Science.gov

Sample records for ife fusion test

  1. 0.5MJ Targets for an IFE Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Lafortune, K. N.; Perkins, L. J.; Bedrossian, P.; Betti, R.; Schmitt, A.; Obenschain, S.

    2006-10-01

    There has been much recent progress in the development of both the source and targets for laser-driven, inertial confinement fusion (ICF). The next step to apply this approach to inertial fusion energy (IFE) is to build a facility that has all the required components of a reactor and demonstrates the reliability and robustness. The Fusion Test Facility proposed by NRL is one such facility [S.Obenschain, Bull. APS v50, 2005]. The cost, complexity and scale of any fusion test facility are driven by the energy required for the fusion target. As the laser-target physics has become better understood, target geometries that require less drive energy have been found. Using conventional hotspot ignition, rad-hydro-burn simulations using HYDRA of low-drive-energy, direct-drive reactor targets requiring just 0.5 MJ of drive energy to achieve gain of 10's are being studied. 1-D scoping studies have been performed to outline the source requirements. Good agreement with comprehensive, time-dependent 1-D simulations in LASNEX has been obtained for integral quantities such as gain, yield and ignition margins. The robustness of the small targets has been explored with 2-D stability studies. Shock ignition of similar targets could be employed to achieve yet higher gains with similar drive energies.

  2. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  3. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  4. Progress and critical issues for IFE blanket and chamber research

    SciTech Connect

    Abdou, M.; Kulcinski, G.L.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.; Schultz, K.R.; Tillack, M.S.

    1999-06-23

    Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.

  5. Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor

    NASA Astrophysics Data System (ADS)

    Natta, Saswathi; Aristova, Maria; Gentile, Charles

    2008-11-01

    A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.

  6. Hydro*Star: A Directed Water-Cooled DD-Fueled IFE Fusion-Chamber Concept

    SciTech Connect

    Orth, C D

    2001-04-01

    We introduce a new IFE fusion-chamber concept called Hydro*Star that uses DT-ignited DD targets and a water blanket. The driver can be either a 13 to 16-MJ diode-pumped solid-state laser (DPSSL) with fast ignition, or a 4-MJ heavy-ion accelerator operating at a reprate 10 times faster than the fusion chamber to accumulate sufficient energy in storage rings to direct 40 MJ at the target. The driver employs a prepulse system to burn an ionized path through the ambient fusion-chamber vapors, whose operating pressure is about 20 atm. We assume that the targets, which have a yield of about 2800 MJ, can be indirectly driven with two-sided illumination. The blanket, which is 1 to 2-m thick and placed immediately inside the structural wall, is operated just over 100 C either in a liquid or frothed-liquid state, the latter being preferred to reduce stresses in the structural wall. The structural wall, at a radius of 4 to 5 m, is composed of low-carbon steels to avoid the stress-corrosion cracking problems that have plagued certain light-water-reactor (LWR) systems. The functions of the blanket are (1) to shield the structural wall and exterior components from neutron and gamma-ray target emissions, and (2) to supply water for the direct generation of steam. Each fusion pulse vaporizes nearly one-half centimeter of the inside surface of the water blanket, thereby creating hot steam which is vented directly from the fusion chamber into ordinary steam turbines. Thus, Hydro*Star operates just like a simple steam engine, with a basic reprate of only 0.8 Hz per GWe of net output. Because the steam temperature is 900 to 1200 K, the plant thermal efficiency is nearly 50%. This efficiency is much better than the typical 35-40% now being achieved in commercial reactors, and much better than the efficiencies estimated for previous fusion-chamber concepts except CASCADE (55%). Other advantages for the new concept include reduced plant radioactivity (reduced radionuclides inventory

  7. Diode-pumped solid state lasers (DPSSLs) for Inertial Fusion Energy (IFE)

    SciTech Connect

    Krupke, W.F.

    1996-10-01

    The status of diode-pumped, transverse-gas-flow cooled, Yb-S-FAP slab lasers is reviewed. Recently acquired experimental performance data are combined with a cost/performance IFE driver design code to define a cost-effective development path for IFE DPSSL drivers. Specific design parameters are described for the Mercury 100J/10 Hz, 1 kW system (first in the development scenario).

  8. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  9. Conceptual Design for a 2 GW Inertial Fusion Energy (IFE) Direct-Drive Power Reactor Employing Magnetic Intervention

    NASA Astrophysics Data System (ADS)

    Tresemer, K. R.; Gentile, C. A.

    2007-11-01

    Presented is a conceptual design for a 2 GW IFE direct drive fusion power reactor. This design employs a cusp field to deflect IFE-generated ions away from the dry first wall of the target chamber and into specifically designed ion dumps. The reactor operates at 5 Hz, consuming ˜450,000 tritium targets/day, injected at >100 m/s into the target chamber and uniformly illuminated by laser light, stimulating detonation. The resulting fusion energy is collected by equatorial ion dumps equipped with heat exchangers. The reactor will breed and recycle its own fuel through the use of breeder blankets and a fuel recovery system. To minimize target-particle interference, the chamber will be kept at <0.5 mTorr through the use of magnetically levitated turbomolecular pumps (TMPs) and corresponding backing pumps. Under investigation are the principles of magnetohydrodynamics (MHD) which may be applied to attenuate and harness the energy residing in the post detonation ion fields.

  10. Multi-unit Inertial Fusion Energy (IFE) plants producing hydrogen fuel

    NASA Astrophysics Data System (ADS)

    Logan, B. G.

    1993-12-01

    A quantitative energy pathway comparison is made between a modern oil refinery and genetic fusion hydrogen plant supporting hybrid-electric cars powered by gasoline and hydrogen-optimized internal combustion engines, respectively, both meeting President Clinton's goal for advanced car goal of 80 mpg gasoline equivalent. The comparison shows that a fusion electric plant producing hydrogen by water electrolysis at 80% efficiency must have an electric capacity of 10 GWe to support as many hydrogen-powered hybrid cars as one modern 200,000 bbl/day-capacity oil refinery could support in gasoline-powered hybrid cars. A 10 GWe fusion electric plant capital cost is limited to $12.5 billion to produce electricity at 2.3 cents/kWehr, and hydrogen production by electrolysis at $8/GJ, for equal consumer fuel cost per passenger mile as in the oil-gasoline-hybrid pathway.

  11. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  12. Yb:YAG ceramic-based laser driver for Inertial Fusion Energy (IFE)

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Copeland, Drew A.; Litt, Amardeep S.

    2016-03-01

    We report on a new class of laser amplifiers for inertial confinement fusion (ICF) drivers based on a Yb:YAG ceramic disk in an edge-pumped configuration and cooled by a high-velocity gas flow. The Yb lasant offers very high efficiency and low waste heat. The ceramic host material has a thermal conductivity nearly 15-times higher than the traditionally used glass and it is producible in sizes suitable for a typical 10- to 20-kJ driver beam line. The combination of high lasant efficiency, low waste heat, edge-pumping, and excellent thermal conductivity of the host, enable operation at 10 to 20 Hz at over 20% wall plug efficiency while being comparably smaller and less costly than recently considered face-pumped alternative drivers using Nd:glass, Yb:S-FAP, and cryogenic Yb:YAG. Scalability of the laser driver over a broad range of sizes is presented.

  13. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect

    Meier, W.R.; Logan, G.

    1996-06-11

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  14. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  15. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  16. The role of the NIF in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1995-03-16

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  17. Toward IFE Oriented Laser Chains: Cryogenically Cooled Ytterbium Doped Materials

    SciTech Connect

    Bourdet, G.; Casagrande, O.; Cardinali, V.; Deguil-Robin, N.; Le Garrec, B.

    2009-09-27

    With the aim to set up Inertial Fusion Energy (IFE) driver, we develop the properties of the Ytterbium doped materials and the problems met when designing such a system: essentially thermal management and ASE gain depletion. We after present the experimental results obtained using sesquioxide Yb{sup 3+} doped ceramics at cryogenic temperature. We also propose a solution for minimizing the ASE problem.

  18. Preliminary Identification of Accident Initiating Events for IFE Power Plants

    SciTech Connect

    Cadwallader, Lee Charles; Latkowsk, J. F.

    2001-10-01

    This paper presents initial results of a task to identify accident initiating events for inertial fusion energy (IFE) power plant designs. Initiating events (IEs) are a fundamental building block of a probabilistic risk assessment; they are the ‘accident starters’ that are analyzed to determine the risks posed to members of the public in the vicinity of the power plant. The IE results for the SOMBRERO design are presented in tabular form. The SOMBRERO design was analyzed since it is representative of dry chamber wall, laser driven designs. This work is used to characterize IFE plant risk and to identify potential design changes that would mitigate the plant risk.

  19. Mirror Fusion Test Facility magnet system

    SciTech Connect

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-09-11

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system.

  20. IFE14 and OSI Technologies (Invited)

    NASA Astrophysics Data System (ADS)

    Arndt, R. H.; Macleod, G.

    2013-12-01

    The On-Site Inspection (OSI) regime is the final verification pillar of the Comprehensive Test Ban Treaty. Unlike the International Monitoring System (IMS) and the International Data Centre (IDC) which are under interim operations during the CTBTO Preparatory Commission an OSI cannot occur until after entry into force of the treaty. The Preparatory Commission has been charged with developing the methodologies and the training curricula and determining the equipment required for conducting an OSI. An Integrated Field Exercise (IFE) of all the technologies and techniques following Treaty guidelines and structures is utilized to determine the progress being made by the Preparatory Commission in completing its OSI mandate. IFE14 will be conducted in a 1000 km2 area near the Dead Sea in Jordan next year. In order to adequately test the verification regimes the data utilized from the triggering event throughout the five weeks of the inspection must be scientifically credible and internally consistent so that the inspection team members performing the OSI remain immersed in the exercise and not distracted unrealistic or scientifically improbable data. This means the data simulation starts at the beginning with the triggering event(s) and carries on through the OSI techniques of visual observation including MSIR, measurement of seismic aftershocks, measurement of radioactivity fields, collection and analysis of environmental samples (solids, liquids, and gases, utilization of geophysical techniques: active seismic, resonance seismometry, gravimetry, magnetometry, and electrical conductivity measurements and lastly drilling to obtain radioactive samples. IFE14 will not utilize resonance seismometry or drilling to obtain radioactive samples for cost and time reasons but all other techniques will be utilized. A full understanding of the triggering event and the geologic and geophysical regime of the inspection area needs to be in place to ensure the scientifically credible

  1. The role of the National Ignition Facility in the development of inertial fusion energy

    SciTech Connect

    Logan, B.G.

    1996-06-01

    The authors have completed a conceptual design for a 1.8-MJ, 500-TW, 0.35-{mu}m solid-state laser system for the National Ignition Facility (NIF), which will demonstrate inertial fusion ignition and gain for national security, energy, and science applications. The technical goal of the U.S. Inertial Confinement Fusion (ICF) Program as stated in the current ICF Five-Year Program Plan is {open_quotes}to produce pure fusion ignition and burn in the laboratory, with fusion yields of 200 to 1000 MJ, in support of three missions: (1) to play an essential role in accessing physics regimes of interest in nuclear weapon design...; (2) to provide an above-ground simulation capability for nuclear weapon effects...; and (3) to develop inertial fusion energy for civilian power production.{close_quotes} This article addresses the third goal-- the development of inertial fusion energy (IFE). This article reports a variety of potential contributions the NIF could make to the development of IFE, drawn from a nationally attended workshop held at the University of California at Berkeley in Feb, 1994. In addition to demonstrating fusion ignition as a fundamental basis for IFE, the findings of the workshop, are that the NIF could also provide important data for target physics and fabrication technology, for IFE target chamber phenomena such as materials responses to target emissions, and for fusion power technology-relevant tests.

  2. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  3. The light ion LMF and its relevance to IFE

    SciTech Connect

    Olson, R.E.; Allshouse, G.O.; Cook, D.L.; Lockner, T.R.; Mazarakis, M.G.; Olson, C.L.; Smith, D.L.

    1993-12-01

    The inertial confinement fusion (ICF) program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for ICF defense and energy applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The relevance of LMF technology to eventual inertial fusion energy (IFE) applications is assessed via a comparison of LMF technologies with those projected in the Light Ion Beam Reactor Assessment (LIBRA) conceptual reactor design study.

  4. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  5. IFE Final Optics and Chamber Dynamics Modeling and Experiments Final Technical Report

    SciTech Connect

    F. Najmabadi; M. S. Tillack

    2006-01-11

    Our OFES-sponsored research on IFE technology originally focused on studies of grazing-incidence metal mirrors (GIMM's). After the addition of GIMM research to the High Average Power Laser (HAPL) program, our OFES-sponsored research evolved to include laser propagation studies, surface material evolution in IFE wetted-wall chambers, and magnetic intervention. In 2003, the OFES IFE Technology program was terminated. We continued to expend resources on a no-cost extension in order to complete student research projects in an orderly way and to help us explore new research directions. Those explorations led to funding in the field of extreme ultraviolet lithography, which shares many issues in common with inertial fusion chambers, and the field of radiative properties of laser-produced plasma.

  6. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S

  7. Preliminary safety assessment for an IFE target fabrication facility

    SciTech Connect

    Latkowski, J F; Reyes, S; Besenbruch, G E; Goodin, D T

    2000-10-13

    We estimate possible ranges of tritium inventories for an inertial fusion energy (IFE) target fabrication facility producing various types of targets and using various production technologies. Target fill is the key subtask in determining the overall tritium inventory for the plant. By segmenting the inventory into multiple, parallel production lines--each with its own fill canister--and including an expansion tank to limit releases, we are able to ensure that a target fabrication facility would meet the accident dose goals of 10 mSv (1 rem) set forth in the Department of Energy's Fusion Safety Standards. For indirect-drive targets, we calculate release fractions for elements from lithium to bismuth and show that nearly all elements meet the dose goal. Our work suggests directions for future R&D that will help reduce total tritium inventories and increase the flexibility of target fabrication facilities.

  8. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  9. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  10. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  11. Research in Inertial Fusion Sciences: Now and in the Future

    SciTech Connect

    Powell, H T; Campbell, E M; Hogan, W J; Orth, C D

    2001-04-10

    We review the current and future state of research in inertial fusion sciences. We describe the National Ignition Facility (NIF), the IFE development plan, applications of inertial confinement fusion (ICF) to various high-energy sciences, uses of petawatt laser systems, and concepts for the ICF integrated research experiment (IRE) and IFE power plants.

  12. Process Model of the Gas Recovery System in an IFE reactor

    NASA Astrophysics Data System (ADS)

    Gentile, Charles; Aristova, Maria

    2007-11-01

    It is necessary to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. In order to observe the interaction of all components, a chemical process model is developed as part of the conceptual design phase of the project. Initially, the reactants, system structure, and processes are defined using the known contents of the vacuum vessel exhaust. The output, which will include physical properties and chemical content of the products, is analyzed to determine the most efficient and productive system parameters. The results of the modeling will be presented in this paper. This modeling exercise will be instrumental in optimizing and closing the fusion fuel cycle in the IFE power reactor.

  13. Test design description for the Fusion Materials Open Test Assembly (Fusion MOTA-2A): Volume 1A, Part 1

    SciTech Connect

    Bauer, R.E.

    1988-11-01

    This document encompasses the test requirements, hardware design, fabrication, and safety analysis for the Fusion Materials Open Test Assembly experiment for irradiation in FFTF Cycle 11 (Fusion MOTA-2A). Fusion MOTA is equally shared by the US Fusion Material (DOE), Japanese Fusion Materials (MONBUSHO), and BEATRIX-II (IEA) programs. In the interest of providing optimum use of the irradiation space in the Fusion MOTA-2A and LMR MOTA-1G, eight of the Fusion MOTA canisters will be placed in MOTA-1G and an equal number of LMR canisters placed in Fusion MOTA-2A (Powell/Doran 1988). This eliminates the need to process Fusion MOTA-2A through the IEM cell prior to insertion for FFTF Cycle 11A. The LMR MOTA design and safety analysis (Greenslade 1984) is the basis for much of this design and safety analysis report. This design description and safety analysis for the Fusion MOTA-2A is presented per the outline given in Chapter IV of the FTR User`s Guide (Taylor 1978). 35 refs., 17 figs., 9 tabs.

  14. Addressing Key Science and Technology Issues for IFE Chambers, Target Fabrication and Target Injection

    SciTech Connect

    Meier, W R; Goodin, D T; Nobile, A; Besenbruch, G; Haynes, D; Hoffer, J; Latkowski, J; Maxwell, J; Najmabadi, F; Nikroo, A; Peterson, P; Petzoldt, R; Rickman, W; Sethian, J; Steckle, W; Stephens, E; Tillack, M; Ying, A; Yoda, M

    2002-09-25

    Significant progress has been made in addressing critical issues for high repetition rate chambers, target fabrication and injection for inertial fusion energy (IFE) for both heavy ion and laser drivers. Research is being conducted in a coordinated manner by national laboratories, universities and industry. This paper provides an overview of U.S. research activities and discusses how interface considerations (such as beam propagation and target survival during injection) impact design choices.

  15. Scaled impulse loading for liquid hydraulic response in IFE thick-liquid chamber experiments

    NASA Astrophysics Data System (ADS)

    Jantzen, C.; Peterson, P. F.

    2001-05-01

    In an inertial fusion energy (IFE) target chamber using thick-liquid protection, placing liquid surfaces close to the fusion target helps to reduce pumping cost and final-focus stand-off distance. The impulse loading generated by the target on the adjacent jet surfaces provides the most important boundary condition for the subsequent liquid hydraulic response, pocket disruption, droplet generation, and pocket clearing and regeneration. However, liquid jets are difficult to use in current X-ray facilities that can simulate the X-ray ablation process. Instead, it is desirable to study liquid hydraulic response using water jets, employing scaled impulse loads delivered by chemical detonations or shock tubes. Because the pressure load generated by IFE targets is extremely short compared to the time required for significant liquid motion, only the time integrated impulse load is important to the liquid motion, not the detailed pressure history from ablation and venting. In this work, this impulse loading is determined using the 2-D gas dynamic code, TSUNAMI, and a comparison made between the impulse loads generated by IFE targets and by scaled chemical detonations.

  16. Parental Socio-Economic Status as Correlate of Child Labour in Ile-Ife, Nigeria

    ERIC Educational Resources Information Center

    Elegbeleye, O. S.; Olasupo, M. O.

    2012-01-01

    This study investigated the relationship between parental socio-economic status and child labour practices in Ile-Ife, Nigeria. The study employed survey method to gather data from 200 parents which constituted the study population. Pearson Product Moment Correlation and t-test statistics were used for the data analyses. The outcome of the study…

  17. Sexual assault in Ile-Ife, Nigeria

    PubMed Central

    Badejoko, Olusegun Olalekan; Anyabolu, Henry Chineme; Badejoko, Bolaji Olusola; Ijarotimi, Adebimpe Omotade; Kuti, Oluwafemi; Adejuyigbe, Ebunoluwa Aderonke

    2014-01-01

    Background: Sexual assault (SA) is a shattering malevolence against women. This study determined the burden, periodicity, presentation and management of SA in Ile-Ife, Nigeria. Materials and Methods: Retrospective analysis of the hospital records of 76 SA survivors managed over a 5-year period (2007-2011) in Obafemi Awolowo University Teaching Hospitals complex (OAUTHC), Ile-Ife. Results: Sexual assault accounted for 0.69% of all female and 5.2% of all gynaecological emergencies in OAUTHC, Ile-Ife. The survivors’ ages ranged from 4 to 50 years (mean = 17.7 ± 8.8years) and adolescents made up for 48%. The peak prevalence of SA was in February and December and among adults and under-16-year-old survivors, respectively. Daytime and weekday SA were significantly more common among the under-16-year-old survivors (P = 0.008). Majority of the survivors (62%) knew their assailant(s). Neighbours were the commonest perpetrators identified (28.2%) and the assailants’ house was the commonest location (39.4%). Weapons were involved in 29.6% of cases and various injuries were identified in 28.2% of the survivors. Hospital presentation was within 24 hours in majority (76.1%) of the survivors, but rape kit examinations were not performed as the kits were not available. Although appropriate medical management was routinely commenced, only 12.7% of survivors returned for follow-up. Conclusions: Seasonal and diurnal patterns exist in the prevalence of SA in Ile-Ife and most survivors that reported in the hospital presented early. Rape kit examinations were, however, not executed, due to non-availability. Personnel training, protocol development, provision of rape kits and free treatment of SA survivors are, therefore, recommended. Public enlightenment on preventive strategies based on the observed periodicity and age patterns is also suggested. PMID:25013260

  18. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    SciTech Connect

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable {open_quotes}Integrated Research Experiment{close_quotes} (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, {open_quotes}the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenology{close_quotes}. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well.

  19. Critical Science Issues for Direct Drive Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Dahlburg, Jill P.; Gardner, John H.; Schmitt, Andrew J.; Obenschain, S. P.

    1998-09-01

    There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF]: a pellet that produces high gain; a pellet fabrication system that cost-effectively and rapidly manufactures these pellets; a sufficiently uniform and durable high repetition-rate laser pellet driver; a practical target injection system that provides accurate pellet aiming; and, a target chamber that will survive the debris and radiation of repeated high-gain pellet implosions. In this summary we describe the science issues and opportunities that are involved in the design of a successful high gain direct drive Inertial Confinement Fusion [ICF] pellet.

  20. Cryogenic system for the mirror fusion test facility

    SciTech Connect

    VanSant, J.H.; Slack, D.S.; Nelson, R.L.

    1980-02-26

    The Mirror Fusion Test Facility (MFTF), currently being constructed at the Lawrence Livermore Laboratory, has large superconducting magnets, cryopanels, and supporting cryogenic equipment that will comprise one of the world's largest liquid helium (LHe) systems. The facility will provide mirror magnetic confinement for experimental fusion plasmas that will be approximately the same physical size as if in a conceptual fusion reactor. The cryogenic system typifies the magnitude and makeup of systems that will be used in future magnetic fusion reactors. Here we describe the LHe cryopumping and magnet systems. Principal components include a 3300 W helium refrigerator, 30,000 L LHe storage, a 1.5 MW (2000 hp) refrigerator compressor, 1100 m/sup 2/ of cryopanels, and a 420 MJ superconducting magnet system. Design features, method of operation, thermal protection, and helium recovery operations are discussed.

  1. Experimental Test of the Polarization Persistence in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Fujiwara, M.; Nakai, M.; Utsuro, M.

    2016-03-01

    The complete deuteron and triton polarization in the DT fusion increases the reactivity by 50%. For Inertial Confinement Fusion (ICF), due to the dynamics of the fusion reaction process, the fusion rate could even be further increased. It has been argued that the polarization would survive as well in magnetic as in inertial confinements. Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process, using a powerful laser hitting a polarized HD target.The polarized deuterons heated in the plasma induced by the laser can fuse. The corresponding reaction is: D + D → 3He + n. The angular distribution of the emitted neutrons and the change in the corresponding total cross section are signatures to estimate the polarization persistency. A proposal to test the persistence of the polarization in ICF has been accepted at ILE: the POLAF project (POlarization in LAser Fusion Process). It uses the polarized HD targets produced at RCNP and the powerful ILE lasers, as well as the neutron detectors existing there. Both institutions are on the same campus at Osaka University. The description of the POLAF experiment and of the corresponding set-up is given.

  2. Progress Toward Heavy Ion IFE

    SciTech Connect

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  3. Chamber and target technology development for inertial fusion energy

    SciTech Connect

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology

  4. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  5. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky

    1999-11-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.

  6. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  7. Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment

    SciTech Connect

    Meier, Wayne R.

    2014-04-14

    The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the past decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.

  8. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  9. Exploratory studies of tokamaks as fusion test reactors

    NASA Astrophysics Data System (ADS)

    Mau, T. K.; Conn, R. W.

    1982-06-01

    Studies have been performed to explore various plasma burn scenarios for a tokamak test reactor which could follow the next generation of large tokamak experiments. Tradeoffs between an ignited burning plasma and a sub-ignited driven plasma are examined in terms of device size and performance as a fusion engineering test facility. It is found that plasma performance levels, measured by ignition margin, amplification factor Q, and fusion power output, increase with device size, more optimistic transport scaling laws, lower magnetic field ripple, and higher Β. The performance of a generally low stress ( B 0=4 T) reference device, with major radius R=4.5 m and minor radius a=1.3 m in a D-shaped ( κ=1.6) plasma has been evaluated over a wide range of operating parameters. In particular, a moderate fusion power output of 300 MW is obtained, the driven plasma having Q≅ 10, an edge ripple of 1%, and a density ranging between 1.0 and 1.5×1014 cm-3. The same device operated at a higher general level of stress ( B 0=5.3 T) is predicted to achieve ignition, but is not required for the mission of an engineering test facility and would entail greater technical risk.

  10. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  11. Status report of the fusion alpha confinement test, March 1980

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Weisheit, J.C.; Eubank, H.P.; Mikkelsen, D.R.; Stewart, L.D.

    1980-05-01

    The Fusion Alpha Confinement Test (FACT) investigates the ability of tokamaks and other magnetic devices to confine fusion-produced alpha particles and be heated by them. This report summarizes the progress made since the initial conception, and lists and discusses the remaining unresolved issues. Preliminary results are given for two experiments at the Lawrence Berkeley Laboratory (LBL) in which He/sup -/ currents of 30 mA and 69 mA, respectively, were obtained from two different ion sources. A number of atomic physics issues relevant to the utility of He/sup -/ as a source for He/sup 0/ are discussed, and a review of considerations for HeH/sup +/ and Li/sup -/ accelerators is presented.

  12. Mirror Fusion Test Facility (MFTF-B): status

    SciTech Connect

    Karpenko, V.N.

    1985-02-01

    The Mirror Fusion Test Facility (MFTF-B), now under construction at Lawrence Livermore National Laboratory, represents more than an order-of-magnitude step up from earlier magnetic mirror experiments on the way to a future mirror fusion reactor. In fact, when the device begins operating in 1988, it will be capable of achieving plasma performance approaching scientific breakeven for D-T equivalent operation. We have taken major steps to develop MFTF-B technologies for tandem mirrors. In the machine, we will use steady-state, high-field, superconducting magnets on reactor-relevant scales. The 30-s beam pulses, ECRH, and ICRH will also introduce near steady-state technologies into those systems.

  13. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  14. Apparatus for friction tests of support elements in fusion devices

    NASA Astrophysics Data System (ADS)

    Gradt, Th; Aßmus, K.; Börner, H.; Schneider, Th

    2008-03-01

    Spacers and supports belong to the critical elements in the structure of a nuclear fusion device, particularly, when they are installed in the vacuum or superconducting magnet system of the reactor. These supports have to sustain high loads while allowing a certain amount of tangential movement with low friction and without any stick-slip motion. Vacuum and cryogenic environments are extremely hostile for smooth sliding systems, because conventional liquid lubricants cannot be employed, and only a very limited number of materials for dry sliding systems under these conditions are available. In order to test the friction behaviour of support elements in the field coils of the fusion experiment WENDELSTEIN 7-X, a test rig was build which allows testing in liquid helium environment at 4.2 K, with a normal force up to 150 kN, and a sliding velocity of 0.1 mm/s in oscillating motion. First tests have shown that the apparatus is appropriate for simulating the sliding behaviour of support elements. As an example, a result of an earlier model test of an MoS2-coating is shown.

  15. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  16. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  17. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  18. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  19. Modeling Laser Effects on the Final Optics in Simulated IFE Environments

    SciTech Connect

    Nasr Ghoniem

    2004-08-14

    When laser light interacts with a material's surface, photons rapidly heat the electronic system, resulting in very fast energy transfer to the underlying atomic crystal structure. The intense rate of energy deposition in the shallow sub-surface layer creates atomic defects, which alter the optical characteristics of the surface itself. In addition, the small fraction of energy absorbed in the mirror leads to its global deformation by thermal and gravity loads (especially for large surface area mirrors). The aim of this research was to model the deformation of mirror surfaces at multiple length and time scales for applications in advanced Inertial Fusion Energy (IFE) systems. The goal is to control micro- and macro-deformations by material system and structural design. A parallel experimental program at UCSD has been set up to validate the modeling efforts. The main objective of the research program was to develop computer models and simulations for Laser-Induced Damage (LID) in reflective and transmissive final optical elements in IFE laser-based systems. A range of materials and material concepts were investigated and verified by experiments at UCSD. Four different classes of materials were considered: (1) High-reflectivity FCC metals (e.g. Cu, Au, Ag, and Al), (2) BCC metals (e.g. Mo, Ta and W), (3) Advanced material concepts (e.g. functionally graded material systems, amorphous coatings, and layered structures), and (4) Transmissive dielectrics (e.g. fused SiO2). In this report, we give a summary of the three-year project, followed by details in three areas: (1) Characterization of laser-induced damage; (2) Theory development for LIDT; and (3) Design of IFE reflective laser mirrors.

  20. Statistic Tests Aided Multi-Source dem Fusion

    NASA Astrophysics Data System (ADS)

    Fu, C. Y.; Tsay, J. R.

    2016-06-01

    Since the land surface has been changing naturally or manually, DEMs have to be updated continually to satisfy applications using the latest DEM at present. However, the cost of wide-area DEM production is too high. DEMs, which cover the same area but have different quality, grid sizes, generation time or production methods, are called as multi-source DEMs. It provides a solution to fuse multi-source DEMs for low cost DEM updating. The coverage of DEM has to be classified according to slope and visibility in advance, because the precisions of DEM grid points in different areas with different slopes and visibilities are not the same. Next, difference DEM (dDEM) is computed by subtracting two DEMs. It is assumed that dDEM, which only contains random error, obeys normal distribution. Therefore, student test is implemented for blunder detection and three kinds of rejected grid points are generated. First kind of rejected grid points is blunder points and has to be eliminated. Another one is the ones in change areas, where the latest data are regarded as their fusion result. Moreover, the DEM grid points of type I error are correct data and have to be reserved for fusion. The experiment result shows that using DEMs with terrain classification can obtain better blunder detection result. A proper setting of significant levels (α) can detect real blunders without creating too many type I errors. Weighting averaging is chosen as DEM fusion algorithm. The priori precisions estimated by our national DEM production guideline are applied to define weights. Fisher's test is implemented to prove that the priori precisions correspond to the RMSEs of blunder detection result.

  1. Scientific and technological advancements in inertial fusion energy

    DOE PAGESBeta

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  2. Scientific and technological advancements in inertial fusion energy

    SciTech Connect

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  3. Transient getter scheme for the Tokamak Fusion Test Reactor

    SciTech Connect

    Cecchi, J.L.; Cohen, S.A.; Sredniawski, J.J.

    1980-01-01

    The ability of the Tokamak Fusion Test Reactor (TFTR) to attain the largest fusion power gain depends critically on minimizing plasma contamination and controlling the densities of the reacting deuterium and tritium. Experiments on a number of tokamaks have demonstrated that gettering over an appreciable surface area (greater than or equal to 10%) of the vacuum vessel greatly facilitates both of these objectives. One particular problem in implementing a surface pumping system in TFTR, however, is a restriction on the maximum allowable tritium content of the getter. This restriction could require regeneration of the absorbed tritium after as few as 50 machine pulses. We have developed a scheme utilizing SAES Zr/Al getter modules which obviates the need for such frequent interruptions of machine operation by taking advantage of the pulsed operation of TFTR. With the Zr/Al getter at temperatures between 500/sup 0/C to 600/sup 0/C it is possible to achieve a quasi-steady state in the tritium loading where the quantity of tritium desorbed between pulses is equal to the quantity which is absorbed during a pulse. Since frequent thermal cycling is not required, this scheme also reduces the possibility of Zr/Al getter material fatigue.

  4. Mechanical response and fatigue analysis of the first wall of the prometheus IFE reactor

    SciTech Connect

    El-Azab, A.; Ghoniem, N.M.

    1994-12-31

    Following the micro explosions in an Inertial Fusion Energy (IFE) reactor, the first wall structures are subjected to time-dependent mechanical and thermal loads, which result in stresses and displacements that vary with time. In the Prometheus IFE reactor the first wall is protected by a flowing thin film of liquid lead. The mechanical loading on the first wall includes two different mechanisms: (1) surface ablation momentum due to the early deposition of x-rays and the instantaneous evaporation of the protecting film, at the instant of the micro explosion, and (2) time dependent pressure due to propagating pressure waves that travel between the first wall and the center of the reactor chamber. Careful determination of the resulting stresses in the first wall structures helps choose and design these structures for maximum fatigue life time. In the present work, a solution of the equation of motion of the first wall structural elements and the associated stresses and displacements is presented. It is found that segmentation of the first wall into smaller plates minimizes the resulting stresses and, in turn, prolongs the fatigue life time of the first wall.

  5. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S

  6. Tritium pellet injector design for tokamak fusion test reactor

    SciTech Connect

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Easterly, C.E.; Lunsford, R.V.; Milora, S.L.; Schuresko, D.D.; White, J.A.; Williamson, D.H.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper.

  7. The FENIX (Fusion ENgineering International EXperimental) test facility

    SciTech Connect

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-08-30

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 {times} 60 {times} 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure {approximately}35 mm on one side and will operate at currents of up to 40 kA at fields of {approximately}14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A{sub 2o} and A{sub 2i} magnets from the idle MFTF. The east and west A{sub 2} pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs.

  8. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  9. Safety Issues of HG and PB as IFE Target Materials: Radiological Versus Chemical Toxicity

    SciTech Connect

    Reyes, S; Latkowski, J F; Cadwallader, L C; Moir, R W; Rio, G. D; Sanz, J

    2002-11-11

    We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the USDOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.

  10. Present status and future prospects of IFE and high power laser research in Asia

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2004-12-01

    The present status and future prospects of IFE research and high power laser applications in Asia are reviewed. At ILE, Osaka University, the Gekko XII and the Peta Watt laser system have been operated to investigate implosion hydrodynamics, fast ignition and relativistic laser plasma interactions. In particular, fast ignition experiments with cone shell targets have been carried out as joint UK-Japan and US-Japan collaboration programmes. In the experiments, imploded high density plasmas are heated by a 500 J level petawatt laser pulse. The thermal neutron yield is found to increase by three orders of magnitude by petawatt laser injection to the cone shell target. Laser plasma physics related to laser fusion and other applications has been studied at many institutes in Asia. Areas of research include Rayleigh-Taylor instability experiments, application of extreme ultraviolet radiation sources for lithography, laser particle acceleration, and x-ray lasers, to name a few.

  11. Reduction in TFTR (Tokamak Fusion Test Reactor) fusion reaction rate by unbalanced beam injection and rotation

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.; Bitter, M.L.; Taylor, G.

    1987-06-01

    In TFTR plasmas at low to moderate density, the highest fusion energy gain Q/sub dd/ (D-D fusion power/injected power P/sub b/) is obtained with nearly balanced co- and counter-injection of neutral beams. For a given beam power, significantly unbalanced injection reduces Q/sub dd/ because the accompanying plasma rotation reduces the beam-target fusion reactivity, the fast-ion slowing-down time, and the beam-beam reaction rate, while and decrease from their maximum values. 9 refs., 3 figs., 1 tab.

  12. Geometric and blast effects of thin film cavity protection schemes for IFE reactors

    SciTech Connect

    Morley, N.B.; Ying, A.A.

    1995-12-31

    The flow of thin liquid films of liquids in geometric orientations and under blast conditions of an IFE reactor chamber is investigated. A inertial jet on an inverted hemispherical surface, indicative of the PROMETHEUS design, is modeled with a 1-D analysis. The behavior of the film and the conditions for adhesion of the jet are explored. Also, vertical film flow is modeled with a 2-D fluid code that tracts the free surface. A test case is presented where the development of a wavy surface is seen. This surface is subjected to pressure pulses typical of reactor cavity gas fluctuations and the surface is seen to be disrupted.

  13. Development and testing ov danadium alloys for fusion applications

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  14. Scale length study in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Hiroe, S.; Goldston, R.J.; Bitter, M.; Bush, C.E.; Efthimion, P.C.; Grek, B.; Johnson, D.W.; Murakami, M.; Schivell, J.; Towner, H.H.

    1988-12-01

    The scale lengths of the electron density (L/sub n//sub e/), temperature (L/sub T//sub e/), and pressure (L/sub p//sub e/) gradients were investigated during the 1985 operating period of the Tokamak Fusion Test Reactor (TFTR) for gas-fueled plasmas with neutral beam injection and movable limiter. Although the global energy confinement time degrades as the heating power increases or the plasma current decreases, the radial profiles of the scale lengths (L/sub T//sub e/ and L/sup p//sub e/) remain unchanged. Especially, the electron pressure profile is constrained not to change. This trend appears to hold over a fairly wide range of TFTR operational regimes. The radial profiles of L/sub n//sub e/ and /eta//sub e/ (= L/sub n//sub e//L/sub T//sub e/) also appear to remain unchanged, although the uncertainties of the experimental data for these quantities are greater than those for L/sub T//sub e/ and L/sub p//sub e/. The experimental parameters are used to evaluate theoretical predictions of the electron thermal diffusivity, and the results are compared with the empirical thermal diffusivity. 34 refs., 18 figs., 2 tabs.

  15. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    SciTech Connect

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  16. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  17. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  18. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. ); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  19. Intelligent Front-end Electronics for Silicon photodetectors (IFES)

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Gruber, Lukas; Suzuki, Ken; Zmeskal, Johann; Widmann, Eberhard

    2016-05-01

    While high channel density can be easily achieved for big experiments using custom made microchips, providing something similar for small and medium size experiments imposes a challenge. Within this work we describe a novel and cost effective solution to operate silicon photodetectors such as silicon photo multipliers (SiPM). The IFES modules provide the bias voltage for the detectors, a leading edge discriminator featuring time over threshold and a differential amplifier, all on one printed circuit board. We demonstrate under realistic conditions that the module is usable for high resolution timing measurements exploiting both charge and time information. Furthermore we show that the modules can be easily used in larger detector arrays. All in all this confirms that the IFES modules are a viable option for a broad range of experiments if cost-effectiveness and small form factor are required.

  20. Gas dynamics and radiative heat transfer in IFE chambers with emphasis on the HYLIFE-II design

    NASA Astrophysics Data System (ADS)

    Jantzen, Caron Ann

    Gas dynamics in a heavy-ion inertial-fusion energy power plant have been modeled using the two-dimensional code, TSUNAMI. After fusion, approximately 2/3 of the yield energy will be given off as 14 Mev neutrons and the remaining third partitioned between target x-rays and debris energy. The chamber dynamic events which follow the fusion event occur over three distinct time periods, permitting separation of the underlying phenomena. Simulations of the HYLIFE-II reactor design were then run and results compared using both ideal-gas and partialionization equations of state. Results from a cylindrically symmetric simulation indicate that an initial, low density, burst of high-energy particles enters the final focus section of the heavy ion driver within 120mus of the blast and a second, larger, density rise occurs approximately 100mus later. Uncertainty in IFE target design motivated a parametric study of the x-ray to debris kinetic energy. Increasing this ratio lead to more jet ablation by target x-rays and, therefore, higher chamber densities. Chamber averaged temperature remained high, around 2.1 eV. Therefore, a subsequent study considered secondary radiation emitted by this hot vapor. The photon transport equation was applied in a finite difference model to both the target and ablation regions. Result indicated that radiation from the expanding target debris supplies 15MJ of energy to the liquid jets within the first 12mus of target ignition and becomes negligible beyond that time. In an inertial fusion energy (IFE) target chamber using thick-liquid protection, placing liquid surfaces close to the fusion target helps reduce pumping cost and final-focus stand-off distance. An additional issue then becomes the impulse load delivered to protective jets by target debris and x-ray ablated material since this pressure load provides the most important boundary condition for the subsequent liquid hydraulic response, pocket disruption, droplet generation, and pocket

  1. Nuclear Design Considerations for Z-IFE Chambers

    SciTech Connect

    Meier, W R; Schmitt, R C; Abbott, R P; Latkowski, J F; Reyes, S

    2005-02-02

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (x-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped Recyclable Transmission Line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  2. Local tests of parallel electrical resistivity in the Tokamak Fusion Test Reactor

    SciTech Connect

    Batha, S.H.; Levinton, F.M.; Ramsey, A.T.; Schmidt, G.L.; Zarnstorff, M.C.

    1997-01-01

    The motional Stark effect (MSE) polarimeter measures the local magnetic field pitch angle, proportional to the ratio of the poloidal to toroidal magnetic fields, in the Tokamak Fusion Test Reactor (TFTR). The authors have used the polarimeter to measure the temporal evolution of the local value of the magnetic field pitch angle during large changes in the current profile such as during a current ramp or discharge initiation. The measured evolution is compared to the evolution predicted by classical and neoclassical resistivity models. The neoclassical resistivity model is a better predictor of the local pitch angle temporal evolution than the classical model.

  3. A wavelet transformation approach for multi-source gravity fusion: Applications and uncertainty tests

    NASA Astrophysics Data System (ADS)

    Bai, Yongliang; Dong, Dongdong; Wu, Shiguo; Liu, Zhan; Zhang, Guangxu; Xu, Kaijun

    2016-05-01

    Gravity anomalies detected by different measurement platforms have different characteristics and advantages. There are different kinds of gravity data fusion methods for generating single gravity anomaly map with a rich and accurate spectral content. Former studies using wavelet based gravity fusion method which is a newly developed approach did not pay more attention to the fusion uncertainties. In this paper, we firstly introduce the wavelet based gravity fusion method, and then apply this method to one synthetic model and also to the northern margin of the South China Sea. Wavelet type and the decomposition level are two input parameters for this fusion method, and the uncertainty tests show that fusion results are more sensitive to wavelet type than the decomposition level. The optimal application result of the fusion methodology on the synthetic model is closer to the true anomaly field than either of the simulated shipborne anomaly and altimetry-based anomaly grid. The best fusion result on the northern margin of the South China Sea is based on the 'rbio1.3' wavelet and four-level decomposition. The fusion result contains more accurate short-wavelength anomalies than the altimetry-based gravity anomalies along ship tracks, and it also has more accurate long wavelength characteristics than the shipborne gravity anomalies between ship tracks. The real application case shows that the fusion result has better correspondences to the seafloor topography variations and sub-surface structures than each of the two input gravity anomaly maps (shipborne based gravity anomaly map and altimetry based gravity anomaly map). Therefore, it is possible to map and detect more precise seafloor topography and geologic structures by the new gravity anomaly map.

  4. A system for testing distributed information fusion applications for maritime surveillance

    NASA Astrophysics Data System (ADS)

    Wehn, Hans; Happe, Jens; Guitouni, Adel; Valin, Pierre; Bossé, Éloi

    2008-03-01

    A PRECARN partnership project, called CanCoastWatch (CCW), is bringing together a team of researchers from industry, government, and academia for creating an advanced simulation test bed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation. The test bed allows experimenting with higher-level distributed information fusion, dynamic resource management and configuration management given multiple constraints on the resources and their communications networks. The test bed provides general services that are useful for testing many fusion applications. This includes a multi-layer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop.

  5. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  6. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    PubMed

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  7. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion

    PubMed Central

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-01

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed. PMID:26657767

  8. An improved low-temperature equation of state model for integrated IFE target-chamber response simulations

    NASA Astrophysics Data System (ADS)

    Heltemes, Thad; Moses, Gregory

    2010-11-01

    A new quotidian equation of state model (QEOS) has been developed to perform integrated inertial fusion energy (IFE) target explosion-chamber response simulations. This QEOS model employs a scaled binding energy model for the ion EOS and utilizes both n- and l-splitting for determining the ionization state and electron EOS. This QEOS model, named BADGER, can perform both local thermodynamic equilibrium (LTE) and non-LTE EOS calculations. BADGER has been integrated with the 1-D radiation hydrodynamics code BUCKY to simulate the chamber response of an exploding indirect-drive deuterium-tritium (DT) target, xenon gas-filled chamber and tungsten first-wall armor. The simulated system is a prototypical configuration for the LIFE reactor study being conducted by Lawrence Livermore National Laboratory (LLNL).

  9. TEST FUSION IN ADULT FORAMINIFERA: A REVIEW WITH NEW OBSERVATIONS OF AN EARLY EOCENE NUMMULITES SPECIMEN

    PubMed Central

    Ferràndez-Cañadell, Carles; Briguglio, Antonino; Hohenegger, Johann; Wöger, Julia

    2015-01-01

    In foraminifera, so-called “double tests” usually arise due to abnormal growth originating mainly from twinning, but may also be caused by irregularities in the early chambers and by regeneration after test injury that modifies the direction of growth. A fourth cause of double tests has only rarely been reported: the fusion of the tests of two adult individuals. We studied an early Eocene Nummulites double test consisting of two adult individuals that fused after an extended period of independent growth. The specimen was studied using computed tomography with micrometric resolution (micro-CT) that allowed bi- and three-dimensional visualization of the internal structure. Before fusion each individual test had 30–36 chambers, which, by comparison with growth rates in recent nummulitids, implies at least three months of independent growth. After fusion, the compound test grew in two spirals that fused after about one whorl and then continued in a single spiral. To fuse their tests, either adult individuals have to be forced to do so or the allorecognition (ability to distinguish between self and another individual) mechanisms must fail. A possible explanation for the merged Nummulites tests in this study is forced fusion in attached individuals after surviving ingestion and digestion by a metazoan. Alternatively, environmental stress could lead to a failure of allorecognition mechanisms and/or foraminiferal motility. Once fused, subsequent growth seems to be determined mainly by the relative orientation of individual tests. In any case, the frequency in which adult fusion occurs remains unknown. PMID:26166916

  10. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  11. Sequential testing over multiple stages and performance analysis of data fusion

    NASA Astrophysics Data System (ADS)

    Thakur, Gaurav

    2013-05-01

    We describe a methodology for modeling the performance of decision-level data fusion between different sensor configurations, implemented as part of the JIEDDO Analytic Decision Engine (JADE). We first discuss a Bayesian network formulation of classical probabilistic data fusion, which allows elementary fusion structures to be stacked and analyzed efficiently. We then present an extension of the Wald sequential test for combining the outputs of the Bayesian network over time. We discuss an algorithm to compute its performance statistics and illustrate the approach on some examples. This variant of the sequential test involves multiple, distinct stages, where the evidence accumulated from each stage is carried over into the next one, and is motivated by a need to keep certain sensors in the network inactive unless triggered by other sensors.

  12. Progress in Z-pinch inertial fusion energy.

    SciTech Connect

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  13. Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He

    SciTech Connect

    Honig, Arnold; Sandorfi, Andrew

    2007-06-13

    An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of {approx}15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at {approx}108 K plasma core temperatures ({approx}5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactor fusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It

  14. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    SciTech Connect

    Rule, K.; Scott, J.; Larson, S.

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  15. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  16. Testing of low Z coated limiters in tokamak fusion devices

    SciTech Connect

    Whitely, J.B.; Mullendore, A.W.; Langley, R.A.

    1980-01-01

    Extensive testing on a laboratory scale has been used to select those coatings most suitable for this environment. From this testing which included pulsed electron beam heating, low energy ion bombardment and arcing, chemical vapor deposited coating of TiB/sub 2/ and TiC on Poco graphite substrates have been selected and tested as limiters in ISX. Both limiter materials gave clean, stable, reproducible tokamak discharges the first day of operation. After one weeks exposure, the TiC limiter showed only superficial damage with no coating failure. The TiB/sub 2/ limiter had some small areas of coating failure. TiC coated graphite limiters have also been briefly tested in the tokamaks Alcator and PDX with favorable results.

  17. Information fusion in regularized inversion of tomographic pumping tests

    USGS Publications Warehouse

    Bohling, G.C.; ,

    2008-01-01

    In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.

  18. The development of a universal diagnostic probe system for Tokamak fusion test reactor

    NASA Technical Reports Server (NTRS)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-01-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  19. Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He

    NASA Astrophysics Data System (ADS)

    Honig, Arnold; Sandorfi, Andrew

    2007-06-01

    An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tTokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of ˜15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at ˜108 K plasma core temperatures (˜5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactorfusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It will be introduced

  20. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  1. Model for collisional fast ion diffusion into Tokamak Fusion Test Reactor loss cone

    SciTech Connect

    Chang, C.S. |; Zweben, S.J.; Schivell, J.; Budny, R.; Scott, S.

    1994-08-01

    An analytic model is developed to estimate the classical pitch angle scattering loss of energetic fusion product ions into prompt loss orbits in a tokamak geometry. The result is applied to alpha particles produced by deutrium-tritium fusion reactions in a plasma condition relevant to Tokamak Fusion Test Reactor (TFTR). A poloidal angular distribution of collisional fast ion loss at the first wall is obtained and the numerical result from the TRANSP code is discussed. The present model includes the effect that the prompt loss boundary moves away from the slowing-down path due to reduction in banana thickness, which enables us to understand, for the first time. the dependence of the collisional loss rate on Z{sub eff}.

  2. Fuel plate and fusion insulator irradiation test program

    SciTech Connect

    Miller, L.G.; Beeston, J.M.

    1980-11-01

    As the prices of fuel fabricating, shipping, and reprocessing continue to rise at rapid rates, research people look for alternate methods to keep their reactor fuel costs within limited funds. Extending fuel element lifetimes without jeopardizing reactor safety can reduce fuel costs by up to a factor of two. But to gain this factor, some fuel plate tests must be performed to the higher burnup to verify burnup fuel plate performance. In this proposed test, fuel plates will be constructed to a maximum fuel loading which can be produced on a commercial basis, contain a maximum boron content as used in ATR to reduce initial reactor reactivity, and will be loaded with UAl/sub 2/ to obtain higher uranium content and better operating performance over UAl/sub 3/.

  3. TFTR (Tokamak Fusion Test Reactor) neutral beam injected power measurement

    SciTech Connect

    Kamperschroer, J.H.; Grisham, L.R.; Dudek, L.E.; Gammel, G.M.; Johnson, G.A.; Kugel, H.W.; Lagin, L.; O'Connor, T.E.; Shah, P.A.; Sichta, P.

    1989-05-01

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab.

  4. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  5. Analyses in Support of Z-IFE: LLNL Progress Report for FY-04

    SciTech Connect

    Meier, W; Abbott, R; Latkowski, J; Moir, R; Reyes, S; Schmitt, R

    2004-10-06

    During the last quarter of FY2004, Lawrence Livermore National Laboratory (LLNL) conducted a brief study of power plant options for a z-pinch-based inertial fusion energy (Z-IFE) power plant. Areas that were covered include chamber design, thick-liquid response, neutronics and activation, and systems studies. This report summarizes the progress made in each of these areas, provides recommendations for improvements to the basic design concept, and identifies future work that is needed. As a starting point to the LLNL studies, we have taken information provided in several publications and presentations. In particular, many of the basic parameters were taken from the ZP-3 study, which is described in reference 4. The ZP-3 design called for 12 separate target chambers, with any 10 of them operating at a given time. Each chamber would be pulsed at a repetition rate of 0.1 Hz with a target yield of 3 GJ. Thus, each chamber would have a fusion power of 300 MW for a power plant total of 3000 MW. The ZP-3 study considered several options for the recyclable transmission lines (RTL). Early in the study, the LLNL group questioned the use of many chambers as well as the yield limitation of 3 GJ. The feeling was that a large number of chambers would invariably lead to a considerably higher system cost than for a system with fewer chambers. Naturally, this trend would be somewhat offset by the increased availability that might be possible with many chambers. Reference 4 points out that target yields as high as 20 GJ would be possible with currently available manufacturing technology. The LLNL team considered yields ranging from 3 to 20 GJ. Our findings indicate that higher yields, which lead one to fewer chambers, make the most sense from an economic point of view. Systems modeling, including relative economics, is covered in Section 2. Regardless of the number of chambers of the fusion yield per target, a Z-IFE power plant would make use of a thick-liquid wall protection scheme

  6. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    SciTech Connect

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

    2010-12-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  7. The operation of the Tokamak Fusion Test Reactor Tritium Facility

    SciTech Connect

    Gentile, C.A.; LaMarche, P.H.; Anderson, J.L.

    1995-07-01

    The TFTR tritium operations staff has successfully received, stored, handled, and processed over five hundred thousand curies of tritium for the purpose of supporting D-T (Deuterium-Tritium) operations at TFTR. Tritium operations personnel nominally provide continuous round the clock coverage (24 hours/day, 7 days/week) in shift complements consisting of I supervisor and 3 operators. Tritium Shift Supervisors and operators are required to have 5 years of operational experience in either the nuclear or chemical industry and to become certified for their positions. The certification program provides formal instruction, as well as on the job training. The certification process requires 4 to 6 months to complete, which includes an oral board lasting up to 4 hours at which time the candidate is tested on their knowledge of Tritium Technology and TFTR Tritium systems. Once an operator is certified, the training process continues with scheduled training weeks occurring once every 5 weeks. During D-T operations at TFTR the operators must evacuate the tritium area due to direct radiation from TFTR D-T pulses. During `` time operators maintain cognizance over tritium systems via a real time TV camera system. Operators are able to gain access to the Tritium area between TFTR D-T pulses, but have been excluded from die tritium area during D-T pulsing for periods up to 30 minutes. Tritium operators are responsible for delivering tritium gas to TFRR as well as processing plasma exhaust gases which lead to the deposition of tritium oxide on disposable molecular sieve beds (DMSB). Once a DMSB is loaded, the operations staff remove the expended DMSB, and replace it with a new DMSB container. The TFIR tritium system is operated via detailed procedures which require operator sign off for system manipulation. There are >300 procedures controlling the operation of the tritium systems.

  8. 2002 Fusion Summer Study Executive Summary

    NASA Astrophysics Data System (ADS)

    Bangerter, Roger; Navratil, Gerald; Sauthoff, Ned

    2001-09-01

    The 2002 Fusion Summer Study was conducted July 8-19, 2002, in Snowmass, CO, and carried out a critical assessment of major next steps in the fusion energy sciences program in both magnetic fusion energy (MFE) and inertial fusion energy (IFE). The conclusions of this study were based on analysis led by over 60 conveners working with hundreds of members of the fusion energy sciences community extending over eight months. This effort culminated in two weeks of intense discussion by over 250 U.S. and 30 foreign fusion physicists and engineers present at the 2002 Fusion Summer Study. This is the Executive Summary of the study report. Details are posted at http://web.gat.com/snowmass

  9. Physical and technological issues of KrF laser drivers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Arlantsev, S. V.; Bakaev, V. G.; Gaynutdinov, R. V.; Levchenko, A. O.; Molchanov, A. G.; Sagitov, S. I.; Sergeev, A. P.; Sergeev, P. B.; Stavrovskii, D. B.; Ustinovskii, N. N.; Zayarnyi, D. A.

    2006-06-01

    Physics and technology of Krypton Fluoride (KrF) laser have been studied experimentally and theoretically to improve its efficiency and to increase a lifetime, and thus to verify the challenge of KrF laser for Inertial Fusion Energy (IFE). Experiments were performed with e-beam-pumped multistage 100-J output energy GARPUN KrF laser facility and 200-A/cm2 current density EL-1 electron gun, both operating at P.N. Lebedev Physical Institute. They formed the database for verification of numerical codes capable to predict IFE-scale KrF drivers. Monte Carlo code was developed to calculate e-beam energy deposition inside GARPUN laser chamber while a quasistationary numerical KrF laser code based on generalized “forward back” multi-direction approximation for radiation transfer equation was used to describe amplification of nanosecond pulses and amplified spontaneous emission (ASE). Long-lived absorption in UV optical materials induced by fast electrons and bremsstrahlung X-ray radiation was measured at EL-1 electron gun with total fluence of ionizing radiation up to 20.6 kJ/cm2. Using these data together with measurements and scaling of bremsstrahlung X-ray yield, we can predict that the most stable windows of IFE-scale KrF laser driver would be able to withstand no less than 2× 106 shots. Fluorine-resistant coatings onto fused silica windows of KrF laser were developed and demonstrated damage thresholds as high as 29 J/cm2 in test experiments with large 13× 13-mm uniformly irradiated spot.

  10. PRELIMINARY ASSESSMENT OF NDE METHODS ON INSPECTION OF HDPE BUTT FUSION PIPING JOINTS FOR LACK OF FUSION WITH VALIDATION FROM MECHANICAL TESTING

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high speed tensile impact test and the bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12 inch (30.5 cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack of fusion conditions. Six of these butt joints were volumetrically examined with time of flight diffraction (TOFD), phased array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Several of the pipes were sectioned and the joints destructively evaluated with the following techniques: high speed tensile test, bend test, and focused immersion ultrasound on a joint section removed from the pipe coupled with slicing through the joint and examining the revealed surfaces. The fusion parameters, nondestructive, and destructive evaluation results will be correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. This is an initial limited study which will aid in identifying key future work.

  11. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  12. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  13. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  14. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  15. Impact of Fast Ignition on Laser Fusion Energy Development

    NASA Astrophysics Data System (ADS)

    Mirna, Kunioki

    2016-10-01

    Reviewed are the early history of Japanese laser fusion research and the recent achievement of fast ignition research at Institute of Laser Engineering (ILE), Osaka University. After the achievement of high density compression at Osaka University, LLE of University Rochester, and LLNL, the critical issue of Inertial Fusion Energy (IFE) research became the formation of hot spark in a compressed plasma. In this lecture, the history of the fast ignition research will be reviewed and future prospects are presented.

  16. Ultra-Lightweight Borosilicate Gas-Fusion Mirror for Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Voevodsky, Michael

    2003-01-01

    Hextek Corporation fabricated a 250 mm diameter ultra-lightweight borosilicate mirror substrate for cryogenic testing at NASA MSFC XRCF facility in Huntsville AL under contract# H-34475D. The objectives of the program were to demonstrate that the Hextek Gas-Fusion technology is capable of meeting the 15kg/sq m areal density target required for future space missions, and to provide a demonstration substrate for NASA MSFC to finish and test at cryogenic temperature. This presentation reviews company background and capabilities, features and benefits of the Gas-Fusion technology, historical data on cryogenic performance of borosilicate glass showing near zero cte at 30-35 degrees Kelvin, design and fabrication results of the 250 mm 15kg/sq m areal density substrate, and finally, projected scaling, lightweighing and fabrication lead-times for meter class segments.

  17. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  18. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    SciTech Connect

    Perkins, L.J.,

    1996-09-05

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task.

  19. A magnetohydrodynamic stability study of reverse shear equilibria in the Tokamak Fusion Test Reactor

    SciTech Connect

    Phillips, M.W.; Zarnstorff, M.C.; Manickam, J.; Levinton, F.M.; Hughes, M.H.

    1996-05-01

    A study is presented of the low-{ital n} ({ital n}=1,2,3) magnetohydrodynamic stability of equilibria with reverse shear safety factor profiles. The low-{ital n} stability boundaries are found to be characterized by resonance structures due to internal so-called {open_quote}{open_quote}infernal{close_quote}{close_quote} mode types of instabilities. The parametric dependence of shear reversal width and depth, current, and pressure gradient on the beta limit are determined by using profile models that allow each parameter to be varied independently. Reverse magnetic shear is found to have a stabilizing influence for modes with toroidal mode numbers {ital n}{ge}2 leading to the possibility of improved {beta} limits in the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. {bold 26}, 11 (1984)]. {copyright} {ital 1996 American Institute of Physics.}

  20. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  1. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    SciTech Connect

    Seidl, P.A.; Barnard, J.J.

    2011-04-29

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  2. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  3. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  4. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  5. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    DOE PAGESBeta

    Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; Kulcinski, Gerald L.; Santarius, John F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less

  6. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials. PMID:27587118

  7. A cost-effective target supply for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Brown, L. C.; Frey, D. T.; Gallix, R.; Gibson, C. R.; Maxwell, J. L.; Nobile, A.; Olson, C.; Petzoldt, R. W.; Raffray, R.; Rochau, G.; Schroen, D. G.; Tillack, M.; Rickman, W. S.; Vermillion, B.

    2004-12-01

    A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today's inertial confinement fusion experiments are estimated to cost about US2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about 0.25-0.30 for each injected target (corresponding to ~10% of the 'electricity value' in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of 'nth-of-a-kind' plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.

  8. The TASKA, TDF, and TASKA-M Fusion Neutron Materials Test Facilities

    NASA Astrophysics Data System (ADS)

    Santarius, John; Kulcinski, Gerald

    2009-11-01

    This talk will summarize key features of three conceptual fusion neutron test facilities designed in the early 1980s: TASKA,^1 TDF,^2 and TASKA-M.^3 Motivated by the accessibility and maintainability of cylindrical geometry, these magnetic-mirror designs possess a simple central cell, as in a fusion neutron test facility based on the gas dynamic trap (GDT).^4 The TASKA-M design, like today's GDT designs, included the injection of neutral beams into the central cell to create a sloshing-ion distribution that gives density peaks near the materials test modules. In TASKA and TDF, the minimum-B end-cell designs contained thermal barriers, regions of low electrostatic potential to reduce electron flow between central cell and end cells. Thermal barriers improve performance but require more complicated input power systems, and their physics basis is less well established than that of simple mirrors. For TASKA-M, a more conservative design, minimum-B end cells provided MHD stability, but thermal barriers and an end-plug potential peak were absent. [1] B. Badger, et al., UW FTI Report UWFDM-500 (1982). [2] T.H. Batzer, et al., LLNL Report UCID-19328 (1983). [3] B. Badger, al., UW FTI Report UWFDM-600 (1984). [4] P.A. Bagryanski, et al., Fus. Eng. Design 70, 13 (2004).

  9. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Beer, M.; Batha, S.

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  10. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    SciTech Connect

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J.

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  11. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    SciTech Connect

    Slack, D.S.; Chronis, W.C.

    1987-06-08

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system.

  12. Outgassing tests on materials used in the DIII{endash}D magnetic fusion tokamak

    SciTech Connect

    Holtrop, K.L.; Hansink, M.; Kellman, A.G.

    1999-07-01

    In order to achieve high performance plasma discharges in the DIII{endash}D magnetic fusion tokamak, impurity levels must be carefully controlled. Since first wall materials can desorb volatile impurities during these discharges, it is important to characterize and control the outgassing of these materials. An outgassing chamber was built to measure the outgassing properties of various materials used in the DIII{endash}D vessel. The results of pump-down tests performed on ATJ graphite, thin Grafoil{sup {reg_sign}} gaskets, and MgO coaxial cables will be presented. In addition to outgassing tests, it was desired to study the behavior of the materials at temperatures up to 400&hthinsp;{degree}C, which is the maximum temperature to which the DIII{endash}D vessel is baked. The station was modified to include independent heating control of the sample and a simple load-lock chamber. {copyright} {ital 1999 American Vacuum Society.}

  13. Outgassing tests on materials used in the DIII-D magnetic fusion tokamak

    SciTech Connect

    Holtrop, K.L.; Hansink, M.; Kellman, A.G.

    1998-12-01

    In order to achieve high performance plasma discharges in the DIII-D magnetic fusion tokamak, impurity levels must be carefully controlled. Since first wall materials can desorb volatile impurities during these discharges, it is important to characterize and control the outgassing of these materials. An outgassing chamber was built to measure the outgassing properties of various materials used in the DIII-D vessel. The results of pump-down tests performed on ATJ graphite, thin Grafoil {reg_sign} gaskets, and MgO coaxial cables will be presented. In addition to pumpdown tests it was desired to study the behavior of the materials at temperatures up to 400 C, which is the maximum temperature to which the DIII-D vessel is baked. The station was modified to include independent heating control of the sample and a simple load-lock chamber.

  14. Management of Primary Dysmenorrhea by School Adolescents in ILE-IFE, Nigeria

    ERIC Educational Resources Information Center

    Ogunfowokan, Adesola A.; Babatunde, Oluwayemisi A.

    2010-01-01

    Dysmenorrhea is a problem that girls and women face and often manage themselves with or without support from health professionals. A cross-sectional, descriptive study was conducted among adolescents with dysmenorrhea (N = 150) in Ile-Ife, Nigeria. The aims of the study were to determine their knowledge of menstruation and primary dysmenorrhea,…

  15. High poloidal beta long-pulse experiments in the Tokamak Fusion Test Reactor*

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Mauel, M. E.; Navratil, G. A.; Sabbagh, S. A.; Bell, M.; Budny, R.; Bush, C.; Fredrickson, E.; Grek, B.; Janos, A.; Johnson, D.; Mansfield, D.; McCune, D.; McGuire, K.; Park, H.; Ramsey, A.; Synakowski, E.; Taylor, G.; Zarnstorff, M.; Batha, S. H.; Levinton, F. M.

    1993-07-01

    Experiments have been performed in the Tokamak Fusion Test Reactor [D. M. Meade et al. in Plasma Physics Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 9] with neutral beam injection of up to 4 sec. duration, which is comparable to the time scale for resistive redistribution of the plasma current profile. These plasmas were created using a rapid decrease of the plasma current which initially created a plasma with enhanced stability and confinement. As the current profile evolved, a significantly reduced beta limit was observed. The high ɛβp plasmas had up to 90% of the current driven noninductively which significantly broadened the current profile during the long pulse lengths. These experiments demonstrated that high βN plasmas could not be sustained for times longer than the resistive relaxation of the outer current region which at early times after the current ramp-down carried negative current. At later times in lower βN discharges, beta collapses were sometimes observed as the current profile broadened at βN˜1.5. The appearance of disruptions was consistent with the predictions of ideal magnetohydrodynamics (MHD) stability analyses.

  16. Classification of weld defect based on information fusion technology for radiographic testing system

    NASA Astrophysics Data System (ADS)

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.

  17. Classification of weld defect based on information fusion technology for radiographic testing system.

    PubMed

    Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying

    2016-03-01

    Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification. PMID:27036822

  18. Inertial Confinement Fusion: Quarterly report, April-June 1996

    SciTech Connect

    Correll, D.

    1996-06-01

    The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

  19. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  20. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    SciTech Connect

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed.

  1. Kβ spectra of heliumlike iron from tokomak-fusion-test-reactor plasmas

    NASA Astrophysics Data System (ADS)

    Smith, A. J.; Bitter, M.; Hsuan, H.; Hill, K. W.; von Goeler, S.; Timberlake, J.; Beiersdorfer, P.; Osterheld, A.

    1993-04-01

    Kβ spectra of heliumlike iron, Fe xxv, have been observed from tokamak-fusion-test-reactor (TFTR) plasmas with a high-resolution crystal spectrometer. The wavelength range of the Fe Kβ spectrum partially overlaps the spectrum of heliumlike nickel (Ni xxvii), which is used on TFTR and the joint European torus for ion-temperature measurements. The experimental arrangement made it possible to observe the Fe xxv Kβ lines and their satellite transitions of the type 1s2l'3l''-->1s22l', as well as the entire satellite spectrum of the Ni xxvii Kα line simultaneously. In order to identify the features of the Kβ spectra and to study their possible interference with the Ni xxvii spectrum, the intensity of the Kβ spectrum was enhanced by the injection of iron into the plasma. Accurate wavelengths and intensities have been obtained and compared with different theoretical calculations.

  2. Long- and short-term trends in vessel conditioning of TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    LaMarche, P.H.; Dylla, H.F.; Bell, M.G.; Boody, F.P.; Bush, C.E.; Groebuer, R.J.; Hawryluk, R.J.; Hill, K.W.; Mueller, D.; Owens, D.K.

    1986-10-01

    We have investigated trends in the conditioning of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel during the May 1984 to April 1985 run period. The initial conditioning of the vessel, consisting of glow discharge cleaning (GDC) and pulse discharge cleaning (PDC) in concert with a 150/sup 0/C vessel bakeout, is necessary to assure plasma operation after atmospheric venting. A long-term conditioning process, ascribed to limiter conditioning, effectively improves operational conditions during the course of the run. Over several thousand high power plasma discharges, the improvement was documented by using standard parameter (fiducial) plasma discharges. Several techniques demonstrated short-term improvements in vessel conditioning during this time period, including: Cr gettering and programming the plasma position relative to the limiter contact area.

  3. Alpha particle losses from Tokamak Fusion Test Reactor deuterium{endash}tritium plasmas

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Batha, S.; Budny, R.V.; Bush, C.E.; Chang, Z.; Cheng, C.Z.; Duong, H.H.; Fang, J.; Fisch, N.J.; Fischer, R.; Fredrickson, E.D.; Fu, G.Y.; Heeter, R.F.; Heidbrink, W.W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.; Jaeger, E.F.; James, R.; Majeski, R.; Medley, S.S.; Murakami, M.; Petrov, M.; Phillips, C.K.; Redi, M.H.; Ruskov, E.; Spong, D.A.; Strait, E.J.; Taylor, G.; White, R.B.; Wilson, J.R.; Wong, K.; Zarnstorff, M.C.

    1996-05-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium{endash}tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire {ital et} {ital al}., Phys. Plasmas {bold 2}, 2176 (1995)] has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario. {copyright} {ital 1996 American Institute of Physics.}

  4. Multiple tests for wind turbine fault detection and score fusion using two- level multidimensional scaling (MDS)

    NASA Astrophysics Data System (ADS)

    Ye, Xiang; Gao, Weihua; Yan, Yanjun; Osadciw, Lisa A.

    2010-04-01

    Wind is an important renewable energy source. The energy and economic return from building wind farms justify the expensive investments in doing so. However, without an effective monitoring system, underperforming or faulty turbines will cause a huge loss in revenue. Early detection of such failures help prevent these undesired working conditions. We develop three tests on power curve, rotor speed curve, pitch angle curve of individual turbine. In each test, multiple states are defined to distinguish different working conditions, including complete shut-downs, under-performing states, abnormally frequent default states, as well as normal working states. These three tests are combined to reach a final conclusion, which is more effective than any single test. Through extensive data mining of historical data and verification from farm operators, some state combinations are discovered to be strong indicators of spindle failures, lightning strikes, anemometer faults, etc, for fault detection. In each individual test, and in the score fusion of these tests, we apply multidimensional scaling (MDS) to reduce the high dimensional feature space into a 3-dimensional visualization, from which it is easier to discover turbine working information. This approach gains a qualitative understanding of turbine performance status to detect faults, and also provides explanations on what has happened for detailed diagnostics. The state-of-the-art SCADA (Supervisory Control And Data Acquisition) system in industry can only answer the question whether there are abnormal working states, and our evaluation of multiple states in multiple tests is also promising for diagnostics. In the future, these tests can be readily incorporated in a Bayesian network for intelligent analysis and decision support.

  5. Construction, testing of the 1 MW, 130-260 GHz Fusion-FEM

    SciTech Connect

    Urbanus, W.H.; Bongers, G.; Dijk, C.A.J. van

    1995-12-31

    During the previous 9 months the major part of the Fusion-FEM has been constructed. The 2 MV Insulated Core Transformer, the electron gun, the accelerator, the focusing lenses and the undulator have been tested on-site. In the present - temporary - set-up, the electron beam line consists of a 12 A, 80 keV thermionic electron gun, a 2 MeV dc accelerator, beam transport optics, the undulator and a collector. The gun is mounted in the high voltage terminal, which is now at -2 MV, and the undulator and mm-wave system am at ground potential outside the SF{sub 6}-filled pressure tank. This so-called inverse set-up allows easy access to the larger part of the beam line, the undulator and the mm-wave system, which is important in the conditioning phase. The decelerator and depressed collector am not yet installed. The design of the electron beam line has been optimised using the GPS particle-tracking code and the TOSCA code. The TOSCA code is used for accurate field calculations of the magnetic lenses. The results are used in the GPS code. The combination of these two codes allows optimization of the tens designs with respect to aberations, such as to avoid emittance growth. The mm-wave beam line has been designed, including a Boron-Nitride, Brewster angle, high power, broadband window. The window is designed for transmitting 1 MW of mm-wave power in the frequency range 130 - 260 GHz. Loss power is of the order of a percent. The first major goal is the transport of the electron beam through the undulator with only a small loss current. We report the final design of the electron beam line, the design of the mm-wave beam line, and the status of construction and testing of the Fusion-FEM.

  6. Challenges Surrounding the Injection and Arrival of Targets at LIFE Fusion Chamber Center

    SciTech Connect

    Miles, R; Spaeth, M; Manes, K; Amendt, P; Tabak, M; Bond, T; Kucheyev, S; Latkowski, J; Loosmore, G; Bliss, E; Baker, K; Bhandarkar, S; Petzoldt, R; Alexander, N; Tillack, M; Holdener, D

    2010-12-01

    IFE target designers must consider several engineering requirements in addition to the physics requirements for successful target implosion. These considerations include low target cost, high manufacturing throughput, the ability of the target to survive the injection into the fusion chamber and arrive in a condition and physical position consistent with proper laser-target interaction and ease of post-implosion debris removal. This article briefly describes these considerations for the Laser Inertial Fusion-based Energy (LIFE) targets currently being designed.

  7. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  8. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    SciTech Connect

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles near the

  9. SELF-SIMILAR SKELETAL STRUCTURES IN FUSION AND MATERIAL TEST DEVICES: NUMERICAL MODELING AND NEW OBSERVATIONAL DATA

    SciTech Connect

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2009-07-26

    The hypotheses for self-assembling of a fractal condensed matter in electric discharges and the probable role of a skeletal matter in the long-lived filamentary structures in fusion devices is studied in two directions. First, we append previous collection of respective data with recent evidences for skeletal structuring in peripheral plasmas and dust deposits in fusion and material test devices. Second, we demonstrate, via numerical modelling, the possibility of coaxial tubular structuring formation in a system of electric current filaments composed of magnetized, electrically conducting thin rods (nanodust), with an accent on self-reduction of spatial dimensionality of structuring and on the role of magnetic in such systems.

  10. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    DOE PAGESBeta

    Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; Roosendaal, T. J.; Borlaug, B. A.; Ferraris, Monica; Ventrella, A.; Katoh, Yutai

    2015-08-05

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite elementmore » elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less

  11. Modeling and Testing Miniature Torsion Specimens for SiC Joining Development Studies for Fusion

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai

    2015-08-19

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC and tested in torsion-shear prior to and after neutron irradiation. However, many of these miniature torsion specimens fail out-of-plane within the CVD-SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated joint strengths to determine the effects of the irradiation. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated joint test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.

  12. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    NASA Astrophysics Data System (ADS)

    Henager, C. H.; Nguyen, B. N.; Kurtz, R. J.; Roosendaal, T. J.; Borlaug, B. A.; Ferraris, M.; Ventrella, A.; Katoh, Y.

    2015-11-01

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.

  13. Traumatic spinal cord injuries in Ile-Ife, Nigeria, and its environs.

    PubMed

    Olasode, Babatunde J; Komolafe, I E; Komolafe, M; Olasode, Olayinka A

    2006-07-01

    In Ile-Ife, Nigeria, traumatic brain injuries are largely due to traffic accidents caused mainly by the bad maintenance of the roads and unsafe driving. Young men in the productive stage of their lives are those most affected. The resultant disabilities include quadriplegia (in more than half the patients) and paraplegia. The cost of treating and providing adequate facilities for these patients imposes a heavy economic burden upon developing countries.

  14. Accumulation and Effects of Stray Electrons in IFE Accelerators

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Molvik, A. W.; Vay, J. L.

    2002-11-01

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We present electron particle orbit studies and estimates showing the various dependences. We also present ion simulations with prescribed random electron neutralization to elucidate electron effects on ion beam quality. Finally we contrast electron effects to be expected on the proposed Integrated Beam Experiment (IBX) with those for the High-Current Experiment (HCX), and discuss ways to measure these differences.

  15. Energy confinement time and electron density profile shape in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Park, H.K.; Bell, M.G.; Goldston, R.J.; Hawryluk, R.J.; Johnson, D.W.; Scott, S.D.; Wieland, R.M.; Zarnstorff, M.C.; Bitter, M.; Bretz, N.; Budny, R.; Dylla, H.F.; Grek, B.; Howell, R.B.; Hsuan , H.; Johnson, L.C.; Mansfield, D.K.; Ramsey, A.T.; Schivell, J.; Taylor, G.; Ulrickson, M.

    1989-11-01

    The electron density profiles of intense deuterium neutral-beam- heated plasmas (P{sub tot}/P{sub ohm} {gt} 10) are characterized as a peakedness parameter (F{sub ne} = n{sub eo}/{l angle}n{sub e}{r angle}) in the Tokamak Fusion Test Reactor (TFTR). The gross energy confinement time ({tau}{sub E} = E{sub tot}/P{sub tot}) at the time of maximum stored energy is found to be a weak function of the plasma current and total heating power but depends strongly on the peakedness parameter. A regression study showed {tau}{sub E} = 2.4 {times} 10{sup {minus}3}F{sub ne}{sup 0.76}I{sub P}{sup 0.18}P{sub tot}{sup {minus}0.12} for a data set of 561 discharges in the TFTR. Also {tau}{sub E} can be represented as {tau}{sub E} = {tau}{sub E}{sup L}f(F{sub ne}), where {tau}{sub E}{sup L} is the empirical L-mode scaling result. A similar scaling applies to an appropriately defined incremental energy confinement time ({tau}{sub inc} = dE{sub tot}/dP{sub tot}{vert bar}{sub F{sub ne} = constant}). 14 refs., 4 figs.

  16. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    SciTech Connect

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.; Combs, S.K.; Fisher, P.W.; Lunsford, R.V.; Maxon, B.S.; Milora, S.L.; Webster, D.J.; Schmidt, G.L.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium.

  17. [ital K][beta] spectra of heliumlike iron from tokomak-fusion-test-reactor plasmas

    SciTech Connect

    Smith, A.J. ); Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Timberlake, J. ); Beiersdorfer, P.; Osterheld, A. )

    1993-04-01

    [ital K][beta] spectra of heliumlike iron, Fe XXV, have been observed from tokamak-fusion-test-reactor (TFTR) plasmas with a high-resolution crystal spectrometer. The wavelength range of the Fe [ital K][beta] spectrum partially overlaps the spectrum of heliumlike nickel (Ni XXVII), which is used on TFTR and the joint European torus for ion-temperature measurements. The experimental arrangement made it possible to observe the Fe XXV [ital K][beta] lines and their satellite transitions of the type 1[ital s]2[ital l][prime]3[ital l][prime][prime][r arrow]1[ital s][sup 2]2[ital l][prime], as well as the entire satellite spectrum of the Ni XXVII [ital K][alpha] line simultaneously. In order to identify the features of the [ital K][beta] spectra and to study their possible interference with the Ni XXVII spectrum, the intensity of the [ital K][beta] spectrum was enhanced by the injection of iron into the plasma. Accurate wavelengths and intensities have been obtained and compared with different theoretical calculations.

  18. Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1.

    PubMed

    Friday, Andrew J; Henderson, Melissa A; Morrison, J Kaitlin; Hoffman, Jenna L; Keiper, Brett D

    2015-12-15

    Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.

  19. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  20. Generating High-Brightness Light Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Adams, R.G.; Bailey, J.E.; Cuneno, M.E.; Desjarlais, M.P.; Filuk, A.B.; Hanson, D.L.; Johnson, D.J.; Mehlohorn, T.A.; Menge, P.R.; Olson, C.L.; Pointon, T.D. Slutz, S.A.; Vesey, R.A.; Welch, D.R.; Wenger, D.F.

    1998-10-22

    Light ion beams may be the best option for an Inertial Fusion Energy (IFE) driver from the standpoint of ei%ciency, standoff, rep-rate operation and cost. This approach uses high-energy-density pulsed power to efficiently accelerate ions in one or two stages at fields of 0.5 to 1.0 GV/m to produce a medium energy (30 MeV), high-current (1 MA) beam of light ions, such as lithium. Ion beams provide the ability for medium distance transport (4 m) of the ions to the target, and standofl of the driver from high- yield implosions. Rep-rate operation of' high current ion sources has ako been demonstrated for industrial applications and couId be applied to IFE. Although (hese factors make light ions the best Iong-teml pulsed- power approach to IFE, light-ion research is being suspended this year in favor of a Z-pinch-driven approach which has the best opport lnity to most-rapidly achieve the U.S. Department of Energy sponsor's goal of high-yield fusion. This paper will summarize the status and most recent results of the light-ion beam program at Sandia National Laboratories (SNL), and document the prospects of light ions for future IFE driver development.

  1. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  2. Modeling and testing miniature torsion specimens for SiC joining development studies for fusion

    SciTech Connect

    Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; Roosendaal, T. J.; Borlaug, B. A.; Ferraris, Monica; Ventrella, A.; Katoh, Yutai

    2015-08-05

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.

  3. End points in discharge cleaning on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mueller, D.; Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Bush, C.E.; Gettelfinger, G.; Hawryluk, R.J.; Hill, K.W.; Janos, A.C.; Jobes, F.C.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) /approx/ 3 at /approx/ 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H/sub 2/O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after /approx/ 10/sup 5/ pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150/degree/C to about 250/degree/C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H/sub 2/O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab.

  4. Idiopathic Focal Eosinophilic Enteritis (IFEE), an Emerging Cause of Abdominal Pain in Horses: The Effect of Age, Time and Geographical Location on Risk

    PubMed Central

    Archer, Debra C.; Costain, Deborah A.; Sherlock, Chris

    2014-01-01

    Background Idiopathic focal eosinophilic enteritis (IFEE) is an emerging cause of abdominal pain (colic) in horses that frequently requires surgical intervention to prevent death. The epidemiology of IFEE is poorly understood and it is difficult to diagnose pre-operatively. The aetiology of this condition and methods of possible prevention are currently unknown. The aims of this study were to investigate temporal and spatial heterogeneity in IFEE risk and to ascertain the effect of horse age on risk. Methodology/Principal Findings A retrospective, nested case-control study was undertaken using data from 85 IFEE cases and 848 randomly selected controls admitted to a UK equine hospital for exploratory laparotomy to investigate the cause of colic over a 10-year period. Generalised additive models (GAMs) were used to quantify temporal and age effects on the odds of IFEE and to provide mapped estimates of ‘residual’ risk over the study region. The relative risk of IFEE increased over the study period (p = 0.001) and a seasonal pattern was evident (p<0.01) with greatest risk of IFEE being identified between the months of July and November. IFEE risk decreased with increasing age (p<0.001) with younger (0–5 years old) horses being at greatest risk. The mapped surface estimate exhibited significantly atypical sub-regions (p<0.001) with increased IFEE risk in horses residing in the North-West of the study region. Conclusions/Significance IFEE was found to exhibit both spatial and temporal variation in risk and is more likely to occur in younger horses. This information may help to identify horses at increased risk of IFEE, provide clues about the aetiology of this condition and to identify areas that require further research. PMID:25463382

  5. Radioactivity in the community water supplies of Ife-Central and Ife-East local government areas of Osun State, Nigeria

    NASA Astrophysics Data System (ADS)

    Tchokossa, P.; Olomo, J. B.; Osibote, O. A.

    1999-02-01

    The average concentrations of radionuclides in the various types of community water supplies of the Ife-Central and Ife-East Local Government areas with a population of 200 000 people were estimated from the measurements of mean specific activity using a well-calibrated Canberra vertical coaxial high-purity germanium detector system. Water samples were collected from dam, streams, boreholes, wells, tap water, etc., being the most frequently used water sources in the study area. The radionuclides observed with reliable regularity belonged to the series - decay naturally occurring radionuclides headed by 238U and 232Th as well as the non-series nuclide, 40K. The average specific activity values obtained for 226Ra, 228Ra and 40K, respectively, were 8.67±4.28, 2.31±1.48 and 98.99±6.23 Bq l -1 for well water; 12.45±3.39, 3.02±0.64 and 97.46±6.35 Bq l -1 for borehole water; 12.41±1.37, 2.47±0.09 and 85.06±17.27 Bq l -1 for tap water; 10.40±1.70, 2.70±1.30 and 72.60±9.10 Bq l -1 for dam water; 7.04±0.66, 3.55±0.13 and 69.18±20.80 Bq l -1 for stream water.

  6. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  7. Renewing Aristotelian Theory: The Cold Fusion Controversy as a Test Case.

    ERIC Educational Resources Information Center

    Gross, Alan G.

    1995-01-01

    Exhibits the strength and flexibility of science as a rhetorical enterprise via a rhetorical analysis of cold fusion which reveals science under considerable stress. Assumes the continuing viability of classical rhetoric as an explanation for the persuasiveness of texts, while acknowledging the need to reexamine its central concepts. (SR)

  8. Analyses in Support of Z-IFE LLNL Progress Report for FY-05

    SciTech Connect

    Moir, R W; Abbott, R P; Callahan, D A; Latkowski, J F; Meier, W R; Reyes, S

    2005-10-17

    The FY04 LLNL study of Z-IFE [1] proposed and evaluated a design that deviated from SNL's previous baseline design. The FY04 study included analyses of shock mitigation, stress in the first wall, neutronics and systems studies. In FY05, the subject of this report, we build on our work and the theme of last year. Our emphasis continues to be on alternatives that hold promise of considerable improvements in design and economics compared to the base-line design. Our key results are summarized here.

  9. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGESBeta

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  10. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  11. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    SciTech Connect

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods.

  12. TBM/MTM for HTS-FNSF: An innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO

    DOE PAGESBeta

    El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; Brown, Thomas

    2016-08-11

    The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less

  13. The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development

    SciTech Connect

    Bayramian, A; Armstrong, P; Ault, E; Beach, R; Bibeau, C; Caird, J; Campbell, R; Chai, B; Dawson, J; Ebbers, C; Erlandson, A; Fei, Y; Freitas, B; Kent, R; Liao, Z; Ladran, T; Menapace, J; Molander, B; Payne, S; Peterson, N; Randles, M; Schaffers, K; Sutton, S; Tassano, J; Telford, S; Utterback, E

    2006-11-03

    Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontium fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).

  14. Options for integrated beam experiments for inertial fusion energy and high-energy density physics research

    NASA Astrophysics Data System (ADS)

    Leitner, M. A.; Celata, C. M.; Lee, E. P.; Logan, B. G.; Waldron, W. L.; Yu, S. S.; Barnard, J. J.

    2005-05-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is presently focused on separate smaller-scale scientific experiments addressing key issues of future Inertial Fusion Energy (IFE) and High-Energy-Density-Physics (HEDP) drivers: the injection, transport, and focusing of intense heavy ion beams at currents from 25 to 600 mA. As a next major step in the HIF-VNL program, we aim for a fully integrated beam physics experiment, which allows integrated source-to-target physics research with a high-current heavy ion beam of IFE-relevant brightness with the goal of optimizing target focusing. This paper describes two rather different options for such an integrated experiment, the Integrated Beam Experiment (IBX) and the Neutralized Drift Compression Experiment (NDCX). Both proposals put emphasis on the unique capability for integrated injection, acceleration, compression, and focusing of a high-current, space-charge-dominated heavy ion beam.

  15. Inertial fusion energy development approaches for direct and indirect-drive

    SciTech Connect

    Logan, B.G.; Lindl, J.D.; Meier, W.R.

    1996-08-20

    Consideration of different driver and target requirements for inertial fusion energy (IFE) power plants together with the potential energy gains of direct and indirect-drive targets leads to different optimal combinations of driver and target options for each type of target. In addition, different fusion chamber concepts are likely to be most compatible with these different driver and target combinations. For example, heavy-ion drivers appear to be well matched to indirect=drive targets with all-liquid-protected-wall chambers requiring two-sided illuminations, while diode-pumped, solid- state laser drivers are better matched to direct-drive targets with chambers using solid walls or flow-guiding structures to allow spherically symmetric illuminations. R&D on the critical issues of drivers, targets, and chambers for both direct and indirect-drive options should be pursued until the ultimate gain of either type of target for IFE is better understood.

  16. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    SciTech Connect

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  17. Measurements of electromagnetic properties of LCT (Large Coil Task) coils in IFSMTF (International Fusion Superconducting Magnet Test Facility)

    SciTech Connect

    Shen, S.S.; Baylor, L.R.; Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

    1987-01-01

    Participants in the international Large Coil Task (LCT) have designed, built, and tested six different toroidal field coils. Each coil has a 2.5- by 3.5-m, D-shaped bore and a current between 10 and 18 kA and is designed to demonstrate stable operation at 8 T, with a superimposed averaged pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Testing of the full six-coil toroidal array began early in 1986 and was successfully completed on September 3, 1987, in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL). This paper summarizes electromagnetic properties of LCT coils measured in different modes of energization and fast dump. Effects of mutual coupling and induced eddy currents are analyzed and discussed. Measurements of the ac loss caused by the superimposed pulsed fields are summarized. Finally, the interpretation of the test results and their relevance to practical fusion are presented. 11 refs., 10 figs., 4 tab.

  18. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J.

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  19. Review of deuterium--tritium results from the Tokamak Fusion Test Reactor*

    SciTech Connect

    McGuire, K. M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Anderson, J W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, C. W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C. S.; Cheng, C. Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E. S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O`Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; Halle, A. Von; Vannoy, C.; Viola, M.; Goeler, S. Von; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K. L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-01-01

    The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≈ 2.8 MW m₋3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni (0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

  20. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  1. Systems modeling and analysis of heavy ion drivers for inertial fusion energy

    SciTech Connect

    Meier, W. R.

    1998-06-03

    A computer model for systems analysis of heavy ion drivers based on induction linac technology has been used to evaluate driver designs for inertial fusion energy (IFE). Design parameters and estimated costs have been determined for drivers with various ions, different charge states, different front-end designs, with and without beam merging, and various pulse compression and acceleration schedules. We have examined the sensitivity of the results to variations in component cost assumptions, design constraints, and selected design parameters

  2. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  3. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  4. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    SciTech Connect

    Not Available

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  5. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    SciTech Connect

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-03-26

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time.

  6. The technology benefits of inertial confinement fusion research

    SciTech Connect

    Powell, H T

    1999-05-26

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup {minus}6} m) with picosecond (10{sup {minus}12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal

  7. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  8. Soil moisture estimation by airborne active and passive microwave remote sensing: A test-bed for SMAP fusion algorithms

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Bogena, Heye; Jagdhuber, Thomas; Hajnsek, Irena; Horn, Ralf; Reigber, Andreas; Hasan, Sayeh; Rüdiger, Christoph; Jaeger, Marc; Vereecken, Harry

    2014-05-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and its freeze/thaw state. The SMAP launch is currently planned for 2014-2015. The SMAP measurement approach is to integrate L-band radar and L-band radiometer as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. The radar and radiometer measurements can be effectively combined to derive soil moisture maps that approach the accuracy of radiometer-only retrievals, but with a higher resolution (being able to approach the radar resolution under some conditions). Aircraft and tower-based instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment in Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system DLR F-SAR were flown on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites. These data are used as a test-bed for the analysis of existing and development of new active-passive fusion techniques. A synergistic use of the two signals can help to decouple soil moisture effects from the effects of vegetation (or roughness) in a better way than in the case of a single instrument. In this study, we present and evaluate three approaches for the fusion of active and passive microwave records for an enhanced representation of the soil moisture status: i) estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter data, ii) disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, and iii) fusion of two single-source soil moisture products from radar and radiometer.

  9. Anthropometric Indices Associated with Variation in Cardiovascular Parameters among Primary School Pupils in Ile-Ife

    PubMed Central

    Abiodun, Adedeji G.; Egwu, Michael O.; Adedoyin, Rufus A.

    2011-01-01

    Purpose. This study investigated the anthropometric indices associated with variations in cardiovascular parameters among primary school pupils in Ile-Ife. Method. One thousand and twenty-six pupils (age range 6–14 years, mean age 10.12 years) from ten schools were recruited with parents' informed consent. Anthropometric (Height (Ht), Weight (Wt), Abdominal Circumference (AC)) and cardiovascular (Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Heart Rate (HR)) parameters were measured using standard instruments and procedures. Blood pressure (BP) was measured after ten minutes of quiet sitting. Body Mass Index (BMI), Rate Pressure Product (RPP) and Pulse Pressure (PP) were estimated. Results. Age, Ht, Wt, BMI, and AC correlated significantly (P < .01) with BP and PP. AC and BMI were predictors of BP, HR, RPP, and PP. Conclusion. Significant correlations exist between age, Ht, Wt, BMI, AC, and BP with weight being a more viable predictor of SBP and age a more viable predictor of DBP. PMID:21747972

  10. Chronic Airflow Obstruction in a Black African Population: Results of BOLD Study, Ile-Ife, Nigeria.

    PubMed

    Obaseki, Daniel O; Erhabor, Gregory E; Gnatiuc, Louisa; Adewole, Olufemi O; Buist, Sonia A; Burney, Peter G

    2016-01-01

    Global estimates suggest that Chronic Obstructive Pulmonary Disease (COPD) is emerging as a leading cause of death in developing countries but there are few spirometry-based general population data on its prevalence and risk factors in sub-Saharan Africa. We used the Burden of Obstructive Lung Disease (BOLD) protocol to select a representative sample of adults aged 40 years and above in Ile-Ife, Nigeria. All the participants underwent spirometry and provided information on smoking history, biomass and occupational exposures as well as diagnosed respiratory diseases and symptoms. Chronic Airflow Obstruction (CAO) was defined as the ratio of post-bronchodilator (BD) one second Forced Expiratory Volume (FEV1) to Forced Vital Capacity (FVC) below the lower limit of normal (LLN) of the population distribution for FEV1/FVC. The overall prevalence of obstruction (post-BD FEV1/FVC < LLN) was 7.7% (2.7% above LLN) using Global Lung Function Initiative (GLI) equations. It was associated with few respiratory symptoms; 0.3% reported a previous doctor-diagnosed chronic bronchitis, emphysema or COPD. Independent predictors included a lack of education (OR 2.5, 95% CI: 1.0, 6.4) and a diagnosis of either TB (OR 23.4, 95% CI: 2.0, 278.6) or asthma (OR 35.4, 95%CI: 4.9, 255.8). There was no association with the use of firewood or coal for cooking or heating. The vast majority of this population (89%) are never smokers. We conclude that the prevalence of CAO is low in Ile-Ife, Nigeria and unrelated to biomass exposure. The key independent predictors are poor education, and previous diagnosis of tuberculosis or asthma.

  11. Chronic Airflow Obstruction in a Black African Population: Results of BOLD Study, Ile-Ife, Nigeria.

    PubMed

    Obaseki, Daniel O; Erhabor, Gregory E; Gnatiuc, Louisa; Adewole, Olufemi O; Buist, Sonia A; Burney, Peter G

    2016-01-01

    Global estimates suggest that Chronic Obstructive Pulmonary Disease (COPD) is emerging as a leading cause of death in developing countries but there are few spirometry-based general population data on its prevalence and risk factors in sub-Saharan Africa. We used the Burden of Obstructive Lung Disease (BOLD) protocol to select a representative sample of adults aged 40 years and above in Ile-Ife, Nigeria. All the participants underwent spirometry and provided information on smoking history, biomass and occupational exposures as well as diagnosed respiratory diseases and symptoms. Chronic Airflow Obstruction (CAO) was defined as the ratio of post-bronchodilator (BD) one second Forced Expiratory Volume (FEV1) to Forced Vital Capacity (FVC) below the lower limit of normal (LLN) of the population distribution for FEV1/FVC. The overall prevalence of obstruction (post-BD FEV1/FVC < LLN) was 7.7% (2.7% above LLN) using Global Lung Function Initiative (GLI) equations. It was associated with few respiratory symptoms; 0.3% reported a previous doctor-diagnosed chronic bronchitis, emphysema or COPD. Independent predictors included a lack of education (OR 2.5, 95% CI: 1.0, 6.4) and a diagnosis of either TB (OR 23.4, 95% CI: 2.0, 278.6) or asthma (OR 35.4, 95%CI: 4.9, 255.8). There was no association with the use of firewood or coal for cooking or heating. The vast majority of this population (89%) are never smokers. We conclude that the prevalence of CAO is low in Ile-Ife, Nigeria and unrelated to biomass exposure. The key independent predictors are poor education, and previous diagnosis of tuberculosis or asthma. PMID:26451840

  12. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    NASA Astrophysics Data System (ADS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  13. Static and dynamic analyses on the MFTF (Mirror Fusion Test Facility)-B Axicell Vacuum Vessel System: Final report

    SciTech Connect

    Ng, D.S.

    1986-09-01

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) is a large-scale, tandem-mirror-fusion experiment. MFTF-B comprises many highly interconnected systems, including a magnet array and a vacuum vessel. The vessel, which houses the magnet array, is supported by reinforced concrete piers and steel frames resting on an array of foundations and surrounded by a 7-ft-thick concrete shielding vault. The Pittsburgh-Des Moines (PDM) Corporation, which was awarded the contract to design and construct the vessel, carried out fixed-base static and dynamic analyses of a finite-element model of the axicell vessel and magnet systems, including the simulation of various loading conditions and three postulated earthquake excitations. Meanwhile, LLNL monitored PDM's analyses with modeling studies of its own, and independently evaluated the structural responses of the vessel in order to define design criteria for the interface members and other project equipment. The assumptions underlying the finite-element model and the behavior of the axicell vessel are described in detail in this report, with particular emphasis placed on comparing the LLNL and PDM studies and on analyzing the fixed-base behavior with the soil-structure interaction, which occurs between the vessel and the massive concrete vault wall during a postulated seismic event. The structural members that proved sensitive to the soil effect are also reevaluated.

  14. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  15. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  16. Magnetized Plasma Compression for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David

    2013-10-01

    Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.

  17. Developing target injection and tracking for inertial fusion energy power plants

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Gibson, C. R.; Nobile, A.; Petzoldt, R. W.; Siegel, N. P.; Thompson, L.

    2001-05-01

    Fuelling of a commercial inertial fusion energy (IFE) power plant consists of supplying about 500 000 fusion targets each day. The most challenging type of target in this regard is that for laser driven direct drive IFE power plants. Spherical capsules with cryogenic DT fuel must be injected into the centre of a reaction chamber operating at temperatures as high as 1500° C and possibly containing as much as 0.5 torr of xenon fill gas. The DT layer must remain highly symmetric, have a smooth inner ice surface finish and reach the chamber centre (CC) at a temperature of about 18.5 K. This target must be positioned at the centre of the chamber with a placement accuracy of +/-5 mm. The accuracy of alignment of the laser driver beams and the target in its final position must be within +/-20 μm. All this must be repeated six times per second. The method proposed to meet these requirements is to inject the targets into the reaction chamber at high speed ( approx 400 m/s), track them, and hit them in flight with steerable driver beams. The challenging scientific and technological issues associated with this task are being addressed through a combination of analyses, modelling, materials property measurements and demonstration tests with representative injection equipment. Measurements of relevant DT properties are planned at Los Alamos National Laboratory. An experimental target injection and tracking system is now being designed to support the development of survivable targets and demonstrate successful injection scenarios. Analyses of target heating are under way. Calculations have shown that a direct drive target must have a highly reflective outer surface to prevent excess heating by thermal radiation. In addition, heating by hot chamber fill gas during injection far outweighs that by the thermal radiation. It is concluded that the dry wall, gas filled reaction chambers must have gas pressures and wall temperatures less than previously assumed in order to prevent

  18. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  19. An empirical test of the metacognitive model of obsessive-compulsive symptoms: fusion beliefs, beliefs about rituals, and stop signals.

    PubMed

    Myers, Samuel G; Fisher, Peter L; Wells, Adrian

    2009-05-01

    The metacognitive model of obsessive-compulsive symptoms [Wells, A. (1997). Cognitive therapy of anxiety disorders: a practice manual and conceptual guide. Chichester, UK: Wiley] emphasizes three types of metacognitive knowledge in the etiology and maintenance of symptoms: thought fusion beliefs, beliefs about the need to perform rituals, and criteria that signal rituals can be stopped. We tested the model using a series of hierarchical regression analyses. Results showed that each metacognitive domain when entered in their hypothesized causal sequence explained incremental variance in two different measures of obsessive-compulsive symptoms, with worry controlled. These incremental relationships remained when non-metacognitive beliefs (e.g., responsibility and perfectionism) which have been linked to obsessive-compulsive symptoms in other theories were controlled. Results provide further support for the metacognitive model.

  20. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 1, Executive summary and overview, Final report

    SciTech Connect

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe.

  1. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  2. Damage production and accumulation in SiC structures in inertial and magnetic fusion systems

    NASA Astrophysics Data System (ADS)

    Sawan, M. E.; Ghoniem, N. M.; Snead, L.; Katoh, Y.

    2011-10-01

    Radiation damage parameters in SiC/SiC composite structures are determined in both magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy spectrum, and pulsed nature of neutron production result in significant differences in damage parameters between the two systems. With the same neutron wall loading, the displacement damage rate in the first wall in an IFE system is ˜10% lower than in an MFE system, while gas production and burnup rates are a factor of 2 lower. Self-cooled LiPb and Flibe blankets were analyzed. While using LiPb results in higher displacement damage, Flibe yields higher gas production and burnup rates. The effects of displacement damage and helium production on defect accumulation in SiC/SiC composites are also discussed.

  3. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  4. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty.

    PubMed

    Burnett, Jonathan L; Miley, Harry S; Milbrath, Brian D

    2016-03-01

    In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5-2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. PMID:26802699

  5. The Prevalence and Pattern of Superficial Fungal Infections among School Children in Ile-Ife, South-Western Nigeria

    PubMed Central

    Oke, Olaide Olutoyin; Onayemi, Olaniyi; Olasode, Olayinka Abimbola; Omisore, Akinlolu Gabriel; Oninla, Olumayowa Abimbola

    2014-01-01

    Fungal infections of the skin and nails are common global problems with attendant morbidity among affected individuals. Children are mostly affected due to predisposing factors such as overcrowding and low socioeconomic factors. The aim of this study was to determine the prevalence and the clinical patterns of superficial fungal infections among primary school children in Ile-Ife. A multistage sampling was conducted to select eight hundred pupils from ten primary schools in Ile-Ife. Data on epidemiological characteristics and clinical history was collected using a semistructured questionnaire and skin scrapings were done. The prevalence of superficial fungal infections among the 800 respondents was 35.0%. Male pupils constituted 51.0% of respondents while the females were 49.0%. The mean age for all the respondents was 9.42 ± 2.00. Tinea capitis was the commonest infection with a prevalence of 26.9% and tinea unguium, tinea corporis, and tinea faciei had a prevalence of 0.8%, 0.6%, and 0.5%, respectively. Tinea manuum had the least prevalence of 0.1%. Pityriasis versicolor had a prevalence of 4.4%. Microsporum audouinii was the leading organism isolated. The study shows that the prevalence of superficial fungal infection (SFI) among primary school children in Ile-Ife is high with tinea capitis as the commonest SFI. PMID:25574161

  6. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    SciTech Connect

    Bayramian, A J; Campbell, R W; Ebbers, C A; Freitas, B L; Latkowski, J; Molander, W A; Sutton, S B; Telford, S; Caird, J A

    2009-10-06

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  7. Fusion of visual and infrared thermography images for advanced assessment in non-destructive testing.

    PubMed

    Eisler, K; Homma, C; Goldammer, M; Rothenfusser, M; Arnold, W

    2013-06-01

    For better evaluation of infrared measurements in non-destructive testing, especially for objects with complex geometry or small dimensions, it is beneficial to combine with the same viewing angle an image of a camera in the visible range with the image of an infrared camera. In the hybrid camera developed by us, a beam splitter is used which combines the visible and the infrared wavelength regions under the same viewing angle to form a hybrid image. The applications of this new technique range from the localization and the verification of false indications in non-destructive testing applications to the retrieval of 3D surface information with a hybrid picture as texture with defect indications and the filtering of laser markings displayed in the IR image to area and process monitoring. PMID:23822367

  8. Correlates of Self-Report of Rape Among Male School Adolescents in Ile-Ife, Nigeria.

    PubMed

    Ogunfowokan, Adesola A; Olagunju, Oluwayemisi E; Olajubu, Aanuoluwapo O; Faremi, Funmilola A; Oloyede, Ajoke S; Sharps, Phyllis W

    2016-02-01

    This study examined male adolescents' self-report of rape of adolescent girls and the socio-demographic variables that correlated with self-report of rape. Descriptive-correlational design was used and the study was conducted in five public senior secondary schools in Ile-Ife, Nigeria. Three hundred and thirty-eight male adolescents participated in the study. A structured questionnaire was used to collect data. Findings from the study revealed the mean age of the adolescent males to be 16 years, with the majority (73%) of them in the middle adolescent stage. Six percent of the adolescent males reported they had raped an adolescent girl in the past. Among the boys who reported rape, 55% reported they had raped their sexual partners, and 55% reported they had perpetrated gang rape. Smoking (p = .0001), alcohol consumption (p = .001), and birth order (p = .006) predicted self-report of rape. The coefficient of birth order showed that odds of self-report of rape by first-born male increases by 6 times compared with other children. Study findings also provided evidence that adolescent males are moving from lone rape to gang rape in intimate partner relationships. Male adolescents are important group to target in rape prevention programs.

  9. Correlates of Self-Report of Rape Among Male School Adolescents in Ile-Ife, Nigeria.

    PubMed

    Ogunfowokan, Adesola A; Olagunju, Oluwayemisi E; Olajubu, Aanuoluwapo O; Faremi, Funmilola A; Oloyede, Ajoke S; Sharps, Phyllis W

    2016-02-01

    This study examined male adolescents' self-report of rape of adolescent girls and the socio-demographic variables that correlated with self-report of rape. Descriptive-correlational design was used and the study was conducted in five public senior secondary schools in Ile-Ife, Nigeria. Three hundred and thirty-eight male adolescents participated in the study. A structured questionnaire was used to collect data. Findings from the study revealed the mean age of the adolescent males to be 16 years, with the majority (73%) of them in the middle adolescent stage. Six percent of the adolescent males reported they had raped an adolescent girl in the past. Among the boys who reported rape, 55% reported they had raped their sexual partners, and 55% reported they had perpetrated gang rape. Smoking (p = .0001), alcohol consumption (p = .001), and birth order (p = .006) predicted self-report of rape. The coefficient of birth order showed that odds of self-report of rape by first-born male increases by 6 times compared with other children. Study findings also provided evidence that adolescent males are moving from lone rape to gang rape in intimate partner relationships. Male adolescents are important group to target in rape prevention programs. PMID:25381280

  10. Investigation of Ionospheric response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-05-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  11. Thermomechanical design of the grazing incidence metal mirror of the prometheus-L IFE reactor

    SciTech Connect

    Ghoniem, N.M.; El-Azab, A.

    1994-12-31

    In Laser IFE reactors the reflectivity and absorptivity of the grazing metal mirror depend on the neutron dose received by the mirror surface. In addition to these irradiation effects, the surface deformation due to neutron irradiation-induced swelling and due to thermal loads change the focusing quality of the mirror. In the present work, a thorough review of the irradiation effects on the changes in mirror surface quality is presented. A mirror design methodology, which considers the deformation due to the loads associated with laser beam and the deformation due to neutron-irradiation induced swelling is discussed. The basic philosophy considered in the design is to separate the functions and choose the best possible materials to perform these specific functions. An aluminum thin layer, for the purpose of reflection of the laser beam, is deposited on a SiC substrate. The SiC substrate provides a rigid bulk, through which coolant is provided to remove the heat absorbed during laser pulses, and avoids the need for a thicker aluminum layer that undergoes more swelling than SiC. A concrete frame is designed to provide the ultimate resistance against thermally-induced deformation. Other features of the design will also be presented.

  12. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  13. Computational Design of Novel, Radiation Resistant Fusion Materials

    SciTech Connect

    Kubota, A; Caturla, M J; Wirth, B D; Latkowski, J

    2003-02-01

    The promise of fusion as a viable 21st century energy source requires the development of advanced structural (MFE and IFE) and optical (IFE) materials that are capable of withstanding the harsh radiation environment that leads to the degradation of physical and mechanical properties. Materials in fusion environments must be able to handle 14 MeV neutrons produced from Deuterium-Tritium nuclear reactions, as well as the insoluble He and reactive H gases that lead to swelling and embrittlement. Additionally, with the requirement of very high thermal loads makes the development of new advanced materials a formidable challenge. The scope of this study was to determine the feasibility of using atomistic simulations to predict the radiation response of novel materials engineered with potentially self-healing properties to survive in radiation environments over very long time-scales. The class of materials that shows promise is what is called a nanocrystalline material. Nanocrystalline materials are defined as those having very fine grains on the order of several to tens of nanometers in size, and consequently very high grain-boundary to volume ratio. Experimental observations [1] suggests that these grain-boundary networks can act as sinks for defects and hence promote self-repair.

  14. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  15. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  16. Hydrogen isotope trapping on graphite collectors during an isotope exchange experiment in the tokomak fusion test reactor

    SciTech Connect

    Kilpatrick, S.J.; Nygren, R.; Wampler, W.R.; Ulrickson, M.; Dylla, H.F.; Manos, D.M.; Ramsey, A.T.; Hirooka, Y.

    1988-01-01

    A rotatable collector probe was used to expose several graphite samples to a deuterium-to-hydrogen-to-deuterium exchange experiment in the Tokamak Fusion Test Reactor (TFTR) at the start of the 1988 operations period. This experiment proved the utility of helium conditioning discharges in accelerating the changeover process. Samples included portions of a tile taken from the inner bumper limiter (POCO AXF-5Q graphite) of TFTR during the recent machine opening, and coupons which had been conditioned in the Plasma Surface Interaction Experimental Facility (PISCES) by exposure to a helium plasma. The samples were exposed to different groups of the /approximately/100 1.4MA discharges that comprised the experiment. They were removed and analyzed for retained deuterium and impurities by nuclear reaction analysis and Rutherford backscattering spectrometry. Codeposited carbon layers had been formed with thicknesses up to several tenths of a micron. The inferred percentages of trapped hydrogenic species were in general agreement with spectroscopic data. The computed carbon fluence per D discharge, 1.2 /times/ 10 X C/cmS, is compared to recent measurements on limiter tiles removed from TFTR. 21 refs., 3 figs., 1 tab.

  17. Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.

  18. Material behavior and materials problems in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Dylla, H.F.; Ulrickson, M.A.; Owens, D.K.; Heifetz, D.B.; Mills, B.E.; Pontau, A.E.; Wampler, W.R.; Doyle, B.L.; Lee, S.R.; Watson, R.D.; Croessmann, C.D.

    1988-05-01

    This paper reviews the experience with first-wall materials over a 20-month period of operation spanning 1985--1987. Experience with the axisymmetric inner wall limiter, constructed of graphite tiles, will be described including the necessary conditioning procedures needed for impurity and particle control of high power ({le}20 MW) neutral injection experiments. The thermal effects in disruptions have been quantified and no significant damage to the bumper limiter has occurred as a result of disruptions. Carbon and metal impurity redeposition effects have been quantified through surface analysis of wall samples. Estimates of the tritium retention in the graphite limiter tiles and redeposited carbon films have been made based on analysis of deuterium retention in removed graphite tiles and wall samples. New limiter structures have been designed using a 2D carbon/carbon (C/C) composite material for RF antenna protection. Laboratory tests of the important thermal, mechanical and vacuum properties of C/C materials will be described. Finally, the last series of experiments in TFTR with in-situ Zr/Al surface pumps will be described. Problems with Ar/Al embrittlement have led to the removal of the getter material from the in-torus environment. 53 refs., 8 figs., 3 tabs.

  19. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai

    2015-03-01

    The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.

  20. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  1. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  2. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  3. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  4. Fusion engineering device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  5. Fusion Engineering Device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  6. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-11-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  7. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.

    2005-06-23

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  8. Application of fusion algorithims for computer-aided detection and classification of bottom mines to shallow-water test data

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Dobeck, Gerald J.

    2002-08-01

    The fusion of multiple Computer Aided Detection/Computer Aided Classification (CAD/CAC) algorithms has been shown to be effective in reducing the false alarm rate associated with the automated classification of bottom mine-like objects when applied to side-scan sonar images taken in Very Shallow Water (VSW) environments. This paper reports on the application of such CAD/CAC Fusion algorithms to the shallow water environment, using sidescan sonar data taken in the Gulf of Mexico during April 2000. The fusion algorithm accepts the classification confidence levels and associated contact locations from two different CAD/CAC algorithms, clusters the contacts based on the distance between their locations, and then declares a valid target when a clustered contact passes a prescribed fusion criterion. Two different fusion criteria are evaluated: the first based on the Fisher Discriminant, and the second based on a constrained optimization approach, which minimizes the total number of false alarms over the clustering distance and cluster confidence factor thresholds for a given probability of correct classification. The Fisher-based fusion provided an 82% probability of correct classification at a false alarm rate of 0.034 false alarms per image per side (port or starboard). This performance represented a 2:1 reduction in false alarms over a single CAD/CAC algorithm at this same probability of correct classification. The cluster confidence fusion algorithm performed nearly as well, yielding the 82% correct classification probability at a false alarm rate of 0.039 false alarms per image per side.

  9. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  10. Application of fusion algorithms for computer aided detection and classification of bottom mines to synthetic aperture sonar test data

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William C.

    2006-05-01

    Over the past several years, Raytheon Company has adapted its Computer Aided Detection/Computer-Aided Classification (CAD/CAC) algorithm to process side-scan sonar imagery taken in both the Very Shallow Water (VSW) and Shallow Water (SW) operating environments. This paper describes the further adaptation of this CAD/CAC algorithm to process Synthetic Aperture Sonar (SAS) image data taken by an Autonomous Underwater Vehicle (AUV). The tuning of the CAD/CAC algorithm for the vehicle's sonar is described, the resulting classifier performance is presented, and the fusion of the classifier outputs with those of another CAD/CAC processor is evaluated. The fusion algorithm accepts the classification confidence levels and associated contact locations from the different CAD/CAC algorithms, clusters the contacts based on the distance between their locations, and then declares a valid target when a clustered contact passes a prescribed fusion criterion. Three different fusion criteria are evaluated: the first based on thresholding the sum of the confidence factors for the clustered contacts, the second based on simple binary combinations of the multiple CAD/CAC processor outputs, and the third based on the Fisher Discriminant. The resulting performance of the three fusion algorithms is compared, and the overall performance benefit of a significant reduction of false alarms at high correct classification probabilities is quantified.

  11. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  12. The US ICF Ignition Program and the Inertial Fusion Program

    SciTech Connect

    Lindl, J D; Hammel, B A; Logan, B G; Meyerhofer, D D; Payne, S A; Stehian, J D

    2003-07-02

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 and ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets

  13. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  14. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  15. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  16. MIRI: A multichannel far-infrared laser interferometer for electron density measurements on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mansfield, D.K.; Park, H.K.; Johnson, L.C.; Anderson, H.M.; Chouinard, R.; Foote, V.S.; Ma, C.H.; Clifton, B.J.

    1987-07-01

    A ten-channel far-infrared laser interferometer which is routinely used to measure the spatial and temporal behavior of the electron density profile on the TFTR tokamak is described and representative results are presented. This system has been designed for remote operation in the very hostile environment of a fusion reactor. The possible expansion of the system to include polarimetric measurements is briefly outlined. 13 refs., 8 figs.

  17. FENIX (Fusion ENgineering International eXperimental): A test facility for ITER (International Thermonuclear Experimental Reactor) and other new superconducting magnets

    SciTech Connect

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-09-21

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities.

  18. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  19. NDCX-II, an Induction Linac for HEDP and IFE Research

    SciTech Connect

    Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.; Faltens, A.; Friedman, A.; Galvin, J.; Greenway, W.; Gilson, E. P.; Grote, D. P.; Jung, J.Y.; Lee, E.P.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Lund, S. M.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Sharp, W. M.; Takakuwa, J.; Waldron, W.L.

    2011-04-20

    The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinally and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX

  20. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power. PMID:17272246

  1. Relative Advantages of Direct and Indirect Drive for an Inertial Fusion Energy Power Plant Driven by a Diode-Pumped Solid-State Laser

    SciTech Connect

    Orth, C.D.

    2001-03-06

    This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.

  2. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  3. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  4. Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method

    NASA Astrophysics Data System (ADS)

    Adepelumi, A. A.; Ako, B. D.; Ajayi, T. R.

    2001-11-01

    Hydrogeoenvironmental studies were carried out at the sewage-disposal site of Obafemi Awolowo University campus, Ile-Ife, Nigeria. The objective of the survey was to determine the reliability of the electrical-resistivity method in mapping pollution plumes in a bedrock environment. Fifty stations were occupied with the ABEM SAS 300C Terrameter using the Wenner array. The electrical-resistivity data were interpreted by a computer-iteration technique. Water samples were collected at a depth of 5.0 m in 20 test pits and analyzed for quality. The concentrations of Cr, Cd, Pb, Zn, and Cu are moderately above the World Health Organization recommended guidelines. Plumes of contaminated water issuing from the sewage ponds were delineated. The geoelectric sections reveal four subsurface layers, with increasing depth, lateritic clay, clayey sand/sand, and weathered/fractured bedrock, and fresh bedrock. The deepest layers, 3 and 4, constitute the main aquifer, which has a thickness of 3.1-67.1 m. The distribution of the elements in the sewage effluent confirms a hydrological communication between the disposal ponds and groundwater. The groundwater is contaminated, as shown by sampling and the geophysical results. Thus, the results demonstrate the reliability of the direct-current electrical-resistivity geophysical method in sensing and mapping pollution plumes in a crystalline bedrock environment. Résumé. Des études géo-environnementales ont été réalisées sur le site d'épandages du campus universitaire d'Obafemi Awolowo, à Ile-Ife (Nigeria). L'objectif de ce travail était de déterminer la fiabilité de la méthode des résistivités électriques pour cartographier les panaches de pollution dans un environnement de socle. Cinquante stations ont été soumises à mesures au moyen d'un ABEM SAS 300C Terrameter en utilisant le dispositif de Wenner. Les données de résistivité électrique ont été interprétées au moyen d'une technique de calcul itérative. Des

  5. Groundwater contamination in the basement-complex area of Ile-Ife, southwestern Nigeria: A case study using the electrical-resistivity geophysical method

    NASA Astrophysics Data System (ADS)

    Adepelumi, A. A.; Ako, B. D.; Ajayi, T. R.

    2001-11-01

    Hydrogeoenvironmental studies were carried out at the sewage-disposal site of Obafemi Awolowo University campus, Ile-Ife, Nigeria. The objective of the survey was to determine the reliability of the electrical-resistivity method in mapping pollution plumes in a bedrock environment. Fifty stations were occupied with the ABEM SAS 300C Terrameter using the Wenner array. The electrical-resistivity data were interpreted by a computer-iteration technique. Water samples were collected at a depth of 5.0 m in 20 test pits and analyzed for quality. The concentrations of Cr, Cd, Pb, Zn, and Cu are moderately above the World Health Organization recommended guidelines. Plumes of contaminated water issuing from the sewage ponds were delineated. The geoelectric sections reveal four subsurface layers, with increasing depth, lateritic clay, clayey sand/sand, and weathered/fractured bedrock, and fresh bedrock. The deepest layers, 3 and 4, constitute the main aquifer, which has a thickness of 3.1-67.1 m. The distribution of the elements in the sewage effluent confirms a hydrological communication between the disposal ponds and groundwater. The groundwater is contaminated, as shown by sampling and the geophysical results. Thus, the results demonstrate the reliability of the direct-current electrical-resistivity geophysical method in sensing and mapping pollution plumes in a crystalline bedrock environment. Résumé. Des études géo-environnementales ont été réalisées sur le site d'épandages du campus universitaire d'Obafemi Awolowo, à Ile-Ife (Nigeria). L'objectif de ce travail était de déterminer la fiabilité de la méthode des résistivités électriques pour cartographier les panaches de pollution dans un environnement de socle. Cinquante stations ont été soumises à mesures au moyen d'un ABEM SAS 300C Terrameter en utilisant le dispositif de Wenner. Les données de résistivité électrique ont été interprétées au moyen d'une technique de calcul itérative. Des

  6. Progress in heavy-ion drivers for inertial fusion

    SciTech Connect

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-12-22

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described.

  7. Status of Safety& Environmental Activities for Inertial Fusion Energy

    SciTech Connect

    Latkowski, J F; Reyes, S; Cadwallader, L C; Sharpe, J P; Marshall, T D; Merrill, B J; Moore, R L; Petti, D A; Falquina, R; Rodriguez, A; Sanz, J; Cabellos, O

    2002-11-25

    Over the past several years, significant progress has been made in the analysis of safety and environmental (S&E) issues for inertial fusion energy (IFE). Detailed safety assessments have been performed for the baseline power plant concepts, as well as for a conceptual target fabrication facility. Safety analysis results are helping to drive the agenda for experiments. A survey of the S&E characteristics--both radiological and chemical--of candidate target materials has been completed. Accident initiating events have been identified and incorporated into master logic diagrams, which will be essential to the detailed safety analyses that will be needed in the future. Studies of aerosol generation and transport will have important safety implications. A Monte Carlo-based uncertainty analysis procedure has been developed for use in neutron activation calculations. Finally, waste management issues are receiving increased attention and are deserving of further discussion.

  8. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, Monica; Katoh, Yutai

    2015-06-30

    The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validated using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.

  9. The width-tapered double cantilever beam for interlaminar fracture testing

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Jensen, R. M.; Bullman, G. W.; Hunston, D. L.

    1984-01-01

    The width-tapered double-cantilever-beam (WTDCB) specimen configuration used to determine the Mode-I interlaminar fracture energy (IFE) of composites has special advantages for routine development work and for quality-assurance purposes. These advantages come primarily from the simplicity of testing and the fact that the specimen is designed for constant change in compliance with crack length, so that the computation of Mode-I IFE is independent of crack length. In this paper, a simplified technique for fabrication and testing WTDCB specimens is described. Also presented are the effects of fiber orientation and specimen dimensions, a comparison of data obtained using the WTDCB specimens and other specimen geometries, and comparison of data obtained at different laboratories. It is concluded that the WTDCB gives interlaminar Mode-I IFE essentially equal to other type specimens, and that it can be used for rapid screening in resin-development work and for quality assurance of composite materials.

  10. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Gomez del Rio, J; Sanz, J

    2000-02-23

    Previous studies of the safety and environmental (S and E) aspects of the HYLIFE-II inertial fusion energy (IFE) power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work a set of computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) has been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here the authors consider a severe lost of coolant accident (LOCA) producing simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the containment) and of the two barriers surrounding the chamber (inner shielding and containment building it self). Even though containment failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. The results of these calculations show that the estimated off-site dose is less than 6 mSv (0.6 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  11. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  12. Use of Clearance Indexes to Assess Waste Disposal Issues for the HYLIFE-II Inertial Fusion Energy Power Plant Design

    SciTech Connect

    Reyes, S; Latkowski, J F; Sanz, J

    2002-01-17

    Traditionally, waste management studies for fusion energy have used the Waste Disposal Rating (WDR) to evaluate if radioactive material from irradiated structures could qualify for shallow land burial. However, given the space limitations and the negative public perception of large volumes of waste, there is a growing international motivation to develop a fusion waste management system that maximizes the amount of material that can be cleared or recycled. In this work, we present an updated assessment of the waste management options for the HYLIFE-II inertial fusion energy (IFE) power plant, using the concept of Clearance Index (CI) for radioactive waste disposal. With that purpose, we have performed a detailed neutronics analysis of the HYLIFE-II design, using the TART and ACAB computer codes for neutron transport and activation, respectively. Whereas the traditional version of ACAB only provided the user with the WDR as an index for waste considerations, here we have modified the code to calculate Clearance Indexes using the current International Atomic Energy Agency (IAEA) clearance limits for radiological waste disposal. The results from the analysis are used to perform an assessment of the waste management options for the HYLIFE-II IFE design.

  13. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    SciTech Connect

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A.; Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S.

    2006-05-15

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center.

  14. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  15. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGESBeta

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  16. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  17. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    SciTech Connect

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

  18. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    SciTech Connect

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  19. Progress in accident analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Latkowski, J F; Gomez del Rio, J; Sanz, J

    2000-10-11

    The present work continues our effort to perform an integrated safety analysis for the HYLIFE-II inertial fusion energy (IFE) power plant design. Recently we developed a base case for a severe accident scenario in order to calculate accident doses for HYLIFE-II. It consisted of a total loss of coolant accident (LOCA) in which all the liquid flibe (Li{sub 2}BeF{sub 4}) was lost at the beginning of the accident. Results showed that the off-site dose was below the limit given by the DOE Fusion Safety Standards for public protection in case of accident, and that his dose was dominated by the tritium released during the accident.

  20. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  1. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  2. Overview of US heavy-ion fusion progress and plans

    SciTech Connect

    Logan, B.G.

    2004-06-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  3. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect

    Prost, Lionel Robert

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ~0.2 μC/m) over long pulse durations (4 μs) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K+ ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (~80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  4. Anthropometry and cardiovascular disease risk factors among retirees and non-retirees in Ile-Ife, Nigeria: A comparative study

    PubMed Central

    Ojo, Israel Arogundade; Mohammed, Jibril

    2013-01-01

    Background: Increasing affluence in low-income countries has been associated with lifestyle-related conditions, which may afford some people the opportunity to retire from gainful employment. This study examined the relationship between selected anthropometric variables and cardiovascular disease risk factors among age-matched retirees and non-retirees in Ile-Ife, Nigeria. Materials and Methods: Self-reported healthy adults (104 retirees and 99 age-matched non-retirees) were purposively recruited. Weight, height, waist circumference, systolic blood pressure and diastolic blood pressure were measured with standard equipment and procedures. An established questionnaire was used to classify the subjects into high, medium and low cardiovascular disease risk categories. The data were analysed with basic description and inferential statistics. Results: Mean ages for the retirees and non-retirees were 64.8 ± 7.0 years and 63.8 ± 4.5 years, respectively. The mean systolic blood pressure, diastolic blood pressure and waist circumference were higher for the retirees than for the non-retirees (all P < 0.01) as were the mean cardiovascular disease risk factors scores (P < 0.01). Conclusion: The study concludes that retirees have a higher risk for cardiovascular disease than non-retirees and weight and Body Mass Index are the major determinants. Studies are needed to explain the differences in body composition indices and cardiovascular disease risk factors between retirees and age-matched non-retirees PMID:23901177

  5. Terascale simulations for heavy ion inertial fusion energy

    SciTech Connect

    Friedman, A; Cohen, R H; Grote, D P; Sharp, W M; Celata, C M; Lee, E P; Vay, J-L; Davidson, R C; Kaganovich, I; Lee, W W; Qin, H; Welch, D R; Haber, I; Kishek, R A

    2000-06-08

    The intense ion beams in a heavy ion Inertial Fusion Energy (IFE) driver and fusion chamber are non-neutral plasmas whose dynamics are largely dominated by space charge. We propose to develop a ''source-to-target'' Heavy Ion Fusion (HIF) beam simulation capability: a description of the kinetic behavior of this complex, nonlinear system which is both integrated and detailed. We will apply this new capability to further our understanding of key scientific issues in the physics of ion beams for IFE. The simulations will entail self-consistent field descriptions that require interprocessor communication, but are scalable and will run efficiently on terascale architectures. This new capability will be based on the integration of three types of simulations, each requiring terascale computing: (1) simulations of acceleration and confinement of the space-charge-dominated ion beams through the driver (accelerator, pulse compression line, and final focusing system) which accurately describe their dynamics, including emittance growth (phase-space dilution) effects; these are particle-in-cell (PIC) models; (2) electromagnetic (EM) and magnetoinductive (Darwin) simulations which describe the beam and the fusion chamber environment, including multibeam, neutralization, stripping, beam and plasma ionization processes, and return current effects; and (3) highly detailed simulations (6f, multispecies PIC, continuum Vlasov), which can examine electron effects and collective modes in the driver and chamber, and can study halo generation with excellent statistics, to ensure that these effects do not disrupt the focusability of the beams. The code development will involve: (i) adaptation of existing codes to run efficiently on multi-SMP computers that use a hybrid of shared and distributed memory; (ii) development of new and improved numerical algorithms, e.g., averaging techniques that will afford larger timesteps; and (iii) incorporation of improved physics models (e.g., for self

  6. FY00 LDRD Final Report High Power IFE Driver Component Development 00-SI-009

    SciTech Connect

    Bibeau, C; Schaffers, K; Tassano, J; Waide, P; Bayramian, A

    2001-02-26

    We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for target physics research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 {micro}m wavelength. Currently, this review concentrates on the critical development and production of Yb:S-FAP crystals. After solving many defect issues that can be present in the crystals, reproducibility is the final issue that needs to be resolved. We have enlisted the help of national experts and have strongly integrated two capable commercial crystal growth companies (Litton-Airton/Synoptics and Scientific Materials) into the effort, and have solicited the advice of Robert Morris (retired from Allied Signal), a recognized international expert in high temperature oxide growth.

  7. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization.

    PubMed

    Gobin, R; Bogard, D; Cara, P; Chauvin, N; Chel, S; Delferrière, O; Harrault, F; Mattei, P; Mosnier, A; Senée, F; Shidara, H; Okumura, Y

    2014-02-01

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  8. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    SciTech Connect

    Gobin, R. Bogard, D.; Chauvin, N.; Chel, S.; Delferrière, O.; Harrault, F.; Mattei, P.; Senée, F.; Mosnier, A.; Shidara, H.

    2014-02-15

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  9. Is there hope for fusion

    SciTech Connect

    Fowler, T.K. . Dept. of Nuclear Engineering)

    1990-04-12

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

  10. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. Data fusion qualitative sensitivity analysis

    SciTech Connect

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory was tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. The data fusion software developed by CRC was initially demonstrated on a data set collected at the Hanford Site where three types of data were combined. These data were (1) seismic reflection, (2) seismic refraction, and (3) depth to geologic horizons. The fused results included a contour map of the top of a low-permeability horizon. This report discusses the results of a sensitivity analysis of data fusion software to variations in its input parameters. The data fusion software developed by CRC has a large number of input parameters that can be varied by the user and that influence the results of data fusion. Many of these parameters are defined as part of the earth model. The earth model is a series of 3-dimensional polynomials with horizontal spatial coordinates as the independent variables and either subsurface layer depth or values of various properties within these layers (e.g., compression wave velocity, resistivity) as the dependent variables.

  12. Chamber technology concepts for inertial fusion energy: Three recent examples

    SciTech Connect

    Meier, W.R.; Moir, R.W.; Abdou, M.A.

    1997-02-27

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

  13. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  14. Experimental Studies of High-Speed Liquid Films on Downward-Facing Surfaces for Inertial Fusion Energy Wet Wall Concepts

    SciTech Connect

    Anderson, Jonathan K.; Durbin, Samuel G. II; Sadowski, Dennis L.; Yoda, Minami; Abdel-Khalik, Said I.

    2003-05-15

    The fusion event in inertial fusion energy (IFE) reactors creates neutrons, photons, and charged particles that can damage the chamber first walls. The Prometheus design study used a high-speed thin film of molten lead injected tangential to the wall to protect the upper endcap of the reactor chamber from damaging X rays and target debris. To assure full chamber coverage, the film must remain attached. Film detachment under the influence of gravity is most likely to occur on the downward-facing surfaces over the upper endcap of the reactor chamber. Accurate numerical predictions of detachment length are effectively impossible in this turbulent flow because of difficulties in determining appropriate boundary conditions near the detachment point.As part of the ARIES-IFE study, experimental investigations of high-speed water films injected onto downward-facing planar surfaces at angles of inclination up to 45 deg below the horizontal were therefore performed. The initial growth and subsequent detachment of films with initial thickness up to 2 mm and injection speed up to 11 m/s were measured. To our knowledge, these experiments are the first to investigate the detachment of turbulent liquid films on downward-facing surfaces. The implications of these initial results on thin liquid protection and the 'wet wall' concept are discussed.

  15. NAEP Math Performance and Test Accommodations: Interactions with Student Language Background. CSE Technical Report.

    ERIC Educational Resources Information Center

    Abedi, Jamal; Hofstetter, Carolyn; Baker, Eva; Lord, Carol

    This study compared the performance of 946 8th-grade students with different language proficiencies (limited English proficient [LEP], fluent English proficient [FEP], and initially fluent in English [IFE]) and language backgrounds on a 35-item math test (from the 1996 National Assessment of Educational Progress (NAEP) Grade 8 Bilingual…

  16. Personality profiles and psychopathology among students exposed to dating violence at theObafemi AwolowoUniversity, Ile-Ife.

    PubMed

    Boladale, Mapayi; Yetunde, Oladimeji; Adesanmi, Akinsulore; Olutayo, Aloba; Olanrewaju, Ibigbami

    2015-01-01

    Dating violence is a complex phenomenon, and researchers continue to examine a wide range of precursors and contributing factors. Evidence indicates that violent intimate partners may be more likely to have personality disorders and dependency and attachment problems compared with non-violent ones. The aim of the present study is to evaluate the interaction between the personality profiles, pattern of psychopathology, and dating violence among university students in Obafemi Awolowo University, Ile-Ife. The study utilized a cross-sectional survey design with a total of 400 students selected using a multistage sampling technique. They completed the Sociodemographic Data Schedule, the Conflict Tactic Scale (CTS), Eysenck Personality Questionnaire (EPQ), and the General Health Questionnaire (GHQ). Univariate analysis was used to determine the prevalence of dating violence, psychopathology, and personality traits, and these were expressed in percentages. Association at bivariate level was assessed using chi-square and at multivariate level using logistic regression and correlations as was appropriate depending on the type of variable. The age of the respondents ranged between 18 and 35 years (M = 21.44, SD = 2.99). The prevalence of dating violence in the previous 12 months was 34%, and the prevalence of psychopathology was 15%. In the logistic regression model constructed, it was found that the significant predictors of dating violence were the psychoticism and neuroticism personality traits, which were also found to be positive correlates of psychopathology. The magnitude of dating violence found in this study is comparable with those found in other countries of the world. This study found an association between dating violence and personality in the study population and also between certain personality traits and psychopathology. The personality profiles of students could affect their interpersonal relationships greatly, and this fact must feature in dating violence

  17. Effect of community level intervention on nutritional status and feeding practices of under five children in Ile Ife, Nigeria

    PubMed Central

    Ogundele, Olorunfemi Akinbode; Ogundele, Tolulope

    2015-01-01

    Introduction Childhood malnutrition remains a widespread problem in developing world like Nigeria. The country ranks second among the ten countries contributing to sixty percent of the world's wasted under-five children. Community Integrated Management of Childhood illness (CIMCI) is a programme that employs the use of community based counsellors to address child health and nutritional challenges of the under-five and has the potential to reduce the morbidity and mortality resulting from poor nutritional and feeding practices. The study assessed the effect of community level intervention on nutritional status and feeding practices of children in Ile-Ife, Nigeria. Methods A cross-sectional comparative study that employed the use of multi stage cluster sampling techniques in selecting 722 mothers of index under five children. The study was done in two Local Government Areas of Osun State, Nigeria. Quantitative techniques were used in data collection. Data analysis was done using SPSS version 20.0. Descriptive and bivariate analyses was performed. Results The two Local Government Area (LGA) did not differ significantly in their wealth index (p = 0.344). However, more children in the non-implementing LGA (16.1%) had low weight for age compared with 3.6% in the CIMCI implementing LGA (p = 0.000). A statistically significant difference exist in the MUAC measurement of children 12-23 months between the CIMCI implementing and non-implementing communities (p = 0.007). A higher percentage of caregivers (19.3%) introduced complementary feeding earlier than 6 months in the non-implementing area (p < 0.001). Conclusion Using community level nutritional counseling can greatly improve nutritional status and feeding practices of under five children. PMID:26958118

  18. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  19. Laser fusion monthly -- August 1980

    SciTech Connect

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  20. Method comparison of the Ortho Vitros Fusion 5,1 chemistry analyzer and the Roche COBAS Integra 400 for urine drug screen testing in the emergency department.

    PubMed

    Johnson-Davis, Kamisha L; Thompson, Catherine D; Clark, Chantry J; McMillin, Gwen A; Lehman, Christopher M

    2012-06-01

    Exposure to drugs and toxins is a major cause for the rising number of emergency department visits each year. Immunoassays are commonly used in the emergency department to provide rapid turnaround time for acute care. The purpose of this study was to compare two automated immunoassay chemistry analyzers to determine which platform produced the fewest number of false positive/negative results. Residual patient urine samples were were collected for each of the following drugs/drug classes: cocaine (n = 40), opiates (n = 45), and amphetamines (n = 54) and confirmed either positive or negative by mass spectrometry. Split sample analyses of these specimens were performed on both the Roche COBAS INTEGRA 400 plus and Ortho Vitros 5,1 FS instruments. The results from the two chemistry analyzers were compared to confirmed results. Both immunoassays were prone to false positive results for cocaine and false negative results for opiates and amphetamines. The Vitros Fusion analyzer generated fewer false positive and false negative results for opiate and amphetamine testing than the Roche Integra, but the platforms performed comparably for cocaine.

  1. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  2. Protoplast Fusion

    PubMed Central

    Yamada, Yasuyuki; Hara, Yasuhiro; Katagi, Hiroaki; Senda, Mitsugi

    1980-01-01

    The relation between the composition of the phospholipid molecular species in a cell membrane and the velocity of protoplast fusion was studied using cells cultured at a low temperature (10 C). Cells cultured at a low temperature contained larger proportions of phospholipids of low phase transition point, the 1,2-dilinoleoyl-type, than those cultured at a normal temperature (25 C). When treated with polyethylene glycol 6000, protoplasts from cells cultured at 10 C fused and progressed to the fused sphere stage more rapidly than did those from cells cultured at 25 C. PMID:16661339

  3. Splenogonadal fusion.

    PubMed

    Tsingoglou, S; Wilkinson, A W

    1976-04-01

    The fusion between splenic tissue and the left gonad or the derivatives of the left mesonephros is a rare congenital anomaly first described in detail by Pommer in 1887/9 and divided into two forms by Putschar and Manion in 1956. In the first or continuous type a cord of splenic or fibrous tissue connects the spleen and the gonadalmesonephric structures. In the second type the fused splenomesonephric structures have lost continuity with the main spleen. An example of the continuous form is presented and the previous reports are briefly reviewed.

  4. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  5. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  6. Fusion materials irradiations at MaRIE's fission fusion facility

    SciTech Connect

    Pitcher, Eric J

    2010-10-06

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  7. Geomagnetic Storm Main Phase effect on the Equatorial Ionosphere as measured from GPS observations at Ile-Ife

    NASA Astrophysics Data System (ADS)

    Olabode, Ayomide; Ariyibi, Emmanuel

    2016-07-01

    The effect of the main phase of two intense geomagnetic storm events which occurred on August 5-6 and September 26-27, 2011 on the equatorial ionosphere have been investigated using Global Positioning System (GPS) data obtained from an Ile-Ife station (geomagnetic lat. 9.84°N, long. 77.25°E). The WinTEC-P and GPS-TEC analysis software programs were used to process the GPS data to obtain Total Electron Content (TEC) and Scintillation Index (S4). TEC profiles during the main phase of the two geomagnetically disturbed days were compared with quiet time average profiles to examine the response of the equatorial ionosphere. International Reference Ionosphere (IRI) 2012 TEC model was also obtained from Virtual Ionosphere, Thermosphere, Mesosphere Observatory (VITMO) and the extents of deviation from measured GPS-derived TEC were examined for the main phase of the storm events. The results showed that the intensity of both storm events during the main phase which occurred at night-time correlated well with a strong southward direction of the z-component of the Interplanetary Magnetic Field (IMF-Bz) and Solar Wind Speed (Vsw), with the Disturbance storm time (Dst) profile showing multiple step development. TEC depletion was observed during the main phase of the August 5-6, 2011 storm event with TEC recording a maximum value of 9.31 TECU. A maximum TEC value of 55.8 TECU was recorded during the main phase of the September 26-27, 2011 storm event depicting TEC enhancement. Significant scintillation index value of 0.57 was observed when the main phase started on August 5-6, 2011 followed by a prolonged suppression while there was less significant scintillation impact on September 26-27, 2011 with a maximum value of 0.33. The study concluded that the intensification of the ring current during the main phase of geomagnetic storm events was responsible for the intensity of the storm events causing large variations in TEC and significant scintillation phenomenon.

  8. Fusion Blanket Development in FDF

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Smith, J. P.; Stambaugh, R. D.

    2008-11-01

    To satisfy the electricity and tritium self-sufficiency missions of a Fusion Development Facility (FDF), suitable blanket designs will need to be evaluated, selected and developed. To demonstrate closure of the fusion fuel cycle, 2-3 main tritium breeding blankets will be used to cover most of the available chamber surface area in order to reach the project goal of achieving a tritium breeding ratio, TBR > 1. To demonstrate the feasibility of electricity and tritium production for subsequent devices such as the fusion demonstration power reactor (DEMO), several advanced test blankets will need to be selected and tested on the FDF to demonstrate high coolant outlet temperature necessary for efficient electricity production. Since the design goals for the main and test blankets are different, the design criteria of these blankets will also be different. The considerations in performing the evaluation of blanket and structural material options in concert with the maintenance approach for the FDF will be reported in this paper.

  9. Final Focus Shielding Designs for Modern Heavy-Ion Fusion Power Plant Designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-07-05

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet, Excessive levels of nuclear heating may lead to magnet quench or an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-I1 IFE power plant design. We present key magnet results as a function of the number of beams.

  10. Development of position measurement unit for flying inertial fusion energy target

    NASA Astrophysics Data System (ADS)

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  11. Performance of fusion algorithms for computer-aided detection and classification of mines in very shallow water obtained from testing in navy Fleet Battle Exercise-Hotel 2000

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Kerfoot, Ian

    2001-10-01

    The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.

  12. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  13. Application of fusion algorithms for computer-aided detection and classification of bottom mines to shallow water test data from the battle space preparation autonomous underwater vehicle (BPAUV)

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Dobeck, Gerald J.

    2003-09-01

    Over the past several years, Raytheon Company has adapted its Computer Aided Detection/Computer-Aided Classification (CAD/CAC)algorithm to process side-scan sonar imagery taken in both the Very Shallow Water (VSW) and Shallow Water (SW) operating environments. This paper describes the further adaptation of this CAD/CAC algorithm to process SW side-scan image data taken by the Battle Space Preparation Autonomous Underwater Vehicle (BPAUV), a vehicle made by Bluefin Robotics. The tuning of the CAD/CAC algorithm for the vehicle's sonar is described, the resulting classifier performance is presented, and the fusion of the classifier outputs with those of three other CAD/CAC processors is evaluated. The fusion algorithm accepts the classification confidence levels and associated contact locations from the four different CAD/CAC algorithms, clusters the contacts based on the distance between their locations, and then declares a valid target when a clustered contact passes a prescribed fusion criterion. Four different fusion criteria are evaluated: the first based on thresholding the sum of the confidence factors for the clustered contacts, the second and third based on simple and constrained binary combinations of the multiple CAD/CAC processor outputs, and the fourth based on the Fisher Discriminant. The resulting performance of the four fusion algorithms is compared, and the overall performance benefit of a significant reduction of false alarms at high correct classification probabilities is quantified. The optimal Fisher fusion algorithm yields a 90% probability of correct classification at a false alarm probability of 0.0062 false alarms per image per side, a 34:1 reduction in false alarms relative to the best performing single CAD/CAC algorithm.

  14. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  15. Diode-pumped solid-state laser driver experiments for inertial fusion energy applications

    SciTech Connect

    Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

    1995-07-11

    Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

  16. Fusion Concept Exploration Experiments at PPPL

    SciTech Connect

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-05-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  17. Conceptual exploration package for data fusion

    NASA Astrophysics Data System (ADS)

    Jousselme, Anne-Laure; Grenier, Dominic; Bosse, Eloi

    2000-04-01

    In this paper, we present a software package designed to explore data fusion area applied to different contexts. This tool, called CEPfuse (Conceptual Exploration Package for Data Fusion) provides a good support to become familiar with all concepts and vocabulary linked to data fusion. Developed with Matlab 5.2, it's also a good tool to test, compare and analyze algorithms. Although the core of this package is evidential reasoning and identity information fusion, it has been conceived to develop all the interesting part of the Multi-Sensor Data Fusion system. Actually, because we concentrate our research work on identity information fusion, the principal included algorithms are Dempster- Shafer rules of combination, Shafer-Logan algorithms for hierarchical structures, and several decision rules.

  18. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C. PMID:27586365

  19. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C.

  20. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  1. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  2. A hidden Markov model for multimodal biometrics score fusion

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng

    2011-05-01

    There are strong evidences of that multimodal biometric score fusion can significantly improve human identification performance. Score level fusion usually involves score normalization, score fusion, and fusion decision. There are several types of score fusion methods, direct combination of fusion scores, classifier-based fusion, and density-based fusion. The real applications require achieving greater reliability in determining or verifying person's identity. The goal of this research is to improve the accuracy and robustness of human identification by using multimodal biometrics score fusion. The accuracy means high verification rate if tested on a closed dataset, or a high genuine accept rate under low false accept rate if tested on an open dataset. While the robustness means the fusion performance is stable with variant biometric scores. We propose a hidden Markov model (HMM) for multiple score fusion, where the biometric scores include multimodal scores and multi-matcher scores. The state probability density functions in a HHM model are estimated by Gaussian mixture model. The proposed HMM model for multiple score fusion is accurate for identification, flexible and reliable with biometrics. The proposed HMM method are tested on three NIST-BSSR1 multimodal databases and on three face-score databases. The results show the HMM method is an excellent and reliable score fusion method.

  3. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  4. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  5. Prospects for fusion applications of reversed-field pinches

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Hagenson, R. L.

    1985-11-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx. 1-MW/m (neutron) driven operation are reported.

  6. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  7. Overview of U.S. heavy ion fusion progress and plans

    SciTech Connect

    Logan, G.; Bieniosek`, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-12-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  8. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics.

  10. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  11. Gas transport and control in thick-liquid inertial fusion power plants

    NASA Astrophysics Data System (ADS)

    Debonnel, Christophe Sylvain

    Among the numerous potential routes to a commercial fusion power plant, the inertial path with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenomena in such fusion target chambers have been investigated since the early 1990s with the help of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was redesigned and rewritten entirely to enable the use of modern programming techniques, languages and software; improve its user-friendliness; and refine its ability to model thick-liquid protected chambers. The new ablation and gas dynamics code is named "Visual Tsunami" to emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and user-friendly design tool for complex systems for which transient gas dynamics phenomena play a key role. Simultaneously, some of these improvements were implemented in a previous version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series. Visual Tsunami was used to design and model the novel Condensation Debris Experiment (CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and has therefore been used to exercise the code. Numerical and experimental results are in good agreement. In a heavy-ion IFE target chamber, proper beam and target propagation set stringent requirements for the control of ablation debris transport in the target chamber and beam tubes. When the neutralized ballistic transport mode is employed, the background gas density should be adequately low and the beam tube metallic surfaces upstream of the neutralizing region should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas transport through the complex geometry of the liquid blanket of a hybrid target chamber and beam lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel beam tube design, which introduces magnetic shutters and a long low

  12. Gas Transport and Control in Thick-Liquid Inertial Fusion PowerPlants

    SciTech Connect

    Debonnel, Christophe Sylvain

    2006-01-01

    Among the numerous potential routes to a commercial fusion power plant, the inertial path with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenomena in such fusion target chambers have been investigated since the early 1990s with the help of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was redesigned and rewritten entirely to enable the use of modern programming techniques, languages and software; improve its user-friendliness; and refine its ability to model thick-liquid protected chambers. The new ablation and gas dynamics code is named “Visual Tsunami” to emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and user-friendly design tool for complex systems for which transient gas dynamics phenomena play a key role. Simultaneously, some of these improvements were implemented in a previous version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series. Visual Tsunami was used to design and model the novel Condensation Debris Experiment (CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and has therefore been used to exercise the code. Numerical and experimental results are in good agreement. In a heavy-ion IFE target chamber, proper beam and target propagation set stringent requirements for the control of ablation debris transport in the target chamber and beam tubes. When the neutralized ballistic transport mode is employed, the background gas density should be adequately low and the beam tube metallic surfaces upstream of the neutralizing region should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas transport through the complex geometry of the liquid blanket of a hybrid target chamber and beam lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel beam tube design, which introduces magnetic shutters and a long low

  13. [Recent Advances of Biomechanical Studies on Cervical Fusion and Non-fusion Surgery].

    PubMed

    Liao, Zhenhua; Liu, Weiqiang

    2016-02-01

    This article reviews the progress of biomechanical studies on anterior cervical fusion and non-fusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and non-fusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed. PMID:27382760

  14. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  15. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  16. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  17. Progress in safety and environmental aspects of inertial fusion energy at Lawrence Livermore National Laboratory

    SciTech Connect

    Latkowski, J F; Reyes, S; Meier, W R

    2000-06-01

    Lawrence Livermore National Laboratory (LLNL) is making significant progress in several areas related to the safety and environmental (S and E) aspects of inertial fusion energy (IFE). A detailed accident analysis has been completed for the HYLIFE-II power plant design. Additional accident analyses are underway for both the HYLIFE-II and Sombrero designs. Other S and E work at LLNL has addressed the issue of the driver-chamber interface and its importance for both heavy-ion and laser-driven IFE. Radiation doses and fluences have been calculated for final focusing mirrors and magnets and shielding optimization is underway to extend the anticipated lifetimes for key components. Target designers/fabrication specialists have been provided with ranking information related to the S and E characteristics of candidate target materials (e.g., ability to recycle, accident consequences, and waste management). Ongoing work in this area will help guide research directions and the selection of target materials. Published and continuing work on fast ignition has demonstrated some of the potentially attractive S and E features of such designs. In addition to reducing total driver energies, fast ignition may ease target fabrication requirements, reduce radiation damage rates, and enable the practical use of advanced (e.g., tritium-lean) labels with significantly reduced neutron production rates, the possibility of self-breeding targets, and dramatically increased flexibility in blanket design. Domestic and international collaborations are key to success in the above areas. A brief summary of each area is given and plans for future work are outlined.

  18. The NIF: An international high energy density science and inertial fusion user facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  19. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  20. The fusion breeder

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1982-10-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium (30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices.

  1. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Inestrosa-Izurieta, María José; Veloso, Felipe; Gutiérrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermín; and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  2. Magnetic fusion: progress -> stagnation -> degradation

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2012-10-01

    ``The theory of the failure of magnetic fusion,'' created in 2004 and presented to APS-2007 introduced the notion of the ``difficult'' and ``complicated'' stages of the program and described them details. At the first phase the emerging fusion science was created under strong leadership. Progress was visible on year to year basis, and the program was easy to manage. The complicated phase started in the late 1980s, when the plasma physics appeared to be incapable to implement the mission of ITER to test nuclear components of a fusion reactor. Then, the failure of TFTR (PPPL, USA) and JET (Culham, UK) in the mid 1990 to demonstrate QDT=1 and the blindness of their leaders to already visible means to resolve the problem, were a clear indication of an irreversible stagnation. In fact, right after 2007, it became clear that in the case of a large system of human ``particles'' (scientists) two phases have a continuation. The internal degrees of freedom, otherwise protected from external perturbations by a strong dedication to the scientific method, are now eroding and collapsing. The loss of science in addressing confinement, stability, power extraction, fueling, stationary regimes issues makes the current program irrelevant to fusion energy. A fresh approach should be taken.

  3. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition

  4. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  5. Fusion facility siting considerations

    NASA Astrophysics Data System (ADS)

    Bussell, G. T.

    1985-02-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. An important consideration in this regard is site selection. Major siting issues that may affect the economics, safety, and environmental impact of fusion are examined.

  6. Status of fusion maintenance

    SciTech Connect

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

  7. Fusion: The controversy continues

    SciTech Connect

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  8. The effect of Oja-titun market effluent on the chemical quality of receiving OPA reservoir in Ile-Ife, Nigeria.

    PubMed

    Eludoyin, A O; Ofoezie, I E; Ogunkoya, O O

    2004-09-01

    The effect of market effluent from the Oja-titun market in Ile-Ife, Nigeria on the chemical quality of the Opa Reservoir located 3.5 km downstream was investigated between February and November 2000. Water samples were collected in February, May, August and November from 16 sites, four along each of the market drainage channels (MDC), market stream, tributary stream and the Opa River and Reservoir. The peak level of each variable-biochemical oxygen demand, temperature, total alkalinity, Na(+), K(+), Ca(2+), Mg(2+), PO(4)(3+), SO(4)(2+), Cl(-), NO(3)(-), Pb and Zn-occurred at the MDC, and decreased significantly downstream, except pH, conductivity and dissolved oxygen, which increased. Seasonal fluctuation in most variables was pronounced. Generally, there were high values in the early dry and dry seasons and low values in the rainy and early rainy seasons. Comparison of the reservoir water with international limitation standards for drinking water supply showed that the quality of the reservoir water was very low and that treatment required to achieve minimum limitation standards for drinking water would be both intensive and expensive. The study concluded that the stream borne effluent from the market impacts significantly on the chemical quality of the reservoir water although other tributaries within the Reservoir's catchment are other possible sources of pollutants in the reservoir.

  9. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  10. Meteorite fusion crust variability.

    NASA Astrophysics Data System (ADS)

    Thaisen, Kevin G.; Taylor, Lawrence A.

    2009-06-01

    Two assumptions commonly employed in meteorite interpretation are that fusion crust compositions represent the bulk-rock chemistry of the interior meteorite and that the vesicles within the fusion crust result from the release of implanted solar wind volatiles. Electron microprobe analyses of thin sections from lunar meteorite Miller Range (MIL) 05035 and eucrite Bates Nunataks (BTN) 00300 were performed to determine if the chemical compositions of the fusion crust varied and/or represented the published bulk rock composition. It was determined that fusion crust compositions are significantly influenced by the incorporation of fragments from the substrate, and by the composition and grain size of those minerals. Because of compositional heterogeneities throughout the meteorite, one cannot assume that fusion crust composition represents the bulk rock composition. If the compositional variability within the fusion crust and mineralogical differences among thin sections goes unnoticed, then the perceived composition and petrogenetic models of formation will be incorrect. The formation of vesicles within these fusion crusts were also compared to current theories attributing vesicles to a solar wind origin. Previous work from the STONE-5 experiment, where terrestrial rocks were exposed on the exterior of a spacecraft heatshield, produced a vesicular fusion crust without prolonged exposure to solar wind suggesting that the high temperatures experienced by a meteorite during passage through the Earth's atmosphere are sufficient to cause boiling of the melt. Therefore, the assumption that all vesicles found within a fusion crust are due to the release of implanted volatiles of solar wind may not be justified.

  11. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  12. Experimental test of the system of vertical and longitudinal lithium limiters on T-11M tokamak as a prototype of plasma facing components of a steady-state fusion neutron source

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.; Belov, A. M.; Djigailo, N. T.; Dzhurik, A. S.; Kravchuk, S. I.; Lazarev, V. B.; Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu.; Shcherbak, A. N.

    2015-11-01

    A new functional model of the prototype of closed Li circuit for protection of the chamber wall was tested in T-11M tokamak by simultaneous use of the vertical Li limiter as an emitter of Li and a new longitudinal Li limiter as its collector. Such technological scheme can be suggested for the steady-state fusion neutron source on the tokamak basis. During plasma shots the cryogenic target of T-11M collected Li flow emitted by the vertical capillary Li limiter almost completely (up to 80%). These Li and hydrogen isotopes were captured and extracted outside the tokamak vacuum chamber without venting of the vessel which is a key requirement for the use of Li in the steady-state tokamak reactor.

  13. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  14. Coatings for laser fusion

    SciTech Connect

    Lowdermilk, W.H.

    1981-12-18

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors.

  15. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  16. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  17. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  18. Research on compressive fusion by multiwavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Wan, Guobin; Li, Yuanyuan; Zhao, Xiaoxia; Chong, Xin

    2014-02-01

    A new strategy for images fusion is developed on the basis of block compressed sensing (BCS) and multiwavelet transform (MWT). Since the BCS with structured random matrix requires small memory space and enables fast computation, firstly, the images with large amounts of data can be compressively sampled into block images for fusion. Secondly, taking full advantages of multiwavelet such as symmetry, orthogonality, short support, and a higher number of vanishing moments, the compressive sampling of block images can be better described by MWT transform. Then the compressive measurements are fused with a linear weighting strategy based on MWT decomposition. And finally, the fused compressive samplings are reconstructed by the smoothed projection Landweber algorithm, with consideration of blocking artifacts. Experiment result shows that the validity of proposed method. Simultaneously, field test indicates that the compressive fusion can give similar resolution with traditional MWT fusion.

  19. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  20. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  1. Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: testing using data with a broad range of anatomical and photometric profiles

    PubMed Central

    Tang, Xiaoying; Crocetti, Deana; Kutten, Kwame; Ceritoglu, Can; Albert, Marilyn S.; Mori, Susumu; Mostofsky, Stewart H.; Miller, Michael I.

    2015-01-01

    We propose a hierarchical pipeline for skull-stripping and segmentation of anatomical structures of interest from T1-weighted images of the human brain. The pipeline is constructed based on a two-level Bayesian parameter estimation algorithm called multi-atlas likelihood fusion (MALF). In MALF, estimation of the parameter of interest is performed via maximum a posteriori estimation using the expectation-maximization (EM) algorithm. The likelihoods of multiple atlases are fused in the E-step while the optimal estimator, a single maximizer of the fused likelihoods, is then obtained in the M-step. There are two stages in the proposed pipeline; first the input T1-weighted image is automatically skull-stripped via a fast MALF, then internal brain structures of interest are automatically extracted using a regular MALF. We assess the performance of each of the two modules in the pipeline based on two sets of images with markedly different anatomical and photometric contrasts; 3T MPRAGE scans of pediatric subjects with developmental disorders vs. 1.5T SPGR scans of elderly subjects with dementia. Evaluation is performed quantitatively using the Dice overlap as well as qualitatively via visual inspections. As a result, we demonstrate subject-level differences in the performance of the proposed pipeline, which may be accounted for by age, diagnosis, or the imaging parameters (particularly the field strength). For the subcortical and ventricular structures of the two datasets, the hierarchical pipeline is capable of producing automated segmentations with Dice overlaps ranging from 0.8 to 0.964 when compared with the gold standard. Comparisons with other representative segmentation algorithms are presented, relative to which the proposed hierarchical pipeline demonstrates comparative or superior accuracy. PMID:25784852

  2. Strategy for D/He-3 fusion development

    NASA Technical Reports Server (NTRS)

    Santarius, John F.

    1988-01-01

    It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.

  3. High prevalence of HIV p24 antigen among HIV antibody negative prospective blood donors in Ile-Ife, Nigeria.

    PubMed

    Japhet, Margaret Oluwatoyin; Adewumi, Moses Olubusuyi; Adesina, Olufisayo Adeyemi; Donbraye, Emmanuel

    2016-01-01

    Blood transfusion service centers in Nigeria screen donated blood for markers of HIV infection using antibody- (Ab) based rapid test and in some centers, positives are re-tested using Ab-based ELISA. Paucity of data exists on p24 antigen prevalence among HIV Ab-negative donors in Nigeria. This study aims at detecting HIV p24 antigen among prospective blood donors in Osun State, Nigeria. Prospective blood donors negative for HIV antibodies using Determine test kit were re-tested using BIORAD GENSCREEN Ultra Ag-Ab ELISA kit, a fourth-generation ELISA kit that detects HIV antibodies/p24 antigen. Of the 169 HIV Ab-negative prospective donors, 10 (5.9%) were positive for HIV p24 antigen and 70% (7/10) of them were in the age range 18-30 years. Results of this study show that blood transfusion is still one of the major routes of HIV transmission in Nigeria and a higher proportion is among youth. Inclusion of p24 antigen testing into the blood donor screening will help reduce transfusion associated HIV in Nigeria if Nucleic Acid Testing (NAT) of all blood donor samples is not affordable; also, HIV enlightenment programs tailored toward youth may help reduce this rate among donors since more young people donate blood in low/middle-income countries than in high-income countries. PMID:27049173

  4. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.; Hill, N. W.; Hou, F. S.; McConnell, J. W.; Spencer, R. R.; Tsang, F. Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  5. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0. 8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    SciTech Connect

    Dickens, J.K.; Hill, N.W.; Hou, F.S.; McConnell, J.W.; Spencer, R.R.; Tsang, F.Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  6. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  7. Fusion Physics Toward ITER

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.

    2006-04-01

    Stars are powered by fusion, the energy released by fusing together light nuclei, using gravitational confinement of plasma. Fusion on earth will be done in a 100 million degree plasma made of deuterium and tritium and confined by magnetic fields or inertia. The worldwide fusion research community will construct ITER, the first experiment that will burn a DT plasma by copious fusion reactions. ITER's nominal goal is to create 500 MW of fusion power. An energy gain of 10 will mean the plasma is dominantly self-heated by the fusion-produced alpha particles. ITER's all superconducting magnet technology and steady-state heat removal technology will enable nominal 400 s pulses to allow the study of burning plasmas on the longest intrinsic timescale of the confined plasma - diffusive redistribution of the electrical currents in the plasma. The advances in magnetic confinement physics that have led to this opportunity will be described, as well as the research opportunities afforded by ITER. The physics of confining stable plasmas and heating them will produce the high gain state in ITER. Sustained burn will come from the physics of controlling currents in plasmas and how the hot plasma is interfaced to its room temperature surroundings. ITER will provide our first experience with how fusion plasma self-heating will profoundly affect the complex, interlinked physical processes that occur in confined plasmas.

  8. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  9. Paediatric endoscopy by adult gastroenterologists in Ile-Ife, Nigeria: A viable option to increase the access to paediatric endoscopy in low resource countries

    PubMed Central

    Alatise, Olusegun I.; Anyabolu, Henry Chineme; Sowande, Oludayo; Akinola, David

    2015-01-01

    Background: Paediatric endoscopy performed by adult gastroenterologists is a service delivery model that increases the access of children to endoscopy in countries where paediatric gastroenterologists with endoscopy skills are scarce. However, studies on the usefulness of this model in Nigeria and Sub-Saharan Africa are scarce. We aimed to evaluate the indications, procedures, diagnostic yield and safety of paediatric endoscopy performed by adult gastroenterologists in a Nigerian tertiary health facility. Materials and Methods: It was a retrospective study that evaluated the records of paediatric (≤18 years old) endoscopies carried out in the endoscopy suite of Obafemi Awolowo University Teaching Hospital Complex Ile-Ife, Nigeria from January 2007 to December 2014. Results: A total of 63 procedures were successfully completed in children of whom 4 were repeat procedures which were excluded. Thus, 59 endoscopies performed on children were analysed. Most (49; 83.1%) of these procedures on the children were diagnostic with oesophagogastroduodenoscopy being the commonest (43; 72.9%). Epigastric pain (22; 37.3%), haematemesis (17; 28.8%) and dysphagia (9; 15.3%) were the predominant indication for upper gastrointestinal (GI) endoscopy while haematochezia (9; 15.3%) and rectal protrusion (2; 3.4%) were the indications for colonoscopy. Injection sclerotherapy (3; 5.1%) and variceal banding (2; 3.4%) were the therapeutic upper GI endoscopic procedures conducted while polypectomies were performed during colonoscopy in 5 children (8.5%). Abnormal endoscopy findings were observed in 53 out of the 59 children making the positive diagnostic yield to be 89.8%. No complication, either from the procedure or anaesthesia was observed. Conclusion: Paediatric endoscopy performed by adult gastroenterologists is useful, feasible and safe. It is being encouraged as a viable option to fill the gap created by dearth of skilled paediatric gastroenterologists. PMID:26712292

  10. Undernutrition and anaemia among HAART-naïve HIV infected children in Ile-Ife, Nigeria: a case-controlled, hospital based study

    PubMed Central

    Anyabolu, Henry Chineme; Adejuyigbe, Ebunoluwa Aderonke; Adeodu, Oluwagbemiga Oyewole

    2014-01-01

    Introduction Case control studies that assess the burden and factors associated with undernutrition and anaemia among HAART naïve HIV infected children in Nigeria is very sparse. This will help to formulate nutritional programs among these children. Methods Seventy HAART naive HIV infected children aged 18 months and above were as well as seventy age and sex matched HIV negative children were recruited from August 2007 to January 2009 at Paediatric Clinic of Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria. Their bio data, WHO clinical stage, anthropometric measurements, haematocrit, serum albumin and CD4 counts were taken with other parameters according to a study proforma. Results The prevalence of stunting, underweight and wasting among the HIV infected subjects were 48. 6%,58. 6% and 31. 4% respectively which as significantly higher than 28. 1%, 7. 1% and 28. 1% among the HIV negative controls. 20. 1% of the HIV infected children were marasmic compared to 2. 3% of the controls. Triple anthropometric failure was found in 7. 1% of the subjects as compared to none among the controls. Anaemia is significantly more prevalent among the subjects than the controls (70. 0% vs 31. 4%; p<0. 001). The prevalence of anaemia was higher in the HIV infected subjects with undernutrition. Low socioeconomic status, hypoalbuminemia and severe immunosuppression are significantly associated with higher undernutrition prevalence. Conclusion Several years after availability of HAART, undernutrition and anaemia remain widely prevalent among newly presenting HAART naïve HIV infected Nigerian children. Nutritional supplementation and evaluation for anaemia still need close attention in the management of these children. PMID:25400844

  11. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume II

    SciTech Connect

    Abdou, M.

    1984-10-01

    The Nuclear Fusion Issues chapter contains a comprehensive list of engineering issues for fusion reactor nuclear components. The list explicitly defines the uncertainties associated with the engineering option of a fusion reactor and addresses the potential consequences resulting from each issue. The next chapter identifies the fusion nuclear technology testing needs up to the engineering demonstration stage. (MOW)

  12. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  13. Some new inequalities for continuous fusion frames and fusion pairs.

    PubMed

    Zhang, Wei; Li, Yun-Zhang

    2016-01-01

    This paper addresses continuous fusion frames and fusion pairs which are extensions of discrete fusion frames and continuous frames. The study of equalities and inequalities for various frames has seen great achievements. In this paper, using operator methods we establish some new inequalities for continuous fusion frames and fusion pairs. Our results extend and improve ones obtained by Balan, Casazza and Găvruţa. PMID:27652173

  14. Inertial fusion commercial power plants

    NASA Astrophysics Data System (ADS)

    Logan, B. Grant

    1994-09-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an exmaple of an IEE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity.

  15. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  16. Label fusion strategy selection.

    PubMed

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  17. Fusion-power demonstration

    NASA Astrophysics Data System (ADS)

    Henning, C. D.; Logan, B. G.; Carlson, G. A.; Neef, W. S.; Moir, R. W.; Campbell, R. B.; Botwin, R.; Clarkson, I. R.; Carpenter, T. J.

    1983-03-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  18. Spinal fusion - series (image)

    MedlinePlus

    ... muscles hold the graft in place until it fuses with the vertebrae. A fusion will setup within ... hollow threaded titanium or carbon fiber cylinder to fuse two vertebrae together. The diseased disk is removed ...

  19. Magnetized Target Fusion collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas

    2004-11-01

    Magnetized Target Fusion (MTF) may be a low cost path to fusion, in a regime that is intermediate between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. We hope to demonstrate the physics basis for MTF, with a Field Reversed Configuration (FRC) target plasma to be translated axially to a compression region. We show recent and improved FRC formation data, example deformable liner implosions, and a conceptual design for the upcoming translation experiments, and describe a multi institution collaboration. The FRC is an elongated, compact toroid equilibrium that is extreme among magnetic configurations, and relaxed to a non force free state. There is high plasma beta, small toroidal field, cross-field diamagnetic current and flows, vanishing rotational transform, magnetic shear, helicity and anomalously large resistivity. Scientific issues include MTF with and without FRC's, and fundamental plasma physics beyond MHD, relevant to geophysical and astrophysical phenomena.

  20. Fabrication and evalution of a cryostable Nb/sub 3/Sn superconductor for the Mirror Fusion Test Facility (MFTF-B)

    SciTech Connect

    Scanlan, R.M.; Zbasnik, J.P.; Baldi, R.W.; Pickering, J.L.; Furuto, Y.; Ikeda, M.; Meguro, S.

    1984-09-01

    The MFTF-B magnet system requires two 12.5T, 36 cm bore, insert coils. These coils are being constructed with a cryostable Nb/sub 3/Sn conductor manufactured by Furukawa Electric Co. The conductor consists of a core soldered into a cold-worked copper housing, which provides strength. The Nb/sub 3/Sn core is made by a triple extrusion bronze process. A total of 57 lengths, each 295 m long, have been made and tested. We have made extensive tests on this conductor; these tests include critical current, ambient and 4.2 K mechanical property measurements, critical current as a function of tensile strain, and bending tolerance tests. The critical current density was found to be quite anisotropic in this conductor, with J/sub c/(12T) = 650A/mm/sup 2/ for field perpendicular to the conductor wide face, and J/sub c/(12T) = 500A/mm/sup 2/ for field parallel to the conductor wide face. These values of current density are among the highest reported for a production lot of Nb/sub 3/Sn conductor.

  1. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  2. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  3. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  4. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  5. Use of data fusion to optimize contaminant transport predictions

    SciTech Connect

    Eeckhout, E. van

    1997-10-01

    The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

  6. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    SciTech Connect

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  7. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    SciTech Connect

    Mark, J.W.K.

    1982-03-22

    Calculations suggest that experiments relating to disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics. In this regard, the low beam emittance of suggested multi-beam designs are very useful. Possibly even higher focal spot brightness could be obtained by plasma lenses which involve external fields on the beam which is stripped to a higher charge state by passing through a plasma cell. Preliminary results suggest that intensities approx. 10/sup 13/ - 10/sup 14/ W/cm/sup 2/ are achievable. Given these intensities, deposition experiments with heating of disks to greater than a million degrees Kelvin (100 eV) are expected.

  8. Enhanced chemical weapon warning via sensor fusion

    NASA Astrophysics Data System (ADS)

    Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James

    2011-05-01

    Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.

  9. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  10. EDITORIAL: Inertial Fusion State of the Art---A Collection of Overview and Technical Papers from IFSA2003

    NASA Astrophysics Data System (ADS)

    Hogan, W. J.

    2004-12-01

    The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA

  11. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  12. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  13. Improvements of image fusion methods

    NASA Astrophysics Data System (ADS)

    Ben-Shoshan, Yotam; Yitzhaky, Yitzhak

    2014-03-01

    Fusion of images from different imaging modalities, obtained by conventional fusion methods, may cause artifacts, including destructive superposition and brightness irregularities, in certain cases. This paper proposes two methods for improving image multimodal fusion quality. Based on the finding that a better fusion can be achieved when the images have a more positive correlation, the first method is a decision algorithm that runs at the preprocessing fusion stage and determines whether a complementary gray level of one of the input images should be used instead of the original one. The second method is suitable for multiresolution fusion, and it suggests choosing only one image from the lowest-frequency sub-bands in the pyramids, instead of combining values from both sub-bands. Experimental results indicate that the proposed fusion enhancement can reduce fusion artifacts. Quantitative fusion quality measures that support this conclusion are shown.

  14. SKIDS data fusion project

    NASA Astrophysics Data System (ADS)

    Greenway, Phil

    1992-04-01

    The European Community's strategic research initiative in information technology (ESPRIT) has been in place for nearly five years. An early example of the pan-European collaborative projects being conducted under this initiative is 'SKIDS': Signal and Knowledge Integration with Decisional Control for Multisensory Systems. This four year project, which is approaching completion, aims to build a real-time multisensor perception machine. This machine will be capable of performing data fusion, interpretation, situation assessment, and resource allocation tasks, under the constraints of both time and resource availability, and in the presence of uncertain data. Of the many possible applications, the surveillance and monitoring of a semi-automated 'factory environment' has been chosen as a challenging and representative test scenario. This paper presents an overview of the goals and objectives of the project, the makeup of the consortium, and roles of the members within it, and the main technical achievements to data. In particular, the following are discussed: relevant application domains, and the generic requirements that can be inferred from them; sensor configuration, including choice, placement, etc.; control paradigms, including the possible trade-offs between centralized, hierarchical, and decentralized approaches; the corresponding hardware architectural choices, including the need for parallel processing; and the appropriate software architecture and infra-structure required to support the chosen task oriented approach. Specific attention is paid to the functional decomposition of the system and how the requirements for control impact the organization of the identified interpretation tasks. Future work and outstanding problems are considered in some concluding remarks. By virtue of limited space, this paper is descriptive rather than explanatory.

  15. Meat and poultry consumption contribution to the natural radionuclide intake of the inhabitants of the Obafemi Awolowo University, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Akinloye, M. K.; Olomo, J. B.; Olubunmi, P. A.

    1999-02-01

    The mean activity concentrations of the naturally occurring radionuclides ( 226Ra, 228Ra and 40K) in three types of meat (goat meat, beef and pork) from stock animals as well as free-range and intensive poultry raised within the OAU environment of the Obafemi Awolowo University (OAU), Ile-Ife, were measured by means of a well-calibrated high-purity germanium detector. The specific activities of 226Ra in the three types of meat ranged from 1.11 to 5.83 Bq kg -1 with a mean of 3.10±1.52 Bq kg -1. 228Ra was not detectable in both beef and pork but had a range of 1.53-1.63 Bq kg -1 with a mean of 1.58±0.30 Bq kg -1 in goat meat while 40K recorded an average specific activity of 360.00±54.20 Bq kg -1 for the various samples of meat. The mean activity values of 226Ra, 228Ra and 40K for the poultry were 2.59±0.48, 0.78±0.13 and 265.01±15.90 Bq kg -1, respectively. The results obtained for the daily radionuclide intake of the various meat types showed that those of 226Ra ranged from 0.4 to 8.1 mBq d -1 with a mean of 4.9±0.4 mBq d -1. Since 228Ra was not detectable in beef and pork its daily intake could not be estimated. However, a mean value of intake of 2.2±0.4 mBq d -1 was obtained for goat meat. The values of 40K intake ranged from 150.0 to 672.7 mBq d -1 with an average of 455.5±19.0 mBq d -1. The mean daily intakes of 226Ra, 228Ra and 40K for the two types of poultry were 6.15±0.70, 1.9±0.3 and 633.4±38.0 mBq d -1, respectively.

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  18. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  19. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  20. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  1. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  2. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  3. Analysis of the energy transport and deposition within the reaction chamber of the prometheus inertial fusion energy reactor

    SciTech Connect

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S.

    1994-12-31

    One of the parameters affecting the feasibility of Inertial Fusion Energy (IFE) devices is the number of shots per unit time, i.e. the repetition rate. The repetition rate limits the achievable power that can be obtained from the reactor. To obtain an estimate of the allowable time between shots, a code named RECON was developed to model the response of the reaction chamber to the pellet explosion. This paper discusses how the code treats the thermodynamic response of the cavity gas and models the condensation/evaporation of this vapor to and from the first wall. A large amount of energy from the pellet microexplosion is carried by the pellet debris and the x-rays generated in the fusion reaction. Models of x-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. A large amount of energy is absorbed into the cavity gas, which causes it to become partially ionized. The ionization complicates the calculation of the temperature, pressure, and the radiative heat transfer from the gas to the first wall. To treat this problem, methods developed by Zel`dovich and Raizer are used in modeling the internal energy and the radiative heat flux. RECON was developed to run with a relatively short computational time, yet accurate enough for conceptual reactor design calculations.

  4. Broadband measurements of electron cyclotron emission in TFTR (Tokamak Fusion Test Reactor) using a quasi-optical light collection system and a polarizing Michelson interferometer

    SciTech Connect

    Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; Diesso, M.; McCarthy, M.P.; Montague, J.; Rocco, R.

    1988-04-01

    For the past three years, a Fourier transform spectrometer diagnostic system, employing a fast-scanning polarizing Michelson interferometer, has been operating on the TFTR tokamak at Princeton Plasma Physics Laboratory. It is used to measure the electron cyclotron emission spectrum over the range 2.5 to 18 cm/sup /minus/1/ (75-540 GHz) with a resolution of 0.123 cm/sup /minus/1/(3.7 GHz), at a rate of 72 spectra per second. The quasi-optical system for collecting the light and transporting it through the interferometer to the detector has been designed using the concepts of both Gaussian and geometrical optics in order to produce a system that is efficient over the entire spectral range. The commerical Michelson interferometer was custom-made for this project and is at the state of the art for this type of specialized instrument. Various pre-installation and post-installation tests of the optical system and the interferometer were performed and are reported here. An error propagation analysis of the absolute calibration process is given. Examples of electron cyclotron emission spectra measured in two polarization directions are given, and electron temperature profiles derived from each of them are compared. 34 refs., 17 figs.

  5. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  6. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  7. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  8. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  9. CRYOGENICS FOR FUSION

    SciTech Connect

    Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.; Gistau-Baguer, G. M.; Boissin, J. C.

    2008-03-16

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  10. Improved data fusion through intelligent sensor management

    NASA Astrophysics Data System (ADS)

    Smith, Moira I.; Angell, Christopher R.; Hernandez, Marcel L.; Oxford, William J.

    2003-08-01

    This paper investigates how the targeting capability of a distributed data fusion system can be improved though the use of intelligent sensor management. The research reported here builds upon previous results from QinetiQ's air-to-ground fusion programme and sensor management research. QinetiQ's previously reported software test-bed for developing and evaluating data fusion algorithms has been enhanced to include intelligent sensor management functions and weapon fly-out models. In this paper details of the enhancements are provided together with a review of the sensor management algorithms employed. These include flight path optimization of airborne sensors to minimize target state estimation error, sensor activation control and sightline management of individual sensors for optimal targeting performance. Initial results from investigative studies are presented and conclusions are drawn.

  11. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  12. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  13. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  14. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  15. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  16. Fusion Safety Program annual report, fiscal year 1994

    SciTech Connect

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  17. Statistical fusion of GPR and EMI data

    NASA Astrophysics Data System (ADS)

    Weisenseel, Robert A.; Karl, William C.; Castanon, David A.; Miller, Eric L.; Rappaport, Carey M.; DiMarzio, Charles A.

    1999-08-01

    In this paper, we develop a statistical detection system exploiting sensor fusion for the detection of plastic A/P miens. We design and test the system using data from Monte Carlo electromagnetic induction (EMI) and ground penetrating radar (GPR) simulations. We include the effects of both random soil surface variability and sensor noise. In spite of the presence of a rough surface, we can obtain good result fusing EMI and GPR data using a statistical approach in a simple clutter environment. More generally, we develop a framework for simulation and testing of sensor configurations and sensor fusion approaches for landmine and unexploded ordinance detection systems. Exploiting accurate electromagnetic simulation, we develop a controlled environment for testing sensor fusion concepts, from varied sensor arrangements to detection algorithms, In this environment, we can examine the effect of changing mine structure, soil parameters, and sensor geometry on the sensor fusion problem. We can then generalize these results to produce mine detectors robust to real-world variations.

  18. Fusion product studies via fast ion D-D and D-3He fusion on JET

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Hellsten, T.; Kiptily, V. G.; Craciunescu, T.; Eriksson, J.; Fitzgerald, M.; Girardo, J.-B.; Goloborod'ko, V.; Hellesen, C.; Hjalmarsson, A.; Johnson, T.; Kazakov, Y.; Koskela, T.; Mantsinen, M.; Monakhov, I.; Nabais, F.; Nocente, M.; Perez von Thun, C.; Rimini, F.; Santala, M.; Schneider, M.; Tardocchi, M.; Tsalas, M.; Yavorskij, V.; Zoita, V.; Contributors, JET

    2016-11-01

    Dedicated fast ion D-D and D-3He fusion experiments were performed on JET with carbon wall (2008) and ITER-like wall (2014) for testing the upgraded neutron and energetic ion diagnostics of fusion products. Energy spectrum of D-D neutrons was the focus of the studies in pure deuterium plasmas. A significant broadening of the energy spectrum of neutrons born in D-D fast fusion was observed, and dependence of the maximum D and D-D neutron energies on plasma density was established. Diagnostics of charged products of aneutronic D-3He fusion reactions, 3.7 MeV alpha-particles similar to those in D-T fusion, and 14.6 MeV protons, were the focus of the studies in D-3He plasmas. Measurements of 16.4 MeV gamma-rays born in the weak secondary branch of D(3He, γ)5Li reaction were used for assessing D-3He fusion power. For achieving high yield of D-D and D-3He reactions at relatively low levels of input heating power, an acceleration of D beam up to the MeV energy range was used employing 3rd harmonic (f=3{{f}CD} ) ICRH technique. These results were compared to the techniques of D beam injection into D-3He mixture, and 3He-minority ICRH in D plasmas.

  19. Human-Centered Fusion Framework

    SciTech Connect

    Posse, Christian; White, Amanda M.; Beagley, Nathaniel

    2007-05-16

    In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

  20. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  1. Bubble fusion: Preliminary estimates

    SciTech Connect

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.

  2. Mars manned fusion spaceship

    SciTech Connect

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  3. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  4. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven Anthony

    2011-01-01

    of Dr Todd Evans, another significant mentor of mine, as winner of this prestigious award? Then, it happened. The paper covers several key topics related to high beta tokamak physics. For me, the greatest satisfaction in receiving this award is because it was the first Nuclear Fusion Award to recognize research on the National Spherical Torus Experiment (NSTX) located at the Princeton Plasma Physics Laboratory. The achievement of record stability parameters in a mega-Ampere class spherical torus (ST) device reported in the paper represents a multi-year effort, contributed to by the entire research team. Research to maintain such plasmas for an indefinite period continues today. Understanding RWM stabilization physics is crucial for this goal, and leveraging the high beta ST operating space uniquely tests theory for application to future STs and to tokamaks in general, including advanced operational scenarios of ITER. For instance, the RWM was found to have significant amplitude in components with the toroidal mode number greater than unity. This has important implications for general active RWM control. Evidence that the RWM passive stabilization physics and marginal stability criterion are indeed more complex than originally thought was shown in this paper. Present work shows the greater complexity has a direct impact on how we should extrapolate RWM stabilization to future devices. The paper also reported the qualitative observation of neoclassical toroidal viscosity (NTV), followed by a companion paper by our group in 2006 reporting the quantitative observation of this effect and comparison to theory. The physics of this interesting and important phenomenon was introduced to me by Professor J. Callen (who has given an overview talk at this conference including this subject) and Professor Kerchung Shaing of the University of Wisconsin, to whom I am quite indebted. The paper also reported the first measurement of resonant field amplification at high beta in the NSTX

  5. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  6. Accelerators for heavy ion fusion

    SciTech Connect

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

  7. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  8. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  9. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that

  10. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  11. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  12. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  13. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  14. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  15. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  16. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  17. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  18. BRAF Fusion Analysis in Pilocytic Astrocytomas: KIAA1549-BRAF 15-9 Fusions Are More Frequent in the Midline Than Within the Cerebellum

    PubMed Central

    Faulkner, Claire; Ellis, Hayley Patricia; Shaw, Abigail; Penman, Catherine; Palmer, Abigail; Wragg, Christopher; Greenslade, Mark; Haynes, Harry Russell; Williams, Hannah; Lowis, Stephen; White, Paul; Williams, Maggie; Capper, David; Kurian, Kathreena Mary

    2015-01-01

    Abstract Pilocytic astrocytomas (PAs) are increasingly tested for KIAA1549-BRAF fusions. We used reverse transcription polymerase chain reaction for the 3 most common KIAA1549-BRAF fusions, together with BRAF V600E and histone H3.3 K27M analyses to identify relationships of these molecular characteristics with clinical features in a cohort of 32 PA patients. In this group, the overall BRAF fusion detection rate was 24 (75%). Ten (42%) of the 24 had the 16-9 fusion, 8 (33%) had only the 15-9 fusion, and 1 (4%) of the patients had only the 16-11 fusion. In the PAs with only the 15-9 fusion, 1 PA was in the cerebellum and 7 were centered in the midline outside of the cerebellum, that is, in the hypothalamus (n = 4), optic pathways (n = 2), and brainstem (n = 1). Tumors within the cerebellum were negatively associated with fusion 15-9. Seven (22%) of the 32 patients had tumor-related deaths and 25 of the patients (78%) were alive between 2 and 14 years after initial biopsy. Age, sex, tumor location, 16-9 fusion, and 15-9 fusion were not associated with overall survival. Thus, in this small cohort, 15-9 KIAA1549-BRAF fusion was associated with midline PAs located outside of the cerebellum; these tumors, which are generally difficult to resect, are prone to recurrence. PMID:26222501

  19. BRAF Fusion Analysis in Pilocytic Astrocytomas: KIAA1549-BRAF 15-9 Fusions Are More Frequent in the Midline Than Within the Cerebellum.

    PubMed

    Faulkner, Claire; Ellis, Hayley Patricia; Shaw, Abigail; Penman, Catherine; Palmer, Abigail; Wragg, Christopher; Greenslade, Mark; Haynes, Harry Russell; Williams, Hannah; Lowis, Stephen; White, Paul; Williams, Maggie; Capper, David; Kurian, Kathreena Mary

    2015-09-01

    Pilocytic astrocytomas (PAs) are increasingly tested for KIAA1549-BRAF fusions. We used reverse transcription polymerase chain reaction for the 3 most common KIAA1549-BRAF fusions, together with BRAF V600E and histone H3.3 K27M analyses to identify relationships of these molecular characteristics with clinical features in a cohort of 32 PA patients. In this group, the overall BRAF fusion detection rate was 24 (75%). Ten (42%) of the 24 had the 16-9 fusion, 8 (33%) had only the 15-9 fusion, and 1 (4%) of the patients had only the 16-11 fusion. In the PAs with only the 15-9 fusion, 1 PA was in the cerebellum and 7 were centered in the midline outside of the cerebellum, that is, in the hypothalamus (n = 4), optic pathways (n = 2), and brainstem (n = 1). Tumors within the cerebellum were negatively associated with fusion 15-9. Seven (22%) of the 32 patients had tumor-related deaths and 25 of the patients (78%) were alive between 2 and 14 years after initial biopsy. Age, sex, tumor location, 16-9 fusion, and 15-9 fusion were not associated with overall survival. Thus, in this small cohort, 15-9 KIAA1549-BRAF fusion was associated with midline PAs located outside of the cerebellum; these tumors, which are generally difficult to resect, are prone to recurrence. PMID:26222501

  20. An evaluation of fusion gain in the compact helical fusion reactor FFHR-c1

    NASA Astrophysics Data System (ADS)

    Miyazawa, J.; Goto, T.; Sakamoto, R.; Sagara, A.; the FFHR Design Group

    2014-01-01

    A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ∼1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

  1. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Reese, Colin E.; Van Der Wal, Gooitzen S.

    2003-02-01

    The Night Vision & Electronic Sensors Directorate (NVESD) has conducted a series of image fusion evaluations under the Head-Tracked Vision System (HTVS) program. The HTVS is a driving system for both wheeled and tracked military vehicles, wherein dual-waveband sensors are directed in a more natural head-slewed imaging mode. The HTVS consists of thermal and image-intensified TV sensors, a high-speed gimbal, a head-mounted display, and a head tracker. A series of NVESD field tests over the past two years has investigated the degree to which additive (A+B) image fusion of these sensors enhances overall driving performance. Additive fusion employs a single (but user adjustable) fractional weighting for all the features of each sensor's image. More recently, NVESD and Sarnoff Corporation have begun a cooperative effort to evaluate and refine Sarnoff's "feature-level" multi-resolution (pyramid) algorithms for image fusion. This approach employs digital processing techniques to select at each image point only the sensor with the strongest features, and to utilize only those features to reconstruct the fused video image. This selection process is performed simultaneously at multiple scales of the image, which are combined to form the reconstructed fused image. All image fusion techniques attempt to combine the "best of both sensors" in a single image. Typically, thermal sensors are better for detecting military threats and targets, while image-intensified sensors provide more natural scene cues and detect cultural lighting. This investigation will address the differences between additive fusion and feature-level image fusion techniques for enhancing the driver's overall situational awareness.

  2. Using gaming engines and editors to construct simulations of fusion algorithms for situation management

    NASA Astrophysics Data System (ADS)

    Lewis, Lundy M.; DiStasio, Nolan; Wright, Christopher

    2010-04-01

    In this paper we discuss issues in testing various cognitive fusion algorithms for situation management. We provide a proof-of-principle discussion and demo showing how gaming technologies and platforms could be used to devise and test various fusion algorithms, including input, processing, and output, and we look at how the proof-of-principle could lead to more advanced test beds and methods for high-level fusion in support of situation management. We develop four simple fusion scenarios and one more complex scenario in which a simple rule-based system is scripted to govern the behavior of battlespace entities.

  3. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect

    Slough, John

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with

  4. Information fusion for diagnosis coding support.

    PubMed

    Lecornu, L; Le Guillou, C; Le Saux, F; Hubert, M; Puentes, J; Montagner, J; Cauvin, J M

    2011-01-01

    All patient-related medical information during a hospital stay in France, has to be collected and coded in the compilation of medical units discharge documents, according to a standardized approach. The process of describing a patient disease in terms of appropriate diagnostic codes is nevertheless, a non-intuitive operation for the physician. As a consequence, coding errors, inaccuracies and missing data are frequent, leading to potentially severe economical upshots. A coding support system developed to improve medical coding results, integrates three information processing methodologies, using the outputs from various Hospital Information System applications. Each methodology generates partial heterogeneous information, with considerable semantic variety. In order to properly synthesize these outputs, information fusion is required to produce enriched contextualized information, presented to the physician as an ordered list of suggested codes. This paper explores two information fusion approaches: voting system and possibilistic. Both methods are tested on a database of 1,000 discharge summaries, to show the interest of information fusion in this context. Results show that fusion methods perform better in most of the cases than partial information extraction methods. PMID:22255014

  5. Computerized device for critical flicker fusion frequency determination

    NASA Astrophysics Data System (ADS)

    Racene, Diana

    2003-08-01

    The critical fusion flicker frequency of the human visual system is the threshold sensitivity for a sine wave-modulated patch of monochromatic flickering light measured as a function of its temporal frequency and average luminance level. The critical flicker fusion frequency changes in different ocular and non-ocular conditions, for example: high-myopia, AMR, glaucoma, schizophrenia, after alcohol intake, fatigue. A computerized test for critical flicker fusion frequency determination was developed. Visual stimuli are two monochromatic LED light sources that are connected to a microcircuit driven by a computer program. The control of the device is realized through the parallel port of the PC. During the test a patient has to choose which one of two light sources is flickering. The critical cliker fusion frequency is determined by a psychophysical procedure, where the stimulus frequency that showed detection probability 75% is considered as threshold.

  6. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  7. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  8. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  9. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  10. Sensor fusion for synthetic vision

    NASA Technical Reports Server (NTRS)

    Pavel, M.; Larimer, J.; Ahumada, A.

    1991-01-01

    Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.

  11. Inertial fusion research in China

    NASA Astrophysics Data System (ADS)

    He, X. T.; Zhang, W. Y.

    2007-08-01

    The goal of the first milestone of the inertial fusion program in China is to reach fusion ignition and plasma burning in about 2020. Under the program, in the past years, the inertial fusion physics research achieved great progress; the laser facilities and the support technologies for laser drivers are advanced; the advanced diagnostic techniques are developed and the relatively integrated system is set up; the precise target fabrications are coordinately developed.

  12. Lithium question for nuclear fusion

    SciTech Connect

    Shieh, P.S.S.

    1981-01-01

    An attempt is made to estimate the lithium reserve (the economically recoverable lithium) for the tritium breeding in D-T fusion reactors and other uses. Similar development patterns for fusion energy and fission energy are assumed to estimate the future lithium requirements. These requirements are grouped into three categories; the commercial uses, the lithium batteries for electric cars, and the fusion reactor uses. 5 refs.

  13. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  14. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.

    2011-01-01

    The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006

  15. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  16. OCULUS Sea Track Fusion Service

    NASA Astrophysics Data System (ADS)

    Panagiotou, Stylianos C.; Rizogiannis, Constantinos; Katsoulis, Stavros; Lampropoulos, Vassilis; Kanellopoulos, Sotirios; Thomopoulos, Stelios C. A.

    2015-06-01

    Oculus Sea is a complete solution regarding maritime surveillance and communications at Local as well as Central Command and Control level. It includes a robust and independent track fusion service whose main functions include: 1) Interaction with the User to suggest the fusion of two or more tracks, confirm Track ID and Vessel Metadata creation for the fused track, and suggest de-association of two tracks 2) Fusion of same vessel tracks arriving simultaneously from multiple radar sensors featuring track Association, track Fusion of associated tracks to produce a more accurate track, and Multiple tracking filters and fusion algorithms 3) Unique Track ID Generator for each fused track 4) Track Dissemination Service. Oculus Sea Track Fusion Service adopts a system architecture where each sensor is associated with a Kalman estimator/tracker that obtains an estimate of the state vector and its respective error covariance matrix. Finally, at the fusion center, association and track state estimation fusion are carried out. The expected benefits of this system include multi-sensor information fusion, enhanced spatial resolution, and improved target detection.

  17. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  18. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  19. Vacuolar ATPase in Phagosome-Lysosome Fusion

    PubMed Central

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S.; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-01-01

    The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. PMID:25903133

  20. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  1. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  2. Stainless steel submerged arc weld fusion line toughness

    SciTech Connect

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  3. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  4. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  5. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  6. Multispectral bilateral video fusion.

    PubMed

    Bennett, Eric P; Mason, John L; McMillan, Leonard

    2007-05-01

    We present a technique for enhancing underexposed visible-spectrum video by fusing it with simultaneously captured video from sensors in nonvisible spectra, such as Short Wave IR or Near IR. Although IR sensors can accurately capture video in low-light and night-vision applications, they lack the color and relative luminances of visible-spectrum sensors. RGB sensors do capture color and correct relative luminances, but are underexposed, noisy, and lack fine features due to short video exposure times. Our enhanced fusion output is a reconstruction of the RGB input assisted by the IR data, not an incorporation of elements imaged only in IR. With a temporal noise reduction, we first remove shot noise and increase the color accuracy of the RGB footage. The IR video is then normalized to ensure cross-spectral compatibility with the visible-spectrum video using ratio images. To aid fusion, we decompose the video sources with edge-preserving filters. We introduce a multispectral version of the bilateral filter called the "dual bilateral" that robustly decomposes the RGB video. It utilizes the less-noisy IR for edge detection but also preserves strong visible-spectrum edges not in the IR. We fuse the RGB low frequencies, the IR texture details, and the dual bilateral edges into a noise-reduced video with sharp details, correct chrominances, and natural relative luminances. PMID:17491451

  7. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  8. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  9. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  10. Laser inertial fusion dry-wall materials response to pulsed ions at power-plant level fluences

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Tanaka, T. J.; Olson, C. L.; Peterson, R. R.; Knowles, T. R.

    2004-08-01

    Pulses of MeV-level ions with fluences of up to 20 J/cm 2 can be expected to impinge on the first-wall of future laser-driven Inertial Fusion Energy (IFE) power plants. To simulate the effect of these ions, we have exposed candidate dry-wall materials to ion pulses from RHEPP-1, located at Sandia National Laboratories. Various forms of tungsten and tungsten alloy were exposed to up to 1000 pulses, with some samples heated to 600 °C. Thresholds for roughening and material removal, and evolution of surface morphology were measured and compared with code predictions for materials response. Tungsten is observed to undergo surface roughening and subsurface crack formation that evolves over hundreds of pulses, and which can occur both below and above the melt threshold. Heating and Re-alloying mitigate, but do not eliminate, these apparently thermomechanically-caused effects. Use of a 3-D geometry, and/or use of the tungsten in thin-film form may offer improved survivability compared to bulk tungsten.

  11. Progress in Heavy Ion Fusion Research*

    NASA Astrophysics Data System (ADS)

    Celata, Christine

    2002-11-01

    The Heavy Ion Fusion program has recently transitioned from small scaled experiments to experiments with driver-scale currents at low energy. Two new experiments are in operation, the High Current Experiment (HCX), and the Neutralized Transport Experiment (NTX). The space charge in these experiments is similar to that of a driver, and enables investigation of the interaction of the beam with electrons, both those produced by beam halo scraping surfaces, and also electrons intentionally introduced to assist a neutralized focus. Other HIF-VNL experiments are being used to investigate a new approach to beam injectors. At the University of Maryland, an electron ring is being used to explore transport issues of interest. The design of all of these experiments, their goals, and recent experimental results and computer simulation, will be described. Future programmatic plans for Heavy Ion Fusion will also be discussed, including the scientific objectives and physics design of a proposed new next-step proof-of-principle experiment for Heavy Ion Fusion, the Integrated Beam Experiment (IBX). This experiment would constitute an integrated source-to-target test of beam dynamics using a driver-scale beam. Many beam manipulations, such as drift compression (integrated with final focus and subsequent neutralization), long-length-scale transport, longitudinal wave dynamics, and bending of space-charge-dominated beams would be tested at scale for the first time in this experiment. Finally, the programmatic importance, parameters, and scientific mission of a proof-of-performance experiment, the Integrated Research Experiment, will be discussed.

  12. Multi-sensor fusion development

    NASA Astrophysics Data System (ADS)

    Bish, Sheldon; Rohrer, Matthew; Scheffel, Peter; Bennett, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) and McQ Inc. are developing a generic sensor fusion architecture that involves several diverse processes working in combination to create a dynamic task-oriented, real-time informational capability. Processes include sensor data collection, persistent and observational data storage, and multimodal and multisensor fusion that includes the flexibility to modify the fusion program rules for each mission. Such a fusion engine lends itself to a diverse set of sensing applications and architectures while using open-source software technologies. In this paper, we describe a fusion engine architecture that combines multimodal and multi-sensor fusion within an Open Standard for Unattended Sensors (OSUS) framework. The modular, plug-and-play architecture of OSUS allows future fusion plugin methodologies to have seamless integration into the fusion architecture at the conceptual and implementation level. Although beyond the scope of this paper, this architecture allows for data and information manipulation and filtering for an array of applications.

  13. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  14. The quest for fusion power

    NASA Astrophysics Data System (ADS)

    Cowley, Steven C.

    2016-05-01

    Fusion power is one of a very few sustainable options to replace fossil fuels as the world's primary energy source. Although the conditions for fusion have been reached, much remains to be done to turn scientific success into commercial electrical power.

  15. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  16. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Cold fusion; Myth versus reality

    SciTech Connect

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  18. Sensor fusion for intelligent behavior on small unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Kogut, G.; Ahuja, G.; Sights, B.; Pacis, E. B.; Everett, H. R.

    2007-04-01

    Sensors commonly mounted on small unmanned ground vehicles (UGVs) include visible light and thermal cameras, scanning LIDAR, and ranging sonar. Sensor data from these sensors is vital to emerging autonomous robotic behaviors. However, sensor data from any given sensor can become noisy or erroneous under a range of conditions, reducing the reliability of autonomous operations. We seek to increase this reliability through data fusion. Data fusion includes characterizing the strengths and weaknesses of each sensor modality and combining their data in a way such that the result of the data fusion provides more accurate data than any single sensor. We describe data fusion efforts applied to two autonomous behaviors: leader-follower and human presence detection. The behaviors are implemented and tested in a variety of realistic conditions.

  19. Initial trade and design studies for the fusion engineering device

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description.

  20. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  1. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  2. Bayesian information fusion networks for biosurveillance applications.

    PubMed

    Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S

    2009-01-01

    This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.

  3. Deployment of membrane fusion protein domains during fusion.

    PubMed

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  4. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  5. Magnetic fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  6. Information integration for data fusion

    SciTech Connect

    Bray, O.H.

    1997-01-01

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  7. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  8. Distributed data fusion across multiple hard and soft mobile sensor platforms

    NASA Astrophysics Data System (ADS)

    Sinsley, Gregory

    is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in

  9. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  10. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  11. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  12. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  13. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  14. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  15. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  16. The VariLift® Interbody Fusion System: expandable, standalone interbody fusion

    PubMed Central

    Emstad, Erik; del Monaco, Diana Cardenas; Fielding, Louis C; Block, Jon E

    2015-01-01

    Intervertebral fusion cages have been in clinical use since the 1990s. Cages offer the benefits of bone graft containment, restored intervertebral and foraminal height, and a more repeatable, stable procedure compared to interbody fusion with graft material alone. Due to concerns regarding postoperative stability, loss of lordosis, and subsidence or migration of the implant, interbody cages are commonly used with supplemental fixation such as pedicle screw systems or anterior plates. While providing additional stability, supplemental fixation techniques increase operative time, exposure, cost, and morbidity. The VariLift® Interbody Fusion System (VariLift® system) has been developed as a standalone solution to provide the benefits of intervertebral fusion cages without the requirement of supplemental fixation. The VariLift® system, FDA-cleared for standalone use in both the cervical and lumbar spine, is implanted in a minimal profile and then expanded in situ to provide segmental stability, restored lordosis, and a large graft chamber. Preclinical testing and analyses have found that the VariLift® System is durable, and reduces stresses that may contribute to subsidence and migration of other standalone interbody cages. Fifteen years of clinical development with the VariLift® system have demonstrated positive clinical outcomes, continued patient maintenance of segmental stability and lordosis, and no evidence of implant migration. The purpose of this report is to describe the VariLift® system, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The VariLift® System represents an improved surgical option for a stable interbody fusion without requiring supplemental fixation. PMID:26060414

  17. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0 MJ of light at the fundamental wavelength of 1053 nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications. The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus

  18. Fission-fusion neutron source

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  19. Poxvirus entry and membrane fusion

    SciTech Connect

    Moss, Bernard . E-mail: bmoss@nih.gov

    2006-01-05

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  20. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

    PubMed Central

    Zawada, Katarzyna E.; Wrona, Dominik; Rawle, Robert J.; Kasson, Peter M.

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  1. Safety assessment for the rf Test Facility

    SciTech Connect

    Nagy, A.; Beane, F.

    1984-08-01

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

  2. A charged fusion product diagnostic for a spherical tokamak

    NASA Astrophysics Data System (ADS)

    Perez, Ramona Leticia Valenzuela

    Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are

  3. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  4. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGESBeta

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  5. Pubertal growth and epiphyseal fusion

    PubMed Central

    2015-01-01

    The complex networks of nutritional, cellular, paracrine, and endocrine factors are closely related with pubertal growth and epiphyseal fusion. Important influencing factors include chondrocyte differentiation capacity, multiple molecular pathways active in the growth plate, and growth hormone-insulin-like growth factor-I axis activation and epiphyseal fusion through estrogen and its receptors. However, the exact mechanisms of these phenomena are still unclear. A better understanding of the detailed processes involved in the pubertal growth spurt and growth plate closure in longitudinal bone growth will help us develop methods to efficiently promote pubertal growth and delay epiphyseal fusion with fewer adverse effects. PMID:25883921

  6. The path to fusion power†

    PubMed Central

    Smith, Chris Llewellyn; Cowley, Steve

    2010-01-01

    The promise, status and challenges of developing fusion power are outlined. The key physics and engineering principles are described and recent progress quantified. As the successful demonstration of 16 MW of fusion in 1997 in the Joint European Torus showed, fusion works. The central issue is therefore to make it work reliably and economically on the scale of a power station. We argue that to meet this challenge in 30 years we must follow the aggressive programme known as the ‘Fast Track to Fusion’. This programme is described in some detail. PMID:20123748

  7. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  8. On the reversibility of mandibular symphyseal fusion.

    PubMed

    Scott, Jeremiah E; Lack, Justin B; Ravosa, Matthew J

    2012-09-01

    Experimental and comparative studies suggest that a major determinant of increased ossification of the mandibular symphysis is elevated masticatory stress related to a mechanically challenging diet. However, the morphology of this joint tracks variation in dietary properties in only some mammalian clades. Extant anthropoid primates are a notable exception: synostosis is ubiquitous in this speciose group, despite its great age and diverse array of feeding adaptations. One possible explanation for this pattern is that, once synostosis evolves, reversion to a lesser degree of fusion is unlikely or even constrained. If correct, this has important implications for functional and phylogenetic analyses of the mammalian feeding apparatus. To test this hypothesis, we generated a molecular tree for 76 vespertilionoid and noctilionoid chiropterans using Bayesian phylogenetic analysis and examined character evolution using parsimony and likelihood ancestral-state reconstructions along with the binary state speciation and extinction (BiSSE) model. Results indicate that reversals have occurred within Vespertilionoidea. In contrast, noctilionoids exhibit an anthropoid-like pattern, which suggests that more detailed comparisons of the functional and developmental bases for fusion in these bat clades may provide insight into why fusion is maintained in some lineages but not in others. Potential functional and developmental explanations for the lack of reversal are discussed. PMID:22946814

  9. Sensor fusion for improved indoor navigation

    NASA Astrophysics Data System (ADS)

    Emilsson, Erika; Rydell, Joakim

    2012-09-01

    A reliable indoor positioning system providing high accuracy has the potential to increase the safety of first responders and military personnel significantly. To enable navigation in a broad range of environments and obtain more accurate and robust positioning results, we propose a multi-sensor fusion approach. We describe and evaluate a positioning system, based on sensor fusion between a foot-mounted inertial measurement unit (IMU) and a camera-based system for simultaneous localization and mapping (SLAM). The complete system provides accurate navigation in many relevant environments without depending on preinstalled infrastructure. The camera-based system uses both inertial measurements and visual data, thereby enabling navigation also in environments and scenarios where one of the sensors provides unreliable data during a few seconds. When sufficient light is available, the camera-based system generally provides good performance. The foot-mounted system provides accurate positioning when distinct steps can be detected, e.g., during walking and running, even in dark or smoke-filled environments. By combining the two systems, the integrated positioning system can be expected to enable accurate navigation in almost all kinds of environments and scenarios. In this paper we present results from initial tests, which show that the proposed sensor fusion improves the navigation solution considerably in scenarios where either the foot-mounted or camera-based system is unable to navigate on its own.

  10. ITER project and fusion technology

    NASA Astrophysics Data System (ADS)

    Takatsu, H.

    2011-09-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R&D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  11. FED-R: a fusion engineering device utilizing resistive magnets

    SciTech Connect

    Jassby, D.L.; Kalsi, S.S.

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  12. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  13. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  14. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  15. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  16. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  17. Prospects for fusion: The winds of change

    NASA Astrophysics Data System (ADS)

    Davidson, R. C.

    This paper addresses the following topics: (1) national energy circumstances and policy, and the implications for fusion; (2) the intrinsic merit of fusion research and development as it contributes to the national science and technology base; (3) the research opportunities and priorities in inertial confinement fusion; and (4) the research opportunities and priorities in magnetic fusion.

  18. Thermal Studies of the Laser Inertial Fusion Energy (LIFE) Target during Injection into the Fusion Chamber

    SciTech Connect

    Miles, R. R.; Havstad, M.; LeBlanc, M.; Chang, A.; Golosker, I.; Rosso, P.

    2014-09-09

    The tests of the external heat transfer coefficient suggests that the values used in the numerical analysis for the temperature distribution within the fusion fuel target following flight into the target chamber are probably valid. The tests of the heat transfer phenomena occurring within the target due the rapid heating of the LEH window for the hot gasses within the fusion chamber show that the heat does indeed convect via the internal helium environment of the target towards the capsule and that the pressure in the front compartment of the target adjacent to the LEH window increases such that t bypass venting of the internal helium into the second chamber adjacent to the capsule is needed to prevent rupture of the membranes. The bypass flow is cooled by the hohlraum during this venting. However, the experiments suggest that our internal heat flow calculations may be low by about a factor of 2. Further studies need to be conducted to investigate the differences between the experiment and the numerical analysis. Future studies could also possibly bring the test conditions closer to those expected in the fusion chamber to better validate the results. A sacrificial layer will probably be required on the LEH window of the target and this can be used to mitigate any unexpected target heating.

  19. Isomer ratio measurements as a probe of the dynamics of breakup and incomplete fusion

    SciTech Connect

    Gasques, L. R.; Dasgupta, M.; Hinde, D. J.; Peatey, T.; Diaz-Torres, A.; Newton, J. O.

    2006-12-15

    The incomplete fusion mechanism following breakup of {sup 6,7}Li and {sup 9}Be projectiles incident on targets of {sup 209}Bi and {sup 208}Pb is investigated through isomer ratio measurements for the {sup 212}At and {sup 211}Po products. The phenomenological analysis presented in this paper indicates that incomplete fusion brings relatively more angular momentum into the system than equivalent reactions with a direct beam of the fused fragment. This is attributed to the trajectories of breakup fragments. Calculations with a 3D classical trajectory model support this. Isomer ratio measurements for incomplete fusion reactions can provide a test of new theoretical models of breakup and fusion.

  20. A framework for weighted fusion of multiple statistical models of shape and appearance.

    PubMed

    Butakoff, Constantine; Frangi, Alejandro F

    2006-11-01

    This paper presents a framework for weighted fusion of several Active Shape and Active Appearance Models. The approach is based on the eigenspace fusion method proposed by Hall et al., which has been extended to fuse more than two weighted eigenspaces using unbiased mean and covariance matrix estimates. To evaluate the performance of fusion, a comparative assessment on segmentation precision as well as facial verification tests are performed using the AR, EQUINOX, and XM2VTS databases. Based on the results, it is concluded that the fusion is useful when the model needs to be updated online or when the original observations are absent. PMID:17063688