2, a passive IR/millimeter wave (MMW) code, was completed in 1994. This served as the cornerstone for the development of the co- registered active/passive IR/MMW model, Irma 4.0. Currently, upgrades are underway to include a near IR (NIR)/visible channel; a facet editor; utilities to support image viewing and scaling; and additional target/data files. The Irma 4.1 software development effort is nearly completion. The purpose of this paper is to illustrate the results of the development. Planned upgrades for Irma 5.0 will be provided as well. Irma is being developed to facilitate multi-sensor research and development. It is currently being used to support a number of civilian and military applications. The current Irma user base includes over 100 agencies within the Air Force, Army, Navy, DARPA, NASA, Department of Transportation, academia, and industry.

  20. Does Social Work Have a Signature Pedagogy?

    ERIC Educational Resources Information Center

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  1. VOEvent authentication via XML digital signature

    NASA Astrophysics Data System (ADS)

    Allen, S. L.

    2008-03-01

    A trivial modification to the XML schema of VOEvent v1.1 allows the inclusion of W3C digital signatures. Signatures enable identification, identification enables trust, and trust enables authorization. Such changes would inhibit abuse of the VOEvent networks.

  2. Does Social Work Have a Signature Pedagogy?

    ERIC Educational Resources Information Center

    Earls Larrison, Tara; Korr, Wynne S.

    2013-01-01

    This article contributes to discourse on signature pedagogy by reconceptualizing how our pedagogies are understood and defined for social work education. We critique the view that field education is social work's signature pedagogy and consider what pedagogies are distinct about the teaching and learning of social work. Using Shulman's…

  3. 21 CFR 11.50 - Signature manifestations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic... the same controls as for electronic records and shall be included as part of any human readable form...

  4. A Real Quantum Designated Verifier Signature Scheme

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Min; Zhou, Yi-Hua; Yang, Yu-Guang

    2015-09-01

    The effectiveness of most quantum signature schemes reported in the literature can be verified by a designated person, however, those quantum signature schemes aren't the real traditional designated verifier signature schemes, because the designated person hasn't the capability to efficiently simulate a signature which is indistinguishable from a signer, which cannot satisfy the requirements in some special environments such as E-voting, call for tenders and software licensing. For solving this problem, a real quantum designated verifier signature scheme is proposed in this paper. According to the property of unitary transformation and quantum one-way function, only a verifier designated by a signer can verify the "validity of a signature" and the designated verifier cannot prove to a third party that the signature was produced by the signer or by himself through a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Analysis results show that this new scheme satisfies the main security requirements of designated verifier signature scheme and the major attack strategies.

  5. 48 CFR 4.102 - Contractor's signature.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Contractor's signature. 4.102 Section 4.102 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Contract Execution 4.102 Contractor's signature. (a) Individuals. A contract with...

  6. The Pedagogic Signature of the Teaching Profession

    ERIC Educational Resources Information Center

    Kiel, Ewald; Lerche, Thomas; Kollmannsberger, Markus; Oubaid, Viktor; Weiss, Sabine

    2016-01-01

    Lee S. Shulman deplores that the field of education as a profession does not have a pedagogic signature, which he characterizes as a synthesis of cognitive, practical and moral apprenticeship. In this context, the following study has three goals: 1) In the first theoretical part, the basic problems of constructing a pedagogic signature are…

  7. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Electronic signatures. 850.106 Section... (CONTINUED) RETIREMENT SYSTEMS MODERNIZATION General Provisions § 850.106 Electronic signatures. (a) Subject to any provisions prescribed by the Director under § 850.104— (1) An electronic communication may be...

  8. Redactable signatures for signed CDA Documents.

    PubMed

    Wu, Zhen-Yu; Hsueh, Chih-Wen; Tsai, Cheng-Yu; Lai, Feipei; Lee, Hung-Chang; Chung, Yufang

    2012-06-01

    The Clinical Document Architecture, introduced by Health Level Seven, is a XML-based standard intending to specify the encoding, structure, and semantics of clinical documents for exchange. Since the clinical document is in XML form, its authenticity and integrity could be guaranteed by the use of the XML signature published by W3C. While a clinical document wants to conceal some personal or private information, the document needs to be redacted. It makes the signed signature of the original clinical document not be verified. The redactable signature is thus proposed to enable verification for the redacted document. Only a little research does the implementation of the redactable signature, and there still not exists an appropriate scheme for the clinical document. This paper will investigate the existing web-technologies and find a compact and applicable model to implement a suitable redactable signature for the clinical document viewer.

  9. Experimentally accessible signatures of Auger scattering in graphene

    NASA Astrophysics Data System (ADS)

    Winzer, Torben; Jago, Roland; Malic, Ermin

    2016-12-01

    The gapless and linear electronic band structure of graphene opens up Auger scattering channels bridging the valence and the conduction band and changing the charge carrier density. Here, we reveal experimentally accessible signatures of Auger scattering in optically excited graphene. To be able to focus on signatures of Auger scattering, we apply a low excitation energy, weak pump fluences, and a cryostatic temperature, so that all relevant processes lie energetically below the optical phonon threshold. In this regime, carrier-phonon scattering is strongly suppressed and Coulomb processes govern the carrier dynamics. Depending on the excitation regime, we find an accumulation or depletion of the carrier occupation close to the Dirac point. This reflects well the behavior predicted from Auger-dominated carrier dynamics. Based on this observation, we propose a multicolor pump-probe experiment to uncover the extreme importance of Auger channels for the nonequilibrium dynamics in graphene.

  10. Implementing Signature Neural Networks with Spiking Neurons

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  11. Implementing Signature Neural Networks with Spiking Neurons.

    PubMed

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  12. Dynamic characteristics of signatures: effects of writer style on genuine and simulated signatures.

    PubMed

    Mohammed, Linton; Found, Bryan; Caligiuri, Michael; Rogers, Doug

    2015-01-01

    The aims of this study were to determine if computer-measured dynamic features (duration, size, velocity, jerk, and pen pressure) differ between genuine and simulated signatures. Sixty subjects (3 equal groups of 3 signature styles) each provided 10 naturally written (genuine) signatures. Each of these subjects then provided 15 simulations of each of three model signatures. The genuine (N = 600) and simulated (N = 2700) signatures were collected using a digitizing tablet. MovAlyzeR(®) software was used to estimate kinematic parameters for each pen stroke. Stroke duration, velocity, and pen pressure were found to discriminate between genuine and simulated signatures regardless of the simulator's own style of signature or the style of signature being simulated. However, there was a significant interaction between style and condition for size and jerk (a measure of smoothness). The results of this study, based on quantitative analysis and dynamic handwriting features, indicate that the style of the simulator's own signature and the style of signature being simulated can impact the characteristics of handwriting movements for simulations. Writer style characteristics might therefore need to be taken into consideration as potentially significant when evaluating signature features with a view to forming opinions regarding authenticity. © 2014 American Academy of Forensic Sciences.

  13. Observational Signatures Of Agn Feedback Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  14. NIST bullet signature measurement system for RM (Reference Material) 8240 standard bullets.

    PubMed

    Ma, Li; Song, John; Whitenton, Eric; Zheng, Alan; Vorburger, Theodore; Zhou, Jack

    2004-07-01

    A bullet signature measurement system based on a stylus instrument was developed at the National Institute of Standards and Technology (NIST) for the signature measurements of NIST RM (Reference Material) 8240 standard bullets. The standard bullets are developed as a reference standard for bullet signature measurements and are aimed to support the recently established National Integrated Ballistics Information Network (NIBIN) by the Bureau of Alcohol, Tobacco and Firearms (ATF) and the Federal Bureau of Investigation (FBI). The RM bullets are designed as both a virtual and a physical bullet signature standard. The virtual standard is a set of six digitized bullet signatures originally profiled from six master bullets fired at ATF and FBI using six different guns. By using the virtual signature standard to control the tool path on a numerically controlled diamond turning machine at NIST, 40 RM bullets were produced. In this paper, a comparison parameter and an algorithm using auto-and cross-correlation functions are described for qualifying the bullet signature differences between the RM bullets and the virtual bullet signature standard. When two compared signatures are exactly the same (point by point), their cross-correlation function (CCF) value will be equal to 100%. The measurement system setup, measurement program, and initial measurement results are discussed. Initial measurement results for the 40 standard bullets, each measured at six land impressions, show that the CCF values for the 240 signature measurements are higher than 95%, with most of them even higher than 99%. These results demonstrate the high reproducibility for both the manufacturing process and the measurement system for the NIST RM 8240 standard bullets.

  15. NPOESS Interface Data Processing Segment Architecture and Software

    NASA Astrophysics Data System (ADS)

    Turek, S.; Souza, K. G.; Fox, C. A.; Grant, K. D.

    2004-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS is an estimated \\$6.5 billion program replacing the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS). The IDPS processes NPOESS satellite data to provide weather, oceanographic, and environmental data products to NOAA and DoD processing centers and field terminals operated by the United States government. This paper describes Raytheon's high performance computer and software architecture for the NPOESS IDPS. NOAA, the DoD, and NASA selected this architecture after a 2.5-year Program Definition and Risk Reduction (PDRR) competition. The PDRR phase concluded in August of 2002, and has been followed by the NPOESS Preparatory Project (NPP) phase. The NPP satellite, scheduled to launch in late 2006, will provide risk reduction for the future NPOESS satellites, and will enable data continuity between the current EOS missions and NPOESS. Efforts within the PDRR and NPP phases consist of: requirements definition and flowdown from system to segment to subsystem, Object-Oriented (OO) software design, software code development, science to operational code conversion, integration and qualification testing. The NPOESS phase, which supports a constellation of three satellites, will also consist of this same lifecycle during the 2005 through 2009 timeframe, with operations and support

  16. On "A new quantum blind signature with unlinkability"

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ping; Tsai, Shang-Lun; Hwang, Tzonelih; Kao, Shih-Hung

    2017-04-01

    This article points out a security loophole in Shi et al.'s quantum blind signature scheme. By using the modification attack, a message owner can cheat a signature receiver with a fake message-signature pair without being detected.

  17. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  18. 76 FR 411 - Regulatory Guidance Concerning Electronic Signatures and Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Federal Motor Carrier Safety Administration Regulatory Guidance Concerning Electronic Signatures and... guidance. SUMMARY: FMCSA issues regulatory guidance concerning the use of electronic signatures and... information regarding FMCSA's acceptance of electronic signature on documents required by the Federal Motor...

  19. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  20. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  1. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  2. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  3. What Signatures Dominantly Associate with Gene Age?

    PubMed Central

    Yin, Hongyan; Wang, Guangyu; Ma, Lina; Yi, Soojin V.; Zhang, Zhang

    2016-01-01

    As genes originate at different evolutionary times, they harbor distinctive genomic signatures of evolutionary ages. Although previous studies have investigated different gene age-related signatures, what signatures dominantly associate with gene age remains unresolved. Here we address this question via a combined approach of comprehensive assignment of gene ages, gene family identification, and multivariate analyses. We first provide a comprehensive and improved gene age assignment by combining homolog clustering with phylogeny inference and categorize human genes into 26 age classes spanning the whole tree of life. We then explore the dominant age-related signatures based on a collection of 10 potential signatures (including gene composition, gene length, selection pressure, expression level, connectivity in protein–protein interaction network and DNA methylation). Our results show that GC content and connectivity in protein–protein interaction network (PPIN) associate dominantly with gene age. Furthermore, we investigate the heterogeneity of dominant signatures in duplicates and singletons. We find that GC content is a consistent primary factor of gene age in duplicates and singletons, whereas PPIN is more strongly associated with gene age in singletons than in duplicates. Taken together, GC content and PPIN are two dominant signatures in close association with gene age, exhibiting heterogeneity in duplicates and singletons and presumably reflecting complex differential interplays between natural selection and mutation. PMID:27609935

  4. Mutational Signatures in Breast Cancer: The Problem at the DNA Level

    PubMed Central

    Nik-Zainal, Serena; Morganella, Sandro

    2017-01-01

    A breast cancer genome is a record of the historic mutagenic activity that has occurred throughout the development of the tumour. Indeed, every mutation may be informative. While driver mutations were the main focus of cancer research for a long time, passenger mutational signatures, the imprints of DNA damage and DNA repair processes that have been operative during tumorigenesis, are also biologically illuminating. This review is a chronicle of how the concept of mutational signatures arose, and brings the reader up-to-date on this field, particularly in breast cancer. Mutational signatures have now been advanced to include mutational processes that involve rearrangements, and novel cancer biological insights have been gained through studying these in great detail. Furthermore, there are efforts to take this field into the clinical sphere. If validated, mutational signatures could thus form an additional weapon in the arsenal of cancer precision diagnostics and therapeutic stratification, in the modern war against cancer. PMID:28572256

  5. The Security Problems in Some Novel Arbitrated Quantum Signature Protocols

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Sun, Hong-Wei; Zhang, Ke-Jia; Wang, Qing-Le; Cai, Xiao-Qiu

    2017-08-01

    With the development of quantum signature, two improved arbitrated quantum signature(AQS) protocols have been presented with different quantum encryptions. In this paper, some security loopholes during the two AQS protocols are proposed. In the enhanced arbitrated quantum signature(EAQS) protocol, though the signer is not able to deny his signature, the receiver can still forge some valid signatures. In the chaos-based arbitrated quantum signature(CAQS) protocol, the receiver can forge a valid signature without being caught, and the signer can also deny her signature after the signing phase. Finally, some potential improved ideas are discussed.

  6. Metabolomic signature of brain cancer.

    PubMed

    Pandey, Renu; Caflisch, Laura; Lodi, Alessia; Brenner, Andrew J; Tiziani, Stefano

    2017-06-15

    Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed. © 2017 Wiley Periodicals, Inc.

  7. Molecular signatures of vaccine adjuvants.

    PubMed

    Olafsdottir, Thorunn; Lindqvist, Madelene; Harandi, Ali M

    2015-09-29

    Mass vaccination has saved millions of human lives and improved the quality of life in both developing and developed countries. The emergence of new pathogens and inadequate protection conferred by some of the existing vaccines such as vaccines for tuberculosis, influenza and pertussis especially in certain age groups have resulted in a move from empirically developed vaccines toward more pathogen tailored and rationally engineered vaccines. A deeper understanding of the interaction of innate and adaptive immunity at molecular level enables the development of vaccines that selectively target certain type of immune responses without excessive reactogenicity. Adjuvants constitute an imperative element of modern vaccines. Although a variety of candidate adjuvants have been evaluated in the past few decades, only a limited number of vaccine adjuvants are currently available for human use. A better understanding of the mode of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in shaping a desired immune response. Recent advancement in systems biology powered by the emerging cutting edge omics technology has led to the identification of molecular signatures rapidly induced after vaccination in the blood that correlate and predict a later protective immune response or vaccine safety. This can pave ways to prospectively determine the potency and safety of vaccines and adjuvants. This review is intended to highlight the importance of big data analysis in advancing our understanding of the mechanisms of actions of adjuvants to inform rational development of future human vaccines.

  8. SIRUS spectral signature analysis code

    NASA Astrophysics Data System (ADS)

    Bishop, Gary J.; Caola, Mike J.; Geatches, Rachel M.; Roberts, Nick C.

    2003-09-01

    The Advanced Technology Centre (ATC) is responsible for developing IR signature prediction capabilities for its parent body, BAE SYSTEMS. To achieve this, the SIRUS code has been developed and used on a variety of projects for well over a decade. SIRUS is capable of providing accurate IR predictions for air breathing and rocket motor propelled vehicles. SIRUS models various physical components to derive its predictions. A key component is the radiance reflected from the surface of the modeled vehicle. This is modeled by fitting parameters to the measured Bi-Directional Reflectance Function (BDRF) of the surface material(s). The ATC have successfully implemented a parameterization scheme based on the published OPTASM model, and this is described. However, inconsistencies between reflectance measurements and values calculated from the parameterized fit have led to an elliptical parameter enhancement. The implementation of this is also described. Finally, an end-to-end measurement-parameterization capability is described, based on measurements taken with SOC600 instrumentation.

  9. Molecular signatures of major depression.

    PubMed

    Cai, Na; Chang, Simon; Li, Yihan; Li, Qibin; Hu, Jingchu; Liang, Jieqin; Song, Li; Kretzschmar, Warren; Gan, Xiangchao; Nicod, Jerome; Rivera, Margarita; Deng, Hong; Du, Bo; Li, Keqing; Sang, Wenhu; Gao, Jingfang; Gao, Shugui; Ha, Baowei; Ho, Hung-Yao; Hu, Chunmei; Hu, Jian; Hu, Zhenfei; Huang, Guoping; Jiang, Guoqing; Jiang, Tao; Jin, Wei; Li, Gongying; Li, Kan; Li, Yi; Li, Yingrui; Li, Youhui; Lin, Yu-Ting; Liu, Lanfen; Liu, Tiebang; Liu, Ying; Liu, Yuan; Lu, Yao; Lv, Luxian; Meng, Huaqing; Qian, Puyi; Sang, Hong; Shen, Jianhua; Shi, Jianguo; Sun, Jing; Tao, Ming; Wang, Gang; Wang, Guangbiao; Wang, Jian; Wang, Linmao; Wang, Xueyi; Wang, Xumei; Yang, Huanming; Yang, Lijun; Yin, Ye; Zhang, Jinbei; Zhang, Kerang; Sun, Ning; Zhang, Wei; Zhang, Xiuqing; Zhang, Zhen; Zhong, Hui; Breen, Gerome; Wang, Jun; Marchini, Jonathan; Chen, Yiping; Xu, Qi; Xu, Xun; Mott, Richard; Huang, Guo-Jen; Kendler, Kenneth; Flint, Jonathan

    2015-05-04

    Adversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual's somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10(-42), odds ratio 1.33 [95% confidence interval [CI] = 1.29-1.37]) and telomere length (p = 2.84 × 10(-14), odds ratio 0.85 [95% CI = 0.81-0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease.

  10. Infrared signatures from bomb detonations

    NASA Astrophysics Data System (ADS)

    Orson, Jay A.; Bagby, William F.; Perram, Glen P.

    2003-04-01

    Remote observations of the temporal and spectral characteristics of the infrared emissions from bomb detonations have been correlated with explosion conditions. A Fourier transform interferometer was used to record spectra in the 1.6-20 μm range at spectral resolutions of 4-16 cm -1 and temporal resolutions of 0.047-0.123 s. Field observations of 56 detonation events included a set of aircraft delivered ordinance and a series of static ground detonations for a variety of bomb sizes, types and environmental conditions. The emission is well represented by a gray body with continuously decreasing temperature and characteristic decay times of 1-4 s, providing only limited variability with detonation conditions. However, the fireball size times the emissivity as a function of time can be determined from the spectra without imaging and provides a more sensitive signature. The degree of temporal overlap as a function of frequency for a pair of detonation events provides a very sensitive discriminator for explosion conditions. The temporal overlap decreases with increasing emission frequency for all the observed events, indicating more information content at higher frequencies.

  11. Molecular Signatures of Major Depression

    PubMed Central

    Cai, Na; Chang, Simon; Li, Yihan; Li, Qibin; Hu, Jingchu; Liang, Jieqin; Song, Li; Kretzschmar, Warren; Gan, Xiangchao; Nicod, Jerome; Rivera, Margarita; Deng, Hong; Du, Bo; Li, Keqing; Sang, Wenhu; Gao, Jingfang; Gao, Shugui; Ha, Baowei; Ho, Hung-Yao; Hu, Chunmei; Hu, Jian; Hu, Zhenfei; Huang, Guoping; Jiang, Guoqing; Jiang, Tao; Jin, Wei; Li, Gongying; Li, Kan; Li, Yi; Li, Yingrui; Li, Youhui; Lin, Yu-Ting; Liu, Lanfen; Liu, Tiebang; Liu, Ying; Liu, Yuan; Lu, Yao; Lv, Luxian; Meng, Huaqing; Qian, Puyi; Sang, Hong; Shen, Jianhua; Shi, Jianguo; Sun, Jing; Tao, Ming; Wang, Gang; Wang, Guangbiao; Wang, Jian; Wang, Linmao; Wang, Xueyi; Wang, Xumei; Yang, Huanming; Yang, Lijun; Yin, Ye; Zhang, Jinbei; Zhang, Kerang; Sun, Ning; Zhang, Wei; Zhang, Xiuqing; Zhang, Zhen; Zhong, Hui; Breen, Gerome; Wang, Jun; Marchini, Jonathan; Chen, Yiping; Xu, Qi; Xu, Xun; Mott, Richard; Huang, Guo-Jen; Kendler, Kenneth; Flint, Jonathan

    2015-01-01

    Summary Adversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual’s somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10−42, odds ratio 1.33 [95% confidence interval [CI] = 1.29–1.37]) and telomere length (p = 2.84 × 10−14, odds ratio 0.85 [95% CI = 0.81–0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease. PMID:25913401

  12. Signature geometry and quantum engineering

    NASA Astrophysics Data System (ADS)

    Samociuk, Stefan

    2013-09-01

    As the operating frequency of electromagnetic based devices increase, physical design geometry is playing an ever more important role. Evidence is considered in support of a relationship between the dimensionality of primitive geometric forms, such as transistors, and corresponding electromagnetic coupling efficiency. The industry of electronics is defined as the construction of devices by the patterning of primitive forms to physical materials. Examples are given to show the evolution of these primitives, down to nano scales, are requiring exacting geometry and three dimensional content. Consideration of microwave monolithic integrated circuits,(MMIC), photonics and metamaterials,(MM), support this trend and also add new requirements of strict geometric periodicity and multiplicity. Signature geometries,(SG), are characterized by distinctive attributes and examples are given. The transcendent form transcode algorithm, (TTA) is introduced as a multi dimensional SG and its use in designing photonic integrated circuits and metamaterials is discussed . A creative commons licensed research database, TRANSFORM, containing TTA geometries in OASIS file formats is described. An experimental methodology for using the database is given. Multidimensional SG and extraction of three dimensional cross sections as primitive forms is discussed as a foundation for quantum engineering and the exploitation of phenomena other than the electromagnetic.

  13. Observational Signatures of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.; Taylor, B.

    2016-12-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numericalsimulations of the fully compressible three-dimensionalmagnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection,nonlinear thermal conduction and optically thin radiation.The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands arescattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla.To connect these simulations to observations the computed numberdensities and temperatures are used to synthesize the intensities expected inemission lines typically observed with the Extreme ultraviolet Imaging Spectrometer(EIS) on Hinode. These intensities are then employed to compute differentialemission measure distributions, which are found to be very similar to those derivedfrom observations of solar active regions.

  14. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  15. Arbitrated quantum signature with an untrusted arbitrator

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Zhou, Zheng; Teng, Yi-Wei; Wen, Qiao-Yan

    2011-02-01

    In an arbitrated signature scheme, all communications involve a so called arbitrator who has access to the contents of the messages. The security of most arbitrated signature schemes depends heavily on the trustworthiness of the arbitrators. In this paper we show how to construct an arbitrated quantum signature protocol of classical messages with an untrusted arbitrator. Its security is analyzed and it is proved to be secure even if the arbitrator is compromised. In addition, the proposed protocol does not require a direct quantum link between any two communicating users, which is an appealing advantage in the implementation of a practical quantum distributed communication network.

  16. Recognizing impactor signatures in the planetary record

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Gault, Donald E.

    1992-01-01

    Crater size reflects the target response to the combined effects of impactor size, density, and velocity. Isolating the effects of each variable in the cratering record is generally considered masked, if not lost, during late stages of crater modification (e.g., floor uplift and rim collapse). Important clues, however, come from the distinctive signatures of the impactor created by oblique impacts. In summary, oblique impacts allow for the identification of distinctive signatures of the impactor created during early penetration. Such signatures may further allow first-order testing of scaling relations for late crater excavation from the planetary surface record. Other aspects of this study are discussed.

  17. Generation of Duplicated Off-Line Signature Images for Verification Systems.

    PubMed

    Diaz, Moises; Ferrer, Miguel A; Eskander, George S; Sabourin, Robert

    2017-05-01

    Biometric researchers have historically seen signature duplication as a procedure relevant to improving the performance of automatic signature verifiers. Different approaches have been proposed to duplicate dynamic signatures based on the heuristic affine transformation, nonlinear distortion and the kinematic model of the motor system. The literature on static signature duplication is limited and as far as we know based on heuristic affine transforms and does not seem to consider the recent advances in human behavior modeling of neuroscience. This paper tries to fill this gap by proposing a cognitive inspired algorithm to duplicate off-line signatures. The algorithm is based on a set of nonlinear and linear transformations which simulate the human spatial cognitive map and motor system intra-personal variability during the signing process. The duplicator is evaluated by increasing artificially a training sequence and verifying that the performance of four state-of-the-art off-line signature classifiers using two publicly databases have been improved on average as if we had collected three more real signatures.

  18. Application of spatial signature analysis to electrical test data: validation study

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Tobin, Kenneth W., Jr.; Gleason, Shaun S.; Lakhani, Fred

    1999-06-01

    This paper presents the result of the Spatial Signature Analysis (SSA) ELectrical-test (e-test) validation study that was conducted between February and June,1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or 'signatures'. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process include a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign label sot he binmap signatures. The three sites produced memory devices and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap signatures

  19. The Application of Spatial Signature Analysis to Electrical Test Data: Validation Study

    SciTech Connect

    Gleason, S.S.; Karnowski, T.P.; Lakhani, F.; Tobin, K.W.

    1999-03-15

    This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was conducted between February and June, 1998. SSA is an automated procedure developed by researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing processes. SSA was initially developed to automate the analysis of optical defect data. Optical defects can form groups, or clusters, which may have a distinct shape. These patterns can reveal information about the manufacturing process. Optical defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or signatures. SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been adapted and applied to e-test binmaps. An image of the binmap is created, and features such as geometric and invariant moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier. The classifier itself was prepared by manually training, which consists of storing example signatures of interest in a library, then executing an automated process which treats the examples as prototype signatures. The training process includes a procedure for automatically determining which features are most relevant to each class. The evaluation was performed by installing the SSA software as a batch process at three SEMATECH member company sites. Feedback from member company representatives was incorporated and classifiers were built to automatically assign labels to the binmap signatures. The three sites produced memory devices (DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that encompassed approximately 552 wafers were human-classified and analyzed. The performance of the SSA E-test system indicates that the approach was successful in reliably classifying binmap

  20. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  1. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1987-01-01

    Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.

  2. Mutational signatures associated with tobacco smoking in human cancer.

    PubMed

    Alexandrov, Ludmil B; Ju, Young Seok; Haase, Kerstin; Van Loo, Peter; Martincorena, Iñigo; Nik-Zainal, Serena; Totoki, Yasushi; Fujimoto, Akihiro; Nakagawa, Hidewaki; Shibata, Tatsuhiro; Campbell, Peter J; Vineis, Paolo; Phillips, David H; Stratton, Michael R

    2016-11-04

    Tobacco smoking increases the risk of at least 17 classes of human cancer. We analyzed somatic mutations and DNA methylation in 5243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA editing by APOBEC cytidine deaminases and of an endogenous clocklike mutational process. Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.

  3. Mutational signatures associated with tobacco smoking in human cancer

    SciTech Connect

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin; Van Loo, Peter; Martincorena, Inigo; Nik-Zainal, Serena; Totoki, Yasushi; Fujimoto, Akihiro; Nakagawa, Hidewaki; Shibata, Tatsuhiro; Campbell, Peter J.; Vineis, Paolo; Phillips, David H.; Stratton, Michael R.

    2016-11-04

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process. Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.

  4. Mutational signatures associated with tobacco smoking in human cancer

    DOE PAGES

    Alexandrov, Ludmil B.; Ju, Young Seok; Haase, Kerstin; ...

    2016-11-04

    Tobacco smoking increases the risk of at least 17 classes of cancer. Here, we analyzed somatic mutations and DNA methylation in 5,243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA edi ting by APOBEC cytidine deaminases and of an endogenous clock-like mutational process.more » Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types.« less

  5. Thermal surface signatures of ship propeller wakes in stratified waters

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-11-01

    When a ship moves in temperature stratified water, e.g., in the ocean diurnal thermocline, the propeller(s) as well as the turbulent boundary layer of the hull mix the surface water with underlying colder fluid. As a result, when observed from above, a temperature "wake signature" of ˜1-2 °C may be detected at the water surface. To quantify this phenomenon, theoretical modeling and physical experiments were conducted. The dominant processes responsible for thermal wake generation were identified and parameterized. Most important similarity parameters were derived and estimates for wake signature contrast were made. To verify model predictions, scaled experiments were conducted, with the water surface temperature measured using a sensitive infrared camera. Comparison of laboratory measurements with model estimates has shown satisfactory agreement, both qualitative and quantitatively. Estimates for ocean ship-wake scenarios are also given, which are supported by available field observations.

  6. Hydrological Signature From River-Floodplain Interactions

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.

    2015-12-01

    Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.

  7. Experimental demonstration of photonic quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Clarke, Patrick J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2012-09-01

    Digital signature schemes are often used in interconnected computer networks to verify the origin and authenticity of messages. Current classical digital signature schemes based on so-called "one-way functions" rely on computational complexity to provide security over sufficiently long timescales. However, there are currently no mathematical proofs that such functions will always be computationally complex. Quantum digital signatures offers a means of confirming both origin and authenticity of a message with security verified by information theoretical limits. The message cannot be forged or repudiated. We have constructed, tested and analyzed the security of what is, to the best of our knowledge, the first example of an experimental quantum digital signature system.

  8. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  9. Analysis of multispectral signatures of the shot

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Piątkowski, Tadeusz; Madura, Henryk; Bareła, Jarosław; Polakowski, Henryk

    2011-06-01

    The paper presents some practical aspects of sniper IR signature measurements. Description of particular signatures for sniper shot in typical scenarios has been presented. We take into consideration sniper activities in the open area as well as in urban environment. The measurements were made at field test ground. High precision laboratory measurements were also performed. Several infrared cameras were used during measurements to cover all measurement assumptions. Some of the cameras are measurement-class devices with high accuracy and frame rates. The registrations were simultaneously made in UV, NWIR, SWIR and LWIR spectral bands. The infrared cameras have possibilities to install optical filters for multispectral measurement. An ultra fast visual camera was also used for visible spectra registration. Exemplary sniper IR signatures for typical situation were presented. LWIR imaging spectroradiometer HyperCam was also used during the laboratory measurements and field experiments. The signatures collected by HyperCam were useful for the determination of spectral characteristics of shot.

  10. 15 CFR 908.16 - Signature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such person...

  11. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2016-12-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  12. 17 CFR 232.302 - Signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) must be in typed form rather than manual format. Signatures in an HTML document that are not required may, but are not required to, be presented in an HTML graphic or image file within the electronic...

  13. 15 CFR 908.16 - Signature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SUBMITTING REPORTS ON WEATHER MODIFICATION ACTIVITIES § 908.16 Signature. All reports filed with the National... or intending to conduct the weather modification activities referred to therein by such person...

  14. Secure quantum signatures using insecure quantum channels

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  15. Copper isotope signatures in modern marine sediments

    NASA Astrophysics Data System (ADS)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  16. Spectral Signatures of Saccade Target Selection.

    PubMed

    Carl, Christine; Hipp, Joerg F; König, Peter; Engel, Andreas K

    2016-01-01

    Action generation relies on a widely distributed network of brain areas. However, little is known about the spatiotemporal dynamics of neuronal activity in the network that gives rise to voluntary action in humans. Here, we used magnetoencephalography (MEG) and source analysis (n = 15, 7 female subjects) to investigate the spectral signatures of human cortical networks engaged in active and intrinsically motivated viewing behavior. We compared neuronal activity of externally cued saccades with saccades to freely chosen targets. For planning and execution of both saccade types, we found an increase in gamma band (~64-128 Hz) activity and a concurrent decrease in beta band (~12-32 Hz) activity in saccadic control areas, including the intraparietal sulcus and the frontal eye fields. Guided compared to voluntary actions were accompanied by stronger transient increases in the gamma and low frequency (<16 Hz) range immediately following the instructional cue. In contrast, action selection between competing alternatives was reflected by stronger sustained fronto-parietal gamma increases that occurred later in time and persisted until movement execution. This sustained enhancement for free target selection was accompanied by a spatially widespread reduction of lower frequency power (~8-45 Hz) in parietal and extrastriate areas. Our results suggest that neuronal population activity in the gamma frequency band in a distributed network of fronto-parietal areas reflects the intrinsically driven process of selection among competing behavioral alternatives.

  17. Advanced techniques in current signature analysis

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Castleberry, K. N.

    1992-02-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and can be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors (approximately 3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed (approximately 20 Hz) and high-frequency vibrational information (greater than 1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable 'smart' CSA instrumentation in the next several years.

  18. A neural signature of the unique hues

    PubMed Central

    Forder, Lewis; Bosten, Jenny; He, Xun; Franklin, Anna

    2017-01-01

    Since at least the 17th century there has been the idea that there are four simple and perceptually pure “unique” hues: red, yellow, green, and blue, and that all other hues are perceived as mixtures of these four hues. However, sustained scientific investigation has not yet provided solid evidence for a neural representation that separates the unique hues from other colors. We measured event-related potentials elicited from unique hues and the ‘intermediate’ hues in between them. We find a neural signature of the unique hues 230 ms after stimulus onset at a post-perceptual stage of visual processing. Specifically, the posterior P2 component over the parieto-occipital lobe peaked significantly earlier for the unique than for the intermediate hues (Z = −2.9, p = 0.004). Having identified a neural marker for unique hues, fundamental questions about the contribution of neural hardwiring, language and environment to the unique hues can now be addressed. PMID:28186142

  19. New signatures of flavor violating Higgs couplings

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping

    2016-06-01

    We explore several novel LHC signatures arising from quark or lepton flavor violating couplings in the Higgs sector, and we constrain such couplings using LHC data. Since the largest signals are possible in channels involving top quarks or tau leptons, we consider in particular the following flavor violating processes: (1) pp → thh (top plus di-Higgs final state) arising from a dimension six coupling of up-type quarks to three insertions of the Higgs field. We develop a search strategy for this final state and demonstrate that detection is possible at the high luminosity LHC if flavor violating top-up-Higgs couplings are not too far below the current limit. (2) pp → tH 0, where H 0 is the heavy neutral CP-even Higgs boson in a two Higgs doublet model (2HDM). We consider the decay channels H 0 → tu, WW, ZZ, hh and use existing LHC data to constrain the first three of them. For the fourth, we adapt our search for the thh final state, and we demonstrate that in large regions of the parameter space, it is superior to other searches, including searches for flavor violating top quark decays ( t → hq). (3) H 0 → τ μ, again in the context of a 2HDM. This channel is particularly well motivated by the recent CMS excess in h → τ μ, and we use the data from this search to constrain the properties of H 0.

  20. Advanced techniques in current signature analysis

    SciTech Connect

    Smith, S.F.; Castleberry, K.N.

    1992-03-01

    In general, both ac and dc motors can be characterized as weakly nonlinear systems, in which both linear and nonlinear effects occur simultaneously. Fortunately, the nonlinearities are generally well behaved and understood and an be handled via several standard mathematical techniques already well developed in the systems modeling area; examples are piecewise linear approximations and Volterra series representations. Field measurements of numerous motors and motor-driven systems confirm the rather complex nature of motor current spectra and illustrate both linear and nonlinear effects (including line harmonics and modulation components). Although previous current signature analysis (CSA) work at Oak Ridge and other sites has principally focused on the modulation mechanisms and detection methods (AM, PM, and FM), more recent studies have been conducted on linear spectral components (those appearing in the electric current at their actual frequencies and not as modulation sidebands). For example, large axial-flow compressors ({approximately}3300 hp) in the US gaseous diffusion uranium enrichment plants exhibit running-speed ({approximately}20 Hz) and high-frequency vibrational information (>1 kHz) in their motor current spectra. Several signal-processing techniques developed to facilitate analysis of these components, including specialized filtering schemes, are presented. Finally, concepts for the designs of advanced digitally based CSA units are offered, which should serve to foster the development of much more computationally capable ``smart`` CSA instrumentation in the next several years. 3 refs.

  1. ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES

    SciTech Connect

    Zhu, Zhaohuan

    2015-01-20

    I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planet with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.

  2. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Wellfare, Michael R.; Chenault, David B.; Talele, Sunjay E.; Blume, Bradley T.; Richards, Mike; Prestwood, Lee

    1997-06-01

    Development of target acquisition and target recognition algorithms in highly cluttered backgrounds in a variety of battlefield conditions demands a flexible, high fidelity capability for synthetic image generation. Cost effective smart weapons research and testing also requires extensive scene generation capability. The Irma software package addresses this need through a first principles, phenomenology based scene generator that enhances research into new algorithms, novel sensors, and sensor fusion approaches. Irma was one of the first high resolution synthetic infrared target and background signature models developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory, the Irma model was used exclusively to generate IR scenes for smart weapons research and development. in 1987, Nichols Research Corporation took over the maintenance of Irma and has since added substantial capabilities. The development of Irma has culminated in a program that includes not only passive visible, IR, and millimeter wave (MMW) channels but also active MMW and ladar channels. Each of these channels is co-registered providing the capability to develop algorithms for multi-band sensor fusion concepts and associated algorithms. In this paper, the capabilities of the latest release of Irma, Irma 4.0, will be described. A brief description of the elements of the software that are common to all channels will be provided. Each channel will be described briefly including a summary of the phenomenological effects and the sensor effects modeled in the software. Examples of Irma multi- channel imagery will be presented.

  3. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  4. The postprocessing of quantum digital signatures

    NASA Astrophysics Data System (ADS)

    Wang, Tian-Yin; Ma, Jian-Feng; Cai, Xiao-Qiu

    2017-01-01

    Many novel quantum digital signature proposals have been proposed, which can effectively guarantee the information-theoretic security of the signature for a singe bit against forging and denying. Using the current basic building blocks of signing a single bit, we give a new proposal to construct an entire protocol for signing a long message. Compared with the previous work, it can improve at least 33.33% efficiency.

  5. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  6. Signature-based store checking buffer

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-06-02

    A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.

  7. Chemical and Physical Signatures for Microbial Forensics

    SciTech Connect

    Cliff, John B.; Kreuzer, Helen W.; Ehrhardt, Christopher J.; Wunschel, David S.

    2012-01-03

    Chemical and physical signatures for microbial forensics John Cliff and Helen Kreuzer-Martin, eds. Humana Press Chapter 1. Introduction: Review of history and statement of need. Randy Murch, Virginia Tech Chapter 2. The Microbe: Structure, morphology, and physiology of the microbe as they relate to potential signatures of growth conditions. Joany Jackman, Johns Hopkins University Chapter 3. Science for Forensics: Special considerations for the forensic arena - quality control, sample integrity, etc. Mark Wilson (retired FBI): Western Carolina University Chapter 4. Physical signatures: Light and electron microscopy, atomic force microscopy, gravimetry etc. Joseph Michael, Sandia National Laboratory Chapter 5. Lipids: FAME, PLFA, steroids, LPS, etc. James Robertson, Federal Bureau of Investigation Chapter 6. Carbohydrates: Cell wall components, cytoplasm components, methods Alvin Fox, University of South Carolina School of Medicine David Wunschel, Pacific Northwest National Laboratory Chapter 7. Peptides: Peptides, proteins, lipoproteins David Wunschel, Pacific Northwest National Laboratory Chapter 8. Elemental content: CNOHPS (treated in passing), metals, prospective cell types John Cliff, International Atomic Energy Agency Chapter 9. Isotopic signatures: Stable isotopes C,N,H,O,S, 14C dating, potential for heavy elements. Helen Kreuzer-Martin, Pacific Northwest National Laboratory Michaele Kashgarian, Lawrence Livermore National Laboratory Chapter 10. Extracellular signatures: Cellular debris, heme, agar, headspace, spent media, etc Karen Wahl, Pacific Northwest National Laboratory Chapter 11. Data Reduction and Integrated Microbial Forensics: Statistical concepts, parametric and multivariate statistics, integrating signatures Kristin Jarman, Pacific Northwest National Laboratory

  8. Assessing the Quality of Bioforensic Signatures

    SciTech Connect

    Sego, Landon H.; Holmes, Aimee E.; Gosink, Luke J.; Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Anderson, Richard M.; Brothers, Alan J.; Corley, Courtney D.; Tardiff, Mark F.

    2013-06-04

    We present a mathematical framework for assessing the quality of signature systems in terms of fidelity, cost, risk, and utility—a method we refer to as Signature Quality Metrics (SQM). We demonstrate the SQM approach by assessing the quality of a signature system designed to predict the culture medium used to grow a microorganism. The system consists of four chemical assays designed to identify various ingredients that could be used to produce the culture medium. The analytical measurements resulting from any combination of these four assays can be used in a Bayesian network to predict the probabilities that the microorganism was grown using one of eleven culture media. We evaluated fifteen combinations of the signature system by removing one or more of the assays from the Bayes network. We demonstrated that SQM can be used to distinguish between the various combinations in terms of attributes of interest. The approach assisted in clearly identifying assays that were least informative, largely in part because they only could discriminate between very few culture media, and in particular, culture media that are rarely used. There are limitations associated with the data that were used to train and test the signature system. Consequently, our intent is not to draw formal conclusions regarding this particular bioforensic system, but rather to illustrate an analytical approach that could be useful in comparing one signature system to another.

  9. Kinematics of Signature Writing in Healthy Aging*

    PubMed Central

    Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.

    2014-01-01

    Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by elderly writers. The primary purpose of this study was to systematically examine age-related changes in signature kinematics in healthy writers. Forty-two healthy subjects between the ages of 60–91 years participated in this study. Signatures were recorded using a digitizing tablet and commercial software was used to examine the temporal and spatial stroke kinematics and pen pressure. Results indicated that vertical stroke duration and dysfluency increased with age, whereas vertical stroke amplitude and velocity decreased with age. Pen pressure decreased with age. We found that a linear model characterized the best-fit relationship between advanced age and handwriting movement parameters for signature formation. Male writers exhibited stronger age effects than female writers, especially for pen pressure and stroke dysfluency. The present study contributes to an understanding of how advanced age alters signature formation in otherwise healthy adults. PMID:24673648

  10. ID-Based Blind Signature and Proxy Blind Signature without Trusted PKG

    NASA Astrophysics Data System (ADS)

    Yu, Yihua; Zheng, Shihui; Yang, Yixian

    Private key escrow is an inherent disadvantage for ID-based cryptosystem, i.e., the PKG knows each signer's private key and can forge the signature of any signer. Blind signature plays a central role in electronic cash system. Private key escrow is more severe in electronic cash system since money is directly involved. To avoid the key escrow problem, we propose an ID-based blind signature and proxy blind signature without trusted PKG. If the dishonest PKG impersonates an honest signer to sign a document, the signer can provide a proof to convince that the PKG is dishonest.

  11. Signature extension through the application of cluster matching algorithms to determine appropriate signature transformations

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.; Rice, D. P.

    1976-01-01

    Signature extension is intended to increase the space-time range over which a set of training statistics can be used to classify data without significant loss of recognition accuracy. A first cluster matching algorithm MASC (Multiplicative and Additive Signature Correction) was developed at the Environmental Research Institute of Michigan to test the concept of using associations between training and recognition area cluster statistics to define an average signature transformation. A more recent signature extension module CROP-A (Cluster Regression Ordered on Principal Axis) has shown evidence of making significant associations between training and recognition area cluster statistics, with the clusters to be matched being selected automatically by the algorithm.

  12. Domain walls and their experimental signatures in s+is superconductors.

    PubMed

    Garaud, Julien; Babaev, Egor

    2014-01-10

    Arguments were recently advanced that hole-doped Ba(1-x)K(x)Fe2As2 exhibits the s+is state at certain doping. Spontaneous breaking of time-reversal symmetry in the s+is state dictates that it possess domain wall excitations. Here, we discuss what are the experimentally detectable signatures of domain walls in the s+is state. We find that in this state the domain walls can have a dipolelike magnetic signature (in contrast to the uniform magnetic signature of domain walls p+ip superconductors). We propose experiments where quench-induced domain walls can be stabilized by geometric barriers and observed via their magnetic signature or their influence on the magnetization process, thereby providing an experimental tool to confirm the s+is state.

  13. L1000CDS2: LINCS L1000 characteristic direction signatures search engine

    PubMed Central

    Duan, Qiaonan; Reid, St Patrick; Clark, Neil R; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Readhead, Ben; Tritsch, Sarah R; Hodos, Rachel; Hafner, Marc; Niepel, Mario; Sorger, Peter K; Dudley, Joel T; Bavari, Sina; Panchal, Rekha G; Ma’ayan, Avi

    2017-01-01

    The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS2. The L1000CDS2 search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS2 search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS2 to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS2, we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS2 we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS2 tool can be applied in many biological and biomedical settings, while improving the extraction of knowledge

  14. L1000CDS(2): LINCS L1000 characteristic direction signatures search engine.

    PubMed

    Duan, Qiaonan; Reid, St Patrick; Clark, Neil R; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Readhead, Ben; Tritsch, Sarah R; Hodos, Rachel; Hafner, Marc; Niepel, Mario; Sorger, Peter K; Dudley, Joel T; Bavari, Sina; Panchal, Rekha G; Ma'ayan, Avi

    2016-01-01

    The library of integrated network-based cellular signatures (LINCS) L1000 data set currently comprises of over a million gene expression profiles of chemically perturbed human cell lines. Through unique several intrinsic and extrinsic benchmarking schemes, we demonstrate that processing the L1000 data with the characteristic direction (CD) method significantly improves signal to noise compared with the MODZ method currently used to compute L1000 signatures. The CD processed L1000 signatures are served through a state-of-the-art web-based search engine application called L1000CDS(2). The L1000CDS(2) search engine provides prioritization of thousands of small-molecule signatures, and their pairwise combinations, predicted to either mimic or reverse an input gene expression signature using two methods. The L1000CDS(2) search engine also predicts drug targets for all the small molecules profiled by the L1000 assay that we processed. Targets are predicted by computing the cosine similarity between the L1000 small-molecule signatures and a large collection of signatures extracted from the gene expression omnibus (GEO) for single-gene perturbations in mammalian cells. We applied L1000CDS(2) to prioritize small molecules that are predicted to reverse expression in 670 disease signatures also extracted from GEO, and prioritized small molecules that can mimic expression of 22 endogenous ligand signatures profiled by the L1000 assay. As a case study, to further demonstrate the utility of L1000CDS(2), we collected expression signatures from human cells infected with Ebola virus at 30, 60 and 120 min. Querying these signatures with L1000CDS(2) we identified kenpaullone, a GSK3B/CDK2 inhibitor that we show, in subsequent experiments, has a dose-dependent efficacy in inhibiting Ebola infection in vitro without causing cellular toxicity in human cell lines. In summary, the L1000CDS(2) tool can be applied in many biological and biomedical settings, while improving the extraction of

  15. 21 CFR 11.70 - Signature/record linking.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.70 Signature/record linking. Electronic signatures and handwritten signatures executed to electronic records shall be linked to their respective...

  16. Electronic Signatures: They're Legal, Now What?

    ERIC Educational Resources Information Center

    Broderick, Martha A.; Gibson, Virginia R.; Tarasewich, Peter

    2001-01-01

    In the United States, electronic signatures recently became as legally binding as printed signatures. Reviews the status of electronic signatures in the United States, and compares it to work done by the United Nations. Summarizes the technology that can be used to implement electronic signatures. Discusses problems and open issues surrounding the…

  17. Transcriptomic signatures in cartilage ageing

    PubMed Central

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic

  18. The research of a new test method about dynamic target infrared spectral signature

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-hui; Gao, Jiao-bo; Chen, Qing; Luo, Yan-ling; Li, Jiang-jun; Gao, Ze-dong; Wang, Nan; Gao, Meng

    2014-11-01

    The research on infrared spectral target signature shows great military importance in the domain of IR detection Recognition, IRCM, IR image guide and ir stealth etc. The measurements of infrared spectral of tactical targets have been a direct but effective technique in providing signatures for both analysis and simulation to missile seeker designers for many years. In order to deal with the problem of dynamic target infrared spectral signature, this paper presents a new method for acquiring and testing ir spectral radiation signatures of dynamic objects, which is based on an IR imager guiding the target and acquiring the scene at the same time, a FOV chopping scan infrared spectral radiometer alternatively testing the target and its background around ir spectral signature.ir imager and spectral radiometer have the same optical axis. The raw test data was processed according to a new deal with method. Principles and data processing methods were described in detail, test error also analyzed. Field test results showed that the method described in the above is right; the test error was reduced smaller, and can better satisfy the needs of acquiring dynamic target ir spectral signature.

  19. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  20. Efficient Unrestricted Identity-Based Aggregate Signature Scheme

    PubMed Central

    Yuan, Yumin; Zhan, Qian; Huang, Hua

    2014-01-01

    An aggregate signature scheme allows anyone to compress multiple individual signatures from various users into a single compact signature. The main objective of such a scheme is to reduce the costs on storage, communication and computation. However, among existing aggregate signature schemes in the identity-based setting, some of them fail to achieve constant-length aggregate signature or require a large amount of pairing operations which grows linearly with the number of signers, while others have some limitations on the aggregated signatures. The main challenge in building efficient aggregate signature scheme is to compress signatures into a compact, constant-length signature without any restriction. To address the above drawbacks, by using the bilinear pairings, we propose an efficient unrestricted identity-based aggregate signature. Our scheme achieves both full aggregation and constant pairing computation. We prove that our scheme has existential unforgeability under the computational Diffie-Hellman assumption. PMID:25329777