Science.gov

Sample records for iea etsap modelling

  1. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    NASA Astrophysics Data System (ADS)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  2. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  3. IEA Wind Energy Annual Report 2000

    SciTech Connect

    Not Available

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  4. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  5. Wind power forecasting: IEA Wind Task 36 & future research issues

    NASA Astrophysics Data System (ADS)

    Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.

    2016-09-01

    This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.

  6. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  7. IEA BESTEST Multi-Zone Non-Airflow In-Depth Diagnostic Cases: Preprint

    SciTech Connect

    Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

    2011-11-01

    This paper documents a set of in-depth diagnostic test cases for multi-zone heat transfer models that do not include the heat and mass transfer effects of airflow between zones. The multi-zone non-airflow test cases represent an extension to IEA BESTEST (Judkoff and Neymark 1995a).

  8. Second IEA Mathematics Study. Suggested Tables of Specifications for the IEA Mathematics Tests. Working Paper I.

    ERIC Educational Resources Information Center

    International Association for the Evaluation of Educational Achievement, Wellington (New Zealand).

    This working paper presents specifications for the test items to be used in the second mathematics study to be conducted by the International Association for the Evaluation of Educational Achievement (IEA). A content-by-behaviors grid is presented for two population levels, with specifics for each dimension outlines and examples of test items…

  9. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  10. IEA predicts late '80s oil crisis, urges conservation

    SciTech Connect

    Betts, M.

    1982-10-18

    The International Energy Agency (IEA) is urging industrial conservation to offset a major oil crisis in the late 1980s. IEA foresees that growing demand and shrinking production will cause price increases and market disruptions. Their concern is that industrialists are misreading the market signals of the current oil glut and stable prices. IEA urges oil-importing countries to conserve energy and to substitute more non-oil energy. Among its recommendations are heat-recovery technology, decontrol of energy prices, and government efficiency standards. (DCK)

  11. Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen

    SciTech Connect

    Bolton, J.R.

    1996-09-30

    The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot

  12. Achievement Data in IEA Studies and Simpson's Paradox

    ERIC Educational Resources Information Center

    Zuzovsky, Ruth; Steinberg, David M.; Libman, Zipi

    2011-01-01

    This paper is meant to highlight the occurrence of Simpson's Paradox when using aggregated data obtained from two IEA studies in Israel, while ignoring the effect of a powerful intervening variable in the local context--the ethnicity factor. It will demonstrate faulty conclusions regarding either the absence of relationships between a contextual…

  13. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    SciTech Connect

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  14. A second solar array is moved to the IEA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility help guide an overhead crane toward a workstand containing a solar array in order to move it for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  15. A second solar array is moved to the IEA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility get ready to attach an overhead crane (center top) to the solar array below it to move the array for installation onto the Integrated Equipment Assembly (IEA). A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  16. A second solar array is moved to the IEA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The overhead crane carrying a solar array turns on its axis to move the array to the Integrated Equipment Assembly (IEA) for installation. A component of the International Space Station, the solar array is the second one being installed on the IEA. The arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  17. IEA Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    SciTech Connect

    Evans, Meredydd; Meier, Alan; Runci, Paul J.

    2008-08-05

    This guide presents insights and guidance from DOE’s gathered through longstanding and extensive participation in IEA implementing agreements (IAs) and annexes. Even though DOE has been a key participant in international research activities through the IEA since the 1970s, the experience, knowledge, and institutional memory associated with these activities can be lost or forgotten easily as key DOE managers retire or leave the department. The guide seeks to assemble in a single reference some of the learning that has occurred through participation in IEA IAs as a guide for BTP managers currently responsible for IAs and for those who might consider entering into new IEA activities in the future.

  18. Open Session IEA General Assembly (24th, Enschede, Netherlands, August 15-19, 1983).

    ERIC Educational Resources Information Center

    Eggen, T. J. H. M., Ed.

    Ten papers, four general overviews,, and three commentaries delivered at the General Assembly of the International Association for the Evaluation of Educational Achievement (IEA) in 1983 are presented. The papers include: (1) "Why Join IEA?" (J. P. Keeves); (2) "Research and Policymaking in Education: An International Perspective" (T. Husen); and…

  19. Energy policies of IEA countries: Norway, 1997 review

    SciTech Connect

    1997-12-29

    This IEA report provides a comprehensive, in-depth assessment of the energy policies of Norway, including recommendations on future policy developments. The report highlights the electricity sector, where the impressive reforms allow for all consumers to choose their supplier. The report describes in considerable detail the first international electricity spot and financial exchange market, and also covers the diversification of the fully hydro based system to bring on gas-fired generation. The report describes the significance of the North Sea petroleum resources whose production has placed Norway as the second largest oil exporting country after Saudi Arabia. Increased production has been facilitated by adapting the licensing regime to provide more incentives for investment and development. These achievements and suggested further steps are discussed here. The report also examines the pivotal position of Norwegian natural gas in the European market, a market which is poised for change, and calls for critical evaluation of the state`s role. It acknowledges that hydrocarbon developments in Norway have enhanced the security of supply for energy consuming countries. Other issues highlighted in the report include Norway`s position at the forefront on international efforts to respond to global environmental concerns. This report forms part of the a series of periodic in-depth reviews conducted and discussed by the IEA Member Countries on a four-year cycle.

  20. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    SciTech Connect

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  1. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own

  2. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    SciTech Connect

    Elam, Carolyn C. )

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  3. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  4. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  5. Proceedings of the IEA implementing agreement on photovoltaic power systems. Annex 4 workshop

    SciTech Connect

    1996-01-01

    The International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems (PVPS), established in 1993, is a collaborative effort of sponsoring countries to reduce costs of technology applications, increase awareness of potential value, and foster market deployment of PV. Task 4, the Modeling of Distributed Photovoltaic Power Generation in Support of the Electric Grid, is one of six project work areas established under the Implementing Agreement. The work under Task 4 has been assigned to Annex 4. Although Task 4 was framed in 1993, no progress had been made in implementation as of mid-1995. The Annex 4 Workshop, described herein, was a focused effort by the participants to redefine the issuer in light of today`s knowledge, and to gain interest among potential collaborators and participants. The purpose of the workshop was to determine the current status of methods for evaluating the benefits of and planning for grid-connected PV systems and to establish a plan for further action according to the needs and priorities of participants.

  6. Evaluation of advanced sodium receiver losses during operation of the IEA/SSPS central receiver system

    SciTech Connect

    Carmona, R.; Rosa, F.; Jacobs, H.; Sanchez, M.

    1989-02-01

    This article presents the measurements and experiments conducted on the external receiver: the so-called Advanced Sodium Receiver (ASR) of the Small Solar Power Systems (SSPS) Project of the International Energy Agency (IEA) in southern Spain. The basis of this experiment was to provide loss measurements for later use in determining receiver performance. The tests to evaluate thermal losses consisted in operating the receiver with the doors open and circulating the sodium in normal and reverse flow without providing any incident power from the heliostat field (flux-off technique). In this way, total thermal losses are calculated as the energy lost by the sodium. Radiative losses have been calculated based on theoretical calculations and some results have been compared with infrared thermography measurements. Conductive losses are small and have been estimated by flux-off experiments with the receiver doors closed. Convective losses were evaluated subtracting radiative and conductive losses from the total thermal losses. Optical losses were assessed using absorptance measurements of the receiver coating. A simplified analytical model has been developed to calculate losses and ASR efficiency during operation. In spite of the method's simplicity, the results are very similar to those found by other investigators, verified simulation programs and test results.

  7. Proceedings of the ninth IEA workshop on radiation effects in ceramic insulators

    SciTech Connect

    Zinkle, S.J.; Burn, G.L.; Hodgson, E.R.; Shikama, T.

    1997-12-31

    Several IEA workshops have been held over the past few years to discuss the growing number of experimental studies on the intriguing phenomenon of radiation induced electrical degradation (RIED). In the past year, several new RIED irradiation experiments have been performed which have a significant impact on the understanding of the RIED phenomenon. These experiments include a HFIR neutron irradiation experiment on 12 different grades of single- and poly-crystal alumina (450 C, {approximately}3 dpa, 200 V/mm) and several additional neutron, electron and light ion irradiation experiments. The primary objective of the IEA workshop was to review the available RIED studies on ceramic insulators. Some discussion of recent work in other areas such as loss tangent measurements, mechanical strength, etc. occurred on the final afternoon of the workshop. The IEA workshop was held in conjunction with a US-Japan JUPITER program experimenter`s workshop on dynamic radiation effects in ceramic insulators.

  8. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1996-12-31

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  9. Civic Education across Countries: Twenty-four National Case Studies from the IEA Civic Education Project.

    ERIC Educational Resources Information Center

    Torney-Purta, Judith; Schwille, John; Amadeo, Jo-Ann

    This volume reports the results of the first phase of the Civic Education Study conducted by International Association for the Evaluation of Educational Achievement (IEA). During 1996 and 1997, researchers in 24 countries collected documentary evidence on the circumstances, contents, and processes of civic education in response to a common set of…

  10. Summary of the IEA Workshop on Alpha Physics and Tritium Issues in Large Tokamaks

    SciTech Connect

    Cheng, C.Z.; Stratton, B.; Zweben, S.J.; Pitcher, C.S.

    1993-11-01

    A brief summary is presented of the talks given during this meeting, which was held at PPPL and sponsored by the IEA (International Energy Agency) as part of the Large Tokamak collaboration. These talks are summarized into four sessions: tritium issues in large tokamaks, alpha particle simulation experiments, alpha particle theory, and alpha particle diagnostics.

  11. Methodological Issues in Comparative Educational Studies: The Case of the IEA Reading Literacy Study.

    ERIC Educational Resources Information Center

    Binkley, Marilyn, Ed.; And Others

    This report discusses various methodological issues confronted in the Reading Literacy Study conducted under the auspices of the International Association for the Evaluation of Educational Achievement (IEA) and issues relating to analysis of the data. The study analyzed in the report involved fourth- and ninth-grade students (9-year-olds and…

  12. Reading Literacy in an International Perspective: Collected Papers from the IEA Reading Literacy Study.

    ERIC Educational Resources Information Center

    Binkley, Marilyn, Ed.; And Others

    Presenting nine papers from the IEA (International Association for the Evaluation of Educational Achievement) Reading Literacy Study that place results in an international perspective, this report address factors related to variation in literacy outcomes, both across and within countries; the teaching of reading; and the quality of life in…

  13. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  14. Summary of the IEA workshop on radiation effects in ceramic insulators

    SciTech Connect

    Zinkle, S.J.

    1996-04-01

    A brief summary is given of research on radiation effects in ceramic insulators for fusion energy application performed during the last two years in Europe, Canada, Japan, the Russian Federation, the Ukraine and the United States. The IEA round-robin radiation induced electrical degradation (RIED) experiment on Wesgo AL995 polycrystalline alumina has been completed by 5 research groups, with none of the groups observing clear indications of REID.

  15. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  16. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    SciTech Connect

    Vitina, Aisma; Luers, Silke; Wallasch, Anna-Kathrin; Berkhout, Volker; Duffy, Aidan; Cleary, Brendan; Husabo, Leif I.; Weir, David E.; Lacal-Arantegui, Roberto; Hand, M. Maureen; Lantz, Eric; Belyeu, Kathy; Wiser, Ryan; Bolinger, Mark; Hoen, Ben

    2015-06-12

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent the various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.

  17. Recurring issues in the IEA, the discipline and the profession of ergonomics/human factors.

    PubMed

    Wilson, John R

    2012-01-01

    Although the past 25 years have seen many apparently new challenges for the academic discipline and the professional practice of ergonomics/human factors, and for the International Ergonomics Association, many issues in fact have recurred over the period. This paper takes the relevant decades and de3scribes the internal and external priorities of the IEA at the time, the main developments for researchers and practitioners, and the author's own professional interests at the time..Such an admittedly partial description of events and priorities could feed into current attempts to strengthen the position of ergonomics/ human factors for this and subsequent decades.

  18. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  19. IEA Agreement on the Production and utilization of hydrogen: 1998 annual report

    SciTech Connect

    Elam, Carolyn C. )

    1999-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including its guiding principles. The Chairman's report section includes highlights of the agreement for 1998. Annex reports are given on various tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage. Lastly, a feature article by Karsten Wurr, E3M Material Consulting, GmbH, Hamburg Germany, is included titled 'Hydrogen in Material Science and Technology: State of the Art and New Tendencies'.

  20. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    SciTech Connect

    Elam, Carolyn C.

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  1. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    SciTech Connect

    Elam, Carolyn C. )

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  2. IEA's TIMSS 2003 International Report on Achievement in the Mathematics Cognitive Domains: Findings from a Developmental Project

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Foy, Pierre

    2005-01-01

    This report documents the process undertaken to produce scales in three cognitive domains: knowing, applying, and reasoning. Included are the final scales showing differences among countries, as well as within countries. TIMSS 2003 is the third and most recently completed round of IEA's Trends in International Mathematics and Science Study, a…

  3. Comparing Civic Competence among European Youth: Composite and Domain-Specific Indicators Using IEA Civic Education Study Data

    ERIC Educational Resources Information Center

    Hoskins, Bryony Louise; Barber, Carolyn; Van Nijlen, Daniel; Villalba, Ernesto

    2011-01-01

    Addressing the European Union monitoring of civic competence, this article presents a composite indicator of civic competence and four domain indicators. The data used are from the 1999 IEA Civic Education study of 14-year-olds in school. The results demonstrate the complexity of the various influences on the development of civic competencies…

  4. Children's Activities and Their Effect on Child Development: The Results of the IEA Pre-primary Project in Poland.

    ERIC Educational Resources Information Center

    Karwowska-Struczyk, Malgorzata

    1998-01-01

    Describes early childhood education research done in Poland as part of the IEA Pre-primary Quality of Life project. Observations discussed include: the children's activities, teacher behavior, management of children's time in kindergarten, the relationship between these variables, and their connection with the development of 4- to 7-year-old…

  5. Torsten Husén--A Co-Founder and Chairman of IEA from 1962 to 1978

    ERIC Educational Resources Information Center

    Genova, Teodora

    2015-01-01

    This paper reviews the work and contribution of one of the most influential comparativists in education--Torsten Husén in the period when he was a co-founder and chairman of the International Association for the Evaluation of Educational Achievement (IEA) in the 60 and 70 decades of the 20th century. At that particular time, the first major…

  6. Early Childhood Settings in 15 Countries: What Are Their Structural Characteristics? The IEA Preprimary Project, Phase 2.

    ERIC Educational Resources Information Center

    Olmsted, Patricia P., Ed.; Montie, Jeanne, Ed.

    This is the second of four monographs reporting the findings of Phase 2 of the International Association for the Evaluation of Educational Achievement (IEA) Preprimary Project, which presents data on the physical characteristics of children's early childhood settings. Early childhood settings were documented in the following 15 countries: (1)…

  7. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  8. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    SciTech Connect

    Parsons, B.; Ela, E.; Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J.; Estanqueiro, A.; Gomez, E.; Smith, J. C.

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  9. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    SciTech Connect

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that

  10. The IEA contribution to the transition of Ergonomics from research to practice.

    PubMed

    Caple, David C

    2010-10-01

    The future growth of ergonomics as a scientific discipline will require a greater focus on methods to transition research findings into practice. Whilst the International Ergonomics Association (IEA) and the Federated Ergonomics Societies provide opportunities to promote exchange on ergonomics research and collaboration in research programs, the future sustainability of the domain will be dependent on the provision of ongoing educational opportunities in ergonomics and the transitioning of the research findings into practice. This transition will require greater external focus outside the ergonomics profession in working in collaboration and partnership with other professional associations, governments and international agencies. Practical tools that are targeted towards particular user groups within the community, workplace, and governments will enhance the opportunities for the transition of ergonomics research into practice. Focus on extramural initiatives such as Ergonomics Checkpoints, integration of the ergonomics design process into the International Organisation for Standardization Guidelines, and the incorporation of ergonomics into the World Health Organisation research programs will ensure that the positioning of ergonomics will continue at an international level.

  11. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  12. IEA Energy conservation in the iron and steel industry. [US and Western Europe

    SciTech Connect

    Tunnah, B.G.

    1981-01-01

    The NATO Committee on the Challenges of Modern Society research program, under the auspices of the IEA, had the objectives of collecting data on material requirements and energy-consumption patterns in selected energy-intensive industries in the US and Western Europe, of identifying technologies and operating practices with the potential for energy conservation in those industries, and of recommending research projects that could lead to improved energy efficiency. The steel industry was selected for analysis and ideas for an international cooperative program were developed. Representatives from various countries conducted meetings and the form of an implementing agreement for a research and development program was finalized in December, 1980. The program includes three technical areas: hot-surface inspection, heat recovery, and coal gasification. Hot-surface inspection methods to be demonstrated are: optical, induction, electromagnetic ultrasonic, electromagnetic ultrasonic surface testing methods, and eddy current method for hot surface inspection and an infrared system (possibly). Three heat-recovery projects are: ceramic heat wheel development; demonstration of granular bed/heat pipe system for heat recovery; and demonstration of tubular ceramic recuperators. Processes in coal gasification are: converter process, gas treatment, and iron treatment. Each project is described in detail. (MCW)

  13. Summary of the 9th IEA workshop on radiation effects in ceramic insulators

    SciTech Connect

    Zinkle, S.J.; Hodgson, E.R.; Shikama, T.

    1997-08-01

    Twenty one scientists attended an IEA workshop in Cincinnati, Ohio on May 8-9, 1997, which was mainly devoted to reviewing the current knowledge base on the phenonenon of radiation induced electrical degradation in ceramic insulators. Whereas convincing evidence for bulk RIED behavior has been observed by two research groups in sapphire after electron irradiation, definitive levels of bulk RIED have not been observed in high purity Al{sub 2}O{sub 3} by several research groups during energetic ion or fission neutron irradiation. Possible reasons for the conflicting RIED results obtained by different research groups were discussed. It was conducted that RIED does not appear to be of immediate concern for near-term fusion devices such as ITER. However, continued research on the RIED phenomenon with particular emphasis on electron irradiations of single crystal alumina was recommended in order to determine the underlying physical mechanisms. This will allow a better determination of whether RIED might occur under any of the widely varying experimental conditions in a fusion energy device. Several critical issues which are recommended for future study were outlined by the workshop attendees.

  14. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    SciTech Connect

    Vitina, Aisma; Lüers, Silke; Wallasch, Anna-Kathrin; Berkhout, Volker; Duffy, Aidan; Cleary, Brendan; Husabø, Lief I.; Weir, David E.; Lacal-Arántegui, Roberto; Hand, Maureen; Lantz, Eric; Belyeu, Kathy; Wiser, Ryan H; Bolinger, Mark; Hoen, Ben

    2015-06-01

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  15. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling

    SciTech Connect

    Jonkman, J.; Butterfield, S.; Passon, P.; Larsen, T.; Camp, T.; Nichols, J.; Azcona, J.; Martinez, A.

    2008-01-01

    This paper presents an overview and describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Annex XXIII.

  16. The Second IEA International Research Conference: Proceedings of the IRC-2006. Volume 1: Trends in International Mathematics and Science Study (TIMSS)

    ERIC Educational Resources Information Center

    Wagemaker, Paula, Ed.

    2007-01-01

    As part of its mission, the International Association for the Evaluation of Educational Achievement (IEA) is committed to the development of the community of researchers who work in the area of assessment both nationally and internationally. The association also has a commitment to provide policymakers with the types of data and analyses that will…

  17. The Second IEA Science Study: Data Related to Precollege Science in the U.S.A. ERIC/SMEAC Science Education Digest No. 1, 1988.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.

    In 1986, a total of 11 different populations involving more than 1000 schools and more than 20,000 students participated in the Second IEA Science Study (SISS). This digest discusses findings related to curricular patterns and student outcomes. Ratings were done at grades 5, 9, and 12, to ensure that the achievement tests reflected the science…

  18. An International Perspective on Active Citizenship among Lower Secondary Students. Concepts and Measures Developed for the IEA Civic and Citizenship Education Study (ICCS)

    ERIC Educational Resources Information Center

    Schulz, Wolfram

    2007-01-01

    The new IEA "International Civic and Citizenship Education Study" (ICCS) will investigate the extent to which young people are prepared to undertake their roles as citizens across a range of countries. ICCS will survey 13-to-14-year old students in over 30 countries in the year 2009. The ICCS outcome data will be obtained from representative…

  19. Some Reflections on the Past and Future of Research Concerning the Civic Engagement of Youth within the Context of the IEA International Civic Education Study.

    ERIC Educational Resources Information Center

    Torney-Purta, Judith

    In 1993, the International Association for the Evaluation of Educational Achievement (IEA) decided to mount a 2-phase study of civic education, the first phase being more qualitative and the second more quantitative, to complete testing before the end of the 20th century and to be released early in the 21st century. Countries participating in…

  20. Third Program Plan for DOE's participation in the IEA Working Party on Energy-Conservation Research and Development

    SciTech Connect

    1980-06-01

    The Plan documents the projects currently being conducted by the working party in which DOE is participating and the projects proposed by DOE for consideration by other IEA member nations. Chapter 1 reviews current and planned DOE commitments to existing implementing agreements: buildings and community systems; energy conservation in building complexes; energy cascading; heat pumps with thermal storage; advanced heat pumps; combustion; heat transfer and heat exchangers; energy storage; cement manufacturer; and high-temperature materials for automotive propulsion systems. Chapter 2 reviews planned DOE commitments to new implementing agreements: combustion; pulp and paper; iron and steel; food processing; urban waste; and alcohol additives to fuel. Appendix A discusses the mechanisms for establishing implementing agreements and annexes. Appendix B lists working party members and Appendix C describes the evaluation methodology.

  1. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    SciTech Connect

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  2. Energy Simulation studies in IEA/SHC Task 18 advanced glazing and associated materials for solar and building applications

    SciTech Connect

    Sullivan, R.; Selkowitz, S.; Lyons, P.

    1995-04-01

    Researchers participating in IEA/SHC Task 18 on advanced glazing materials have as their primary objective the development of new innovative glazing products such as high performance glazings, wavelength selective glazings, chromogenic optical switching devices, and light transport mechanisms that will lead to significant energy use reductions and increased comfort in commercial and residential buildings. Part of the Task 18 effort involves evaluation of the energy and comfort performance of these new glazings through the use of various performance analysis simulation tools. Eleven countries (Australia, Denmark, Finland, Germany, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, and the United States) are contributing to this multi-year simulation study to better understand the complex heat transfer interactions that determine window performance. Each country has selected particular simulation programs and identified the following items to guide the simulation tasks: (1) geographic locations; (2) building types; (3) window systems and control strategies; and (4) analysis parameters of interest. This paper summarizes the results obtained thus far by several of the research organizations.

  3. Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements

    PubMed Central

    Song, Ahram; Chang, Anjin; Choi, Jaewan; Choi, Seokkeun; Kim, Yongil

    2015-01-01

    Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA) and Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials. PMID:25625907

  4. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory.

  5. Latino Adolescents' Civic Development in the United States: Research Results from the IEA Civic Education Study

    ERIC Educational Resources Information Center

    Torney-Purta, Judith; Barber, Carolyn H.; Wilkenfeld, Britt

    2007-01-01

    Many studies have reported gaps between Latino and non-Latino adolescents in academic and political outcomes. The current study presents possible explanations for such gaps, both at the individual and school level. Hierarchical linear modeling is employed to examine data from 2,811 American ninth graders (approximately 14 years of age) who had…

  6. The Second IEA International Research Conference: Proceedings of the IRC-2006. Volume 2: Civic Education Study (CivEd), Progress in International Reading Literacy Study (PIRLS), Second Information Technology in Education Study (SITES)

    ERIC Educational Resources Information Center

    Wagemaker, Paula, Ed.

    2007-01-01

    As part of its mission, the International Association for the Evaluation of Educational Achievement (IEA) is committed to the development of the community of researchers who work in the area of assessment both nationally and internationally. The association also has a commitment to provide policymakers with the types of data and analyses that will…

  7. TEDS-M Encyclopedia: A Guide to Teacher Education Context, Structure, and Quality Assurance in 17 Countries. Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M)

    ERIC Educational Resources Information Center

    Schwille, John, Ed.; Ingvarson, Lawrence, Ed.; Holdgreve-Resendez, Richard, Ed.

    2013-01-01

    The IEA Teacher Education and Development Study in Mathematics (TEDS-M) is the first large-scale international study of the preparation of primary and lower-secondary teachers. The study investigated the pedagogical and subject-specific knowledge that future primary and lower secondary school teachers acquire during their mathematics teacher…

  8. An Analysis of Teacher Education Context, Structure, and Quality-Assurance Arrangements in TEDS-M Countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M)

    ERIC Educational Resources Information Center

    Ingvarson, Lawrence; Schwille, John; Tatto, Maria Teresa; Rowley, Glenn; Peck, Ray; Senk, Sharon L.

    2013-01-01

    The Teacher Education and Development Study (TEDS-M) is the first crossnational study to examine the mathematics preparation of future teachers for both primary and secondary school levels. The study, conducted under the auspices of the International Association for the Evaluation of Educational Achievement (IEA), collected data from…

  9. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    SciTech Connect

    Sacuta, Norm; Young, Aleana; Worth, Kyle

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  10. Effective Civic Education: An Educational Effectiveness Model for Explaining Students' Civic Knowledge

    ERIC Educational Resources Information Center

    Isac, Maria Magdalena; Maslowski, Ralf; van der Werf, Greetje

    2011-01-01

    In this study, a comprehensive educational effectiveness model is tested in relation to student's civic knowledge. Multilevel analysis was applied on the dataset of the IEA Civic Education Study (CIVED; Torney-Purta, Lehmann, Oswald, & Schulz, 2001), which was conducted among junior secondary-school students (age 14), their schools, and their…

  11. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  12. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  13. Lost carbon emissions: The role of non-manufacturing 'other industries' and refining in industrial energy use and carbon emissions in IEA countries

    SciTech Connect

    Murtishaw, Scott; Schipper, Lee; Unander, Fridtjof; Karbuz, Sohbet; Khrushch, Marta

    2000-05-01

    We present a review of trends in energy use and output in branches of industry not often studied in detail: petroleum refining and what we call the other industries--agriculture, mining, and construction. From a sample of IEA countries we analyze eight with the most complete data from the early 1970s to the mid-1990s. We carry out a decomposition analysis of changes in energy use and carbon emissions in the ''other industries'' sector. We also review briefly the impact of including refining in the evolution of manufacturing energy use, usually studied without refining. Despite many data problems, we present our results as a way of enticing others to study these important ''lost'' sectors more carefully. We have five basic findings. First, ''other industries'' tends to be a minor consumer of energy in many countries, but in some, particularly Denmark, the US, and Australia, mining or agriculture can be a major sector too large to be overlooked. Second, refining is an extremely energy intensive industry which despite a relatively low share of value added consumes as much as 20 percent of final energy use in manufacturing. Third, as a result of a slower decline in the carbon-intensity of these industries vis-a-vis the manufacturing industries, their share of industrial emissions has been rising. Fourth, for other industries variation in per capita output plays a relatively small role in differentiating per capita carbon emissions compared to the impact of subsectoral energy intensities. Finally, including this energy in CO2 calculations has little impact on overall trends, but does change the magnitude of emissions in most countries significantly. Clearly, these industries provide important opportunities for searching for carbon emissions reductions.

  14. Second generation sodium heat pipe receiver for a USAB V-160 Stirling engine: Evaluation of on-sun test results using the proposed IEA guidelines and analysis of heat pipe damage

    SciTech Connect

    Laing, D.; Traebing, C.

    1997-11-01

    Dish/Stirling technology has demonstrated the highest conversion efficiencies of all solar thermal conversion systems. At the DLR a second generation sodium heat pipe receiver for the Schlaich Bergermann und Partner (SBP) 9-kW{sub e} dish/Stirling system has been developed and constructed. Long-term operation occurred from Oct. 1992 until Aug. 1993 at the Plataforma Solar de Almeria (PSA) in Spain, accumulating 950 operating hours. The performance of the SBP 9-kW{sub e} system with a sodium heat pipe receiver is evaluated according to the guidelines for dish/Stirling performance evaluation by Stine and Powel, as proposed to the International Energy Agency (IEA). Tests were stopped due to a leak in the receiver absorber surface. The analysis of this damage is reported.

  15. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    SciTech Connect

    Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen; Radermacher, Reinhard

    2015-12-01

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage for several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.

  16. Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation

    SciTech Connect

    Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

    2009-03-01

    This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

  17. The Evolution of the IEA: A Memoir.

    ERIC Educational Resources Information Center

    Purves, Alan C.

    1987-01-01

    Chronicles the "biography" of the International Association for the Evaluation of Educational Achievement: its emergence from a confederacy of research colleagues in the late 1950s to an "empire" to its present state as a collection of satrapies, each concerned with a particular research project. Traces the development of various international…

  18. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    SciTech Connect

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  19. Renewable energy: GIS-based mapping and modelling of potentials and demand

    NASA Astrophysics Data System (ADS)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  20. HVAC BESTEST: A Procedure for Testing the Ability of Whole-Building Energy Simulation Programs to Model Space Conditioning Equipment: Preprint

    SciTech Connect

    Neymark, J,; Judkoff, R.; Knabe, G.; Le, H.-T.; Durig, M.; Glass, A.; Zweifel, G.

    2001-07-03

    Validation of Building Energy Simulation Programs consists of a combination of empirical validation, analytical verification, and comparative analysis techniques (Judkoff 1988). An analytical verification and comparative diagnostic procedure was developed to test the ability of whole-building simulation programs to model the performance of unitary space-cooling equipment that is typically modeled using manufacturer design data presented as empirically derived performance maps. Field trials of the method were conducted by researchers from nations participating in the International Energy Agency (IEA) Solar Heating and Cooling (SHC) Programme Task 22, using a number of detailed hourly simulation programs from Europe and the United States, including: CA-SIS, CLIM2000, PROMETHEUS, TRNSYS-TUD, and two versions of DOE-2.1E. Analytical solutions were also developed for the test cases.

  1. IEA/AIE-90; Proceedings of the 3rd International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Charleston, SC, July 15-18, 1990. Vols. 1 and 2

    SciTech Connect

    Matthews, M.M. )

    1990-01-01

    The present conference on industrial and engineering applications of artificial intelligence (AI) and expert systems (ESs) encompasses diagnostic and blackboard systems, vision, scheduling, intelligent database systems, AI manufacturing, qualitative models, intelligent interfaces, AI control, and natural language processing. Also addressed are knowledge-based systems, verification/validation, parallel/distributed systems, intelligent tutoring systems, machine learning, neural networks, robotics, knowledge acquisition, and AI techniques for the operative management of aircraft routing. Specific issues addressed include a hierarchical knowledge-based system for aircraft-image interpretation, a cognitive temporal model for planning in aircraft maintenance, applications of algorithm animation techniques, an ES for supporting technical modeling in engineering systems, airobotics, and an ES for the selection of industrial robots and its implementation in two environments.

  2. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  3. A toolkit for MSDs prevention--WHO and IEA context.

    PubMed

    Caple, David C

    2012-01-01

    Many simple MSD risk management tools have been developed by ergonomists for use by workers and employers with little or no training to undertake injury prevention programs in their workplace. However, currently there is no "toolkit" which places such tools within an holistic, participative ergonomics framework and provides guidance on how best to use individual tools. It is proposed that such an holistic approach should entail initial analysis and evaluation of underlying systems of work and related health and performance indicators, prior to focusing in assessment of MSD risks stemming from particular hazards. Depending on the context, more narrowly focused tools might then be selected to assess risk associated with jobs or tasks identified as problematic. This approach ensures that biomechanical risk factors are considered within a broad context of organizational and psychosocial risk factors. This is consistent with current research evidence on work- related causes of MSDs. PMID:22317323

  4. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  5. A second solar array is moved to the IEA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in the Space Station Processing Facility prepare an overhead crane they will use to move a solar array, a component of the International Space Station, for installation onto the Integrated Equipment Assembly. The solar array is the second one being installed. They are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  6. A second solar array is moved to the IEA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers help guide a solar array into position for installation on the Integrated Equipment Assembly. Solar Array Wing-3 is already in place. Components of the International Space Station, the arrays are scheduled to be launched on mission STS-97 in late November along with the P6 truss. The Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Each of the eight solar arrays will be 112 feet long by 39 feet wide. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station.

  7. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential

  8. Modelling 1-minute directional observations of the global irradiance.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  9. Switchable window modeling. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing

    SciTech Connect

    Reilly, S.; Selkowitz, S.; Winkelmann, F.

    1992-06-30

    This document presents the work conducted as part of Subtask A.1, High-Performance Glazing, of Task 12 of the IEA Solar Heating and Cooling Program. At the start of the task, the participants agreed that chromogenic technology (switchable glazing) held considerable promise, and that algorithms to accurately model their dynamic behavior were needed. The purpose of this subtask was to develop algorithms that could be incorporated into building energy analysis programs for predicting the thermal and optical performance of switchable windows. The work entailed a review of current techniques for modelling switchable glazing in windows and switchable windows in buildings and methods for improving upon existing modeling approaches. The proposed approaches correct some of the shortcomings in the existing techniques, and could be adapted for use in other similar programs. The proposed approaches generally provide more detailed calculations needed for evaluating the short-term (hourly and daily) impact of switchable windows on the energy and daylighting performance of a building. Examples of the proposed algorithms are included.

  10. Leadership Models.

    ERIC Educational Resources Information Center

    Freeman, Thomas J.

    This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…

  11. Models and role models.

    PubMed

    ten Cate, Jacob M

    2015-01-01

    Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. PMID:25871413

  12. Models, Fiction, and Fictional Models

    NASA Astrophysics Data System (ADS)

    Liu, Chuang

    2014-03-01

    The following sections are included: * Introduction * Why Most Models in Science Are Not Fictional * Typically Fictional Models in Science * Modeling the Unobservable * Fictional Models for the Unobservable? * References

  13. Overview of the Results of the IEA Studies in Reading and Literature.

    ERIC Educational Resources Information Center

    Purves, Alan C.

    A summary of the reading and literature studies undertaken by an international voluntary association of educational researchers from various countries is in this paper. The studies' major findings are listed, and certain student attributes--such as sex, socioeconomic status, reading and viewing habits, and parental involvement--are discussed as…

  14. Final draft: IEA Task 1. Report on Subtask D, optimization of solar heating and cooling systems

    SciTech Connect

    Freeman, T.L.

    1981-03-01

    A review of general techniques and specific methods useful in the optimization of solar heating and cooling systems is undertaken. A discussion of the state-of-the-art and the principal problems in both the simplified thermal performance analysis and economic analysis portions of the optimization problem are presented. Sample economic analyses are performed using several widely used economic criteria. The predicted thermal results of one typical, widely used simplified method is compared to detailed simulation results. A methodology for and the results of a sensitivity study of key economic parameters in the life cycle cost method are presented. Finally, a simple graphical optimization technique based on the life cycle cost method is proposed.

  15. Summary Article: IEA HPP Annex 36: Quality Installation / Quality Maintenance Sensitivity Studies

    DOE PAGESBeta

    Hourahan, Glenn; Domanski, Piotr; Baxter, Van D.

    2015-01-01

    The outcome from this Annex activity clearly identifies that poorly designed, installed, and/or maintained heat pumps operate inefficiently and waste considerable energy compared to their as-designed potential. Additionally, it is clear that small faults for a given field-observed practice are significant, that some attribute deviations (in various equipment applications and geographical locations) have a larger impact than others, and that multiple faults or deviations have a cumulative impact on heat pump performance.

  16. The IEA Six Subject Survey: An Empirical Study of Education in Twenty-One Countries.

    ERIC Educational Resources Information Center

    Walker, David A.

    The purpose of this book is to describe in nontechnical language the objectives, methods and findings of the six subject study conducted by the International Association for the Evaluation of Educational Achievement during the years 1966-1973. The six subjects covered in the study were Science, Reading Comprehension, Literature, English as a…

  17. The Effects of Schools on Achievement in Science. IEA Report 1975:1.

    ERIC Educational Resources Information Center

    Owen, John M.

    This study sought to identify factors based in schools which affected the performance of sixth form science students in Australian schools. Use was made of information collected during a study of science achievement by the International Association for the Evaluation of Educational Achievement. A sample of 37 schools was used, the probability of…

  18. The Global Education Industry: Lessons from Private Education in Developing Countries. IEA Studies in Education.

    ERIC Educational Resources Information Center

    Tooley, James

    This book focuses on the impact of private education in developing countries, such as Argentina, Brazil, Colombia, India, Indonesia, Peru, Romania, Russia, South Africa, and Zimbabwe. The private education sector is large and innovative in the countries studied and not the domain of the wealthy. Contrary to popular opinion, private education in…

  19. The International Attitudes and Knowledge of Adolescents in Nine Countries: The IEA Civic Education Survey

    ERIC Educational Resources Information Center

    Torney, Judith V.

    1977-01-01

    Data concerning political attitudes and knowledge were collected for 30,000 adolescents in nine countries. Findings indicate that students in countries with a high degree of international contact were more internationally minded. Sampling procedures are described. Available from: Elsevier Scientific Publishing Company, P.O. Box 211, Amsterdam, The…

  20. Mathematics Achievement in the Middle School Years. IEA's Third International Mathematics and Science Study (TIMSS).

    ERIC Educational Resources Information Center

    Beaton, Albert E.; And Others

    The Third International Mathematics and Science Study (TIMSS) is the largest and most ambitious study undertaken by the International Association for the Evaluation of Educational Achievement. Forty-five countries collected data in more than 30 languages. Five grade levels were tested in the two subject areas, so that more than half a million…

  1. Initial Findings from the IEA International Civic and Citizenship Education Study

    ERIC Educational Resources Information Center

    Schulz, Wolfram; Ainley, John; Fraillon, Julian; Kerr, David; Losito, Bruno

    2010-01-01

    The International Civic and Citizenship Education Study (ICCS) studied the ways in which countries prepare their young people to undertake their roles as citizens. It investigated student knowledge and understanding of civics and citizenship as well as student attitudes, perceptions, and activities related to civics and citizenship. It also…

  2. IEA Pre-Primary Study: Phase 1, National Research Report, 1991. Nigeria.

    ERIC Educational Resources Information Center

    Onibokun, Yemi

    This study examined the early childhood care of 4- to 5-year-old children in Nigeria. Data were obtained from 842 Parent Guardian Questionnaires from urban areas and 409 from rural areas. The first part of the report describes the characteristics of the sample population. These items include language used at home; household size and composition;…

  3. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  4. Challenges of oxyfuel combustion modeling for carbon capture

    NASA Astrophysics Data System (ADS)

    Kangwanpongpan, T.; Klatt, M.; Krautz, H. J.

    2012-04-01

    From the policies scenario from Internal Energy Agency (IEA) in 2010, global energy demand for coal climbs from 26% in 2006 to 29% in 2030 and most of demands for coal comes from the power-generation sector [1]. According to the new Copenhagen protocol [3], Global CO2 emission is rising from power generation due to an increasing world demand of electricity. For Energy-related CO2 emission in 2009, 43% of CO2 emissions from fuel combustion were produced from coal, 37% from oil and 20% from gas [4]. Therefore, CO2 capture from coal is the key factor to reduce greenhouse gas emission. Oxyfuel combustion is one of the promising technologies for capturing CO2 from power plants and subsequent CO2 transportation and storage in a depleted oil or gas field or saline-aquifer. The concept of Oxyfuel combustion is to remove N2 from the combustion process and burn the fuel with a mixture composed of O2 and CO2 together with recycled flue gas back into combustion chamber in order to produce a flue gas consisting mainly of CO2. This flue gas can be easily purified, compressed and transported to storage sites. However, Oxyfuel plants are still in the phase of pilot-scaled projects [5] and combustion in Oxyfuel conditions must be further investigated for a scale-up plant. Computational fluid dynamics (CFD) serves as an efficient tool for many years in Oxyfuel combustion researches [6-12] to provide predictions of temperature, heat transfer, and product species from combustion process inside furnace. However, an insight into mathematical models for Oxyfuel combustion is still restricted due to many unknown parameters such as devolatilization rate, reaction mechanisms of volatile reactions, turbulent gaseous combustion of volatile products, char heterogeneous reactions, radiation properties of gaseous mixtures and heat transfer inside and through furnace's wall. Heat transfer drastically changes due to an increasing proportion of H2O and CO2 in these Oxyfuel conditions and the degree

  5. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  6. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Astrophysics Data System (ADS)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  7. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  8. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  9. Mesoscale modelling methodology based on nudging to increase accuracy in WRA

    NASA Astrophysics Data System (ADS)

    Mylonas Dirdiris, Markos; Barbouchi, Sami; Hermmann, Hugo

    2016-04-01

    The offshore wind energy has recently become a rapidly growing renewable energy resource worldwide, with several offshore wind projects in development in different planning stages. Despite of this, a better understanding of the atmospheric interaction within the marine atmospheric boundary layer (MABL) is needed in order to contribute to a better energy capture and cost-effectiveness. Light has been thrown in observational nudging as it has recently become an innovative method to increase the accuracy of wind flow modelling. This particular study focuses on the observational nudging capability of Weather Research and Forecasting (WRF) and ways the uncertainty of wind flow modelling in the wind resource assessment (WRA) can be reduced. Finally, an alternative way to calculate the model uncertainty is pinpointed. Approach WRF mesoscale model will be nudged with observations from FINO3 at three different heights. The model simulations with and without applying observational nudging will be verified against FINO1 measurement data at 100m. In order to evaluate the observational nudging capability of WRF two ways to derive the model uncertainty will be described: one global uncertainty and an uncertainty per wind speed bin derived using the recommended practice of the IEA in order to link the model uncertainty to a wind energy production uncertainty. This study assesses the observational data assimilation capability of WRF model within the same vertical gridded atmospheric column. The principal aim is to investigate whether having observations up to one height could improve the simulation at a higher vertical level. The study will use objective analysis implementing a Cress-man scheme interpolation to interpolate the observation in time and in sp ace (keeping the horizontal component constant) to the gridded analysis. Then the WRF model core will incorporate the interpolated variables to the "first guess" to develop a nudged simulation. Consequently, WRF with and without

  10. An International Environmental Agreement for space debris mitigation among asymmetric nations

    NASA Astrophysics Data System (ADS)

    Singer, Michael J.; Musacchio, John T.

    2011-01-01

    We investigate how ideas from the International Environmental Agreement (IEA) literature can be applied to the problem of space debris mitigation. Space debris pollution is similar to other international environmental problems in that there is a potential for a "tragedy of the commons" effect: individual nations bear all the cost of their mitigation measures but share only a fraction of the benefit. As a consequence, nations have a tendency to underinvest in mitigation. Coalitions of nations, brought together by IEAs, have the potential to lessen the tragedy of the commons effect by pooling the costs and benefits of mitigation. This work brings together two recent modeling advances: (i) a game theoretic model for studying the potential gains from IEA cooperation between nations with asymmetric costs and benefits, (ii) an orbital debris model that gives the societal cost that specific actions, such as failing to deorbit an inactive spacecraft, have on the environment. We combine these two models with empirical launch-share data for a "proof of concept" of an IEA for a single mitigation measure—deorbiting spacecraft at the end of operational lifetime. Simulations of empirically derived and theoretical launch distributions among nations suggest the possibility that voluntary coalitions can provide significant deorbiting gains relative to nations acting in the absence of an IEA agreement.

  11. Models, Part IV: Inquiry Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discusses models for information skills that include inquiry-oriented activities. Highlights include WebQuest, which uses Internet resources supplemented with videoconferencing; Minnesota's Inquiry Process based on the Big Six model for information problem-solving; Indiana's Student Inquiry Model; constructivist learning models for inquiry; and…

  12. Supermatrix models

    SciTech Connect

    Yost, S.A.

    1991-05-01

    Radom matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two component plasma in one dimension. A stationary point of the model is described.

  13. Supermatrix models

    SciTech Connect

    Yost, S.A. . Dept. of Physics and Astronomy)

    1992-09-30

    In this paper, random matrix models based on an integral over supermatrices are proposed as a natural extension of bosonic matrix models. The subtle nature of superspace integration allows these models to have very different properties from the analogous bosonic models. Two choices of integration slice are investigated. One leads to a perturbative structure which is reminiscent of, and perhaps identical to, the usual Hermitian matrix models. Another leads to an eigenvalue reduction which can be described by a two-component plasma in one dimension. A stationary point of the model is described.

  14. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Rubesin, Morris W.

    1987-01-01

    Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.

  15. Architectural Models

    ERIC Educational Resources Information Center

    Levenson, Harold E.; Hurni, Andre

    1978-01-01

    Suggests building models as a way to reinforce and enhance related subjects such as architectural drafting, structural carpentry, etc., and discusses time, materials, scales, tools or equipment needed, how to achieve realistic special effects, and the types of projects that can be built (model of complete building, a panoramic model, and model…

  16. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  17. Hydrological models are mediating models

    NASA Astrophysics Data System (ADS)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  18. Model Experiments and Model Descriptions

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian

    1999-01-01

    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  19. Analytical Models

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A system-level design and analysis model was developed. This model was conceived to have several key elements: a solar pond thermodynamic performance model, a power generation subsystem model, and an economic analysis element. The basic approach was to create these elements or modules and refine them on an individual basis yet retain the capability to easily couple them into a full system design model. This building block approach allows for maximum flexibility and substitution of refined descriptions as the technology develops. A general overview of interconnecting these subsystem models is presented. The primary program control element will perform the administrative functions of data input, data output, information storage and transfer, and sequential calling of the subsystem models. From the point of view of the requirements of a system design model, a power conversion subsystem model was developed. The goal of the effort was a preliminary subsystem model compatible with the solar pond subsystem model so that a first order system simulation analysis could be performed.

  20. Modeling Pharmacokinetics.

    PubMed

    Bois, Frederic Y; Brochot, Céline

    2016-01-01

    Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharmacokinetic (PBPK) models provide realistic descriptions of xenobiotics' absorption, distribution, metabolism, and excretion processes. They model the body as a set of homogeneous compartments representing organs, and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a substance in various organs and body fluids. These models are well suited for performing extrapolations inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained from various sources (e.g., in vitro or in vivo experiments, structure-activity models). In this chapter, we describe the practical development and basic use of a PBPK model from model building to model simulations, through implementation with an easily accessible free software. PMID:27311461

  1. ICRF modelling

    SciTech Connect

    Phillips, C.K.

    1985-12-01

    This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs.

  2. Marine ecosystem regime shifts: challenges and opportunities for ecosystem-based management

    PubMed Central

    Levin, Phillip S.; Möllmann, Christian

    2015-01-01

    Regime shifts have been observed in marine ecosystems around the globe. These phenomena can result in dramatic changes in the provision of ecosystem services to coastal communities. Accounting for regime shifts in management clearly requires integrative, ecosystem-based management (EBM) approaches. EBM has emerged as an accepted paradigm for ocean management worldwide, yet, despite the rapid and intense development of EBM theory, implementation has languished, and many implemented or proposed EBM schemes largely ignore the special characteristics of regime shifts. Here, we first explore key aspects of regime shifts that are of critical importance to EBM, and then suggest how regime shifts can be better incorporated into EBM using the concept of integrated ecosystem assessment (IEA). An IEA uses approaches that determine the likelihood that ecological or socio-economic properties of systems will move beyond or return to acceptable bounds as defined by resource managers and policy makers. We suggest an approach for implementing IEAs for cases of regime shifts where the objectives are either avoiding an undesired state or returning to a desired condition. We discuss the suitability and short-comings of methods summarizing the status of ecosystem components, screening and prioritizing potential risks, and evaluating alternative management strategies. IEAs are evolving as an EBM approach that can address regime shifts; however, advances in statistical, analytical and simulation modelling are needed before IEAs can robustly inform tactical management in systems characterized by regime shifts.

  3. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  4. Climate Models

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.

    2012-01-01

    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  5. Phenomenological models

    SciTech Connect

    Braby, L.A.

    1990-09-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. A range of models covering different endpoints and phenomena has developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. 43 refs., 13 figs.

  6. Building models

    SciTech Connect

    Burr, M.T.

    1995-04-01

    As developers make progress on independent power projects around the world, models for success are beginning to emerge. Different models are evolving to create ownership structures that accomoate a complex system of regulatory requirements. Other frameworks make use of previously untapped fuel resources, or establish new sources of financing; however, not all models may be applied to a given project. This article explores how developers are finding new alternatives for overcoming development challenges that are common to projects in many countries.

  7. Calorimetry modeling

    SciTech Connect

    Robinson, C.E.

    1990-01-01

    A heat-flow calorimeter has been modeled on a Compaq PC, using the Algor Heat Transfer Modeling and Analysis Program, Algor Interactive Systems, Inc., Pittsburgh, PA. Employed in this application of the Algor finite element analysis program are two-dimensional axisymmetric thermal conductivity elements. The development of a computer calorimeter modeling program allows for the testing of new materials and techniques without actual fabrication of the calorimeter. 2 figs.

  8. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  9. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  10. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort.

  11. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort. PMID:25933424

  12. Model Selection for Geostatistical Models

    SciTech Connect

    Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.

    2006-02-01

    We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.

  13. Turbulence modeling

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1995-01-01

    The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.

  14. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  15. Modeling Sunspots

    ERIC Educational Resources Information Center

    Oh, Phil Seok; Oh, Sung Jin

    2013-01-01

    Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…

  16. Phonological Models.

    ERIC Educational Resources Information Center

    Ballard, W.L.

    1968-01-01

    The article discusses models of synchronic and diachronic phonology and suggests changes in them. The basic generative model of phonology is outlined with the author's reinterpretations. The systematic phonemic level is questioned in terms of its unreality with respect to linguistic performance and its lack of validity with respect to historical…

  17. Student Modelers.

    ERIC Educational Resources Information Center

    Confrey, Jere; Doerr, Helen M.

    1994-01-01

    Presents an argument for learner-centered modeling tools and approaches that take into account students' conceptions. Based on a theoretical argument for the interplay of grounded activity and systematic inquiry, the article reports on a study of an integrated science and mathematics high school class that investigated modeling activities.…

  18. Protein structure modeling with MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In this chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

  19. Linguistic models and linguistic modeling.

    PubMed

    Pedryez, W; Vasilakos, A V

    1999-01-01

    The study is concerned with a linguistic approach to the design of a new category of fuzzy (granular) models. In contrast to numerically driven identification techniques, we concentrate on budding meaningful linguistic labels (granules) in the space of experimental data and forming the ensuing model as a web of associations between such granules. As such models are designed at the level of information granules and generate results in the same granular rather than pure numeric format, we refer to them as linguistic models. Furthermore, as there are no detailed numeric estimation procedures involved in the construction of the linguistic models carried out in this way, their design mode can be viewed as that of a rapid prototyping. The underlying algorithm used in the development of the models utilizes an augmented version of the clustering technique (context-based clustering) that is centered around a notion of linguistic contexts-a collection of fuzzy sets or fuzzy relations defined in the data space (more precisely a space of input variables). The detailed design algorithm is provided and contrasted with the standard modeling approaches commonly encountered in the literature. The usefulness of the linguistic mode of system modeling is discussed and illustrated with the aid of numeric studies including both synthetic data as well as some time series dealing with modeling traffic intensity over a broadband telecommunication network.

  20. OSPREY Model

    SciTech Connect

    Veronica J. Rutledge

    2013-01-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  1. Model hydrographs

    USGS Publications Warehouse

    Mitchell, W.D.

    1972-01-01

    Model hydrographs are composed of pairs of dimensionless ratios, arrayed in tabular form, which, when modified by the appropriate values of rainfall exceed and by the time and areal characteristics of the drainage basin, satisfactorily represent the flood hydrograph for the basin. Model bydrographs are developed from a dimensionless translation hydrograph, having a time base of T hours and appropriately modified for storm duration by routing through reservoir storage, S=kOx. Models fall into two distinct classes: (1) those for which the value of x is unity and which have all the characteristics of true unit hydrographs and (2) those for which the value of x is other than unity and to which the unit-hydrograph principles of proportionality and superposition do not apply. Twenty-six families of linear models and eight families of nonlinear models in tabular form from the principal subject of this report. Supplemental discussions describe the development of the models and illustrate their application. Other sections of the report, supplemental to the tables, describe methods of determining the hydrograph characteristics, T, k, and x, both from observed hydrograph and from the physical characteristics of the drainage basin. Five illustrative examples of use show that the models, when properly converted to incorporate actual rainfall excess and the time and areal characteristics of the drainage basins, do indeed satisfactorily represent the observed flood hydrographs for the basins.

  2. Stereometric Modelling

    NASA Astrophysics Data System (ADS)

    Grimaldi, P.

    2012-07-01

    These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view

  3. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified. PMID:1811477

  4. Phenomenological models.

    PubMed

    Braby, L A

    1991-01-01

    The biological effects of ionizing radiation exposure are the result of a complex sequence of physical, chemical, biochemical, and physiological interactions which are modified by characteristics of the radiation, the timing of its administration, the chemical and physical environment, and the nature of the biological system. However, it is generally agreed that the health effects in animals originate from changes in individual cells, or possibly small groups of cells, and that these cellular changes are initiated by ionizations and excitations produced by the passage of charged particles through the cells. One way to begin a search for an understanding of health effects of radiation is through the development of phenomenological models of the response. Many models have been presented and tested in the slowly evolving process of characterizing cellular response. Different phenomena (LET dependence, dose rate effect, oxygen effect etc.) and different end points (cell survival, aberration formation, transformation, etc.) have been observed, and no single model has been developed to cover all of them. Instead, a range of models covering different end points and phenomena have developed in parallel. Many of these models employ similar assumptions about some underlying processes while differing about the nature of others. An attempt is made to organize many of the models into groups with similar features and to compare the consequences of those features with the actual experimental observations. It is assumed that by showing that some assumptions are inconsistent with experimental observations, the job of devising and testing mechanistic models can be simplified.

  5. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  6. A Model for Math Modeling

    ERIC Educational Resources Information Center

    Lin, Tony; Erfan, Sasan

    2016-01-01

    Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…

  7. Energy Models

    EPA Science Inventory

    Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...

  8. Modeling Arcs

    SciTech Connect

    Insepov, Z.; Norem, J.; Vetizer, S.; Mahalingam, S.

    2011-12-23

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  9. Programming models

    SciTech Connect

    Daniel, David J; Mc Pherson, Allen; Thorp, John R; Barrett, Richard; Clay, Robert; De Supinski, Bronis; Dube, Evi; Heroux, Mike; Janssen, Curtis; Langer, Steve; Laros, Jim

    2011-01-14

    A programming model is a set of software technologies that support the expression of algorithms and provide applications with an abstract representation of the capabilities of the underlying hardware architecture. The primary goals are productivity, portability and performance.

  10. PREDICTIVE MODELS

    SciTech Connect

    Ray, R.M. )

    1986-12-01

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2) carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3) in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4) polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5) steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  11. Definition of the Floating System for Phase IV of OC3

    SciTech Connect

    Jonkman, J.

    2010-05-01

    Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

  12. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) interaction'' of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  13. Mechanistic models

    SciTech Connect

    Curtis, S.B.

    1990-09-01

    Several models and theories are reviewed that incorporate the idea of radiation-induced lesions (repairable and/or irreparable) that can be related to molecular lesions in the DNA molecule. Usually the DNA double-strand or chromatin break is suggested as the critical lesion. In the models, the shoulder on the low-LET survival curve is hypothesized as being due to one (or more) of the following three mechanisms: (1) ``interaction`` of lesions produced by statistically independent particle tracks; (2) nonlinear (i.e., linear-quadratic) increase in the yield of initial lesions, and (3) saturation of repair processes at high dose. Comparisons are made between the various approaches. Several significant advances in model development are discussed; in particular, a description of the matrix formulation of the Markov versions of the RMR and LPL models is given. The more advanced theories have incorporated statistical fluctuations in various aspects of the energy-loss and lesion-formation process. An important direction is the inclusion of physical and chemical processes into the formulations by incorporating relevant track structure theory (Monte Carlo track simulations) and chemical reactions of radiation-induced radicals. At the biological end, identification of repair genes and how they operate as well as a better understanding of how DNA misjoinings lead to lethal chromosome aberrations are needed for appropriate inclusion into the theories. More effort is necessary to model the complex end point of radiation-induced carcinogenesis.

  14. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    SciTech Connect

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  15. Central Receiver System (CRS) in the Small Solar Power Systems Project (SSPS) of the International Energy Agency (IEA)

    NASA Astrophysics Data System (ADS)

    Grasse, W.; Becker, M.

    1984-02-01

    Attention is given to the design features and performance of the Small Solar Power Systems Project's Central Receiver System (CRS). The heliostat field used has a total reflective surface of 3655 sq m and focuses the irradiated power on an aperture plane of 9.2 sq m atop the tower. The cavity-type receiver is rated at 2840 kW at design conditions, of which 88.3 percent is absorbed by the liquid sodium heat transfer fluid as it is heated from 275 to 530 C. The major part of the CRS's Rankine power conversion cycle is a five-stage steam motor with two preheaters. Attention is given to CRS program funding responsibilities and development milestone chronology.

  16. Evaluation of Science Achievement and Science Test Development in an International Context: The IEA Study in Science

    ERIC Educational Resources Information Center

    Klopfer, Leopold E.

    1973-01-01

    Describes the development of cognitive tests and their administration to four student populations in a cross-nation study on science achievement by the International Association for the Evaluation of Educational Achievement. Included are illustrative items, a table of behavior-subject area grid, and test scores by countries. (CC)

  17. IGCC power plant integrated to a Finnish pulp and paper mill: IEA bioenergy techno-economic analysis activity. Research notes

    SciTech Connect

    Koljonen, T.; Solantausta, Y.; Salo, K.; Horvath, A.

    1999-02-01

    This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finish pulp and paper mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for a pulp and paper industrial plant because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The operation and design of the IGCC concept is based on a 20 MW(e) gas turbine (MW151). The heat of gas turbine exhaust gas is utilized in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The IGCC power plant operates in condensing mode. The techno-economic assessment of the biomass IGCC integrated to a pulp and paper mill or a pulp mill indicated that the IGCC will be competitive compared to the conventional bark boiler steam cycle. The IGCC integrated to a pulp and paper mill was slightly more economical than the IGCC pulp mill integration.

  18. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    SciTech Connect

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  19. TIMSS 2003 Technical Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades

    ERIC Educational Resources Information Center

    Martin, Michael O., Ed.; Mullis, Ina V.S., Ed.; Chrostowski, Steven J., Ed.

    2004-01-01

    This volume describes the technical aspects of TIMSS 2003 and summarizes the main activities involved in the development of the data collection instruments, the data collection itself, and the analysis and reporting of the data. The thirteen chapters contained herein are: (1) Overview of TIMSS 2003 (Michael O. Martin and Ina V. S. Mullis); (2)…

  20. What Should Young Children Learn? Teacher and Parent Views in 15 Countries. The IEA Preprimary Project, Phase 2.

    ERIC Educational Resources Information Center

    Weikart, David P., Ed.

    This monograph reports on Phase 2 of the International Association for the Evaluation of Educational Achievement Preprimary Project, focusing on the quality of life experienced by four-year-olds in major early childhood settings. This monograph highlights results from a questionnaire completed by over 1,600 teachers and over 4,800 parents in 15…

  1. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  2. A comparative study of the SSC resistance of a novel welding process IEA with SAW and MIG

    SciTech Connect

    Natividad, C. . E-mail: consnatividad@yahoo.com.mx; Salazar, M. . E-mail: salazarm@imp.mx; Espinosa-Medina, M.A.; Perez, R.

    2007-08-15

    The Stress Sulphide Cracking resistance of X65 weldments produced by Indirect Electric Arc, Submerged Arc Welding (SAW) and Metal Inert Gas (MIG) processes were evaluated in a NACE solution saturated with H{sub 2}S at 25 deg. C, 37 deg. C and 50 deg. C using Slow Strain Rate Tests (SSRT) and electrochemical measurements. Weldments produced by the Indirect Electric Arc presented the best Stress Sulphide Cracking resistance at 25 deg. C. This behavior is attributed to the microstructural modification of the weld bead from ferrite in a needlelike form to a fine grain microstructure, which was not observed at 37 deg. C and 50 deg. C. In addition, the hydrogen permeation flux increased with the temperature, this result is associated with the ferrite phase. The electrochemical results show a decrease of the trapping sites for the atomic hydrogen on this weldment. This behavior has not been observed for the other welding processes due to their microstructure (a typical columnar growth of coarse grain)

  3. Influences on Academic Achievement Across High and Low Income Countries: A Re-Analysis of IEA Data.

    ERIC Educational Resources Information Center

    Heyneman, S.; Loxley, W.

    Previous international studies of science achievement put the data through a process of winnowing to decide which variables to keep in the final regressions. Variables were allowed to enter the final regressions if they met a minimum beta coefficient criterion of 0.05 averaged across rich and poor countries alike. The criterion was an average…

  4. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  5. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  6. Painting models

    NASA Astrophysics Data System (ADS)

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.

    2015-12-01

    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  7. Atmospheric Modeling

    EPA Science Inventory

    Although air quality models have been applied historically to address issues specific to ambient air quality standards (i.e., one criteria pollutant at a time) or welfare (e.g.. acid deposition or visibility impairment). they are inherently multipollutant based. Therefore. in pri...

  8. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  9. Modeling Convection

    ERIC Educational Resources Information Center

    Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda

    2004-01-01

    Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…

  10. Ensemble Models

    EPA Science Inventory

    Ensemble forecasting has been used for operational numerical weather prediction in the United States and Europe since the early 1990s. An ensemble of weather or climate forecasts is used to characterize the two main sources of uncertainty in computer models of physical systems: ...

  11. Criticality Model

    SciTech Connect

    A. Alsaed

    2004-09-14

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  12. Models, Part V: Composition Models.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2003-01-01

    Describes four models: The Authoring Cycle, a whole language approach that reflects the inquiry process; I-Search, an approach to research that uses the power of student interests; Cultural Celebration, using local heritage topics; and Science Lab Report, for the composition of a lab report. (LRW)

  13. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  14. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  15. Modeling biomembranes.

    SciTech Connect

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  16. Model checking

    NASA Technical Reports Server (NTRS)

    Dill, David L.

    1995-01-01

    Automatic formal verification methods for finite-state systems, also known as model-checking, successfully reduce labor costs since they are mostly automatic. Model checkers explicitly or implicitly enumerate the reachable state space of a system, whose behavior is described implicitly, perhaps by a program or a collection of finite automata. Simple properties, such as mutual exclusion or absence of deadlock, can be checked by inspecting individual states. More complex properties, such as lack of starvation, require search for cycles in the state graph with particular properties. Specifications to be checked may consist of built-in properties, such as deadlock or 'unspecified receptions' of messages, another program or implicit description, to be compared with a simulation, bisimulation, or language inclusion relation, or an assertion in one of several temporal logics. Finite-state verification tools are beginning to have a significant impact in commercial designs. There are many success stories of verification tools finding bugs in protocols or hardware controllers. In some cases, these tools have been incorporated into design methodology. Research in finite-state verification has been advancing rapidly, and is showing no signs of slowing down. Recent results include probabilistic algorithms for verification, exploitation of symmetry and independent events, and the use symbolic representations for Boolean functions and systems of linear inequalities. One of the most exciting areas for further research is the combination of model-checking with theorem-proving methods.

  17. On the Specification of the Domain of Writing = Kohti Kirjoittamisen Kuvailua ja Erittelya. Reports from the Institute for Educational Research, 333/1983.

    ERIC Educational Resources Information Center

    Takala, Sauli; Vahapassi, Anneli

    Twenty countries are participating in the IEA International Study of Written Composition, for which this is a background report. school-based writing in particular, this report discusses the functions of writing from the point of view of culture, cognition, and child development. It also presents a usable model for constructing and evaluating…

  18. Methane emissions from a temperate agricultural reservoir

    EPA Science Inventory

    Dr. Jake Beaulieu was invited to present at the 2014 Green House Gas Emission Modeling workshop hosted by the International Energy Agency (IEA) Hydropower Implementing Agreement for Hydropower Technologies and Programs (IAHTP). The purpose of this workshop is to assemble an int...

  19. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  20. Students' Models of Curve Fitting: A Models and Modeling Perspective

    ERIC Educational Resources Information Center

    Gupta, Shweta

    2010-01-01

    The Models and Modeling Perspectives (MMP) has evolved out of research that began 26 years ago. MMP researchers use Model Eliciting Activities (MEAs) to elicit students' mental models. In this study MMP was used as the conceptual framework to investigate the nature of students' models of curve fitting in a problem-solving environment consisting of…

  1. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. Biomimetic modelling.

    PubMed Central

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more complete and certain understanding and the possibility of further revelations for application in engineering. This is a pathway as yet unformalized, and one that offers the possibility that engineers can also be scientists. PMID:14561351

  3. Fault models

    NASA Astrophysics Data System (ADS)

    Sayah, H. R.; Buehler, M. G.

    1985-06-01

    A major problem in the qualification of integrated circuit cells and in the development of adequate tests for the circuits is to lack of information on the nature and density of fault models. Some of this information is being obtained from the test structures. In particular, the Pinhole Array Capacitor is providing values for the resistance of gate oxide shorts, and the Addressable Inverter Matrix is providing values for parameter distributions such as noise margins. Another CMOS fault mode, that of the open-gated transistor, is examined and the state of the transistors assessed. Preliminary results are described for a number of open-gated structures such as transistors, inverters, and NAND gates. Resistor faults are applied to various CMOS gates and the time responses are noted. The critical value for the resistive short to upset the gate response was determined.

  4. Modeling uncertainty: quicksand for water temperature modeling

    USGS Publications Warehouse

    Bartholow, John M.

    2003-01-01

    Uncertainty has been a hot topic relative to science generally, and modeling specifically. Modeling uncertainty comes in various forms: measured data, limited model domain, model parameter estimation, model structure, sensitivity to inputs, modelers themselves, and users of the results. This paper will address important components of uncertainty in modeling water temperatures, and discuss several areas that need attention as the modeling community grapples with how to incorporate uncertainty into modeling without getting stuck in the quicksand that prevents constructive contributions to policy making. The material, and in particular the reference, are meant to supplement the presentation given at this conference.

  5. Pre-Modeling Ensures Accurate Solid Models

    ERIC Educational Resources Information Center

    Gow, George

    2010-01-01

    Successful solid modeling requires a well-organized design tree. The design tree is a list of all the object's features and the sequential order in which they are modeled. The solid-modeling process is faster and less prone to modeling errors when the design tree is a simple and geometrically logical definition of the modeled object. Few high…

  6. CISNET lung models: Comparison of model assumptions and model structures

    PubMed Central

    McMahon, Pamela M.; Hazelton, William; Kimmel, Marek; Clarke, Lauren

    2012-01-01

    Sophisticated modeling techniques can be powerful tools to help us understand the effects of cancer control interventions on population trends in cancer incidence and mortality. Readers of journal articles are however rarely supplied with modeling details. Six modeling groups collaborated as part of the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) to investigate the contribution of US tobacco control efforts towards reducing lung cancer deaths over the period 1975 to 2000. The models included in this monograph were developed independently and use distinct, complementary approaches towards modeling the natural history of lung cancer. The models used the same data for inputs and agreed on the design of the analysis and the outcome measures. This article highlights aspects of the models that are most relevant to similarities of or differences between the results. Structured comparisons can increase the transparency of these complex models. PMID:22882887

  7. Building Mental Models by Dissecting Physical Models

    ERIC Educational Resources Information Center

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  8. I&C Modeling in SPAR Models

    SciTech Connect

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  9. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-09-08

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described.

  10. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2016-01-01

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc. PMID:27322406

  11. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2016-06-20

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.

  12. An extended cure model and model selection.

    PubMed

    Peng, Yingwei; Xu, Jianfeng

    2012-04-01

    We propose a novel interpretation for a recently proposed Box-Cox transformation cure model, which leads to a natural extension of the cure model. Based on the extended model, we consider an important issue of model selection between the mixture cure model and the bounded cumulative hazard cure model via the likelihood ratio test, score test and Akaike's Information Criterion (AIC). Our empirical study shows that AIC is informative and both the score test and the likelihood ratio test have adequate power to differentiate between the mixture cure model and the bounded cumulative hazard cure model when the sample size is large. We apply the tests and AIC methods to leukemia and colon cancer data to examine the appropriateness of the cure models considered for them in the literature.

  13. Model selection for logistic regression models

    NASA Astrophysics Data System (ADS)

    Duller, Christine

    2012-09-01

    Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.

  14. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  15. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  16. Sand-box modelling

    SciTech Connect

    Avery, P.

    1983-01-01

    As the result of an enquiry into BHRA's physical-reservoir-modelling experience, the use of sand box models was investigated. The type of model was considered a possible means of confirmation of a numerical model. The problem facing the numerical model user was comparing the performance of inclined or horizontal oil wells with that of the conventional vertical well.

  17. Solicited abstract: Global hydrological modeling and models

    NASA Astrophysics Data System (ADS)

    Xu, Chong-Yu

    2010-05-01

    The origins of rainfall-runoff modeling in the broad sense can be found in the middle of the 19th century arising in response to three types of engineering problems: (1) urban sewer design, (2) land reclamation drainage systems design, and (3) reservoir spillway design. Since then numerous empirical, conceptual and physically-based models are developed including event based models using unit hydrograph concept, Nash's linear reservoir models, HBV model, TOPMODEL, SHE model, etc. From the late 1980s, the evolution of global and continental-scale hydrology has placed new demands on hydrologic modellers. The macro-scale hydrological (global and regional scale) models were developed on the basis of the following motivations (Arenll, 1999). First, for a variety of operational and planning purposes, water resource managers responsible for large regions need to estimate the spatial variability of resources over large areas, at a spatial resolution finer than can be provided by observed data alone. Second, hydrologists and water managers are interested in the effects of land-use and climate variability and change over a large geographic domain. Third, there is an increasing need of using hydrologic models as a base to estimate point and non-point sources of pollution loading to streams. Fourth, hydrologists and atmospheric modellers have perceived weaknesses in the representation of hydrological processes in regional and global climate models, and developed global hydrological models to overcome the weaknesses of global climate models. Considerable progress in the development and application of global hydrological models has been achieved to date, however, large uncertainties still exist considering the model structure including large scale flow routing, parameterization, input data, etc. This presentation will focus on the global hydrological models, and the discussion includes (1) types of global hydrological models, (2) procedure of global hydrological model development

  18. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  19. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. PMID:26712513

  20. Geologic Framework Model Analysis Model Report

    SciTech Connect

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  1. Models of Magnetism.

    ERIC Educational Resources Information Center

    Borges, A. Tarciso; Gilbert, John K.

    1998-01-01

    Investigates the mental models that people construct about magnetic phenomena. Involves students, physics teachers, engineers, and practitioners. Proposes five models following a progression from simple description to a field model. Contains 28 references. (DDR)

  2. Educating with Aircraft Models

    ERIC Educational Resources Information Center

    Steele, Hobie

    1976-01-01

    Described is utilization of aircraft models, model aircraft clubs, and model aircraft magazines to promote student interest in aerospace education. The addresses for clubs and magazines are included. (SL)

  3. Forest succession models

    SciTech Connect

    Shugart, H.H. Jr.; West, D.C.

    1980-05-01

    Studies in succession attempt to determine the changes in species composition and other ecosystem attributes expected to occur over periods of time. Mathematical models developed in forestry and ecology to study ecological succession are reviewed. Tree models, gap models and forest models are discussed. Model validation or testing procedures are described. Model applications can involve evaluating large-scale and long-term changes in the ambient levels of pollutants and assessing the effects of climate change on the environment. (RJC)

  4. Modeling of geothermal systems

    SciTech Connect

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  5. Generalized smooth models

    SciTech Connect

    Glosup, J.

    1992-07-23

    The class of gene linear models is extended to develop a class of nonparametric regression models known as generalized smooth models. The technique of local scoring is used to estimate a generalized smooth model and the estimation procedure based on locally weighted regression is shown to produce local likelihood estimates. The asymptotically correct distribution of the deviance difference is derived and its use in comparing the fits of generalized linear models and generalized smooth models is illustrated. The relationship between generalized smooth models and generalized additive models is discussed, also.

  6. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    SciTech Connect

    Clinton Lum

    2002-02-04

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  7. Scaled models, scaled frequencies, and model fitting

    NASA Astrophysics Data System (ADS)

    Roxburgh, Ian W.

    2015-12-01

    I show that given a model star of mass M, radius R, and density profile ρ(x) [x = r/R], there exists a two parameter family of models with masses Mk, radii Rk, density profile ρk(x) = λρ(x) and frequencies νknℓ = λ1/2νnℓ, where λ,Rk/RA are scaling factors. These models have different internal structures, but all have the same value of separation ratios calculated at given radial orders n, and all exactly satisfy a frequency matching algorithm with an offset function determined as part of the fitting procedure. But they do not satisfy ratio matching at given frequencies nor phase shift matching. This illustrates that erroneous results may be obtained when model fitting with ratios at given n values or frequency matching. I give examples from scaled models and from non scaled evolutionary models.

  8. Better models are more effectively connected models

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity

  9. Biosphere Model Report

    SciTech Connect

    D. W. Wu

    2003-07-16

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  10. Biosphere Model Report

    SciTech Connect

    M. A. Wasiolek

    2003-10-27

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  11. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  12. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  13. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  14. AIDS Epidemiological models

    NASA Astrophysics Data System (ADS)

    Rahmani, Fouad Lazhar

    2010-11-01

    The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].

  15. Enclosure fire dynamics model

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1979-01-01

    A practical situation of an enclosure fire is presented and why the need for a fire dynamic model is addressed. The difficulties in establishing a model are discussed, along with a brief review of enclosure fire models available. The approximation of the practical situation and the model developed are presented.

  16. Modeling for Understanding.

    ERIC Educational Resources Information Center

    Klopfer, Eric; Colella, Vanessa

    This paper focuses on one method used to introduce model design and creation using StarLogo to a group of high school teachers. Teachers with model-building skills can easily customize modeling environments for their classes. More importantly, model building can enable teachers to approach their curricula from a more holistic perspective, as well…

  17. Calibrated Properties Model

    SciTech Connect

    C.F. Ahlers, H.H. Liu

    2001-12-18

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M&O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  18. Calibrated Properties Model

    SciTech Connect

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  19. Introduction to Adjoint Models

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.

  20. Stable models of superacceleration

    SciTech Connect

    Kaplinghat, Manoj; Rajaraman, Arvind

    2007-05-15

    We discuss an instability in a large class of models where dark energy is coupled to matter. In these models the mass of the scalar field is much larger than the expansion rate of the Universe. We find models in which this instability is absent, and show that these models generically predict an apparent equation of state for dark energy smaller than -1, i.e., superacceleration. These models have no acausal behavior or ghosts.

  1. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  2. Multiple model inference.

    SciTech Connect

    Swiler, Laura Painton; Urbina, Angel

    2010-07-01

    This paper compares three approaches for model selection: classical least squares methods, information theoretic criteria, and Bayesian approaches. Least squares methods are not model selection methods although one can select the model that yields the smallest sum-of-squared error function. Information theoretic approaches balance overfitting with model accuracy by incorporating terms that penalize more parameters with a log-likelihood term to reflect goodness of fit. Bayesian model selection involves calculating the posterior probability that each model is correct, given experimental data and prior probabilities that each model is correct. As part of this calculation, one often calibrates the parameters of each model and this is included in the Bayesian calculations. Our approach is demonstrated on a structural dynamics example with models for energy dissipation and peak force across a bolted joint. The three approaches are compared and the influence of the log-likelihood term in all approaches is discussed.

  3. Model Validation Status Review

    SciTech Connect

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  4. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.

  5. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.

  6. Modeling nonstationary longitudinal data.

    PubMed

    Núñez-Antón, V; Zimmerman, D L

    2000-09-01

    An important theme of longitudinal data analysis in the past two decades has been the development and use of explicit parametric models for the data's variance-covariance structure. A variety of these models have been proposed, of which most are second-order stationary. A few are flexible enough to accommodate nonstationarity, i.e., nonconstant variances and/or correlations that are not a function solely of elapsed time between measurements. We review five nonstationary models that we regard as most useful: (1) the unstructured covariance model, (2) unstructured antedependence models, (3) structured antedependence models, (4) autoregressive integrated moving average and similar models, and (5) random coefficients models. We evaluate the relative strengths and limitations of each model, emphasizing when it is inappropriate or unlikely to be useful. We present three examples to illustrate the fitting and comparison of the models and to demonstrate that nonstationary longitudinal data can be modeled effectively and, in some cases, quite parsimoniously. In these examples, the antedependence models generally prove to be superior and the random coefficients models prove to be inferior. We conclude that antedependence models should be given much greater consideration than they have historically received.

  7. Modeling Hydrothermal Mineralization: Fractal or Multifrcatal Models?

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2004-05-01

    Hydrothermal mineralization occurs when the natural geo-processes involve the interaction of ore material-carrying hydrothermal fluids with rocks in the earth's crust in a specific geological environment. Mineralization can cause element concentration enrichment or depletion in the country rocks. Local enrichment may form ore body that can be mined for profit at the current economic and technological conditions. To understand the spatial distribution of element concentration enrichment or depletion caused by mineralization in a mineral district is essential for mineral exploration and mineral prediction. Grade-tonnage model and mineral deposits size distribution model are common models used for characterizing mineral deposits. This paper proposes a non-linear mineralization model on the basis of a modified classical igneous differentiation mineralization model to describe the generation of multifractal distribution of element concentration in the country rocks as well as grade-tonnage fractal/multifractal distribution of ore deposits that have been often observed in hydrothermal mineralization. This work may also lead to a singularity model to explain the common properties of mineralization and mineralization-associated geochemical anomaly diversity and the generalized self-similarity of the anomalies. The model has been applied to a case study of mineral deposits prediction and mineral resource assessment in the Abitibi district, northern Ontario, Canada.

  8. Modeling the transition region

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1993-01-01

    The current status of transition-region models is reviewed in this report. To understand modeling problems, various flow features that influence the transition process are discussed first. Then an overview of the different approaches to transition-region modeling is given. This is followed by a detailed discussion of turbulence models and the specific modifications that are needed to predict flows undergoing laminar-turbulent transition. Methods for determining the usefulness of the models are presented, and an outlook for the future of transition-region modeling is suggested.

  9. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  10. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  11. Holographic twin Higgs model.

    PubMed

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider. PMID:26024160

  12. Modeling worldwide highway networks

    NASA Astrophysics Data System (ADS)

    Villas Boas, Paulino R.; Rodrigues, Francisco A.; da F. Costa, Luciano

    2009-12-01

    This Letter addresses the problem of modeling the highway systems of different countries by using complex networks formalism. More specifically, we compare two traditional geographical models with a modified geometrical network model where paths, rather than edges, are incorporated at each step between the origin and the destination vertices. Optimal configurations of parameters are obtained for each model and used for the comparison. The highway networks of Australia, Brazil, India, and Romania are considered and shown to be properly modeled by the modified geographical model.

  13. Energy-consumption modelling

    SciTech Connect

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  14. Reliability model generator

    NASA Technical Reports Server (NTRS)

    McMann, Catherine M. (Inventor); Cohen, Gerald C. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  15. A future of the model organism model

    PubMed Central

    Rine, Jasper

    2014-01-01

    Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields. PMID:24577733

  16. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  17. Biosphere Model Report

    SciTech Connect

    D.W. Wu; A.J. Smith

    2004-11-08

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), TSPA-LA. The ERMYN provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs) (Section 6.2), the reference biosphere (Section 6.1.1), the human receptor (Section 6.1.2), and approximations (Sections 6.3.1.4 and 6.3.2.4); (3) Building a mathematical model using the biosphere conceptual model (Section 6.3) and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); (8) Validating the ERMYN by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).

  18. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  19. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  20. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  1. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect

    Ray, R.M.

    1992-02-26

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  2. Modeling EERE deployment programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  3. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  4. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  5. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  6. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  7. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  8. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  9. Models (Part 1).

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Defines models and describes information search models that can be helpful to instructional media specialists in meeting users' abilities and information needs. Explains pathfinders and Kuhlthau's information search process, including the pre-writing information search process. (LRW)

  10. Modeling Infectious Diseases

    MedlinePlus

    ... MIDAS models require a breadth of knowledge, the network draws together an interdisciplinary team of researchers with expertise in epidemiology, infectious diseases, computational biology, statistics, social sciences, physics, computer sciences and informatics. In 2006, MIDAS modelers simulated ...

  11. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  12. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  13. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  14. System Advisor Model

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  15. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  16. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  17. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  18. Hierarchical Bass model

    NASA Astrophysics Data System (ADS)

    Tashiro, Tohru

    2014-03-01

    We propose a new model about diffusion of a product which includes a memory of how many adopters or advertisements a non-adopter met, where (non-)adopters mean people (not) possessing the product. This effect is lacking in the Bass model. As an application, we utilize the model to fit the iPod sales data, and so the better agreement is obtained than the Bass model.

  19. Wonderland climate model

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Lacis, A.; Russell, G.; Sato, M.; Lerner, J.; Rind, D.; Stone, P.

    1997-03-01

    We obtain a highly efficient global climate model by defining a sector version (120° of longitude) of the coarse resolution Goddard Institute for Space Studies model II. The geography of Wonderland is chosen such that the amount of land as a function of latitude is the same as on Earth. We show that the zonal mean climate of the Wonderland model is very similar to that of the parent model II.

  20. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  1. Modeling Complex Calorimeters

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    We have developed a software suite that models complex calorimeters in the time and frequency domain. These models can reproduce all measurements that we currently do in a lab setting, like IV curves, impedance measurements, noise measurements, and pulse generation. Since all these measurements are modeled from one set of parameters, we can fully describe a detector and characterize its behavior. This leads to a model than can be used effectively for engineering and design of detectors for particular applications.

  2. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-11-01

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefuly their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stabe boundary layer (SBL), and model uncertainty.

  3. Models of change.

    PubMed

    Reineck, Carol

    2007-09-01

    Implementing change in organizations is a key nursing leadership competency. At the same time, it is a daunting responsibility. Fortunately, models of successful change illustrate useful concepts for leaders. Change concepts embedded in successful models include careful use of power, reason, reeducation, structure, behavior, and technology. This article discusses models of change. Learning from models may help nurse executives avoid perils such as change fatigue and may promote smoother movement toward safer systems of care.

  4. A Model Chemistry Class.

    ERIC Educational Resources Information Center

    Summerlin, Lee; Borgford, Christie

    1989-01-01

    Described is an activity which uses a 96-well reaction plate and soda straws to construct a model of the periodic table of the elements. The model illustrates the ionization energies of the various elements. Construction of the model and related concepts are discussed. (CW)

  5. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  6. Modern Media Education Models

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2011-01-01

    The author supposed that media education models can be divided into the following groups: (1) educational-information models (the study of the theory, history, language of media culture, etc.), based on the cultural, aesthetic, semiotic, socio-cultural theories of media education; (2) educational-ethical models (the study of moral, religions,…

  7. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.; Livingston, O. V.

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  8. Campus Energy Modeling Platform

    SciTech Connect

    Sides, Scott; Kemper, Travis; Larsen, Ross; Graf, Peter

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  9. Biophysical and spectral modeling

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1982-01-01

    Activities and results of a project to develop strategies for modeling vegetative canopy reflectance are reported. Specific tasks included the inversion of canopy reflectance models to estimate agronomic variables (particularly leaf area index) from in-situ reflectance measurements, and a study of possible uses of ecological models in analyzing temporal profiles of greenness.

  10. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  11. IR DIAL performance modeling

    SciTech Connect

    Sharlemann, E.T.

    1994-07-01

    We are developing a DIAL performance model for CALIOPE at LLNL. The intent of the model is to provide quick and interactive parameter sensitivity calculations with immediate graphical output. A brief overview of the features of the performance model is given, along with an example of performance calculations for a non-CALIOPE application.

  12. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  13. A Model Performance

    ERIC Educational Resources Information Center

    Thornton, Bradley D.; Smalley, Robert A.

    2008-01-01

    Building information modeling (BIM) uses three-dimensional modeling concepts, information technology and interoperable software to design, construct and operate a facility. However, BIM can be more than a tool for virtual modeling--it can provide schools with a 3-D walkthrough of a project while it still is on the electronic drawing board. BIM can…

  14. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  15. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  16. Modelling a Suspension Bridge.

    ERIC Educational Resources Information Center

    Rawlins, Phil

    1991-01-01

    The quadratic function can be modeled in real life by a suspension bridge that supports a uniform weight. This activity uses concrete models and computer generated graphs to discover the mathematical model of the shape of the main cable of a suspension bridge. (MDH)

  17. Tests of Rating Models

    ERIC Educational Resources Information Center

    Masin, Sergio Cesare; Busetto, Martina

    2010-01-01

    The study reports empirical tests of Anderson's, Haubensak's, Helson's, and Parducci's rating models when two end anchors are used for rating. The results show that these models cannot predict the judgment effect called here the Dai Pra effect. It is shown that an extension of Anderson's model is consistent with this effect. The results confirm…

  18. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  19. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  20. Impact-GMI Model

    2007-03-22

    IMPACT-GMI is an atmospheric chemical transport model designed to run on massively parallel computers. It is designed to model trace pollutants in the atmosphere. It includes models for emission, chemistry and deposition of pollutants. It can be used to assess air quality and its impact on future climate change.

  1. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  2. Elementary Teacher Training Models.

    ERIC Educational Resources Information Center

    Blewett, Evelyn J., Ed.

    This collection of articles contains descriptions of nine elementary teacher training program models conducted at universities throughout the United States. The articles include the following: (a) "The University of Toledo Model Program," by George E. Dickson; (b) "The Florida State University Model Program," by G. Wesley Sowards; (c) "The…

  3. Model Breaking Points Conceptualized

    ERIC Educational Resources Information Center

    Vig, Rozy; Murray, Eileen; Star, Jon R.

    2014-01-01

    Current curriculum initiatives (e.g., National Governors Association Center for Best Practices and Council of Chief State School Officers 2010) advocate that models be used in the mathematics classroom. However, despite their apparent promise, there comes a point when models break, a point in the mathematical problem space where the model cannot,…

  4. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  5. Modeling and Remodeling Writing

    ERIC Educational Resources Information Center

    Hayes, John R.

    2012-01-01

    In Section 1 of this article, the author discusses the succession of models of adult writing that he and his colleagues have proposed from 1980 to the present. He notes the most important changes that differentiate earlier and later models and discusses reasons for the changes. In Section 2, he describes his recent efforts to model young…

  6. Models, Norms and Sharing.

    ERIC Educational Resources Information Center

    Harris, Mary B.

    To investigate the effect of modeling on altruism, 156 third and fifth grade children were exposed to a model who either shared with them, gave to a charity, or refused to share. The test apparatus, identified as a game, consisted of a box with signal lights and a chute through which marbles were dispensed. Subjects and the model played the game…

  7. Models for Products

    ERIC Educational Resources Information Center

    Speiser, Bob; Walter, Chuck

    2011-01-01

    This paper explores how models can support productive thinking. For us a model is a "thing", a tool to help make sense of something. We restrict attention to specific models for whole-number multiplication, hence the wording of the title. They support evolving thinking in large measure through the ways their users redesign them. They assume new…

  8. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  9. New Directions for Modeling?

    ERIC Educational Resources Information Center

    Mason, Thomas R.

    1976-01-01

    Noting the disappointing results of past experimentation with computer modeling technology in higher education, the author discusses developments which promise potential: communication between model builders and users, interaction between large- and small-scale models, interface with operating data systems, emphasis on outcomes, and continued…

  10. Surface complexation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adsorption-desorption reactions are important processes that affect the transport of contaminants in the environment. Surface complexation models are chemical models that can account for the effects of variable chemical conditions, such as pH, on adsorption reactions. These models define specific ...

  11. Modelling Vocabulary Loss

    ERIC Educational Resources Information Center

    Meara, Paul

    2004-01-01

    This paper describes some simple simulation models of vocabulary attrition. The attrition process is modelled using a random autonomous Boolean network model, and some parallels with real attrition data are drawn. The paper argues that applying a complex systems approach to attrition can provide some important insights, which suggest that real…

  12. Modelling MIZ dynamics in a global model

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  13. Advances in Watershed Models and Modeling

    NASA Astrophysics Data System (ADS)

    Yeh, G. T.; Zhang, F.

    2015-12-01

    The development of watershed models and their applications to real-world problems has evolved significantly since 1960's. Watershed models can be classified based on what media are included, what processes are dealt with, and what approaches are taken. In term of media, a watershed may include segregated overland regime, river-canal-open channel networks, ponds-reservoirs-small lakes, and subsurface media. It may also include integrated media of all these or a partial set of these as well as man-made control structures. In term of processes, a watershed model may deal with coupled or decoupled hydrological and biogeochemical cycles. These processes include fluid flow, thermal transport, salinity transport, sediment transport, reactive transport, and biota and microbe kinetics. In terms of approaches, either parametric or physics-based approach can be taken. This talk discusses the evolution of watershed models in the past sixty years. The advances of watershed models center around their increasing design capability to foster these segregated or integrated media and coupled or decoupled processes. Widely used models developed by academia, research institutes, government agencies, and private industries will be reviewed in terms of the media and processes included as well as approaches taken. Many types of potential benchmark problems in general can be proposed and will be discussed. This presentation will focus on three benchmark problems of biogeochemical cycles. These three problems, dealing with water quality transport, will be formulated in terms of reactive transport. Simulation results will be illustrated using WASH123D, a watershed model developed and continuously updated by the author and his PhD graduates. Keywords: Hydrological Cycles, Biogeochemical Cycles, Biota Kinetics, Parametric Approach, Physics-based Approach, Reactive Transport.

  14. Transgenesis for pig models

    PubMed Central

    Yum, Soo-Young; Yoon, Ki-Young; Lee, Choong-Il; Lee, Byeong-Chun

    2016-01-01

    Animal models, particularly pigs, have come to play an important role in translational biomedical research. There have been many pig models with genetically modifications via somatic cell nuclear transfer (SCNT). However, because most transgenic pigs have been produced by random integration to date, the necessity for more exact gene-mutated models using recombinase based conditional gene expression like mice has been raised. Currently, advanced genome-editing technologies enable us to generate specific gene-deleted and -inserted pig models. In the future, the development of pig models with gene editing technologies could be a valuable resource for biomedical research. PMID:27030199

  15. The FREZCHEM Model

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.

    Implementation of the Pitzer approach is through the FREZCHEM (FREEZING CHEMISTRY) model, which is at the core of this work. This model was originally designed to simulate salt chemistries and freezing processes at low temperatures (-54 to 25°C) and 1 atm pressure. Over the years, this model has been broadened to include more chemistries (from 16 to 58 solid phases), a broader temperature range for some chemistries (to 113°C), and incorporation of a pressure dependence (1 to 1000 bars) into the model. Implementation, parameterization, validation, and limitations of the FREZCHEM model are extensively discussed in Chapter 3.

  16. Mechanics of materials model

    NASA Technical Reports Server (NTRS)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  17. Models of Goldstone gauginos

    NASA Astrophysics Data System (ADS)

    Alves, Daniele S. M.; Galloway, Jamison; McCullough, Matthew; Weiner, Neal

    2016-04-01

    Models with Dirac gauginos are appealing scenarios for physics beyond the Standard Model. They have smaller radiative corrections to scalar soft masses, a suppression of certain supersymmetry (SUSY) production processes at the LHC, and ameliorated flavor constraints. Unfortunately, they are generically plagued by tachyons charged under the Standard Model, and attempts to eliminate such states typically spoil the positive features. The recently proposed "Goldstone gaugino" mechanism provides a simple realization of Dirac gauginos that is automatically free of dangerous tachyonic states. We provide details on this mechanism and explore models for its origin. In particular, we find SUSY QCD models that realize this idea simply and discuss scenarios for unification.

  18. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  19. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  20. TEAMS Model Analyzer

    NASA Technical Reports Server (NTRS)

    Tijidjian, Raffi P.

    2010-01-01

    The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.

  1. A model of strength

    USGS Publications Warehouse

    Johnson, Douglas H.; Cook, R.D.

    2013-01-01

    In her AAAS News & Notes piece "Can the Southwest manage its thirst?" (26 July, p. 362), K. Wren quotes Ajay Kalra, who advocates a particular method for predicting Colorado River streamflow "because it eschews complex physical climate models for a statistical data-driven modeling approach." A preference for data-driven models may be appropriate in this individual situation, but it is not so generally, Data-driven models often come with a warning against extrapolating beyond the range of the data used to develop the models. When the future is like the past, data-driven models can work well for prediction, but it is easy to over-model local or transient phenomena, often leading to predictive inaccuracy (1). Mechanistic models are built on established knowledge of the process that connects the response variables with the predictors, using information obtained outside of an extant data set. One may shy away from a mechanistic approach when the underlying process is judged to be too complicated, but good predictive models can be constructed with statistical components that account for ingredients missing in the mechanistic analysis. Models with sound mechanistic components are more generally applicable and robust than data-driven models.

  2. Calibrated Properties Model

    SciTech Connect

    T. Ghezzehej

    2004-10-04

    The purpose of this model report is to document the calibrated properties model that provides calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling. This work followed, and was planned in, ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.6 and 2.1.1.6). Direct inputs to this model report were derived from the following upstream analysis and model reports: ''Analysis of Hydrologic Properties Data'' (BSC 2004 [DIRS 170038]); ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004 [DIRS 169855]); ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]); ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]). Additionally, this model report incorporates errata of the previous version and closure of the Key Technical Issue agreement TSPAI 3.26 (Section 6.2.2 and Appendix B), and it is revised for improved transparency.

  3. Distributed fuzzy system modeling

    SciTech Connect

    Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.

    1995-05-01

    The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.

  4. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Modelling structured data with Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Forbes, F.

    2016-05-01

    Most clustering and classification methods are based on the assumption that the objects to be clustered are independent. However, in more and more modern applications, data are structured in a way that makes this assumption not realistic and potentially misleading. A typical example that can be viewed as a clustering task is image segmentation where the objects are the pixels on a regular grid and depend on neighbouring pixels on this grid. Also, when data are geographically located, it is of interest to cluster data with an underlying dependence structure accounting for some spatial localisation. These spatial interactions can be naturally encoded via a graph not necessarily regular as a grid. Data sets can then be modelled via Markov random fields and mixture models (e.g. the so-called MRF and Hidden MRF). More generally, probabilistic graphical models are tools that can be used to represent and manipulate data in a structured way while modeling uncertainty. This chapter introduces the basic concepts. The two main classes of probabilistic graphical models are considered: Bayesian networks and Markov networks. The key concept of conditional independence and its link to Markov properties is presented. The main problems that can be solved with such tools are described. Some illustrations are given associated with some practical work.

  6. Toward Scientific Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Kleb, Bil

    2007-01-01

    Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.

  7. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  8. Physical modelling in biomechanics.

    PubMed Central

    Koehl, M A R

    2003-01-01

    Physical models, like mathematical models, are useful tools in biomechanical research. Physical models enable investigators to explore parameter space in a way that is not possible using a comparative approach with living organisms: parameters can be varied one at a time to measure the performance consequences of each, while values and combinations not found in nature can be tested. Experiments using physical models in the laboratory or field can circumvent problems posed by uncooperative or endangered organisms. Physical models also permit some aspects of the biomechanical performance of extinct organisms to be measured. Use of properly scaled physical models allows detailed physical measurements to be made for organisms that are too small or fast to be easily studied directly. The process of physical modelling and the advantages and limitations of this approach are illustrated using examples from our research on hydrodynamic forces on sessile organisms, mechanics of hydraulic skeletons, food capture by zooplankton and odour interception by olfactory antennules. PMID:14561350

  9. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  10. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    PubMed

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  11. Loehlin's original models and model contributions.

    PubMed

    McArdle, John J

    2014-11-01

    This is a short story about John C. Loehlin who is now at the University of Texas at Austin, dealing with his original simulation models and developments, which led to his current latent variable models. This talk was initially presented at a special meeting for John before the BGA in Rhode Island, and I was very pleased to contribute. It probably goes without saying, but John helped create this important society, has been a key contributor to this journal for several decades, and he deserves a lot for this leadership.

  12. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  13. Preliminary DIAL model

    SciTech Connect

    Gentry, S.; Taylor, J.; Stephenson, D.

    1994-06-01

    A unique end-to-end LIDAR sensor model has been developed supporting the concept development stage of the CALIOPE UV DIAL and UV laser-induced-fluorescence (LIF) efforts. The model focuses on preserving the temporal and spectral nature of signals as they pass through the atmosphere, are collected by the optics, detected by the sensor, and processed by the sensor electronics and algorithms. This is done by developing accurate component sub-models with realistic inputs and outputs, as well as internal noise sources and operating parameters. These sub-models are then configured using data-flow diagrams to operate together to reflect the performance of the entire DIAL system. This modeling philosophy allows the developer to have a realistic indication of the nature of signals throughout the system and to design components and processing in a realistic environment. Current component models include atmospheric absorption and scattering losses, plume absorption and scattering losses, background, telescope and optical filter models, PMT (photomultiplier tube) with realistic noise sources, amplifier operation and noise, A/D converter operation, noise and distortion, pulse averaging, and DIAL computation. Preliminary results of the model will be presented indicating the expected model operation depicting the October field test at the NTS spill test facility. Indications will be given concerning near-term upgrades to the model.

  14. Differential Topic Models.

    PubMed

    Chen, Changyou; Buntine, Wray; Ding, Nan; Xie, Lexing; Du, Lan

    2015-02-01

    In applications we may want to compare different document collections: they could have shared content but also different and unique aspects in particular collections. This task has been called comparative text mining or cross-collection modeling. We present a differential topic model for this application that models both topic differences and similarities. For this we use hierarchical Bayesian nonparametric models. Moreover, we found it was important to properly model power-law phenomena in topic-word distributions and thus we used the full Pitman-Yor process rather than just a Dirichlet process. Furthermore, we propose the transformed Pitman-Yor process (TPYP) to incorporate prior knowledge such as vocabulary variations in different collections into the model. To deal with the non-conjugate issue between model prior and likelihood in the TPYP, we thus propose an efficient sampling algorithm using a data augmentation technique based on the multinomial theorem. Experimental results show the model discovers interesting aspects of different collections. We also show the proposed MCMC based algorithm achieves a dramatically reduced test perplexity compared to some existing topic models. Finally, we show our model outperforms the state-of-the-art for document classification/ideology prediction on a number of text collections. PMID:26353238

  15. Quantitative Rheological Model Selection

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2014-11-01

    The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.

  16. Geochemical modeling: a review

    SciTech Connect

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  17. Design tool survey. IEA Solar Heating and Cooling - Task 8. Passive and hybrid solar low-energy buildings, Subtask C: design methods

    SciTech Connect

    Rittelmann, P.R.; Ahmed, S.F.

    1985-05-01

    This document presents the results of a survey of design tools conducted as part of Subtask C (Design Methods) of Task VIII of the IAE Solar Heating and Cooling Program. At the start of the task, the participants agreed that it would be useful to identify and characterize the various design tools which existed for predicting the energy performance of passive and hybrid solar low energy buildings. A standard survey form was adopted, and Subtask C representatives from the member countries collected and submitted information on the design tools in use in each country. These responses were compiled into the present survey document.

  18. International Energy Agency (IEA) Task VIII passive and hybrid solar low energy buildings: Residential design-build projects: Archetype/Santa Fe development project summary

    SciTech Connect

    Frey, D.J.; Gregerson, J.M.

    1989-05-01

    Included in this report are a description of the building, significant steps in the design process, an overview of the monitoring process, and results from the thermal monitoring. Also included are the responses provided by the owner/occupant to questions on the ''Class C'' questionnaire. This is the same questionnaire that was used in the Department of Energy's Class C passive building performance evaluation program in the early 1980s. 9 refs., 8 tabs.

  19. Political Efficacy and Expected Political Participation among Lower and Upper Secondary Students. A Comparative Analysis with Data from the IEA Civic Education Study

    ERIC Educational Resources Information Center

    Schulz, Wolfram

    2005-01-01

    The process of political socialisation of adolescents includes more than the acquisition of knowledge about society, citizenship and the political system. In a democracy, citizens are expected to participate actively in the political process. Active participation, however, requires citizens to believe in their own ability to influence the course…

  20. A Multicenter Phase II Study of Local Radiation Therapy for Stage IEA Mucosa-Associated Lymphoid Tissue Lymphomas: A Preliminary Report From the Japan Radiation Oncology Group (JAROG)

    SciTech Connect

    Isobe, Koichi Kagami, Yoshikazu; Higuchi, Keiko; Kodaira, Takeshi; Hasegawa, Masatoshi; Shikama, Naoto; Nakazawa, Masanori; Fukuda, Ichiro; Nihei, Keiji; Ito, Kana; Teshima, Teruki; Matsuno, Yoshihiro; Oguchi, Masahiko

    2007-11-15

    Purpose: The aim of this study was to evaluate the efficacy and toxicity of moderate dose radiation therapy (RT) for mucosa-associated lymphoid tissue (MALT) lymphoma in a prospective multicenter phase II trial. Methods and Materials: The subjects in this study were 37 patients with MALT lymphoma between April 2002 and November 2004. There were 16 male and 21 female patients, ranging in age from 24 to 82 years, with a median of 56 years. The primary tumor originated in the orbit in 24 patients, in the thyroid and salivary gland in 4 patients each, and 5 in the others. The median tumor dose was 30.6 Gy (range, 30.6-39.6 Gy), depending on the primary site and maximal tumor diameter. The median follow-up was 37.3 months. Results: Complete remission (CR) or CR/unconfirmed was achieved in 34 patients (92%). The 3-year overall survival, progression-free survival, and local control probability were 100%, 91.9%, and 97.3%, respectively. Thirteen patients experienced Grade 1 acute toxicities including dermatitis, mucositis, and conjunctivitis. One patient developed Grade 2 taste loss. Regarding late toxicities, Grade 2 reactions including hypothyroidism, and radiation pneumonitis were observed in three patients, and Grade 3 cataract was seen in three patients. Conclusions: This prospective phase II study demonstrated that moderate dose RT was highly effective in achieving local control with acceptable morbidity in 37 patients with MALT lymphoma.

  1. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  2. Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades. TIMSS 2003 International Science Report

    ERIC Educational Resources Information Center

    Martin, Michael O.; Mullis, Ina V.S.; Gonzalez, Eugenio J.; Chrostowski, Steven J.

    2004-01-01

    The Trends in International Mathematics and Science Study (TIMSS) 2003 is the third in a continuing cycle of international mathematics and science assessments conducted every four years. TIMSS assesses achievement in countries around the world and collects a rich array of information about the educational contexts for learning mathematics and…

  3. TIMSS 2003 International Mathematics Report: Findings from IEA's Trends in International Mathematics and Science Study at the Fourth and Eighth Grades

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Gonzalez, Eugenio J.; Chrostowski, Steven J.

    2004-01-01

    The Trends in International Mathematics and Science Study (TIMSS) 2003 is the most recent in a very ambitious series of international assessments conducted in nearly 50 countries to measure trends in mathematics and science learning. The aim of TIMSS, the Trends in International Mathematics and Science Study, is to improve the teaching and…

  4. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  5. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  6. Policy, Practice, and Readiness to Teach Primary and Secondary Mathematics in 17 Countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M-M)

    ERIC Educational Resources Information Center

    Tatto, Maria Teresa; Peck, Ray; Schwille, John; Bankov, Kiril; Senk, Sharon L.; Rodriguez, Michael; Ingvarson, Lawrence; Reckase, Mark; Rowley, Glenn

    2012-01-01

    The Teacher Education Study in Mathematics (TEDS-M) 2008 is the first cross-national study to provide data on the knowledge that future primary and lower-secondary school teachers acquire during their mathematics teacher education. It is also the first major study to examine variations in the nature and influence of teacher education programs…

  7. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  8. SSPS-CRS first period of operation: preliminary operation results, experiences, and events. IEA Small Solar Power Systems Project SR4

    SciTech Connect

    Bucher, W.

    1984-05-01

    Some lessons learned from operating the SSPS-CRS plant for over one and a half years are presented and major results from the evaluation of plant performance data are provided. Meteorological conditions at the site during the period of operation are described, including insolation, wind, temperatures, precipitation, and a thunderstorm. The performance of the heliostat field system, receiver, sodium heat transfer system, and power conversion system is discussed, and results are given of heliostat flux measurements, receiver efficiencies and losses, sodium heat transfer system losses, heat transfer system performance and efficiency. (LEW)

  9. Defining elements of sustainable work systems--a system-oriented approach.

    PubMed

    Fischer, Klaus; Zink, Klaus J

    2012-01-01

    Based on a system-theoretic discussion of sustainability, this paper aims to develop a conceptual model of a sustainable work system which is consistent with the definition of ergonomics by the IEA in 2000 (but also with earlier definitions) as well as with the triple bottom line understanding of sustainable development - comprising the management of human, social, ecological and economic capital in a balanced manner. PMID:22317318

  10. Defining elements of sustainable work systems--a system-oriented approach.

    PubMed

    Fischer, Klaus; Zink, Klaus J

    2012-01-01

    Based on a system-theoretic discussion of sustainability, this paper aims to develop a conceptual model of a sustainable work system which is consistent with the definition of ergonomics by the IEA in 2000 (but also with earlier definitions) as well as with the triple bottom line understanding of sustainable development - comprising the management of human, social, ecological and economic capital in a balanced manner.

  11. Analysis and recommendations for DPA calculations in SiC

    SciTech Connect

    Heinisch, H.L.

    1998-09-01

    Recent modeling results, coupled with the implications of available experimental results, provide sufficient information to achieve consensus on the values of threshold displacement energies to use in displacements per atom (DPA) calculations. The values recommended here, 20 eV for C and 35 eV for Si, will be presented for adoption by the international fusion materials community at the next IEA SiC/SiC workshop.

  12. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  13. A Rasch Hierarchical Measurement Model.

    ERIC Educational Resources Information Center

    Maier, Kimberly S.

    This paper describes a model that integrates an item response theory (IRT) Rasch model and a hierarchical linear model and presents a method of estimating model parameter values that does not rely on large-sample theory and normal approximations. The model resulting from the integration of a hierarchical linear model and the Rasch model allows one…

  14. Modeling Imports in a Keynesian Expenditure Model

    ERIC Educational Resources Information Center

    Findlay, David W.

    2010-01-01

    The author discusses several issues that instructors of introductory macroeconomics courses should consider when introducing imports in the Keynesian expenditure model. The analysis suggests that the specification of the import function should partially, if not completely, be the result of a simple discussion about the spending and import…

  15. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  16. Extended frequency turbofan model

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Park, J. W.; Jaekel, R. F.

    1980-01-01

    The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.

  17. Load Model Data Tool

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less

  18. Carcinogenesis models: An overview

    SciTech Connect

    Moolgavkar, S.H.

    1992-12-31

    Biologically based mathematical models of carcinogenesis are not only an essential part of a rational approach to quantitative cancer risk assessment but also raise fundamental questions about the nature of the events leading to malignancy. In this paper two such models are reviewed. The first is the multistage model proposed by Armitage and Doll in the 1950s; most of the paper is devoted to a discussion of the two-mutation model proposed by the author and his colleagues. This model is a generalization of the idea of recessive oncogenesis proposed by Knudson and has been shown to be consistent with a large body of epidemiologic and experimental data. The usefulness of the model is illustrated by analyzing a large experimental data set in which rats exposed to radon developed malignant lung tumors.

  19. Load Model Data Tool

    SciTech Connect

    David Chassin, Pavel Etingov

    2013-04-30

    The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.

  20. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  1. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  2. Cloud model bat algorithm.

    PubMed

    Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi

    2014-01-01

    Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: "bats approach their prey." Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425

  3. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  4. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity.

  5. Outside users payload model

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The outside users payload model which is a continuation of documents and replaces and supersedes the July 1984 edition is presented. The time period covered by this model is 1985 through 2000. The following sections are included: (1) definition of the scope of the model; (2) discussion of the methodology used; (3) overview of total demand; (4) summary of the estimated market segmentation by launch vehicle; (5) summary of the estimated market segmentation by user type; (6) details of the STS market forecast; (7) summary of transponder trends; (8) model overview by mission category; and (9) detailed mission models. All known non-NASA, non-DOD reimbursable payloads forecast to be flown by non-Soviet-block countries are included in this model with the exception of Spacelab payloads and small self contained payloads. Certain DOD-sponsored or cosponsored payloads are included if they are reimbursable launches.

  6. Teaching macromolecular modeling.

    PubMed

    Harvey, S C; Tan, R K

    1992-12-01

    Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods.

  7. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  8. F-14 modeling study

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Baron, S.

    1984-01-01

    Preliminary results in the application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues are discussed in the context of an air to air target tracking task. The closed loop model is described briefly. Then, problem simplifications that are employed to reduce computational costs are discussed. Finally, model results showing sensitivity of performance to various assumptions concerning the simulator and/or the pilot are presented.

  9. Acid rain: Mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H. M.

    1980-01-01

    A mesoscale numerical model of the Florida peninsula was formulated and applied to a dry, neutral atmosphere. The prospective use of the STAR-100 computer for the submesoscale model is discussed. The numerical model presented is tested under synoptically undisturbed conditions. Two cases, differing only in the direction of the prevailing geostrophic wind, are examined: a prevailing southwest wind and a prevailing southeast wind, both 6 m/sec at all levels initially.

  10. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  11. Modeling Frequency Comb Sources

    NASA Astrophysics Data System (ADS)

    Li, Feng; Yuan, Jinhui; Kang, Zhe; Li, Qian; Wai, P. K. A.

    2016-06-01

    Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  12. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  13. Atmospheric prediction model survey

    NASA Technical Reports Server (NTRS)

    Wellck, R. E.

    1976-01-01

    As part of the SEASAT Satellite program of NASA, a survey of representative primitive equation atmospheric prediction models that exist in the world today was written for the Jet Propulsion Laboratory. Seventeen models developed by eleven different operational and research centers throughout the world are included in the survey. The surveys are tutorial in nature describing the features of the various models in a systematic manner.

  14. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. PMID:27631126

  15. AREST model description

    SciTech Connect

    Engel, D.W.; McGrail, B.P.

    1993-11-01

    The Office of Civilian Radioactive Waste Management and the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) have supported the development of the Analytical Repository Source-Term (AREST) at Pacific Northwest Laboratory. AREST is a computer model developed to evaluate radionuclide release from an underground geologic repository. The AREST code can be used to calculate/estimate the amount and rate of each radionuclide that is released from the engineered barrier system (EBS) of the repository. The EBS is the man-made or disrupted area of the repository. AREST was designed as a system-level models to simulate the behavior of the total repository by combining process-level models for the release from an individual waste package or container. AREST contains primarily analytical models for calculating the release/transport of radionuclides to the lost rock that surrounds each waste package. Analytical models were used because of the small computational overhead that allows all the input parameters to be derived from a statistical distribution. Recently, a one-dimensional numerical model was also incorporated into AREST, to allow for more detailed modeling of the transport process with arbitrary length decay chains. The next step in modeling the EBS, is to develop a model that couples the probabilistic capabilities of AREST with a more detailed process model. This model will need to look at the reactive coupling of the processes that are involved with the release process. Such coupling would include: (1) the dissolution of the waste form, (2) the geochemical modeling of the groundwater, (3) the corrosion of the container overpacking, and (4) the backfill material, just to name a few. Several of these coupled processes are already incorporated in the current version of AREST.

  16. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  17. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  18. Liftoff Model for MELCOR.

    SciTech Connect

    Young, Michael F.

    2015-07-01

    Aerosol particles that deposit on surfaces may be subsequently resuspended by air flowing over the surface. A review of models for this liftoff process is presented and compared to available data. Based on this review, a model that agrees with existing data and is readily computed is presented for incorporation into a system level code such as MELCOR. Liftoff Model for MELCOR July 2015 4 This page is intentionally blank

  19. Dataset Modelability by QSAR

    PubMed Central

    Golbraikh, Alexander; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander

    2014-01-01

    We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to separate non-modelable from the modelable datasets. PMID:24251851

  20. Mathematical model of sarcoidosis

    PubMed Central

    Hao, Wenrui; Crouser, Elliott D.; Friedman, Avner

    2014-01-01

    Sarcoidosis is a disease involving abnormal collection of inflammatory cells forming nodules, called granulomas. Such granulomas occur in the lung and the mediastinal lymph nodes, in the heart, and in other vital and nonvital organs. The origin of the disease is unknown, and there are only limited clinical data on lung tissue of patients. No current model of sarcoidosis exists. In this paper we develop a mathematical model on the dynamics of the disease in the lung and use patients’ lung tissue data to validate the model. The model is used to explore potential treatments. PMID:25349384

  1. Models of Reality.

    SciTech Connect

    Brown-VanHoozer, S. A.

    1999-06-02

    Conscious awareness of our environment is based on a feedback loop comprised of sensory input transmitted to the central nervous system leading to construction of our ''model of the world,'' (Lewis et al, 1982). We then assimilate the neurological model at the unconscious level into information we can later consciously consider useful in identifying belief systems and behaviors for designing diverse systems. Thus, we can avoid potential problems based on our open-to-error perceived reality of the world. By understanding how our model of reality is organized, we allow ourselves to transcend content and develop insight into how effective choices and belief systems are generated through sensory derived processes. These are the processes which provide the designer the ability to meta model (build a model of a model) the user; consequently, matching the mental model of the user with that of the designer's and, coincidentally, forming rapport between the two participants. The information shared between the participants is neither assumed nor generalized, it is closer to equivocal; thus minimizing error through a sharing of each other's model of reality. How to identify individual mental mechanisms or processes, how to organize the individual strategies of these mechanisms into useful patterns, and to formulate these into models for success and knowledge based outcomes is the subject of the discussion that follows.

  2. Computer Modeling and Simulation

    SciTech Connect

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  3. Models of HERG gating.

    PubMed

    Bett, Glenna C L; Zhou, Qinlian; Rasmusson, Randall L

    2011-08-01

    HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of I(Kr), which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations. PMID:21806931

  4. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis. PMID:16376602

  5. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  6. Lightning return stroke models

    NASA Technical Reports Server (NTRS)

    Lin, Y. T.; Uman, M. A.; Standler, R. B.

    1980-01-01

    We test the two most commonly used lightning return stroke models, Bruce-Golde and transmission line, against subsequent stroke electric and magnetic field wave forms measured simultaneously at near and distant stations and show that these models are inadequate to describe the experimental data. We then propose a new return stroke model that is physically plausible and that yields good approximations to the measured two-station fields. Using the new model, we derive return stroke charge and current statistics for about 100 subsequent strokes.

  7. Modeling plant morphogenesis.

    PubMed

    Prusinkiewicz, Przemyslaw; Rolland-Lagan, Anne-Gaëlle

    2006-02-01

    Applications of computational techniques to developmental plant biology include the processing of experimental data and the construction of simulation models. Substantial progress has been made in these areas over the past few years. Complex image-processing techniques are used to integrate sequences of two-dimensional images into three-dimensional descriptions of development over time and to extract useful quantitative traits. Large amounts of data are integrated into empirical models of developing plant organs and entire plants. Mechanistic models link molecular-level phenomena with the resulting phenotypes. Several models shed light on the possible properties of active auxin transport and its role in plant morphogenesis.

  8. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  9. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  10. Modelling approaches in biomechanics.

    PubMed Central

    Alexander, R McN

    2003-01-01

    Conceptual, physical and mathematical models have all proved useful in biomechanics. Conceptual models, which have been used only occasionally, clarify a point without having to be constructed physically or analysed mathematically. Some physical models are designed to demonstrate a proposed mechanism, for example the folding mechanisms of insect wings. Others have been used to check the conclusions of mathematical modelling. However, others facilitate observations that would be difficult to make on real organisms, for example on the flow of air around the wings of small insects. Mathematical models have been used more often than physical ones. Some of them are predictive, designed for example to calculate the effects of anatomical changes on jumping performance, or the pattern of flow in a 3D assembly of semicircular canals. Others seek an optimum, for example the best possible technique for a high jump. A few have been used in inverse optimization studies, which search for variables that are optimized by observed patterns of behaviour. Mathematical models range from the extreme simplicity of some models of walking and running, to the complexity of models that represent numerous body segments and muscles, or elaborate bone shapes. The simpler the model, the clearer it is which of its features is essential to the calculated effect. PMID:14561333

  11. Wind power prediction models

    NASA Technical Reports Server (NTRS)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  12. DISJUNCTIVE NORMAL SHAPE MODELS

    PubMed Central

    Ramesh, Nisha; Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2016-01-01

    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters. PMID:27403233

  13. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  14. Models of HERG Gating

    PubMed Central

    Bett, Glenna C.L.; Zhou, Qinlian; Rasmusson, Randall L.

    2011-01-01

    HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of IKr, which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations. PMID:21806931

  15. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  16. Groundwater Model Validation

    SciTech Connect

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  17. Why business models matter.

    PubMed

    Magretta, Joan

    2002-05-01

    "Business model" was one of the great buzz-words of the Internet boom. A company didn't need a strategy, a special competence, or even any customers--all it needed was a Web-based business model that promised wild profits in some distant, ill-defined future. Many people--investors, entrepreneurs, and executives alike--fell for the fantasy and got burned. And as the inevitable counterreaction played out, the concept of the business model fell out of fashion nearly as quickly as the .com appendage itself. That's a shame. As Joan Magretta explains, a good business model remains essential to every successful organization, whether it's a new venture or an established player. To help managers apply the concept successfully, she defines what a business model is and how it complements a smart competitive strategy. Business models are, at heart, stories that explain how enterprises work. Like a good story, a robust business model contains precisely delineated characters, plausible motivations, and a plot that turns on an insight about value. It answers certain questions: Who is the customer? How do we make money? What underlying economic logic explains how we can deliver value to customers at an appropriate cost? Every viable organization is built on a sound business model, but a business model isn't a strategy, even though many people use the terms interchangeably. Business models describe, as a system, how the pieces of a business fit together. But they don't factor in one critical dimension of performance: competition. That's the job of strategy. Illustrated with examples from companies like American Express, EuroDisney, WalMart, and Dell Computer, this article clarifies the concepts of business models and strategy, which are fundamental to every company's performance.

  18. Biosphere Process Model Report

    SciTech Connect

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  19. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  20. Spiral model pilot project information model

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  1. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  2. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  3. Canister Model, Systems Analysis

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  4. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  5. Fictional models in science

    NASA Astrophysics Data System (ADS)

    Morrison, Margaret

    2014-02-01

    When James Clerk Maxwell set out his famous equations 150 years ago, his model of electromagnetism included a piece of pure fiction: an invisible, all-pervasive "aether" made up of elastic vortices separated by electric charges. Margaret Morrison explores how this and other "fictional" models shape science.

  6. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  7. Dasymetric Modeling and Uncertainty

    PubMed Central

    Nagle, Nicholas N.; Buttenfield, Barbara P.; Leyk, Stefan; Speilman, Seth

    2014-01-01

    Dasymetric models increase the spatial resolution of population data by incorporating related ancillary data layers. The role of uncertainty in dasymetric modeling has not been fully addressed as of yet. Uncertainty is usually present because most population data are themselves uncertain, and/or the geographic processes that connect population and the ancillary data layers are not precisely known. A new dasymetric methodology - the Penalized Maximum Entropy Dasymetric Model (P-MEDM) - is presented that enables these sources of uncertainty to be represented and modeled. The P-MEDM propagates uncertainty through the model and yields fine-resolution population estimates with associated measures of uncertainty. This methodology contains a number of other benefits of theoretical and practical interest. In dasymetric modeling, researchers often struggle with identifying a relationship between population and ancillary data layers. The PEDM model simplifies this step by unifying how ancillary data are included. The P-MEDM also allows a rich array of data to be included, with disparate spatial resolutions, attribute resolutions, and uncertainties. While the P-MEDM does not necessarily produce more precise estimates than do existing approaches, it does help to unify how data enter the dasymetric model, it increases the types of data that may be used, and it allows geographers to characterize the quality of their dasymetric estimates. We present an application of the P-MEDM that includes household-level survey data combined with higher spatial resolution data such as from census tracts, block groups, and land cover classifications. PMID:25067846

  8. Connectionist Modelling and Education.

    ERIC Educational Resources Information Center

    Evers, Colin W.

    2000-01-01

    Provides a detailed, technical introduction to the state of cognitive science research, in particular the rise of the "new cognitive science," especially artificial neural net (ANN) models. Explains one influential ANN model and describes diverse applications and their implications for education. (EV)

  9. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  10. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  11. Models and Metaphors

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    2007-01-01

    Humanity delights in spinning conceptual models of the world. These models, in turn, mirror their respective root metaphors. Three root metaphors--spiritual, organic, and mechanical--have dominated western thought. The spiritual metaphor runs from Plato, through Hegel, and connects with Montessori. The organic metaphor extends from Aristotle,…

  12. Pathological Gambling: Psychiatric Models

    ERIC Educational Resources Information Center

    Westphal, James R.

    2008-01-01

    Three psychiatric conceptual models: addictive, obsessive-compulsive spectrum and mood spectrum disorder have been proposed for pathological gambling. The objectives of this paper are to (1) evaluate the evidence base from the most recent reviews of each model, (2) update the evidence through 2007 and (3) summarize the status of the evidence for…

  13. Evaluating Causal Models.

    ERIC Educational Resources Information Center

    Watt, James H., Jr.

    Pointing out that linear causal models can organize the interrelationships of a large number of variables, this paper contends that such models are particularly useful to mass communication research, which must by necessity deal with complex systems of variables. The paper first outlines briefly the philosophical requirements for establishing a…

  14. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  15. Using Models Effectively

    ERIC Educational Resources Information Center

    Eichinger, John

    2005-01-01

    Models are crucial to science teaching and learning, yet they can create unforeseen and overlooked challenges for students and teachers. For example, consider the time-tested clay volcano that relies on a vinegar and-baking-soda mixture for its "eruption." Based on a classroom demonstration of that geologic model, elementary students may interpret…

  16. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  17. Modelling extended chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1986-01-01

    Attention is given to the concept that the warm, partially ionized plasma (presently called chromosphere) associated with such stars as Alpha Boo and Rho Per extends outwards at least several photospheric radii. Calculations are presented for the Mg II K line in light of two input model atmospheres. Specific predictions are deduced from the results obtained by each of the two models.

  18. Model-Based Reasoning

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk; Seel, Norbert M.

    2013-01-01

    In this paper, there will be a particular focus on mental models and their application to inductive reasoning within the realm of instruction. A basic assumption of this study is the observation that the construction of mental models and related reasoning is a slowly developing capability of cognitive systems that emerges effectively with proper…

  19. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  20. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  1. Stereolithography models. Final report

    SciTech Connect

    Smith, R.E.

    1995-03-01

    This report describes the first stereolithographic models made, which proved in a new release of ProEngineer software (Parametric Technologies, or PTC) and 3D Systems (Valencia, California) software for the SLA 250 machine. They are a model of benzene and the {alpha}-carbon backbone of the variable region of an antibody.

  2. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  3. Dynamic Eye Model.

    ERIC Educational Resources Information Center

    Journal of Science and Mathematics Education in Southeast Asia, 1981

    1981-01-01

    Instructions (with diagrams and parts list) are provided for constructing an eye model with a pliable lens made from a plastic bottle which can vary its convexity to accommodate changing positions of an object being viewed. Also discusses concepts which the model can assist in developing. (Author/SK)

  4. Model for Coastal Restoration

    SciTech Connect

    Thom, Ronald M.; Judd, Chaeli

    2007-07-27

    Successful restoration of wetland habitats depends on both our understanding of our system and our ability to characterize it. By developing a conceptual model, looking at different spatial scales and integrating diverse data streams: GIS datasets and NASA products, we were able to develop a dynamic model for site prioritization based on both qualitative and quantitative relationships found in the coastal environment.

  5. Modelling Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.

    2016-04-01

    Hadron physics stands somewhere in the diffuse intersection between nuclear and particle physics and relies largely on the use of models. Historically, around 1930, the first nuclear physics models known as the liquid drop model and the semi-empirical mass formula established the grounds for the study of nuclei properties and nuclear structure. These two models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-type) and relativistic models are available in the literature and largely used and the vast majority are parameter dependent models. In this review I discuss some of the shortcomings of using non-relativistic models and the advantages of using relativistic ones when applying them to describe hadronic matter. I also show possible applications of relativistic models to physical situations that cover part of the QCD phase diagram: I mention how the description of compact objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained and show the relation between liquid-gas phase transitions and the pasta phase.

  6. Models in Biology.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…

  7. Anticipatory model of cavitation

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Allgood, Glenn O.; Dress, William B.; Hylton, James O.

    1999-03-01

    The Anticipatory System (AS) formalism developed by Robert Rosen provides some insight into the problem of embedding intelligent behavior in machines. AS emulates the anticipatory behavior of biological systems. AS bases its behavior on its expectations about the near future and those expectations are modified as the system gains experience. The expectation is based on an internal model that is drawn from an appeal to physical reality. To be adaptive, the model must be able to update itself. To be practical, the model must run faster than real-time. The need for a physical model and the requirement that the model execute at extreme speeds, has held back the application of AS to practical problems. Two recent advances make it possible to consider the use of AS for practical intelligent sensors. First, advances in transducer technology make it possible to obtain previously unavailable data from which a model can be derived. For example, acoustic emissions (AE) can be fed into a Bayesian system identifier that enables the separation of a weak characterizing signal, such as the signature of pump cavitation precursors, from a strong masking signal, such as a pump vibration feature. The second advance is the development of extremely fast, but inexpensive, digital signal processing hardware on which it is possible to run an adaptive Bayesian-derived model faster than real-time. This paper reports the investigation of an AS using a model of cavitation based on hydrodynamic principles and Bayesian analysis of data from high-performance AE sensors.

  8. A Model for Implementation.

    ERIC Educational Resources Information Center

    O'Connor-Petruso, Sharon Anne

    2003-01-01

    Describes the Constructural Multi-Modalities Model for MST (math, science, and technology) Inquiry Units. The MST Model uses an interdisciplinary and constructivist approach and allows teachers to create lesson plans that: integrate MST in tandem; adhere to local, state, and national standards; and actively engage students' differentiated learning…

  9. Video Self-Modeling

    ERIC Educational Resources Information Center

    Buggey, Tom; Ogle, Lindsey

    2012-01-01

    Video self-modeling (VSM) first appeared on the psychology and education stage in the early 1970s. The practical applications of VSM were limited by lack of access to tools for editing video, which is necessary for almost all self-modeling videos. Thus, VSM remained in the research domain until the advent of camcorders and VCR/DVD players and,…

  10. Model State Efforts.

    ERIC Educational Resources Information Center

    Morgan, Gwen

    Models of state involvement in training child care providers are briefly discussed and the employers' role in training is explored. Six criteria for states that are taken as models are identified, and four are described. Various state activities are described for each criterion. It is noted that little is known about employer and other private…

  11. Modeling HIV Cure

    NASA Astrophysics Data System (ADS)

    Perelson, Alan; Conway, Jessica; Cao, Youfang

    A large effort is being made to find a means to cure HIV infection. I will present a dynamical model of post-treatment control (PTC) or ``functional cure'' of HIV-infection. Some patients treated with suppressive antiviral therapy have been taken off of therapy and then spontaneously control HIV infection such that the amount of virus in the circulation is maintained undetectable by clinical assays for years. The model explains PTC occurring in some patients by having a parameter regime in which the model exhibits bistability, with both a low and high steady state viral load being stable. The model makes a number of predictions about how to attain the low PTC steady state. Bistability in this model depends upon the immune response becoming exhausted when over stimulated. I will also present a generalization of the model in which immunotherapy can be used to reverse immune exhaustion and compare model predictions with experiments in SIV infected macaques given immunotherapy and then taken off of antiretroviral therapy. Lastly, if time permits, I will discuss one of the hurdles to true HIV eradication, latently infected cells, and present clinical trial data and a new model addressing pharmacological means of flushing out the latent reservoir. Supported by NIH Grants AI028433 and OD011095.

  12. Symposium on ID Models.

    ERIC Educational Resources Information Center

    Silber, Kenneth H., Ed.

    1980-01-01

    Presents papers on four different instructional development models currently in use either in a university or a business setting. All phases of systematic development are covered, including project selection, production, implementation, performance analysis, constraints, and unusual features that distinguish each model. References are listed. (BK)

  13. Math, Science, and Models

    ERIC Educational Resources Information Center

    Weinburgh, Molly; Silva, Cecilia

    2011-01-01

    For the past five summers, the authors have taught summer school to recent immigrants and refugees. Their experiences with these fourth-grade English language learners (ELL) have taught them the value of using models to build scientific and mathematical concepts. In this article, they describe the use of different forms of 2- and 3-D models to…

  14. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  15. Modeling for Insights

    SciTech Connect

    Jacob J. Jacobson; Gretchen Matthern

    2007-04-01

    System Dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, System Dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The real power of System Dynamic modeling is gaining insights into total system behavior as time, and system parameters are adjusted and the effects are visualized in real time. System Dynamic models allow decision makers and stakeholders to explore long-term behavior and performance of complex systems, especially in the context of dynamic processes and changing scenarios without having to wait decades to obtain field data or risk failure if a poor management or design approach is used. The Idaho National Laboratory recently has been developing a System Dynamic model of the US Nuclear Fuel Cycle. The model is intended to be used to identify and understand interactions throughout the entire nuclear fuel cycle and suggest sustainable development strategies. This paper describes the basic framework of the current model and presents examples of useful insights gained from the model thus far with respect to sustainable development of nuclear power.

  16. SOSS ICN Model Validation

    NASA Technical Reports Server (NTRS)

    Zhu, Zhifan

    2016-01-01

    Under the NASA-KAIA-KARI ATM research collaboration agreement, SOSS ICN Model has been developed for Incheon International Airport. This presentation describes the model validation work in the project. The presentation will show the results and analysis of the validation.

  17. Animal models of candidiasis.

    PubMed

    Clancy, Cornelius J; Cheng, Shaoji; Nguyen, Minh Hong

    2009-01-01

    Animal models are powerful tools to study the pathogenesis of diverse types of candidiasis. Murine models are particularly attractive because of cost, ease of handling, technical feasibility, and experience with their use. In this chapter, we describe methods for two of the most popular murine models of disease caused by Candida albicans. In an intravenously disseminated candidiasis (DC) model, immunocompetent mice are infected by lateral tail vein injections of a C. albicans suspension. Endpoints include mortality, tissue burdens of infection (most importantly in the kidneys, although spleens and livers are sometimes also assessed), and histopathology of infected organs. In a model of oral/esophageal candidiasis, mice are immunosuppressed with cortisone acetate and inoculated in the oral cavities using swabs saturated with a C. albicans suspension. Since mice do not die from oral candidiasis in this model, endpoints are tissue burden of infection and histopathology. The DC and oral/esophageal models are most commonly used for studies of C. albicans virulence, in which the disease-causing ability of a mutant strain is compared with an isogenic parent strain. Nevertheless, the basic techniques we describe are also applicable to models adapted to investigate other aspects of pathogenesis, such as spatiotemporal patterns of gene expression, specific aspects of host immune response and assessment of antifungal agents, immunomodulatory strategies, and vaccines.

  18. SUSY GUT Model Building

    SciTech Connect

    Raby, Stuart

    2008-11-23

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E{sub 8}xE{sub 8} heterotic string.

  19. Modelling University Governance

    ERIC Educational Resources Information Center

    Trakman, Leon

    2008-01-01

    Twentieth century governance models used in public universities are subject to increasing doubt across the English-speaking world. Governments question if public universities are being efficiently governed; if their boards of trustees are adequately fulfilling their trust obligations towards multiple stakeholders; and if collegial models of…

  20. On Some Electroconvection Models

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Elgindi, Tarek; Ignatova, Mihaela; Vicol, Vlad

    2016-08-01

    We consider a model of electroconvection motivated by studies of the motion of a two-dimensional annular suspended smectic film under the influence of an electric potential maintained at the boundary by two electrodes. We prove that this electroconvection model has global in time unique smooth solutions.

  1. Acid rain: Microphysical model

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1980-01-01

    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.

  2. THE AQUATOX MODEL

    EPA Science Inventory

    This lecture will present AQUATOX, an aquatic ecosystem simulation model developed by Dr. Dick Park and supported by the U.S. EPA. The AQUATOX model predicts the fate of various pollutants, such as nutrients and organic chemicals, and their effects on the ecosystem, including fi...

  3. Stormwater Management Model

    EPA Science Inventory

    SWMM is a model for urban hydrology. It has a long history and is relied upon by professional engineers in the US and around the world. SWMM provides both gray and green Infrastructure modeling capabilities. As such, it is a convenient tool for understanding the tradeoff between ...

  4. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  5. Generalized simplicial chiral models

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Masoud

    2000-02-01

    Using the auxiliary field representation of the simplicial chiral models on a ( d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr (AA †) in the Lagrangian of these models by an arbitrary class function of AA †; V(AA †) . This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM 2) from ordinary YM 2. We call these models the "generalized simplicial chiral models". Using the results of the one-link integral over a U( N) matrix, the large- N saddle-point equations for eigenvalue density function ρ( z) in the weak ( β> βc) and strong ( β< βc) regions are computed. In d=2, where the model is in some sense related to the gYM 2 theory, the saddle-point equations are solved for ρ( z) in the two regions, and the explicit value of critical point βc is calculated for V(B)= Tr B n(B=AA †) . For V(B)= Tr B 2, Tr B 3, and Tr B4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition.

  6. Introduction to Theoretical Modelling

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.

    2013-02-01

    We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.

  7. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  8. Reliability model generator specification

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Mccann, Catherine

    1990-01-01

    The Reliability Model Generator (RMG), a program which produces reliability models from block diagrams for ASSIST, the interface for the reliability evaluation tool SURE is described. An account is given of motivation for RMG and the implemented algorithms are discussed. The appendices contain the algorithms and two detailed traces of examples.

  9. Warm Inflation Model Building

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun

    We review the main aspects of the warm inflation scenario, focusing on the inflationary dynamics and the predictions related to the primordial spectrum of perturbations, to be compared with the recent cosmological observations. We study in detail three different classes of inflationary models, chaotic, hybrid models and hilltop models, and discuss their embedding into supersymmetric models and the consequences for model building of the warm inflationary dynamics based on first principles calculations. Due to the extra friction term introduced in the inflaton background evolution generated by the dissipative dynamics, inflation can take place generically for smaller values of the field, and larger values of couplings and masses. When the dissipative dynamics dominates over the expansion, in the so-called strong dissipative regime, inflation proceeds with sub-Planckian inflaton values. Models can be naturally embedded into a supergravity framework, with SUGRA corrections suppressed by the Planck mass now under control, for a larger class of Kähler potentials. In particular, this provides a simpler solution to the "eta" problem in supersymmetric hybrid inflation, without restricting the Kähler potentials compatible with inflation. For chaotic models dissipation leads to a smaller prediction for the tensor-to-scalar ratio and a less tilted spectrum when compared to the cold inflation scenario. We find in particular that a small component of dissipation renders the quartic model now consistent with the current CMB data.

  10. Computational Modeling of Tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)

    1995-01-01

    This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.

  11. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  12. Modeling cytomegalovirus infection in mouse tumor models.

    PubMed

    Price, Richard Lee; Chiocca, Ennio Antonio

    2015-01-01

    The hypothesis that cytomegalovirus (CMV) modulates cancer is evolving. Originally discovered in glioblastoma in 2002, the number of cancers, where intratumoral CMV antigen is detected, has increased in recent years suggesting that CMV actively affects the pathobiology of certain tumors. These findings are controversial as several groups have also reported inability to replicate these results. Regardless, several clinical trials for glioblastoma are underway or have been completed that target intratumoral CMV with anti-viral drugs or immunotherapy. Therefore, a better understanding of the possible pathobiology of CMV in cancer needs to be ascertained. We have developed genetic, syngeneic, and orthotopic malignant glioma mouse models to study the role of CMV in cancer development and progression. These models recapitulate for the most part intratumoral CMV expression as seen in human tumors. Additionally, we discovered that CMV infection in Trp53(-/+) mice promotes pleomorphic rhabdomyosarcomas. These mouse models are not only a vehicle for studying pathobiology of the viral-tumor interaction but also a platform for developing and testing cancer therapeutics. PMID:25853089

  13. Integrated Environmental Control Model

    1999-09-03

    IECM is a powerful multimedia engineering software program for simulating an integrated coal-fired power plant. It provides a capability to model various conventional and advanced processes for controlling air pollutant emissions from coal-fired power plants before, during, or after combustion. The principal purpose of the model is to calculate the performance, emissions, and cost of power plant configurations employing alternative environmental control methods. The model consists of various control technology modules, which may be integratedmore » into a complete utility plant in any desired combination. In contrast to conventional deterministic models, the IECM offers the unique capability to assign probabilistic values to all model input parameters, and to obtain probabilistic outputs in the form of cumulative distribution functions indicating the likelihood of dofferent costs and performance results. A Graphical Use Interface (GUI) facilitates the configuration of the technologies, entry of data, and retrieval of results.« less

  14. Modeling earthquake dynamics

    NASA Astrophysics Data System (ADS)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  15. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  16. A Preliminary Jupiter Model

    NASA Astrophysics Data System (ADS)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  17. Criticality Model Report

    SciTech Connect

    J.M. Scaglione

    2003-03-12

    The purpose of the ''Criticality Model Report'' is to validate the MCNP (CRWMS M&O 1998h) code's ability to accurately predict the effective neutron multiplication factor (k{sub eff}) for a range of conditions spanned by various critical configurations representative of the potential configurations commercial reactor assemblies stored in a waste package may take. Results of this work are an indication of the accuracy of MCNP for calculating eigenvalues, which will be used as input for criticality analyses for spent nuclear fuel (SNF) storage at the proposed Monitored Geologic Repository. The scope of this report is to document the development and validation of the criticality model. The scope of the criticality model is only applicable to commercial pressurized water reactor fuel. Valid ranges are established as part of the validation of the criticality model. This model activity follows the description in BSC (2002a).

  18. Hypertabastic survival model.

    PubMed

    Tabatabai, Mohammad A; Bursac, Zoran; Williams, David K; Singh, Karan P

    2007-10-26

    A new two-parameter probability distribution called hypertabastic is introduced to model the survival or time-to-event data. A simulation study was carried out to evaluate the performance of the hypertabastic distribution in comparison with popular distributions. We then demonstrate the application of the hypertabastic survival model by applying it to data from two motivating studies. The first one demonstrates the proportional hazards version of the model by applying it to a data set from multiple myeloma study. The second one demonstrates an accelerated failure time version of the model by applying it to data from a randomized study of glioma patients who underwent radiotherapy treatment with and without radiosensitizer misonidazole. Based on the results from the simulation study and two applications, the proposed model shows to be a flexible and promising alternative to practitioners in this field.

  19. Testing bow shock models

    NASA Astrophysics Data System (ADS)

    Alrefay, Thamer; Meziane, Karim; Hamza, A. M.

    2016-07-01

    Space plasmas studies of bow shock dynamics, given the fundamental transport role and impact natural transition boundaries, have continued to attract much interest. With the overwhelming availability of data collected by various space science missions, several empirical models have been put forward to account for the location of the Earth's bow shock. Various solar wind and IMF measured parameters are used to constrain the proposed models published in the literature. For each of these empirical models, the bow shock nose velocity, at the standoff distance, is computed; each of these velocities is then compared with the observed shock speed as determined from a multipoint measurement provided by the Cluster quartet. The present study reveals to what extent the model parameters used are significant and determinant, and suggests that some empirical models are more accurate than others are.

  20. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  1. Cardiovascular modeling and diagnostics

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  2. Rainfall erosion model

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, Yu. P.

    2010-09-01

    A model describing rainfall erosion over the course of a long time period is proposed. The model includes: (1) a new equation of detachment of soil particles by water flows based on the Mirtskhulava equation; (2) a new equation for the transport capacity of the flow based on a modified Bagnold equation, which is used in the AGNPS model; (3) modified SCS runoff equation; (4) probability distributions for rainfall. The proposed equations agree satisfactorily with the data of on-site observations of the Moldova and Nizhnedevitsk water-balance stations. The Monte Carlo method is used for numerical modeling of random variables. The results of modeling agree satisfactorily with empirical equations developed for conditions in Russia and the United States. The effect of climatic conditions on the dependence of longtime average annual soil loss on various factors is analyzed. Minimum information is used for assigning the initial data.

  3. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  4. Stochastic patch exploitation model

    PubMed Central

    Rita, H.; Ranta, E.

    1998-01-01

    A solitary animal is foraging in a patch consisting of discrete prey items. We develop a stochastic model for the accumulation of gain as a function of elapsed time in the patch. The model is based on the waiting times between subsequent encounters with the prey items. The novelty of the model is in that it renders possible–via parameterization of the waiting time distributions: the incorporation of different foraging situations and patch structures into the gain process. The flexibility of the model is demonstrated with different foraging scenarios. Dependence of gain expectation and variance of the parameters of the waiting times is studied under these conditions. The model allows us to comment upon some of the basic concepts in contemporary foraging theory.

  5. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  6. Proton channel models

    PubMed Central

    Pupo, Amaury; Baez-Nieto, David; Martínez, Agustín; Latorre, Ramón; González, Carlos

    2014-01-01

    Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins. PMID:24755912

  7. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  8. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-01-01

    Most diffusion models currently used in air-quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefully their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stable boundary layer (SBL), and model uncertainty. Progress has been made in all areas, but it is most significant and ready for application to practical models in the case of the CBL. This has resulted from a clear understanding of the vertical structure and diffusion in the CBL, as demonstrated by laboratory experiments, numerical simulations, and field observations. Understanding of turbulence structure and diffusion in the SBL is less complete and not yet ready for general use in applications.

  9. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  10. Varicella infection modeling.

    SciTech Connect

    Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

    2013-09-01

    Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

  11. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  12. Conditional statistical model building

    NASA Astrophysics Data System (ADS)

    Hansen, Mads Fogtmann; Hansen, Michael Sass; Larsen, Rasmus

    2008-03-01

    We present a new statistical deformation model suited for parameterized grids with different resolutions. Our method models the covariances between multiple grid levels explicitly, and allows for very efficient fitting of the model to data on multiple scales. The model is validated on a data set consisting of 62 annotated MR images of Corpus Callosum. One fifth of the data set was used as a training set, which was non-rigidly registered to each other without a shape prior. From the non-rigidly registered training set a shape prior was constructed by performing principal component analysis on each grid level and using the results to construct a conditional shape model, conditioning the finer parameters with the coarser grid levels. The remaining shapes were registered with the constructed shape prior. The dice measures for the registration without prior and the registration with a prior were 0.875 +/- 0.042 and 0.8615 +/- 0.051, respectively.

  13. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  14. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  15. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  16. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  17. Beyond the Standard Model

    SciTech Connect

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  18. Open ocean tide modelling

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  19. Australia's Next Top Fraction Model

    ERIC Educational Resources Information Center

    Gould, Peter

    2013-01-01

    Peter Gould suggests Australia's next top fraction model should be a linear model rather than an area model. He provides a convincing argument and gives examples of ways to introduce a linear model in primary classrooms.

  20. Staged Models for Interdisciplinary Research.

    PubMed

    Lafuerza, Luis F; Dyson, Louise; Edmonds, Bruce; McKane, Alan J

    2016-01-01

    Modellers of complex biological or social systems are often faced with an invidious choice: to use simple models with few mechanisms that can be fully analysed, or to construct complicated models that include all the features which are thought relevant. The former ensures rigour, the latter relevance. We discuss a method that combines these two approaches, beginning with a complex model and then modelling the complicated model with simpler models. The resulting "chain" of models ensures some rigour and relevance. We illustrate this process on a complex model of voting intentions, constructing a reduced model which agrees well with the predictions of the full model. Experiments with variations of the simpler model yield additional insights which are hidden by the complexity of the full model. This approach facilitated collaboration between social scientists and physicists-the complex model was specified based on the social science literature, and the simpler model constrained to agree (in core aspects) with the complicated model. PMID:27362836

  1. Saturn Radiation (SATRAD) Model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Ratliff, J. M.; Evans, R. W.

    2005-01-01

    The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.

  2. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  3. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  4. VPPA weld model evaluation

    NASA Astrophysics Data System (ADS)

    McCutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-07-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  5. Biophysical models in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Elsaesser, T.

    One major rationale for the application of ion beams in tumor therapy is their increased relative biological effectiveness RBE in the Bragg peak region For dose prescription the increased effectiveness has to be taken into account in treatment planning Hence the complex dependencies of RBE on the dose level biological endpoint position in the field etc require biophysical models which have to fulfill two important criteria simplicity and quantitative precision Simplicity means that the number of free parameters should be kept at a minimum Due to the lack of precise quantitative data at least at present this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production processing and repair of biological damages Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues thus even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome The paper will give a general introduction into the field followed by a brief description of a specific model the so called Local Effect Model LEM This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now The model is based on the knowledge of charged particle track structure in combination with the response of the biological objects to conventional photon radiation The model will be critically discussed with respect to other

  6. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  7. Modeling mitochondrial function.

    PubMed

    Balaban, Robert S

    2006-12-01

    The mitochondrion represents a unique opportunity to apply mathematical modeling to a complex biological system. Understanding mitochondrial function and control is important since this organelle is critical in energy metabolism as well as playing key roles in biochemical synthesis, redox control/signaling, and apoptosis. A mathematical model, or hypothesis, provides several useful insights including a rigorous test of the consensus view of the operation of a biological process as well as providing methods of testing and creating new hypotheses. The advantages of the mitochondrial system for applying a mathematical model include the relative simplicity and understanding of the matrix reactions, the ability to study the mitochondria as a independent contained organelle, and, most importantly, one can dynamically measure many of the internal reaction intermediates, on line. The developing ability to internally monitor events within the metabolic network, rather than just the inflow and outflow, is extremely useful in creating critical bounds on complex mathematical models using the individual reaction mechanisms available. However, many serious problems remain in creating a working model of mitochondrial function including the incomplete definition of metabolic pathways, the uncertainty of using in vitro enzyme kinetics, as well as regulatory data in the intact system and the unknown chemical activities of relevant molecules in the matrix. Despite these formidable limitations, the advantages of the mitochondrial system make it one of the best defined mammalian metabolic networks that can be used as a model system for understanding the application and use of mathematical models to study biological systems.

  8. Invertebrate models of alcoholism.

    PubMed

    Scholz, Henrike; Mustard, Julie A

    2013-01-01

    For invertebrates to become useful models for understanding the genetic and physiological mechanisms of alcoholism related behaviors and the predisposition towards alcoholism, several general requirements must be fulfilled. The animal should encounter ethanol in its natural habitat, so that the central nervous system of the organism will have evolved mechanisms for responding to ethanol exposure. How the brain adapts to ethanol exposure depends on its access to ethanol, which can be regulated metabolically and/or by physical barriers. Therefore, a model organism should have metabolic enzymes for ethanol degradation similar to those found in humans. The neurons and supporting glial cells of the model organism that regulate behaviors affected by ethanol should share the molecular and physiological pathways found in humans, so that results can be compared. Finally, the use of invertebrate models should offer advantages over traditional model systems and should offer new insights into alcoholism-related behaviors. In this review we will summarize behavioral similarities and identified genes and mechanisms underlying ethanol-induced behaviors in invertebrates. This review mainly focuses on the use of the nematode Caenorhabditis elegans, the honey bee Apis mellifera and the fruit fly Drosophila melanogaster as model systems. We will discuss insights gained from those studies in conjunction with their vertebrate model counterparts and the implications for future research into alcoholism and alcohol-induced behaviors.

  9. Intraocular Lymphoma Models

    PubMed Central

    Aronow, Mary E.; Shen, Defen; Hochman, Jacob; Chan, Chi-Chao

    2015-01-01

    Primary vitreoretinal lymphoma (PVRL) is a subtype of primary central nervous system lymphoma (PCNSL), a high-grade, extranodal, non-Hodgkin's lymphoma, predominantly of B-cell origin. PVRL is an aggressive disease with a poor prognosis. Human studies are not ideally suited for the study of intraocular lymphoma pathogenesis or treatment strategies due to the rare nature of the disease, its variable presentation, limited volume of available ocular fluids, and fragility of sampled lymphoma cells. Animal models have been critical in making progress in understanding intraocular lymphoma pathogenesis and investigating potential therapeutic strategies. Early murine models for intraocular lymphoma used intraperitoneal injection of mouse T-cell lymphomas. This was followed by intravitreal T-cell murine models. More recent murine models have used B-cell lymphomas to more closely mimic human disease. The most current B-cell lymphoma models employ a combined approach of inoculating both the mouse vitreous cavity and brain. The challenge in murine models for intraocular lymphoma lies in recreating the clinical features, disease behavior, molecular profile, systemic immunity, and the microenvironment observed in human disease. In the future, animal models will continue to be central to furthering our understanding of the disease and in the investigation of potential treatment targets. PMID:27171354

  10. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  11. SPAR Model Structural Efficiencies

    SciTech Connect

    John Schroeder; Dan Henry

    2013-04-01

    The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches

  12. Atmospheric Models for Aerocapture

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta L.; Keller, Vernon W.

    2004-01-01

    There are eight destinations in the solar System with sufficient atmosphere for aerocapture to be a viable aeroassist option - Venus, Earth, Mars, Jupiter, Saturn and its moon Titan, Uranus, and Neptune. Engineering-level atmospheric models for four of these targets (Earth, Mars, Titan, and Neptune) have been developed for NASA to support systems analysis studies of potential future aerocapture missions. Development of a similar atmospheric model for Venus has recently commenced. An important capability of all of these models is their ability to simulate quasi-random density perturbations for Monte Carlo analyses in developing guidance, navigation and control algorithm, and for thermal systems design. Similarities and differences among these atmospheric models are presented, with emphasis on the recently developed Neptune model and on planned characteristics of the Venus model. Example applications for aerocapture are also presented and illustrated. Recent updates to the Titan atmospheric model are discussed, in anticipation of applications for trajectory and atmospheric reconstruct of Huygens Probe entry at Titan.

  13. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  14. Computationally modeling interpersonal trust

    PubMed Central

    Lee, Jin Joo; Knox, W. Bradley; Wormwood, Jolie B.; Breazeal, Cynthia; DeSteno, David

    2013-01-01

    We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust. PMID:24363649

  15. Interactive geologic modeling

    SciTech Connect

    Glaeser, J.D.; Krajewski, S.A.

    1984-04-01

    Improved success in finding hydrocarbons and minerals depends on developing geologic models from seismic, gravity, and magnetic data that most closely approximate real-world settings. Although data processing remains the chore of mainframe and minicomputers, interpretations and modeling of geologic and geophysical information now are best accomplished on personal computers because these computers afford the explorationist maximum freedom to shape and fine tune geophysical evaluations. Three case histories use the GEOSIM geophysical modeling systems to delineate exploration targets. The first example is Silurian Niagaran reef trends in the Michigan basin. Here, differences in seismic reef anomalies result from variations in carbonate-evaporite stratigraphy encasing the reefs, reef geometry, and reef reservoir parameters. These variations which influence real seismic-response differences can be successfully matched using appropriate geologic models in generating synthetic seismic reef anomalies. The second example applies gravity and magnetic data to seismic modeling of a Wyoming coal field. Detailed seismic stratigraphy helps locate those portions of the field having multiple seams, although it does not resolve individual economic zones. Gravity data do identify pinchout margins of multiseam zones and pinchouts between principal coals. Magnetic data are then used to delineate the burn (clinker) margin. Seismic modeling of subtle stratigraphic traps is the broader area of exploration interest contained in the first 2 examples. In the third, successfully modeled and tested examples of lateral changes in deltaic facies and of faulted, unconformity-bounded continent-margin sequences are shown to be successful guides to reinterpretation of seismic data.

  16. SSCL groundwater model

    SciTech Connect

    Romero, V.; Bull, J.; Stapleton, G.; Baker, S.; Goss, D.; Coulson, L.

    1994-02-01

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model.

  17. Turbulence Modeling Workshop

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.

  18. SMC: SCENIC Model Control

    NASA Technical Reports Server (NTRS)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in

  19. Sandia Material Model Driver

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  20. Computer Modeling Of Atomization

    NASA Technical Reports Server (NTRS)

    Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.

    1994-01-01

    Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.

  1. Modeling EERE Deployment Programs

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  2. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  3. Beyond Standard Model Physics

    SciTech Connect

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  4. Vesta thermal models

    NASA Astrophysics Data System (ADS)

    Formisano, M.; Federico, C.; Coradini, A.

    Vesta thermal evolution and structural models are compared. These models, based on decay of 26Al, 60Fe and long-lived radionuclides (40K, 232Th, 235U and 238U), differ for the delay in injection (Delta td) of 26Al by the nebula in which Vesta was formed. In all models we can see the pristine formation of a metallic core followed by the differentiation of silicatic mantle and we can observe the evolution of the crust. This is in preparation of the Dawn mission that will provide us with constraints on the crust thickness and composition of the crust and underlying mantle.

  5. Acoustooptical spectrum analysis modeling

    NASA Astrophysics Data System (ADS)

    Carmody, M. J.

    1981-06-01

    A summary of Bragg deflection theory and various approaches to direct detection acoustooptic spectrum analysis (AOSA) modeling is presented. A suitable model is chosen and extended to include the effects of diffraction efficiency, transducer efficiency, irradiance profiles of incident laser illumination, aperture size of the Bragg cell, and the acoustic attenuation experienced by the acoustic wavetrain generated by the input r-f signal. A FORTRAN program is developed to model the AOSA and predict the output image plane intensity profiles. A second version of the program includes a time variable permitting dynamic simulation of the system response.

  6. Hierarchical model of matching

    NASA Technical Reports Server (NTRS)

    Pedrycz, Witold; Roventa, Eugene

    1992-01-01

    The issue of matching two fuzzy sets becomes an essential design aspect of many algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems, etc. This paper introduces a new model of matching. Its principal features involve the following: (1) matching carried out with respect to the grades of membership of fuzzy sets as well as some functionals defined on them (like energy, entropy,transom); (2) concepts of hierarchies in the matching model leading to a straightforward distinction between 'local' and 'global' levels of matching; and (3) a distributed character of the model realized as a logic-based neural network.

  7. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, P. D.; Comfort, R. H.

    1999-01-01

    Abstract. The Global Core Plasma Model (GCPM) provides, empirically derived, core plasma density as a function of geomagnetic and solar conditions throughout the inner magnetosphere. It is continuous in value and gradient and is composed of separate models for the ionosphere, the plasmasphere, the plasmapause, the trough, and the polar cap. The relative composition of plasmaspheric H+, He+, and O+ is included in the GCPM. A blunt plasmaspheric bulge and rotation of the bulge with changing geomagnetic conditions is included. The GCPM is an amalgam of density models, intended to serve as a framework for continued improvement as new measurements become available and are used to characterize core plasma density, composition, and temperature.

  8. Modeling Hofmeister Effects.

    PubMed

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A

    2009-03-11

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed.

  9. Modeling Hofmeister Effects

    PubMed Central

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed. PMID:20161468

  10. The Finslerian wormhole models

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Paul, Nupur; Banerjee, Ayan; De, S. S.; Ray, Saibal; Usmani, A. A.

    2016-05-01

    We present models of wormhole under the Finslerian structure of spacetime. This is a sequel of our previous work (Eur Phys J 75:564, 2015) where we constructed a toy model for compact stars based on the Finslerian spacetime geometry. In the present investigation, a wide variety of solutions are obtained, which explore the wormhole geometry by considering different choices for the form function and energy density. The solutions, like in the previous work, are revealed to be physically interesting and viable models for the explanation of wormholes as far as the background theory and literature are concerned.

  11. Perspectives on multifield models

    SciTech Connect

    Banerjee, S.

    1997-07-01

    Multifield models for prediction of nuclear reactor thermalhydraulics are reviewed from the viewpoint of their structure and requirements for closure relationships. Their strengths and weaknesses are illustrated with examples, indicating that they are effective in predicting separated and distributed flow regimes, but have problems for flows with large oscillations. Needs for multifield models are also discussed in the context of reactor operations and accident simulations. The highest priorities for future developments appear to relate to closure relationships for three-dimensional multifield models with emphasis on those needed for calculations of phase separation and entrainment/de-entrainment in complex geometries.

  12. Modeling Compressed Turbulence

    SciTech Connect

    Israel, Daniel M.

    2012-07-13

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  13. The inert Zee model

    NASA Astrophysics Data System (ADS)

    Longas, Robinson; Portillo, Dilia; Restrepo, Diego; Zapata, Oscar

    2016-03-01

    We study a realization of the topology of the Zee model for the generation of neutrino masses at one-loop with a minimal set of vector-like fermions. After imposing an exact Z 2 symmetry to avoid tree-level Higgs-mediated flavor changing neutral currents, one dark matter candidate is obtained from the subjacent inert doublet model, but with the presence of new co-annihilating particles. We show that the model is consistent with the constraints coming from lepton flavor violation processes, oblique parameters, dark matter and neutrino oscillation data.

  14. Dynamical model for thyroid

    NASA Astrophysics Data System (ADS)

    Rokni Lamooki, Gholam Reza; Shirazi, Amir H.; Mani, Ali R.

    2015-05-01

    Thyroid's main chemical reactions are employed to develop a mathematical model. The presented model is based on differential equations where their dynamics reflects many aspects of thyroid's behavior. Our main focus here is the well known, but not well understood, phenomenon so called as Wolff-Chaikoff effect. It is shown that the inhibitory effect of intake iodide on the rate of one single enzyme causes a similar effect as Wolff-Chaikoff. Besides this issue, the presented model is capable of revealing other complex phenomena of thyroid hormones homeostasis.

  15. Quantum causal modelling

    NASA Astrophysics Data System (ADS)

    Costa, Fabio; Shrapnel, Sally

    2016-06-01

    Causal modelling provides a powerful set of tools for identifying causal structure from observed correlations. It is well known that such techniques fail for quantum systems, unless one introduces ‘spooky’ hidden mechanisms. Whether one can produce a genuinely quantum framework in order to discover causal structure remains an open question. Here we introduce a new framework for quantum causal modelling that allows for the discovery of causal structure. We define quantum analogues for core features of classical causal modelling techniques, including the causal Markov condition and faithfulness. Based on the process matrix formalism, this framework naturally extends to generalised structures with indefinite causal order.

  16. Deconstructed Higgsless Models

    SciTech Connect

    Casalbuoni, Roberto

    2006-01-12

    We consider the possibility of constructing realistic Higgsless models within the context of deconstructed or moose models. We show that the constraints coming from the electro-weak experimental data are very severe and that it is very difficult to reconcile them with the requirement of improving the unitarity bound of the Higgsless Standard Model. On the other hand, with some fine tuning, a solution is found by delocalizing the standard fermions along the lattice line, that is allowing the fermions to couple to the moose gauge fiel0008.

  17. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  18. ATHENA radiation model

    SciTech Connect

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  19. Freeze Prediction Model

    NASA Technical Reports Server (NTRS)

    Morrow, C. T. (Principal Investigator)

    1981-01-01

    Measurements of wind speed, net irradiation, and of air, soil, and dew point temperatures in an orchard at the Rock Springs Agricultural Research Center, as well as topographical and climatological data and a description of the major apple growing regions of Pennsylvania were supplied to the University of Florida for use in running the P-model, freeze prediction program. Results show that the P-model appears to have considerable applicability to conditions in Pennsylvania. Even though modifications may have to be made for use in the fruit growing regions, there are advantages for fruit growers with the model in its present form.

  20. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.