Estimation of polyclonal IgG4 hybrids in normal human serum.
Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F
2014-07-01
The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.
Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Jiao, Jin-an; Kasinathan, Poothappillai; Sullivan, Eddie J.; Wang, Zhongde; Kuroiwa, Yoshimi
2014-01-01
Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs) in transchromosomic (Tc) cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin (Ig) heavy-chain (hIGH), kappa-chain (hIGK), and lambda-chain (hIGL) germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM−/−, bIGHML1−/−; double knockouts or DKO). However, because endogenous bovine immunoglobulin light chain loci are still intact, the light chains are produced both from the hIGK and hIGL genomic loci on the HAC and from the endogenous bovine kappa-chain (bIGK) and lambda-chain (bIGL) genomic loci, resulting in the production of fully hIgGs (both Ig heavy-chains and light-chains are of human origin: hIgG/hIgκ or hIgG/hIgλ) and chimeric hIgGs (Ig heavy-chains are of human origin while the Ig light-chains are of bovine origin: hIgG/bIgκ or hIgG/bIgλ). To improve fully hIgG production in Tc cattle, we here report the deletion of the entire bIGL joining (J) and constant (C) gene cluster (bIGLJ1-IGLC1 to bIGLJ5-IGLC5) by employing Cre/loxP mediated site-specific chromosome recombination and the production of triple knockout (bIGHM−/−, bIGHML1−/− and bIGL−/−; TKO) Tc cattle. We further demonstrate that bIGL cluster deletion greatly improves fully hIgGs production in the sera of TKO Tc cattle, with 51.3% fully hIgGs (hIgG/hIgκ plus hIgG/hIgλ). PMID:24603704
Colino, Jesus; Outschoorn, Ingrid
2004-01-01
The capsular polysaccharide of Neisseria meningitidis group B (CpsB) is a very poor immunogen in mammals; this has been considered to be due to the induction of tolerance to cross-reactive host glycoconjugates. It has hampered the development of an effective vaccine against this meningococcal group for many years. Syngeneic populations have a similar tolerogenic background. Thus, we used the variability in ability to mount CpsB-specific immunoglobulin (Ig) responses of individuals from these populations to reveal underlying mechanisms to tolerance contributing to the poor immunogenicity of CpsB. Here we analyze by ELISA, the individual CpsB-specific Ig response of BALB/c and other syngeneic mice to immunization with intact bacteria, using the distribution of light chains as a direct indicator of the repertoire dynamics of the response. Although approximately 96% of anti-CpsB Ig bear kappa-light chains, BALB/c mouse populations were heterogeneous in the light chain composition of their individual anti-CpsB Ig responses. The proportion of kappa and lambda-light chains used for anti-CpsB Ig was a private characteristic that remained relatively constant, for each individual, through repetitive immunizations regardless of the bacterial stimuli size. Despite the prevalence of individual use of kappa-light chains, 5% of BALB/c mice showed restricted usage of lambda-light chains in their CpsB-specific Ig responses, and an additional 11% use them significantly. The preferential use of lambda-light chains in these mice was strongly associated with defective IgM, and absent or barely detectable IgG anti-CpsB responses even after repetitive bacterial immunization. We conclude that differences in the private repertoire of specific Ig also contribute to mouse unresponsiveness to CpsB.
Cysteine Racemization on IgG Heavy and Light Chains
Zhang, Qingchun; Flynn, Gregory C.
2013-01-01
Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697
Chi, Jiaqi; You, Leiming; Li, Peipei; Teng, Man; Zhang, Gaiping; Luo, Jun; Wang, Aiping
2018-04-01
Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.
Gadermaier, Elisabeth; Flicker, Sabine; Lupinek, Christian; Steinberger, Peter; Valenta, Rudolf
2013-04-01
Affinity and clonality of allergen-specific IgE antibodies are important determinants for the magnitude of IgE-mediated allergic inflammation. We sought to analyze the contribution of heavy and light chains of human allergen-specific IgE antibodies for allergen specificity and to test whether promiscuous pairing of heavy and light chains with different allergen specificity allows binding and might affect affinity. Ten IgE Fabs specific for 3 non-cross-reactive major timothy grass pollen allergens (Phl p 1, Phl p 2, and Phl p 5) obtained by means of combinatorial cloning from patients with grass pollen allergy were used to construct stable recombinant single chain variable fragments (ScFvs) representing the original Fabs and shuffled ScFvs in which heavy chains were recombined with light chains from IgE Fabs with specificity for other allergens by using the pCANTAB 5 E expression system. Possible ancestor genes for the heavy chain and light chain variable region-encoding genes were determined by using sequence comparison with the ImMunoGeneTics database, and their chromosomal locations were determined. Recombinant ScFvs were tested for allergen specificity and epitope recognition by means of direct and sandwich ELISA, and affinity by using surface plasmon resonance experiments. The shuffling experiments demonstrate that promiscuous pairing of heavy and light chains is possible and maintains allergen specificity, which is mainly determined by the heavy chains. ScFvs consisting of different heavy and light chains exhibited different affinities and even epitope specificity for the corresponding allergen. Our results indicate that allergen specificity of allergen-specific IgE is mainly determined by the heavy chains. Different heavy and light chain pairings in allergen-specific IgE antibodies affect affinity and epitope specificity and thus might influence clinical reactivity to allergens. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Biaz, A; Uwingabiye, J; Rachid, A; Dami, A; Bouhsain, S; Ouzzif, Z; Idrissi, S El Machtani
2018-06-01
We report a case of immunoglobulin (Ig) D myeloma with hidden lambda light chains in a patient whose immunofixation test was very difficult to interpret: the IgD reacts with the anti-δ heavy chain antiserum but does not react with anti-lambda antiserum. The band in the D heavy chain lane is unmatched in light chain lanes and the band in lambda light chain lane migrates higher. To distinguish between heavy chain disease and immunoglobulin with "hidden" light chains, the sample was exposed to a very high concentration of anti-lambda and anti-kappa antisera for 48 hours. The serum immunofixation test of the sample treated with anti-lambda showed a decrease in the intensity of the band corresponding to D heavy chain lane as well as the modification of its mobility confirming the presence of IgD with the hidden lambda light chains. The IgD myeloma with hidden light chains remains a rare entity, hence the interest of sensitizing health professionals to be vigilant and ensure a good diagnosis. The proposed technique is useful, simple, reliable, and less laborious than those previous reported in the literature. Medical laboratories using Sebia-Hydrasys® system should be aware of the described phenomenon in order to avoid identifying an IgD myeloma as a delta heavy chain disease.
Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus
Fraser, Louise D.; Zhao, Yuan; Lutalo, Pamela M. K.; D'Cruz, David P.; Cason, John; Silva, Joselli S.; Dunn‐Walters, Deborah K.; Nayar, Saba; Cope, Andrew P.
2015-01-01
The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. PMID:26036683
Priyamvada, P S; Morkhandikar, S; Srinivas, B H; Parameswaran, S
2015-01-01
Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig) light chains. In heavy chain amyloidosis (AH), deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL), the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda) AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.
Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus.
Fraser, Louise D; Zhao, Yuan; Lutalo, Pamela M K; D'Cruz, David P; Cason, John; Silva, Joselli S; Dunn-Walters, Deborah K; Nayar, Saba; Cope, Andrew P; Spencer, Jo
2015-08-01
The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse.
Tallmadge, Rebecca L; Tseng, Chia T; Felippe, M Julia B
2014-10-01
To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire. Copyright © 2014 Elsevier Ltd. All rights reserved.
Association of immunoglobulin G4 and free light chain with idiopathic pleural effusion.
Murata, Y; Aoe, K; Mimura-Kimura, Y; Murakami, T; Oishi, K; Matsumoto, T; Ueoka, H; Matsunaga, K; Yano, M; Mimura, Y
2017-10-01
The cause of pleural effusion remains uncertain in approximately 15% of patients despite exhaustive evaluation. As recently described immunoglobulin (Ig)G4-related disease is a fibroinflammatory disorder that can affect various organs, including the lungs, we investigate whether idiopathic pleural effusion includes IgG4-associated etiology. Between 2000 and 2012, we collected 830 pleural fluid samples and reviewed 35 patients with pleural effusions undiagnosed after pleural biopsy at Yamaguchi-Ube Medical Center. Importantly, IgG4 immunostaining revealed infiltration of IgG4-positive plasma cells in the pleura of 12 patients (34%, IgG4 + group). The median effusion IgG4 level was 41 mg/dl in the IgG4 + group and 27 mg/dl in the IgG4 - group (P < 0·01). The light and heavy chains of effusion IgG4 antibodies of patients in the IgG4 + group were heterogeneous by two-dimensional electrophoresis, indicating the absence of clonality of the IgG4 antibodies. Interestingly, the κ light chains were more heterogeneous than the λ light chains. The measurement of the κ and λ free light chain (FLC) levels in the pleural fluids showed significantly different κ FLC levels (median: 28·0 versus 9·1 mg/dl, P < 0·01) and κ/λ ratios (median: 2·0 versus 1·2, P < 0·001) between the IgG4 + and IgG4 - groups. Furthermore, the κ/λ ratios were correlated with the IgG4 + /IgG + plasma cell ratios in the pleura of the IgG4 + group. Taken together, these results demonstrate the involvement of IgG4 in certain idiopathic pleural effusions and provide insights into the diagnosis, pathogenesis and therapeutic opportunities of IgG4-associated pleural effusion. © 2017 British Society for Immunology.
Effect of light chain V region duplication on IgG oligomerization and in vivo efficacy.
Shuford, W; Raff, H V; Finley, J W; Esselstyn, J; Harris, L J
1991-05-03
A human immunoglobulin G1 (IgG1) antibody oligomer was isolated from a transfected myeloma cell line that produced a monoclonal antibody to group B streptococci. Compared to the IgG1 monomer, the oligomer was significantly more effective at protecting neonatal rats from infection in vivo. The oligomer was also shown to cross the placenta and to be stable in neonatal rats. Immunochemical analysis and complementary DNA sequencing showed that the transfected cell line produced two distinct kappa light chains: a normal light chain (Ln) with a molecular mass of 25 kilodaltons and a 37-kilodalton species (L37), the domain composition of which was variable-variable-constant (V-V-C). Cotransfection of vectors encoding the heavy chain and L37 resulted in production of oligomeric IgG.
Grier, David D; Al-Quran, Samer Z; Cardona, Diana M; Li, Ying; Braylan, Raul C
2012-01-01
The diagnosis of B-cell lymphoma (BCL) is often dependent on the detection of clonal immunoglobulin (Ig) light chain expression. In some BCLs, the determination of clonality based on Ig light chain restriction may be difficult. The aim of our study was to assess the utility of flow cytometric analysis of surface Ig heavy chain (HC) expression in lymphoid tissues in distinguishing lymphoid hyperplasias from BCLs, and also differentiating various BCL subtypes. HC expression on B-cells varied among different types of hyperplasias. In follicular hyperplasia, IgM and IgD expression was high in mantle cells while germinal center cells showed poor HC expression. In other hyperplasias, B cell compartments were blurred but generally showed high IgD and IgM expression. Compared to hyperplasias, BCLs varied in IgM expression. Small lymphocytic lymphomas had lower IgM expression than mantle cell lymphomas. Of importance, IgD expression was significantly lower in BCLs than in hyperplasias, a finding that can be useful in differentiating lymphoma from reactive processes. PMID:22400070
Preparation and mass spectrometric study of egg yolk antibody (IgY) against rabies virus.
Sun, S; Mo, W; Ji, Y; Liu, S
2001-01-01
Rabies virus was used as the antigen to immunize laying chickens. Anti-rabies virus immunoglobulin Y(IgY) was isolated from yolks of the eggs laid by these chickens using a two-step salt precipitation and one-step gel filtration protocol. The purified IgY was reduced with dithiothreitol, and heavy chains (HC) and light chains (LC) were obtained. In addition, the purified IgY was digested with pepsin and the fragment with specific antigen binding properties (Fab) was produced. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS), the average molecular weights of IgY, HC, LC, and Fab were determined as 167 250, 65 105, 18 660, and 45,359 Da, respectively. IgY has two structural differences compared with mammalian IgGs. First, the molecular weight of the heavy chain of IgY is larger than that of its mammalian counterpart, while the molecular weight of the light chain of IgY is smaller. Second, upon pepsin digestion, anti-rabies virus IgY is degraded into Fab, in contrast to mammalian IgG, which has been reported to be degraded into F(ab')(2) under the same conditions. Copyright 2001 John Wiley & Sons, Ltd.
The generation and selection of single-domain, v region libraries from nurse sharks.
Flajnik, Martin F; Dooley, Helen
2009-01-01
The cartilaginous fish (sharks, skates, and rays) are the oldest phylogenetic group in which a human-type adaptive immune system and immunoglobulins (Igs) have been found. In addition to their conventional (heavy-light chain heterodimeric) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy chain homodimer that does not associate with light chains. Instead, its variable (V) regions act as independent, soluble units in order to bind antigen. In this chapter, we detail our immunization protocol in order to raise a humoral IgNAR response in the nurse shark (Ginglymostoma cirratum) and the subsequent cloning of the single-domain V regions from this isotype in order to select antigen-specific binders by phage display.
How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP.
Belov, Sergey; Buneva, Valentina N; Nevinsky, Georgy A
2017-10-01
Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (K d = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10 -1 to 2.3 × 10 -4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (K d , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins. Copyright © 2017 John Wiley & Sons, Ltd.
Rodgers, Maria L; Rice, Charles D
2018-05-19
Serum from loggerhead sea turtles, Caretta caretta, was collected from the southeast Atlantic Ocean during routine summer monitoring studies in 2017. Serum immunoglobulin IgY was purified and used to develop IgY isoform-specific monoclonal antibodies (mAb). mAb LH12 was developed against the 66 kDa heavy chain of IgY, mAb LH1 was developed against the truncated heavy chain of approximately 37 kDA, and mAb LH9 was developed against the 23 kDa light chains. mAb LH9 reacts with the light chains of all sea turtles, mAb LH12 reacts with the long heavy chain of all sea turtles within the family Cheloniidae, and mAb LH1 reacts with the truncated form of IgY in both olive and Kemp's ridley turtles. Circulating IgY antibodies against three different marine bacterial pathogens were determined in 16 loggerhead samples using these mAbs. mAb LH12 detects higher titers than mAb LH1, and mAb LH9 detects the highest titers. Copyright © 2018 Elsevier Ltd. All rights reserved.
De Santis, Elena; Masi, Serena; Cordone, Iole; Pisani, Francesco; Zuppi, Cecilia; Mattei, Fabrizio; Conti, Laura; Cigliana, Giovanni
2016-01-01
Immunoglobulin (Ig)D-κ multiple myeloma (MM) is a rare neoplastic disease characterized by an aggressive and rapidly progressing course, which constitutes only a very small proportion of all MM cases. In the present report, the clinical case of a 51-year-old Caucasian woman diagnosed with IgD-κ MM is described. The patient underwent different chemotherapeutic treatments subsequently to a single autologous stem cell transplantation. Despite the inherent difficulty of monitoring IgD levels and performing serum immunofixation electrophoresis, the clinical outcome of the patient was almost uniquely monitored by measuring the levels of κ and λ free light chains (FLCs) and total heavy chain IgD. The data suggest the non-invasive potential and usefulness of FLCs evaluation for early detection of stringent complete remission, follow-up and early detection of disease relapse. In addition, this diagnostic procedure has successfully been employed for the therapeutic monitoring of the present patient, and may represent a very helpful, non-invasive tool for the follow-up of IgD myeloma patients without the requirement of serial bone marrow aspirate. PMID:27588135
Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies
Klein, Christian; Sustmann, Claudio; Thomas, Markus; Stubenrauch, Kay; Croasdale, Rebecca; Schanzer, Jürgen; Brinkmann, Ulrich; Kettenberger, Hubert; Regula, Jörg T.; Schaefer, Wolfgang
2012-01-01
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress. PMID:22925968
Lambda light chain revision in the human intestinal IgA response.
Su, Wen; Gordon, John N; Barone, Francesca; Boursier, Laurent; Turnbull, Wayne; Mendis, Surangi; Dunn-Walters, Deborah K; Spencer, Jo
2008-07-15
Revision of Ab L chains by secondary rearrangement in mature B cells has the potential to change the specific target of the immune response. In this study, we show for the first time that L chain revision is normal and widespread in the largest Ab producing population in man: intestinal IgA plasma cells (PC). Biases in the productive and non-productive repertoire of lambda L chains, identification of the circular products of rearrangement that have the characteristic biases of revision, and identification of RAG genes and protein all reflect revision during normal intestinal IgA PC development. We saw no evidence of IgH revision, probably due to inappropriately orientated recombination signal sequences, and little evidence of kappa-chain revision, probably due to locus inactivation by the kappa-deleting element. We propose that the lambda L chain locus is available and a principal modifier and diversifier of Ab specificity in intestinal IgA PCs.
Sedykh, Sergey E; Lekchnov, Evgenii A; Prince, Viktor V; Buneva, Valentina N; Nevinsky, Georgy A
2016-10-20
In the classic paradigm, immunoglobulins represent products of clonal B cell populations, each producing antibodies recognizing a single antigen (monospecific). There is a common belief that IgGs in mammalian biological fluids are monospecific molecules having stable structures and two identical antigen-binding sites. But the issue concerning the possibility of exchange by HL-fragments between the antibody molecules in human blood is still unexplored. Different physico-chemical and immunological methods for analysis of half-molecule exchange between human blood IgGs were used. Using eighteen blood samples of healthy humans we have shown unexpected results for the first time: blood antibodies undergo extensive post-transcriptional half-molecule exchange and IgG pools on average consist of 62.4 ± 6.5% IgGs containing kappa light chains (kappa-kappa-IgGs), 29.8.6 ± 5.4% lambda light chains (lambda-lambda-IgGs), and 8.8 ± 2.7% (range 2.6-16.8%) IgGs containing both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained on average (%): IgG1 (36.0 and 32.3), IgG2 (50.9 and 51.4), IgG3 (9.7 and 9.9), and IgG4 (6.5 and 5.7), while chimeric kappa-lambda-IgGs consisted of (%): 25.5 ± 4.2 IgG1, 50.8 ± 3.9 IgG2, 9.1 ± 2.1 IgG3, and 14.5 ± 2.2 IgG4. Our unexpected data are indicative of the possibility of half-molecule exchange between blood IgGs of various subclasses, raised against different antigens. The existence of blood chimeric bifunctional IgGs with different binding sites destroys the classic paradigm. Due to the phenomenon of polyspecificity and cross-reactivity of bifunctional IgGs containing HL-fragments of different types to different antigens, such IgGs may be important in human blood for widening their different biological functions.
Matsuo, Toshihiko; Ichimura, Kouichi; Yoshino, Tadashi
2011-01-01
In 2000, a 48-year-old woman developed a left orbital mass with lacrimal gland involvement and then, in 2003, a right orbital mass with lacrimal gland involvement, both of which were diagnosed as extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). She underwent 30 Gy external beam radiation to bilateral orbital lesions. The lymphoma cells in both lesions did not share the same clonality, as shown by amplification by polymerase chain reaction of the immunoglobulin heavy chain gene. Immunoglobulin light chain analysis by immunohistochemistry and messenger RNA in situ hybridization showed λ chain monotype in the left orbital lesion but κ chain monotype in the right orbital lesion. She developed recurrent left orbital mass with high uptake on fluorodeoxyglucose positron emission tomography fused with computed tomography in 2010, and excisional biopsy disclosed the formation of follicles and infiltration with immunoglobulin G4 (IgG4)-positive plasma cells mainly in interfollicular areas. The immunoglobulin light chain analysis showed the λ chain and κ chain bitype. With the immunohistopathological diagnosis of IgG4-related disease, the serum IgG4 level was found to show elevation at 376 mg/dL, and the patient chose observation. This is the first reported case of development of IgG4-related disease after bilataral orbital MALT lymphoma with external beam radiotherapy.
Altered antigenicity of human monoclonal antibodies derived from human-mouse heterohybridomas.
Kan-Mitchell, J; Andrews, K L; Gallardo, D; Mitchell, M S
1987-04-01
We have generated milligram quantities of human monoclonal antibodies (Hu-MAbs) in the ascites of pristane-primed nude mice injected with human-mouse heterohybridomas. After contaminating mouse immunoglobulins were removed by affinity chromatography, an enzyme immunosorbent assay (EIA) was used to measure the concentrations of human immunoglobulins. Ten different partially purified preparations were tested. The titration curves with all 5 IgG Hu-MAbs were unusual, reaching a plateau at a very low apparent maximum concentration of antibody. In contrast, the EIA yielded more usual titration curves and thus apparently more reliable estimates of the concentrations of 4 IgM and 1 IgA monoclonal antibodies. An analogous EIA for the quantitation of mouse IgG monoclonal antibodies also gave accurate estimates. To understand the nature of the discrepancy with human IgG, 5 Hu-MAbs of the 3 classes (2 IgG, 2 pentameric IgM and 1 IgA) were purified to homogeneity for a more detailed analysis. The inability to quantitate the human IgG monoclonal antibodies by EIA was not due to defective molecules, as shown by SDS polyacrylamide gel electrophoresis. The human IgG monoclonal antibodies were found to consist of intact heavy and light chains, as were the IgM and IgA antibodies. The possibility that the human IgG monoclonal antibodies differed antigenically from polyclonal IgG was explored by comparing the concentrations by EIA with the protein concentrations determined by absorbance at 280 nm. This analysis permitted a comparison of the detectability of antigenic determinants on Hu-MAbs with those on polyclonal Ig with goat antibodies to Ig or Ig subclass. The IgG monoclonal antibodies differed from polyclonal IgG in both their heavy and light chains. Goat antiserum monospecific for the gamma chain in fact underestimated the concentration by as much as one hundred-fold. IgM and IgA monoclonal antibodies were less antigenically distinct from their polyclonal counterparts even though their light chains were also underestimated, because goat monospecific antibodies were more efficient at recognizing their heavy chains. The molecular basis for the observed difference in antigenicity is not yet known. These findings have important implications for the analysis of the binding of IgG Hu-MAbs. A direct binding assay with the label directly conjugated to the Hu-MAb should be used in preference to an indirect assay with a labeled detecting antibody to maximize the sensitivity of the assay. The altered antigenicity of IgG Hu-MAbs may also imply decreased immunogenicity when they are given in vivo as carriers for radionuclides or cytotoxic antitumor materials.
Lu, Yan; Zhang, Chenglin; Wu, Xiaobing; Han, Haitang; Zhao, Yaofeng; Ren, Liming
2016-01-01
Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates. PMID:26901135
Light-induced Conversion of Trp to Gly and Gly Hydroperoxide in IgG1
Haywood, Jessica; Mozziconacci, Olivier; Allegre, Kevin M.; Kerwin, Bruce A.; Schöneich, Christian
2013-01-01
The exposure of IgG1 in aqueous solution to light with λ = 254 nm or λ > 295 nm yields products consistent with Trp radical cation formation followed by αC-βC cleavage of the Trp side chain. The resulting glycyl radicals are either reduced to Gly, or add oxygen prior to reduction to Gly hydroperoxide. Photoirradiation at λ = 254 nm targets Trp at positions 191 (light chain), 309 and 377 (heavy chain) while photoirradiation at λ > 295 nm targets Trp at position 309 (heavy chain). Mechanistically, the formation of Trp radical cations likely proceeds via photo-induced electron- or hydrogen-transfer to disulfide bonds, yielding thiyl radicals and thiols, where thiols may serve as reductants for the intermediary glycyl or glycylperoxyl radicals. PMID:23363477
Esiri, M M
1980-01-01
The immunoperoxidase method has been used to demonstrate the presence of immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of poliomyelitis. These cells were found in considerable numbers in the areas of damage during the acute phase, and persisted at the same sites, though in smaller numbers, during the convalescent phase for at least 8 months. Most of the positively stained cells were plasma cells. IgA was the commonest heavy chain type demonstrated, with lesser amounts also of IgG and, during the acute phase, IgM. In the acute phase more lambda than kappa light chain was demonstrated but in the convalescent phase this ratio was reversed. More light chain than heavy chain was demonstrable during the acute phase. The significance of these results is briefly discussed. Images Fig. 2 PMID:6771081
Oliveira, Isabela S; Cabral, Milena S; Jesus, Larissa S; Paraná, Raymundo; Atta, Ajax M; Sousa Atta, Maria Luiza B
2014-01-01
Hepatitis C virus (HCV) infects B-lymphocytes, provokes cellular dysfunction and causes lymphoproliferative diseases such as cryoglobulinemia and non-Hodgkin's B-cell lymphoma. In the present study, we investigated the serum levels of kappa and lambda free light chains (FLC) of immunoglobulins and the kappa/lambda FLC ratio in Brazilian patients with chronic HCV infection and cryoglobulinemia. We also analyzed the immunochemical composition of the cryoglobulins in these patients. Twenty-eight cryoglobulinemic HCV patients composed the target group, while 37 HCV patients without cryoglobulinemia were included as controls. The median levels of kappa and lambda FLC were higher in patients with cryoglobulinemia compared to controls (p=0.001 and p=0.003, respectively), but the kappa/lambda FLC ratio was similar in patients with and without cryoglobulinemia (p>0.05). The median FLC ratio was higher in HCV patients presenting with advanced fibrosis of the liver compared to HCV patients without fibrosis (p=0.004). Kappa and lambda FLC levels were strongly correlated with the IgA, IgG and IgM levels in the patients with cryoglobulinemia. In patients without cryoglobulinemia, the kappa FLC level was only correlated with the IgG level, whereas the lambda FLC were weakly correlated with the IgA, IgG and IgM levels. An immunochemical pattern of mixed cryoglobulins (MC), predominantly IgM, IgG, IgA and kappa light chain, was verified in these immune complexes. We concluded that HCV-infected patients presenting cryoglobulinemia have vigorous polyclonal B-lymphocyte activation due to chronic HCV infection and persistent immune stimulation. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Zhai, Linzhu; Zhao, Yuanyuan; Peng, Songguo; Zhu, Ke; Yu, Rongjian; Chen, Hailong; Lin, Tongyu; Lin, Lizhu
2016-12-01
There are limited data on serum total light chain (sTLC) in lymphoma and its relative role on the outcome of diffuse large B cell lymphoma (DLBCL) patients. Blood samples from 46 cases newly diagnosed with DLBCL were collected consecutively during chemotherapy to detect sTLC, IgG, IgA, and IgM levels. Clinical data and survival outcomes were analyzed according to the results of sTLC measurements. In summary, 22 patients (47.8 %) had abnormal k or λ light chain, respectively, and 6 patients (13.0 %) had both abnormal k and λ light chains before chemotherapy. Patients with elevated k light chain more frequently displayed multiple extra-nodal organ involvement (P = 0.01) and had an inferior overall survival (OS) (P = 0.041) and progression-free survival (PFS) (P = 0.044) compared to patients with normal level of k light chain. Furthermore, patients with elevated level of both k and λ also exhibited significant association with shorter OS (P = 0.002) and PFS (P = 0.009). Both elevated k alone and concurrent elevated k and λ had independent adverse effects on PFS (P = 0.031 and P = 0.019, respectively). sTLC level was reduced gradually by treatment in this study and reached the lowest point after the fourth cycle of chemotherapy, which was consistent with the disease behavior during chemotherapy. Considering the small sample size of this study, these results should be confirmed in a larger prospective study.
Daley, L. P.; Gagliardo, L. F.; Duffy, M. S.; Smith, M. C.; Appleton, J. A.
2005-01-01
Of the three immunoglobulin G (IgG) isotypes described to occur in camelids, IgG2 and IgG3 are distinct in that they do not incorporate light chains. These heavy-chain antibodies (HCAbs) constitute approximately 50% of the IgG in llama serum and as much as 75% of the IgG in camel serum. We have produced isotype-specific mouse monoclonal antibodies (MAbs) in order to investigate the roles of HCAbs in camelid immunity. Seventeen stable hybridomas were cloned, and three MAbs that were specific for epitopes on the γ chains of llama IgG1, IgG2, or IgG3 were characterized in detail. Affinity chromatography revealed that each MAb bound its isotype in solution in llama serum. The antibodies bound to the corresponding alpaca IgGs, to guanaco IgG1 and IgG2, and to camel IgG1. Interestingly, anti-IgG2 MAbs bound three heavy-chain species in llama serum, confirming the presence of three IgG2 subisotypes. Two IgG2 subisotypes were detected in alpaca and guanaco sera. The MAbs detected llama serum IgGs when they were bound to antigen in enzyme-linked immunosorbent assays and were used to discern among isotypes induced during infection with a parasitic nematode. Diseased animals, infected with Parelaphostrongylus tenuis, did not produce antigen-specific HCAbs; rather, they produced the conventional isotype, IgG1, exclusively. Our data document the utility of these MAbs in functional and physiologic investigations of the immune systems of New World camelids. PMID:15753251
Daley, L P; Gagliardo, L F; Duffy, M S; Smith, M C; Appleton, J A
2005-03-01
Of the three immunoglobulin G (IgG) isotypes described to occur in camelids, IgG2 and IgG3 are distinct in that they do not incorporate light chains. These heavy-chain antibodies (HCAbs) constitute approximately 50% of the IgG in llama serum and as much as 75% of the IgG in camel serum. We have produced isotype-specific mouse monoclonal antibodies (MAbs) in order to investigate the roles of HCAbs in camelid immunity. Seventeen stable hybridomas were cloned, and three MAbs that were specific for epitopes on the gamma chains of llama IgG1, IgG2, or IgG3 were characterized in detail. Affinity chromatography revealed that each MAb bound its isotype in solution in llama serum. The antibodies bound to the corresponding alpaca IgGs, to guanaco IgG1 and IgG2, and to camel IgG1. Interestingly, anti-IgG2 MAbs bound three heavy-chain species in llama serum, confirming the presence of three IgG2 subisotypes. Two IgG2 subisotypes were detected in alpaca and guanaco sera. The MAbs detected llama serum IgGs when they were bound to antigen in enzyme-linked immunosorbent assays and were used to discern among isotypes induced during infection with a parasitic nematode. Diseased animals, infected with Parelaphostrongylus tenuis, did not produce antigen-specific HCAbs; rather, they produced the conventional isotype, IgG1, exclusively. Our data document the utility of these MAbs in functional and physiologic investigations of the immune systems of New World camelids.
Rumfelt, L L; Avila, D; Diaz, M; Bartl, S; McKinney, E C; Flajnik, M F
2001-02-13
In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM(1gj), from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells ("germline-joined"). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H(1gj) in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H(1gj) chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM(1gj). Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system.
Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall
2013-01-01
Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210
Quantitation of bovine immunoglobulin isotypes and allotypes using monoclonal antibodies.
Williams, D J; Newson, J; Naessens, J
1990-03-01
A panel of 10 monoclonal antibodies specific for bovine immunoglobulins M, A, G1, G2 and light chains were produced and enzyme-linked immunosorbent assays developed to measure Ig levels in body fluids and culture supernatants using this panel of MAbs. An inhibition ELISA was accurate and sensitive for MAbs of high affinity, detecting levels as low as 10 ng ml-1 of IgM using a high-affinity MAb, IL-A50 (dissociation constant = 1.3 X 10(-11) M). For MAbs of lower affinity (KD of less than 0.25 X 10(-9) M) a sandwich ELISA was more sensitive, detecting 0.1-1.0 microgram ml-1 Ig, provided a conjugate of an anti-light chain MAb was used. Using these ELISA techniques, four pairs of MAbs specific for bovine IgM, IgA, IgG1 and IgG2 respectively, were screened on sera from over 100 cattle of different breeds to determine whether any detected a polymorphic epitope. MAbs IL-A30, IL-A60, IL-A66, IL-A71, IL-A72, IL-A73 and IL-A74 were shown to recognise monomorphic determinants on their respective heavy chains. In contrast, the epitope recognised on the mu-heavy chain by MAb IL-A50, which had previously been shown to be polymorphic, was found to be allelic and inherited under the control of a single gene, probably Cu.
[Advances in the study of natural small molecular antibody].
Zhu, Lei; Zhang, Da-peng
2012-10-01
Small molecule antibodies are naturally existed and well functioned but not structurally related to the conventional antibodies. They are only composed of heavy protein chains or light chains, much smaller than common antibody. The first small molecule antibody, called Nanobody was engineered from heavy-chain antibodies found in camelids. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, "immunoglobulin new antigen receptor"), from which single-domain antibodies called Vnar fragments can be obtained. In addition, free light chain (FLC) antibodies in human bodies are being developed as therapeutic and diagnostic agents. Comparing to intact antibodies, common advantages of small molecule antibodies are with better solubility, tissue penetration, stability towards heat and enzymes, and comparatively low production costs. This article reviews the structural characteristics and mechanism of action of the Nanobody, IgNAR and FLC.
Major immunoglobulin classes of the echidna (Tachyglossus aculeatus)
Atwell, J. L.; Marchalonis, J. J.; Ealey, E. H. M.
1973-01-01
The Australian echidna responds to the antigen Salmonella adelaide flagella by producing antibodies characterized by mol. wt of 900,000 and 150,000. After cleavage of interchain disulphide bonds, both the high and low mol. wt immunoglobulins can be resolved into light and heavy polypeptide chains. In both cases, the light chains resemble those of other vertebrate immunoglobulins in size (22,500 Daltons) and electrophoretic mobility. The 900,000 Dalton immunoglobulin contains heavy chains similar to human μ chains in size (70,000 Daltons) and electrophoretic mobility. The 150,000 Dalton immunoglobulin contains a different class of heavy chain, similar in size (50,000 Daltons) and electrophoretic mobility to human γ chains. Proportional mass contributions of the light and heavy chains to the intact molecule suggest the structure of the intact molecules could be represented by (L2, μ2)5 and (L2, γ2) for the high and low mol. wt immunoglobulins respectively. These configurations are similar to those described for human γM and γG immunoglobulins. The results are relevant to theories of the evolution of the different classes of immunoglobulins. While the echidna is distinctly more primitive than eutherian mammals and still retains structural features characteristic of reptiles, its major immunoglobulin classes are very similar to human IgM and IgG. The striking similarities between the γ-like heavy chain of the echnidna and human IgG heavy chains suggest that the echidna may be the first species in which a γ chain gene directly homologous to mammalian γ chain genes is expressed. ImagesFIG. 4 PMID:4761634
Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J
2009-01-01
The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL. PMID:18640719
Messmer, Bradley T; Raphael, Benjamin J; Aerni, Sarah J; Widhopf, George F; Rassenti, Laura Z; Gribben, John G; Kay, Neil E; Kipps, Thomas J
2009-03-01
The leukemia cells of unrelated patients with chronic lymphocytic leukemia (CLL) display a restricted repertoire of immunoglobulin (Ig) gene rearrangements with preferential usage of certain Ig gene segments. We developed a computational method to rigorously quantify biases in Ig sequence similarity in large patient databases and to identify groups of patients with unusual levels of sequence similarity. We applied our method to sequences from 1577 CLL patients through the CLL Research Consortium (CRC), and identified 67 similarity groups into which roughly 20% of all patients could be assigned. Immunoglobulin light chain class was highly correlated within all groups and light chain gene usage was similar within sets. Surprisingly, over 40% of the identified groups were composed of somatically mutated genes. This study significantly expands the evidence that antigen selection shapes the Ig repertoire in CLL.
Djidjik, R; Lounici, Y; Chergeulaïne, K; Berkouk, Y; Mouhoub, S; Chaib, S; Belhani, M; Ghaffor, M
2015-09-01
IgD multiple myeloma (MM) is a rare subtype of myeloma, it affects less than 2% of patients with MM. To evaluate the clinical and prognostic attributes of serum free light chains (sFLCs) analysis, we examined 17 cases of IgD MM. From 1998 to 2012, we obtained 1250 monoclonal gammapathies including 590 multiple myeloma and 17 patients had IgD MM. With preponderance of men patients with a mean age at diagnosis of: 59±12years. Patients with IgD MM have a short survival (Median survival=9months). The presenting features included: bone pain (75%), lymphadenopathy (16%), hepatomegaly (25%), splenomegaly (8%), associated AL amyloidosis (6%), renal impairment function (82%), infections (47%), hypercalcemia (37%) and anemia (93%). Serum electrophoresis showed a subtle M-spike (Mean=13.22±10g/L) in all patients associated to a hypogammaglobulinemia. There was an over-representation of Lambda light chain (65%); high serum β2-microglobulin in 91% and Bence Jones proteinuria was identified in 71%. The median rate of sFLCs κ was 19.05mg/L and 296.75mg/L for sFLCs λ. sFLCR was abnormal in 93% of patients and it showed concordance between baseline sFLCR and the survival (P=0.034). The contribution of FLC assay is crucial for the prognosis of patients with IgD MM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Rumfelt, Lynn L.; Avila, David; Diaz, Marilyn; Bartl, Simona; McKinney, E. Churchill; Flajnik, Martin F.
2001-01-01
In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM1gj, from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells (“germline-joined”). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H1gj in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H1gj chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM1gj. Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system. PMID:11172027
Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K
2001-07-01
We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.
Brito-Zerón, Pilar; Ramos-Casals, Manuel; Nardi, Norma; Cervera, Ricard; Yagüe, Jordi; Ingelmo, Miguel; Font, Josep
2005-03-01
We conducted the current study to analyze the prevalence and clinical significance of circulating monoclonal immunoglobulins in patients with Sjögren syndrome (SS), focusing on the association with extraglandular features, immunologic markers, hematologic neoplasia, and hepatitis C virus (HCV) infection. We performed serum immunoelectrophoresis in 200 patients with primary SS and 37 patients with HCV-related SS. All patients fulfilled 4 or more of the 1993 European classification criteria for SS.Of the 200 patients with primary SS, 35 (18%) presented circulating monoclonal immunoglobulins. The monoclonal bands identified were 20 IgG (13 kappa, 7 lambda), 10 IgM (5 kappa, 5 lambda), 2 IgAkappa, and 3 free circulating light chains. Of the 37 SS-HCV patients, 16 (43%) had circulating monoclonal immunoglobulins. The monoclonal bands identified were 10 IgMkappa, 5 IgGlambda, and 1 free light lambda chain. Compared with primary SS patients, SS-HCV patients presented a higher frequency of monoclonal immunoglobulins (43% vs 18%, p = 0.001), with monoclonal IgMkappa being the most frequent monoclonal band. Six (12%) of the 51 SS patients with circulating monoclonal immunoglobulins presented hematologic neoplasia, compared with 3 (1.6%) of those without monoclonal immunoglobulins (p = 0.004; odds ratio = 8.13; 95% confidence intervals, 1.64-51.54). In 2 of the 6 patients with monoclonal immunoglobulins and lymphoproliferative disorders, a change of the monoclonal component was detected in previous immunoelectrophoresis determinations before the development of hematologic neoplasia. Circulating monoclonal immunoglobulins were detected in nearly 20% of patients with primary SS, with monoclonal IgG being the most frequent type of immunoglobulin detected. In SS-HCV patients, the prevalence of monoclonal immunoglobulins was higher (43%), with monoclonal IgM being the most frequent type found. SS-HCV patients presented a more restrictive monoclonal expression (limited to either monoclonal IgMkappa or monoclonal IgGlambda) than primary SS patients, who showed all types of heavy and light chains.
Litwin, S. D.; Ochs, H.; Pollara, B.
1973-01-01
Surface immunoglobulins on human peripheral blood lymphocytes were investigated by the mixed antiglobulin technique—using the single layer mixed antiglobulin method as originally described (SLMA), and a modification employing a double layer of antibody (DLMA). Lymphocytes isolated from the blood of normal individuals had a mean of 7.8 and 18.4 per cent Ig + cells by the SLMA and DLMA techniques respectively. The DLMA data are similar to results obtained by other methods of detecting membrane Igs indicating that the mixed antiglobulin method is comparable in sensitivity. When the total numbers of Ig + cells, obtained by separate κ and λ testing, were compared with results obtained using single anti-light chain antisera, there was no significant difference, suggesting that most positive lymphocytes carry a single variety of light chain. Lymphocytes from the blood of seventeen patients with primary immunodeficiency were analysed. Four patients with variable immunodeficiency and four others with absent serum IgA all had normal surface Igs including α chains. All members of a family having an X-linked immunodeficiency had normal surface Igs including the affected members and a presumed carrier. Four cases of immunodeficiency associated with thymoma proved to have disparate findings. One patient exhibited a selective absence of μ antigens on the membranes of blood lymphocytes of over 2800 tested cells. Two other cases had normal surface Igs while a fourth patient, previously reported, lacked all surface Igs. PMID:4796276
Miura, Naoto; Mori, Yuki; Yoshino, Masabumi; Suga, Norihiro; Kitagawa, Wataru; Yamada, Harutaka; Nishikawa, Kazuhiro; Imai, Hirokazu
2008-12-01
A 53-year-old Japanese man with systemic lupus erythematosus developed proteinuria and hematuria after a urinary stone episode. A light microscopic study of a kidney biopsy specimen demonstrated a bubbling appearance and spike formation of the basement membrane. Immunofluorescent studies revealed that there were no significant depositions of immunoglobulins, such as IgG (-), IgA (-), IgM (+/-), kappa light chain (+/-), lambda light chain (+/-), or C3 (-) in the glomerular capillary wall, though C1q was present as one-plus positive staining in mesangial areas. Electron microscopic studies showed that the thickness of the basement membrane varied from thin to thick without electron dense deposits, and that the cellular components of the podocyte were irregularly present in the basement membrane. Urinary protein decreased after the usage of prednisolone and mizoribine; however, proteinuria aggravated after an episode of urinary stone during the same treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
W Vallen Graham; A Magis; K Bailey
2011-12-31
Myosin light-chain kinase-dependent tight junction regulation is a critical event in inflammatory cytokine-induced increases in epithelial paracellular permeability. MLCK is expressed in human intestinal epithelium as two isoforms, long MLCK1 and long MLCK2, and MLCK1 is specifically localized to the tight junction, where it regulates paracellular permeability. The sole difference between these long MLCK splice variants is the presence of an immunoglobulin-like cell-adhesion molecule domain, IgCAM3, in MLCK1. To gain insight into the structure of the IgCAM3 domain, the IgCAM3 domain of MLCK1 has been expressed, purified and crystallized. Preliminary X-ray diffraction data were collected to 2.0 {angstrom} resolution andmore » were consistent with the primitive trigonal space group P2{sub 1}2{sub 1}2{sub 1}.« less
Takakuwa, T; Tresnasari, K; Rahadiani, N; Miwa, H; Daibata, M; Aozasa, K
2008-03-01
Pyothorax-associated lymphoma (PAL) is an Epstein-Barr virus (EBV)-associated B cell lymphoma developing in the pleural cavity affected by chronic pyothorax. To clarify the cell origin of PAL, the expression of immunoglobulin heavy (IgH) and light chains in relation to somatic hypermutations (SHMs) of rearranged Ig heavy- and light-chain variable (IgV(H), IgV(L)) genes was examined using cell lines as well as clinical samples. SHMs without ongoing mutations of the IgV(H) gene were found in all PAL cell lines and clinical samples available for sequencing, indicating PAL to be derived from B cells at the postgerminal center (GC) stage of the differentiation process. They could be subdivided into post-GC cells with potentially productive IgV(H) genotypes (Group 1) and with sterile IgV(H) genotypes (Group 2). IgH expression was abrogated in Group 2 as expected and also in two cell lines in Group 1. DNA demethylation experiments with 5-aza-dC induced expression of IgH mRNA and protein in these cell lines. Most PAL cells were derived from crippled post-GC cells, which usually could not survive. Transformation of such B cells through EBV infection might provide a basis for the development of PAL with additional genetic changes.
Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari
2017-02-01
Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.
Tan, Char-Loo; Ong, Yew-Kwang; Tan, Soo-Yong; Ng, Siok-Bian
2016-05-01
Hashimoto's thyroiditis was recently divided into IgG4-plasma cell-rich and IgG4-plasma cell-poor subtypes. The former, also known as IgG4 thyroiditis, is associated with clinical, serological, sonographic and morphological features that are distinctive from those of the non-IgG4 subgroup. We describe an interesting case of IgG4-positive mucosa-associated lymphoid tissue (MALT) lymphoma arising in a background of IgG4 thyroiditis. The thyroid gland showed typical features of IgG4 thyroiditis, including characteristic patterns of fibrosis. A dense lymphoplasmacytic infiltrate diffusely involved the entire gland without formation of a destructive tumour mass. Lymphoepithelial lesions were prominent. There were abundant IgG4-positive plasma cells, with the IgG4/IgG ratio exceeding 40%. The IgG4-positive plasma cells were monotypic for kappa light chain, and there was monoclonal IGH rearrangement. Fluorescence in-situ hybridization revealed IGH translocation without translocation of MALT1, bcl-10, or FOXP1. This represents the first case of IgG4-producing MALT lymphoma associated with IgG4 thyroiditis. IGH translocation with an unknown partner gene was identified. We suggest the performance of serum and immunohistochemical investigations for IgG and IgG4 in all cases of Hashimoto's thyroiditis to diagnose IgG4 thyroiditis. In addition, clonality assays and light chain studies are useful to exclude a low-grade lymphoma arising in this context. © 2015 John Wiley & Sons Ltd.
Kersseboom, Rogier; Ta, Van B T; Zijlstra, A J Esther; Middendorp, Sabine; Jumaa, Hassan; van Loo, Pieter Fokko; Hendriks, Rudolf W
2006-04-15
Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.
Genome complexity in the coelacanth is reflected in its adaptive immune system
Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.
2014-01-01
We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.
Lavríková, Petra; Sečník, Peter; Kubíček, Zdenek; Jabor, Antonín; Hošková, Lenka; Franeková, Janka
2018-06-15
The aim of the study was to investigate the relationship between tacrolimus (TAC) immunosuppressive treatment and serum concentrations of immunoglobulin heavy/light chain pairs (sHLC) and free light chains (sFLC) in patients after heart transplantation (HTX) and to use these biomarkers to predict the risk of infection in these patients. A total of 88 patients with an immunosuppressive regimen involving tacrolimus who underwent HTX were analyzed over 24 months of follow-up. sFLC and sHLC levels were determined before and at three time points after HTX. TAC concentrations were determined at several time points after HTX, and mean TAC concentrations and areas under the curve (AUCs) of TAC concentration were calculated. Relevant clinical data were obtained from patients' medical records. A larger AUC of TAC was associated with decreases in the concentrations of IgG total (p < 0.05); similarly, cumulative AUC of TAC during 18 post-transplant months correlated inversely with sHLC IgG kappa (r = -0.228, p < 0.05) and IgG total (r = -0.352, p < 0.05). Concentrations of sFLC kappa, sFLC lambda, sHLC IgG kappa, and sHLC IgG total were significantly lower in infected patients (in the 9th month after HTX, all p < 0.05). Combined criteria for increased AUC (greater than the median of 12.9 mg·d/l) and decreased sFLC kappa (less than the median of 12.5 mg/l) correlated with the presence of infection (p < 0.03) in the 9th month after HTX. Ratio of concentration of TAC to sFLC kappa or lambda was significantly higher in infected patients (both p < 0.05). Intensive treatment with tacrolimus after HTX is possibly reflected by decreases in sFLC and sHLC (mainly sHLC IgG). Patients with decreased concentrations of these biomarkers are at increased risk for infection, primarily in the 9th month after HTX, when the concentrations of tacrolimus were the highest. Copyright © 2018 Elsevier B.V. All rights reserved.
Rijnierse, Anneke; Kraneveld, Aletta D; Salemi, Arezo; Zwaneveld, Sandra; Goumans, Aleida P H; Rychter, Jakub W; Thio, Marco; Redegeld, Frank A; Westerink, Remco H S; Kroese, Alfons B A
2013-11-15
Plasma B cells secrete immunoglobulinfree light chains (IgLC) which by binding to mast cells can mediate hypersensitivity responses and are involved in several immunological disorders. To investigate the effects of antigen-specific IgLC activation, intracellular recordings were made from cultured murine dorsal root ganglion (DRG) neurons, which can specifically bind IgLC. The neurons were sensitized with IgLC for 90min and subsequently activated by application of the corresponding antigen (DNP-HSA). Antigen application induced a decrease in the rate of rise of the action potentials of non-nociceptive neurons (MANOVA, p=2.10(-6)), without affecting the resting membrane potential or firing threshold. The action potentials of the nociceptive neurons (p=0.57) and the electrical excitability of both types of neurons (p>0.35) were not affected. We conclude that IgLC can mediate antigen-specific responses by reducing the rate of rise of action potentials in non-nociceptive murine DRG neurons. We suggest that antigen-specific activation of IgLC-sensitized non-nociceptive DRG neurons may contribute to immunological hypersensitivity responses and neuroinflammation. © 2013.
Sayegh, Camil E.; Demaries, Sandra L.; Iacampo, Sandra; Ratcliffe, Michael J. H.
1999-01-01
Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor. PMID:10485907
Butler, J E; Wertz, N; Sun, X-Z; Lunney, J K; Muyldermans, S
2013-01-01
The immunoglobulin (Ig) genes of many vertebrates have been characterized but IgG subclasses, IgD and IgE proteins are only available for three species in which plasmacytomas occur. This creates a major problem in the production and specificity verification of diagnostic anti-Ig reagents for the vast majority of mammals. We describe a novel solution using the swine system with its eleven different variants of IgG. It involves the in vitro synthesis of chimeric porcine-camelid heavy chain antibodies (HCAbs) that do not require light chains and therefore only a single transfection vector. The expressed chimeric HCAbs are comprised of the camelid VHH domain encoding specificity for lysozyme and the hinge, CH2 and CH3 domains of the various porcine IgGs. These HCAb retain their antigenic integrity and their ability to recognize lysozyme. The engineered specificity assures that these HCAb can be immobilized in native configuration when used for testing the specificity of anti-swine IgG antibodies. Comparative data to illustrate the importance of this point are provided. These are now available for use in hybridoma selection and as reference standards for evaluating the specificity of currently available anti-swine IgG antibodies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Isotype analysis of the anti-CENP-B anticentromere autoantibody: evidence for restricted clonality.
Eisenberg, R A; Earnshaw, W C; Bordwell, B J; Craven, S Y; Cheek, R; Rothfield, N F
1989-10-01
Utilizing the centromere B fusion protein (CENP-B) and specific, matched monoclonal antiisotype reagents in an enzyme-linked immunosorbent assay, we found that anti-CENP-B autoantibodies were skewed to the IgG1 isotype. The overall kappa:lambda light chain ratio was 2:1, although several individual sera showed a strong predominance of one of the light chains. Isoelectric focusing of light chain-skewed sera showed polyclonal patterns. Our findings are consistent with the anti-CENP-B autoantibody response being a chronic, antigen-driven response.
Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms.
Iacoangeli, Anna; Lui, Anita; Haines, Ashley; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2017-09-01
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM + cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ + splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ + cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ. Copyright © 2017 by The American Association of Immunologists, Inc.
Immunoglobulin gene usage in the human anti-pathogen response.
Newkirk, M M; Rioux, J D
1995-09-01
The human antibody response to foreign pathogens is generated to a relatively small number of target surface proteins and carbohydrates that nonetheless have an extensive array of epitopes. The study of human monoclonal antibodies to different pathogens shows that there are a diversity of mechanisms used to generate a sufficient repertoire of antibodies to combat the invading pathogens. Although many different immunoglobulin gene elements are used to construct the anti-pathogen response, some elements are used more often than would be expected if all elements were used randomly. For example, the immune response to Haemophilus influenzae polysaccharide appears to be quite narrow, being restricted primarily to a specific heavy-chain gene, 3-15, and a lambda light-chain family II member, 4A. In contrast, for the immune response to cytomegalovirus proteins, a wider group of gene elements is needed. It is also surprising that despite an investigator bias for IgG- rather than IgM-secreting immortal B cells (because of their high affinity and neutralizing abilities), 26% of light chains and 13% of heavy chains showed a very low level of somatic mutation, equivalent to an IgM molecule that has not undergone affinity maturation. Although some highly mutated IgG molecules are present in the anti-pathogen response, most of the monoclonal antibodies specific for viruses or bacteria have a level of somatic hypermutation similar to that of the adult IgM repertoire. A number of studies have shown that there are similarities in the antibody responses to pathogens and to self (autoantibodies).(ABSTRACT TRUNCATED AT 250 WORDS)
Monoclonal IgM-related AL amyloidosis.
Milani, Paolo; Merlini, Giampaolo
2016-06-01
Monoclonal immunoglobulin M (IgM)-related light chain (AL) amyloidosis, which accounts for 5%-7% of all AL amyloidosis cases, is a distinct clinical entity that poses specific challenges to clinicians. Several studies reported that although there is a substantial overlap, the pattern of organ involvement is peculiar, with higher frequencies of lung, lymph nodes, and peripheral nervous system involvement. A recent collaborative study from three European referral centers, defined that cardiac involvement, advanced Mayo disease stage, neuropathic, and liver involvement were independent factors that had impact on survival in IgM-AL amyloidosis patients. Once the diagnosis of amyloidosis is made, correct amyloid typing is necessary to design appropriate therapy and follow-up. Treatment is focused on the suppression of the clone, and fast reduction of the circulating free light chains. New drugs targeting the amyloid deposits will be used in combination with anti-clone therapies. Copyright © 2016. Published by Elsevier Ltd.
Zhu, An-You; Zhu, Fang-Bing; Wang, Feng-Chao; Zhang, Lun-Jun; Ma, Yue; Hu, Jian-Guo
2017-10-01
To explore the relationship between serum total light chain κ/λ ratio (sTLC-κ/λ) and proportion of bone marrow plasma cells (BMPC) in patients with IgG type and IgA type multiple myeloma (MM) and its clinical significance. The levels of serum IgG, IgA, κ type and λ type total light chain were detected in 79 newly diagnosed patients with IgG type (n=52) and IgA type (n=27) MM by immuno-nephelometric assay and the sTLC-κ/λ ratio was calculated. The proportion of BMPC was determined by bone marrow smears in the corresponding period, and the changes in sTLC-κ/λ ratio and the proportion of BMPC were observed in 19 patients with IgG type(n=16) and IgA type (n=3) MM undergoing treatment, 26 cases of non-phasmocytic proliferative diseases were enrolled in control group. In MM patients with IgGκ type and IgAκ type, the sTLC-κ/λ ratio was significantly higher than that in the control group (P<0.01), while in MM patients with IgGλ type and IgAλ type, the sTLC-κ/λ ratio was significantly lower than that in the control group (P<0.01). In MM patients with IgGκ, the sTLC-κ/λ ratio was significantly higher than that in MM patients with IgAκ(P<0.01), while the sTLC-κ/λ ratio in MM patients with IgGλ was significantly lower than that in MM patients with IgAλ. The sTLC-κ/λ ratios in MM patients with IgGκ and IgAκ were positively correlated with the concentrations of IgG (r=0.778,P=0.000) and IgA (r=0.601,P=0.039), while the sTLC-κ/λ ratios of patients with IgGλ and IgAλ were negativily correlated with the IgG(r=-0.586,P=0.01) and IgA level(r=-0.718,P=0.003). In addition, a correlation between each type MM was not found except the IgGκ type MM which had a positive correlation between the sTLC-κ/λ ratio and proportion of BMPC (r=0.579,P=0.002). Nonetheless, 18 of 19 patients with IgG type and IgA type MM undergoing treatment showed concordance between the sTLC-κ/λ ratio and proportion of BMPC change. There is a lower correlation between the sTLC-κ/λ ratio and the proportion of BMPC in MM patients with IgG type and IgA type, but there is a high concordance between the sTLC-κ/λ ratio and the proportion of BMPC change in the same patient and it suggests that the sTLC-κ/λ ratio plays an important role in the diagnosis and monitoring of IgG type and IgA type MM.
Yu, X C; Su, W; Zhuang, J L
2018-04-14
Objective: To assess the value of immunoglobulin heavy/light chain (HLC) immunoassay on therapeutic response in patients with multiple myeloma(MM). Methods: A total of 45 newly diagnosed MM patients were retrospectively enrolled in Peking Union Medical College Hospital from 2013 to 2016, whose 115 serum samples were consecutively collected. HLC was tested to evaluate response and compare with other methods for M protein detection. Results: ①There were 30 males and 15 females in total of whom the monoclonal immunoglobulin was IgG in 27 (IgGκ∶IgGλ 12∶15) and IgA (IgAκ∶IgAλ 9∶9) in 18. The arerage age of the studied population was 59 (range 43-80) . ② In 34 patients with serum sample at diagnosis, 32 (94.1%) had abnormal HLC ratio (rHLC) while 2 patients with IgG had normal rHLC. The percentages of abnormal rHLC was 81.8% (18/22) at partial response、50.0%(9/18) at very good complete response and 16.0%(4/25) at complete response. ③In 25 patients reaching CR, there were 13 with IgG and 12 with IgA. 4 patients equally split of IgG and IgA had abnormal rHLC at complete response. ④By monitoring the rHLC of some patients consecutively, we found that the remission of rHLC was to some extent behind the remission of SPE and IEF, or even rFLC. Conclusion: Immunoglobulin HLC detection is one feasible method for minimal residual disease detection.
Shark Ig light chain junctions are as diverse as in heavy chains.
Fleurant, Marshall; Changchien, Lily; Chen, Chin-Tung; Flajnik, Martin F; Hsu, Ellen
2004-11-01
We have characterized a small family of four genes encoding one of the three nurse shark Ig L chain isotypes, called NS5. All NS5 cDNA sequences are encoded by three loci, of which two are organized as conventional clusters, each consisting of a V and J gene segment that can recombine and one C region exon; the third contains a germline-joined VJ in-frame and the fourth locus is a pseudogene. This is the second nurse shark L chain type where both germline-joined and split V-J organizations have been found. Since there are only two rearranging Ig loci, it was possible for the first time to examine junctional diversity in defined fish Ig genes, comparing productive vs nonproductive rearrangements. N region addition was found to be considerably more extensive in length and in frequency than any other vertebrate L chain so far reported and rivals that in H chain. We put forth the speculation that the unprecedented efficiency of N region addition (87-93% of NS5 sequences) may be a result not only of simultaneous H and L chain rearrangement in the shark but also of processing events that afford greater accessibility of the V or J gene coding ends to terminal deoxynucleotidyltransferase.
Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L
2014-11-07
We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.
Zhao, Panpan; Guo, Yongli; Ma, Bo; Wang, Junwei
2014-01-01
Immunoglobulin Y (abbreviated as IgY) is a type of immunoglobulin that is the major antibody in bird, reptile, and lungfish blood. IgY consists of two light (λ) and two heavy (υ) chains. In the present study, polyclonal antibody against IgYFc was generated and evaluated. rIgYCυ3/Cυ4 was expressed in Escherichia coli, purified and utilized to raise polyclonal antibody in rabbit. High affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:204,800 for ELISA assay. The antibody can specifically recognize both rIgYCυ3/Cυ4 and native IgY by Western bolt analysis. Furthermore, the serum of Grus japonensis or immunoglobulin of chicken, duck, turkey, and silkie samples and dynamic changes of serum GoIgY after immunogenicity with GPV-VP3-virus-like particles (GPV-VP3-VLPs) can be detected with the anti-GoIgYFc polyclonal antibody. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of GoIgY. PMID:25171010
Erasmus, M. Frank; Matlawska-Wasowska, Ksenia; Kinjyo, Ichiko; Mahajan, Avanika; Winter, Stuart S.; Xu, Li; Horowitz, Michael; Lidke, Diane S.; Wilson, Bridget S.
2017-01-01
The pre-B cell receptor (pre-BCR) is an immature form of the BCR critical for early B lymphocyte development. It is composed of the membrane-bound immunoglobulin (Ig) heavy chain, surrogate light chain components, and the signaling subunits Igα and Igβ. We developed monovalent Quantum Dot (QD)-labeled probes specific for Igβ to study the behavior of pre-BCRs engaged in autonomous, ligand-independent signaling in live B cells. Single-particle tracking revealed that QD-labeled pre-BCRs engaged in transient, but frequent, homotypic interactions. Receptor motion was correlated at short separation distances, consistent with the formation of dimers and higher-order oligomers. Repeated encounters between diffusing pre-BCRs appeared to reflect transient co-confinement in plasma membrane domains. In human B cell precursor acute lymphoblastic leukemia (BCP-ALL) cells, we showed that frequent, short-lived, homotypic pre-BCR interactions stimulated survival signals, including expression of BCL6, which encodes a transcriptional repressor. These survival signals were blocked by inhibitory monovalent antigen-binding antibody fragments (Fabs) specific for the surrogate light chain components of the pre-BCR or by inhibitors of the tyrosine kinases Lyn and Syk. For comparison, we evaluated pre-BCR aggregation mediated by dimeric galectin-1, which has binding sites for carbohydrate and for the λ5 component of the surrogate light chain. Galectin-1 binding resulted in the formation of large, highly immobile pre-BCR aggregates, which was partially relieved by the addition of lactose to prevent the crosslinking of galectin-BCR complexes to other glycosylated membrane components. Analysis of the pre-BCR and its signaling partners suggested that they could be potential targets for combination therapy in BCP-ALL. PMID:27899526
Lekchnov, Evgenii A; Sedykh, Sergey E; Dmitrenok, Pavel S; Buneva, Valentina N; Nevinsky, Georgy A
2015-06-01
The specific organ placenta is much more than a filter: it is an organ that protects, feeds and regulates the growth of the embryo. Affinity chromatography, ELISA, SDS-PAGE and matrix-assisted laser desorption ionization mass spectrometry were used. Using 10 intact human placentas deprived of blood, a quantitative analysis of average relative content [% of total immunoglobulins (Igs)] was carried out for the first time: (92.7), IgA (2.4), IgM (2.5), kappa-antibodies (51.4), lambda-antibodies (48.6), IgG1 (47.0), IgG2 (39.5), IgG3 (8.8) and IgG4 (4.3). It was shown for the first time that placenta contains sIgA (2.5%). In the classic paradigm, Igs represent products of clonal B-cell populations, each producing antibodies recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, similarly to human milk Igs, placenta antibodies undergo extensive half-molecule exchange and the IgG pool consists of 43.5 ± 15.0% kappa-kappa-IgGs and 41.6 ± 17.0% lambda-lambda-IgGs, while 15.0 ± 4.0% of the IgGs contained both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained, respectively (%): IgG1 (47.7 and 34.4), IgG2 (36.3 and 44.5), IgG3 (7.4 and 11.8) and IgG4 (7.5 and 9.1), while chimeric kappa-lambda-IgGs consisted of (%): 43.5 IgG1, 41.0 IgG2, 5.6 IgG3 and 7.9 IgG4. Our data are indicative of the possibility of half-molecule exchange between placenta IgGs of various subclasses, raised against different antigens, which explains a very well-known polyspecificity and cross-reactivity of different human IgGs. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sequences of heavy and light chain variable regions from four bovine immunoglobulins.
Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J
1994-12-01
Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.
Sood, Neeraj; Chaudhary, Dharmendra K; Singh, Akhilesh; Rathore, Gaurav
2012-12-15
Serum immunoglobulins of Clarias batrachus (Cb-Ig) were purified by affinity chromatography using bovine serum albumin as capture ligand. Under reducing conditions in SDS-PAGE, Cb-Ig was composed of a heavy (H) chain (68.7 kDa) and two light (L) chains (27.4 and 26.3 kDa). Purified Cb-Ig was used to produce a monoclonal antibody (MAb) designated E4 MAb that belonged to IgG1 subclass. In Western blotting, this MAb showed binding to H chain of purified Cb-Ig and putative H chains in reduced sera of C. batrachus, Clarias gariepinus and Heteropneustes fossilis. However, no binding was observed with serum protein of Labeo rohita and Channa striata. Cross-reactivity of anti-Cb-Ig MAb was observed with serum of C. batrachus, C. gariepinus and H. fossilis in competitive ELISA. In immunoblotting of non-reduced Cb-Ig with E4 MAb, four bands assumed to be tetrameric, trimeric, dimeric and monomeric form were observed. In flow cytometric analysis of the gated lymphocytes, the number of surface Ig-positive (Ig+) cells in blood, spleen, kidney and thymus of C. batrachus was determined to be 50.1 ± 3.1, 55.1 ± 3.36, 42.4 ± 4.81 and 5.1 ± 0.89%, respectively, using E4 MAb. Ig+ cells were also demonstrated in formalin-fixed paraffin embedded tissue sections of spleen, kidney, thymus and smears of blood mononuclear cells in indirect immunoperoxidase test. The developed MAb was employed to detect pathogen-specific immunoglobulins in the sera of C. batrachus immunized with killed Edwardsiella tarda, by an indirect ELISA. This monoclonal antibody can be useful tool in immunological research and assays. Copyright © 2012 Elsevier B.V. All rights reserved.
Biased immunoglobulin light chain gene usage in the shark1
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-01-01
This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033
Dooley, Helen; Flajnik, Martin F; Porter, Andrew J
2003-09-01
The novel immunoglobulin isotype novel antigen receptor (IgNAR) is found in cartilaginous fish and is composed of a heavy-chain homodimer that does not associate with light chains. The variable regions of IgNAR function as independent domains similar to those found in the heavy-chain immunoglobulins of Camelids. Here, we describe the successful cloning and generation of a phage-displayed, single-domain library based upon the variable domain of IgNAR. Selection of such a library generated from nurse sharks (Ginglymostoma cirratum) immunized with the model antigen hen egg-white lysozyme (HEL) enabled the successful isolation of intact antigen-specific binders matured in vivo. The selected variable domains were shown to be functionally expressed in Escherichia coli, extremely stable, and bind to antigen specifically with an affinity in the nanomolar range. This approach can therefore be considered as an alternative route for the isolation of minimal antigen-binding fragments with favorable characteristics.
Rossi, Francesca; Petrucci, Maria Teresa; Guffanti, Andrea; Marcheselli, Luigi; Rossi, Davide; Callea, Vincenzo; Vincenzo, Federico; De Muro, Marianna; Baraldi, Alessandra; Villani, Oreste; Musto, Pellegrino; Bacigalupo, Andrea; Gaidano, Gianluca; Avvisati, Giuseppe; Goldaniga, Maria; Depaoli, Lorenzo; Baldini, Luca
2009-07-01
The presenting clinico-hematologic features of 1,283 patients with IgG and IgA monoclonal gammopathies of undetermined significance (MGUS) were correlated with the frequency of evolution into multiple myeloma (MM). Two IgG MGUS populations were evaluated: a training sample (553 patients) and a test sample (378 patients); the IgA MGUS population consisted of 352 patients. Forty-seven of the 553 training group patients and 22 of 378 test group IgG patients developed MM after a median follow-up of 6.7 and 3.6 years, respectively. Multivariate analysis showed that serum monoclonal component (MC) levels of < or =1.5 g/dL, the absence of light-chain proteinuria and normal serum polyclonal immunoglobulin levels defined a prognostically favorable subset of patients, and could be used to stratify the patients into three groups at different 10-year risk of evolution (hazard ratio, 1.0, 5.04, 11.2; P < 0.001). This scoring system was validated in the test sample. Thirty of the 352 IgA patients developed MM after a median follow-up of 4.8 years, and multivariate analysis showed that hemoglobin levels of <12.5 g/dL and reduced serum polyclonal immunoglobulin correlated with progression. A pooled statistical analysis of all of the patients confirmed the validity of Mayo Clinic risk model showing that IgA class, serum MC levels, and light-chain proteinuria are the most important variables correlated with disease progression. Using simple variables, we validated a prognostic model for IgG MGUS. Among the IgA cases, the possible prognostic role of hemoglobin emerged in addition to a decrease in normal immunoglobulin levels.
Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein.
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana; Connors, Lawreen H; Costello, Catherine E
2017-05-01
Immunoglobulin light chain amyloidosis (AL) is a plasma cell disorder characterized by overproduction and deposition of monoclonal immunoglobulin (Ig) light chains (LC) or variable region fragments as amyloid fibrils in various organs and tissues. Much clinical evidence indicates that patients with AL amyloidosis sustain cardiomyocyte impairment and suffer from oxidative stress. We seek to understand the underlying biochemical pathways whose disruption or amplification during sporadic or sustained disease states leads to harmful physiological consequences and to determine the detailed structures of intermediates and products that serve as signposts for the biochemical changes and represent potential biomarkers. In this study, matrix-assisted laser desorption/ionization mass spectrometry provided extensive evidence for oxidative post-translational modifications (PTMs) of an amyloidogenic Ig LC protein from a patient with AL amyloidosis. Some of the tyrosine residues were heavily mono- or di-chlorinated. In addition, a novel oxidative conversion to a nitrile moiety was observed for many of the terminal aminomethyl groups on lysine side chains. In vitro experiments using model peptides, in-solution oxidation, and click chemistry demonstrated that hypochlorous acid produced by the myeloperoxidase - hydrogen peroxide - chloride system could be responsible for these and other, more commonly observed modifications.
Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza
2016-01-01
ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875
In vitro Fab display: a cell-free system for IgG discovery
Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.
2014-01-01
Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053
Contributions of Conventional and Heavy-Chain IgG to Immunity in Fetal, Neonatal, and Adult Alpacas▿
Daley-Bauer, L. P.; Purdy, S. R.; Smith, M. C.; Gagliardo, L. F.; Davis, W. C.; Appleton, J. A.
2010-01-01
In addition to conventional immunoglobulins, camelids produce antibodies that do not incorporate light chains into their structures. These so-called heavy-chain (HC) antibodies have incited great interest in the biomedical community, as they have considerable potential for biotechnological and therapeutic application. Recently, we have begun to elucidate the immunological functions of HC antibodies, yet little is known about their significance in maternal immunity or about the B lymphocytes that produce them. This study describes the application of isotype-specific reagents toward physiological assessments of camelid IgGs and the B cells that produce them. We document the specificities of monoclonal antibodies that distinguish two conventional IgG1 isotypes and two HC IgG3 variants produced by alpacas. Next, we report that the relative concentrations of five isotypes are similar in serum, milk, and colostrum; however, following passive transfer, the concentrations of HC IgG2 and IgG3 declined more rapidly than the concentration of conventional IgG1 in the sera of neonates. Finally, we assessed the distribution of B cells of distinct isotypes within lymphoid tissues during fetal and adult life. We detected IgG1, IgG2, and IgG3 in lymphocytes located in lymph node follicles, suggesting that HC B cells affinity mature and/or class switch. One IgG3 isotype was present in B cells located in ileal Peyer's patches, and one conventional IgG1 isotype was detected in splenic marginal zone B cells. Our findings contribute to the growing body of knowledge pertaining to HC antibodies and are compatible with functional specialization among conventional and HC IgGs in the alpaca. PMID:20926693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.
1995-05-01
The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less
Expression of immunoglobulin G in human podocytes, and its role in cell viability and adhesion.
Jing, Ziyang; Deng, Hui; Ma, Junfan; Guo, Yanhong; Liang, Yaoxian; Wu, Rui; A, Lata; Geng, Zihan; Qiu, Xiaoyan; Wang, Yue
2018-06-01
Podocyte injury occurs during the initiation and development of numerous forms of glomerular disease, and antibodies targeting podocytes have become a biomarker for diagnosis and monitoring treatment response. Accumulating evidence has suggested that immunoglobulin (Ig) is expressed in non‑B lineage cells, including epithelial cancer cells, myeloid cells and several types of normal cells. The main aim of the present study was to ascertain the expression of IgG in human podocytes and to determine its potential role in cellular bioactivity. The present study detected positive staining for IgG heavy chain (Igγ) and its subtype γ4, and the light chains κ and λ in the cytoplasm or on the membrane by immunofluorescence. In addition, positive bands were detected for Igγ, γ1, γ3, γ4, κ and λ in the lysates of a podocyte cell line by western blotting. Mass spectrometry confirmed IgG1 as an intact tetramer in the culture supernatant. Constant region transcripts of Igγ, γ1, γ3, γ4, κ and λ were identified by reverse transcription‑polymerase chain reaction, and DNA sequencing of these transcripts revealed 96‑99% similarity with Ig mRNAs in the National Center for Biotechnology Information database. Compared with the diverse gene rearrangements from B cell-derived Ig, podocyte‑derived Ig exhibited conservative V(D)J patterns in the variable regions of Igγ and κ chains. Furthermore, the present study investigated the mechanism underlying IgG production in these cells by examining the expression of recombination activating gene (RAG)1, RAG2 and activation‑induced cytidine deaminase. The expression levels of these proteins suggested that podocyte‑derived Ig and traditional Ig may be generated in a similar manner. Furthermore, small interfering RNA‑mediated downregulation of IgG expression reduced podocyte viability and adhesive capabilities. These findings suggested that IgG is expressed in podocytes and that this expression may be associated with podocyte function. Due to its potential biological and clinical significance, this phenomenon warrants further investigation.
Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F
1989-01-01
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061
Development of monoclonal antibodies to rohu [Labeo rohita] immunoglobulins for use in immunoassays.
Rathore, Gaurav; Kumar, Gokhlesh; Sood, Neeraj; Kapoor, D; Lakra, W S
2008-12-01
Serum immunoglobulins [Ig] of rohu [Labeo rohita] were purified by affinity chromatography using bovine serum albumin as capture ligand. The purified rohu Ig [r-Ig] had a molecular weight [MW] of 880 kDa as determined with gel filtration chromatography. The heavy chain of r-Ig had an MW of 77.8 kDa and that of light chain was 26.4 kDa in SDS-PAGE. Purified r-Ig was used for the production of two anti-rohu Ig monoclonal antibodies [D7 and H4] that belonged to subclass IgG2b and IgG1, respectively. Both the MAbs were specific to heavy chain of r-Ig as seen in Western blotting. Anti-rohu Ig MAb was used as a diagnostic reagent in ELISA and immunocytochemical assays to demonstrate its application for sero-surveillance and for immunological studies in rohu. A competitive ELISA was used to demonstrate the antigenic relatedness of r-Ig with whole serum Ig of other fish species. Cross reactivity of anti-rohu Ig MAb was observed with serum Ig of Catla catla and Cirrihinus mrigala. No reactivity to serum Ig of Ophiocephalus striatus and Clarias gariepinus was seen. Anti-rohu Ig MAb was found to be suitable for the detection of pathogen specific [Edwardsiella tarda] antibodies in serum of immunized rohu by an indirect ELISA. In flow cytometry using D7 MAb, the mean percentage [+/-SE] of Ig positive cells in spleen and blood of rohu were found to be 64.85% [+/-2.34] and 51.84% [+/-2.55] of gated lymphocytes, respectively. Similarly, D7 MAb also stained 52.84% [+/-1.30] and 10.5% of gated lymphocytes in kidney and thymus, respectively. The anti-rohu Ig MAbs also showed specific staining of Ig bearing cells in spleen sections by the indirect immunoperoxidase test.
Quantitation of IgG kappa and IgG lambda in the cerebrospinal fluid by sandwich ELISA method.
Zeman, David; Kušnierová, Pavlína; Bojková, Jana; Všianský, František; Zapletalová, Olga
2017-01-01
IgG kappa and IgG lambda concentrations were quantified in 96 paired CSF and sera using Hevylite™ antibodies in an in-house developed sandwich ELISA method. In 56 of these samples, the results were compared with a qualitative isoelectric focusing/affinity-mediated immunoblotting assay for oligoclonal IgG kappa and IgG lambda. Normal IgG kappa/lambda ratio in the CSF was the same as in serum. In 19/33 patients with intrathecal oligoclonal IgG synthesis, skewed IgG kappa/lambda ratio was observed (increased in 16 and decreased in 3 cases). The analysis of light chain composition of intrathecally synthesised immunoglobulins could contribute to our understanding of intrathecal humoral immune response, although its diagnostic utility is limited.
Mima, Akira; Nagahara, Dai; Tansho, Kosuke
2018-06-01
Light chain deposition disease (LCDD) is a monoclonal immunoglobulin deposition disease (MIDD) that is characterized by the deposition of monoclonal light chains in multiple organs, including the kidney. It is a rare disorder caused by an underlying monoclonal plasma cell dyscrasia. LCDD with renal involvement causes proteinuria, which sometimes can lead to nephrotic syndrome. The monoclonal light chains are mostly in the κ form. Treatment of LCDD is the same as that for multiple myeloma (MM); however, some conventional anticancer drugs show substantial toxicity and therefore cannot be administered to older patients or those with renal impairment. An 80-year-old woman was referred to our department with severe nephrotic syndrome (13.6 g/gCr) and anemia. A renal biopsy showed mesangial proliferation and mesangial matrix expansion, and immunohistochemistry showed positive staining for λ chains along the glomerular basement membrane, but was negative for κ chains or amyloid deposition. A bone marrow biopsy revealed 64% plasma cells. Immunoglobulin G (IgG)-λ type M protein was detected, and the levels of free λ chain was significantly increased. We concluded that her nephrotic syndrome was caused by LCDD, which resulted from IgG-λ MM. The induction of a BCD
Grasping the nettle: A bacterial invasin that targets immunoglobulin variable domains.
Barlow, Paul
2018-06-01
In a new paper, the protein InvD from Yersinia pseudotuberculosis , a zoonotic pathogen, is shown to assist late-stage invasion of intestinal epithelia. Remarkably, InvD acts by binding the Fab region of IgG or IgA. It straddles adjacent light-chain and heavy-chain variable domains, but its binding is different from that of antigens in that complementarity-determining regions do not participate. Structure determination revealed that its Fab-interacting domain adopts an immunoglobulin-like fold, fused to the preceding immunoglobulin-like domain and carried on a long stalk anchored to the bacterial outer membrane. Possible roles of this unusual host-pathogen interaction include avoidance of clearance from the intestine by secretory IgA. © 2018 Barlow.
Herbst, L H; Klein, P A
1995-06-01
Monoclonal antibodies (Mabs) were developed against the known immunoglobulin classes of the green turtle, Chelonia mydas. Plasma protein fractions enriched for 5.7S IgY, 7S IgY, and IgM turtle immunoglobulins were used to immunize Balb/c mice for hybridoma production and for hybridoma screening. Fifteen hybridomas produced Mabs with specificity for turtle immunoglobulins and for affinity purified dinitrophenol (DNP) specific turtle antibodies. Three Mabs specific for either turtle 5.7S IgY heavy chain (HL814), 7S IgY heavy chain (HL857), or IgM heavy chain (HL846) were purified and used in an enzyme-linked immunosorbent assay (ELISA) to measure antibody responses in two turtles immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) over a 10 month period. In both turtles the 7S IgY antibody response developed within 5 weeks of the first inoculation and remained high over the following 9 months. The 5.7S IgY antibody response was detected in one turtle at 3-4 months and in the other at 8 months, and reached high levels in both individuals by 10 months. The IgM responses were difficult to interpret. One turtle had pre-inoculation anti-DNP IgM antibody in its plasma and the other developed only a weak, transient response at about 4 months. The class-specific antibody activity in immune turtle plasma could be strongly inhibited by soluble DNP or by rabbit anti-DNP specific antiserum, showing that these antibody responses were directed predominantly to the DNP hapten on the DNP-BSA antigen. Antibody responses to the BSA carrier could not be detected in either turtle over the course of the immunization. Mab HL814, specific for an epitope on the 5.7S green turtle immunoglobulin heavy chain, will be useful for characterizing the molecular relationships of 5.7S, 7S and IgM heavy chains and the role of 5.7S antibody in humoral immunity in this species. All anti-turtle Ig Mabs were screened against the plasma globulins of Loggerhead (Caretta caretta), Olive Ridley (Lepidochelys olivacea), Kemp's Ridley (Lepidochelys kempi), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea). While the Mabs specific for IgM and 5.7S IgY reacted only with the green turtle, two Mabs specific for light chain reacted with all species except the leatherback, and nine mabs specific for 7S IgY heavy chain reacted with all five species. Thus, these Mabs may be useful for immunodiagnostic applications in these endangered species as well.
Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł
2005-05-15
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.
IgA-kappa type multiple myeloma affecting proximal and distal renal tubules.
Minemura, K; Ichikawa, K; Itoh, N; Suzuki, N; Hara, M; Shigematsu, S; Kobayashi, H; Hiramatsu, K; Hashizume, K
2001-09-01
A 45-year-old male was admitted because of chest pain, lumbago, and bilateral ankle pain. Examination disclosed hypophosphatemic osteomalacia, acquired Fanconi syndrome, and abnormalities in distal nephron such as distal renal tubular acidosis and renal diabetes insipidus. Further exploration revealed IgA kappa multiple myeloma excreting urinary Bence Jones protein (kappa-light chain). Renal biopsy revealed thick basement membranes and elec-tron-dense crystals in proximal tubular epithelial cells. Immunofluorescent studies revealed deposition of kappa-light chain in renal tubular epithelial cells that caused the renal tubular damage. Although the osteomalacia was relieved by medical treatment, the urinary Bence Jones protein and the renal tubular defects were not improved by the chemotherapy for the myeloma. The patient died of exacerbation of multiple myeloma at 50 years of age.
Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie
2013-01-01
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds. PMID:23571156
Dooley, Helen; Stanfield, Robyn L; Brady, Rebecca A; Flajnik, Martin F
2006-02-07
The cartilaginous fish are the oldest phylogenetic group in which Igs have been found. Sharks produce a unique Ig isotype, IgNAR, a heavy-chain homodimer that does not associate with light chains. Instead, the variable (V) regions of IgNAR bind antigen as soluble single domains. Our group has shown that IgNAR plays an integral part in the humoral response of nurse sharks (Ginglymostoma cirratum) upon antigen challenge. Here, we generated phage-displayed libraries of IgNAR V regions from an immunized animal and found a family of clones derived from the same rearrangement event but differentially mutated during expansion. Because of the cluster organization of shark Ig genes and the paucicopy nature of IgNAR, we were able to construct the putative ancestor of this family. By studying mutations in the context of clone affinities, we found evidence that affinity maturation occurs for this isotype. Subsequently, we were able to identify mutations important in the affinity improvement of this family. Because the family clones were all obtained after immunization, they provide insight into the in vivo maturation mechanisms, in general, and for single-domain antibody fragments.
Berstein, R M; Schluter, S F; Shen, S; Marchalonis, J J
1996-04-16
All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.
Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.
Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina
2017-08-01
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.
The complementarity-determining region sequences in IgY antivenom hypervariable regions.
da Rocha, David Gitirana; Fernandez, Jorge Hernandez; de Almeida, Claudia Maria Costa; da Silva, Claudia Letícia; Magnoli, Fabio Carlos; da Silva, Osmair Élder; da Silva, Wilmar Dias
2017-08-01
The data presented in this article are related to the research article entitled "Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity" (da Rocha et al., 2017) [1]. Complementarity-determining region (CDR) sequences are variable antibody (Ab) sequences that respond with specificity, duration and strength to identify and bind to antigen (Ag) epitopes. B lymphocytes isolated from hens immunized with Bitis arietans (Ba) and anti- Crotalus durissus terrificus (Cdt) venoms and expressing high specificity, affinity and toxicity neutralizing antibody titers were used as DNA sources. The VLF1, CDR1, CDR2, VLR1 and CDR3 sequences were validated by BLASTp, and values corresponding to IgY V L and V H anti-Ba or anti-Cdt venoms were identified, registered [ Gallus gallus IgY Fv Light chain (GU815099)/ Gallus gallus IgY Fv Heavy chain (GU815098)] and used for molecular modeling of IgY scFv anti-Ba. The resulting CDR1, CDR2 and CDR3 sequences were combined to construct the three - dimensional structure of the Ab paratope.
Engineering Upper Hinge Improves Stability and Effector Function of a Human IgG1
Yan, Boxu; Boyd, Daniel; Kaschak, Timothy; Tsukuda, Joni; Shen, Amy; Lin, Yuwen; Chung, Shan; Gupta, Priyanka; Kamath, Amrita; Wong, Anne; Vernes, Jean-Michel; Meng, Gloria Y.; Totpal, Klara; Schaefer, Gabriele; Jiang, Guoying; Nogal, Bartek; Emery, Craig; Vanderlaan, Martin; Carter, Paul; Harris, Reed; Amanullah, Ashraf
2012-01-01
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys231 directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His229-mediated hinge cleavage. On the other hand, the substitution of His229 with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2–3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed. PMID:22203673
Engineering upper hinge improves stability and effector function of a human IgG1.
Yan, Boxu; Boyd, Daniel; Kaschak, Timothy; Tsukuda, Joni; Shen, Amy; Lin, Yuwen; Chung, Shan; Gupta, Priyanka; Kamath, Amrita; Wong, Anne; Vernes, Jean-Michel; Meng, Gloria Y; Totpal, Klara; Schaefer, Gabriele; Jiang, Guoying; Nogal, Bartek; Emery, Craig; Vanderlaan, Martin; Carter, Paul; Harris, Reed; Amanullah, Ashraf
2012-02-17
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys(231) directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His(229)-mediated hinge cleavage. On the other hand, the substitution of His(229) with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2-3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed.
Renal Amyloidosis: Origin and Clinicopathologic Correlations of 474 Recent Cases
Said, Samar M.; Sethi, Sanjeev; Valeri, Anthony M.; Leung, Nelson; Cornell, Lynn D.; Fidler, Mary E.; Herrera Hernandez, Loren; Vrana, Julie A.; Theis, Jason D.; Quint, Patrick S.; Dogan, Ahmet
2013-01-01
Summary Background and objectives The kidney is the organ most commonly involved in systemic amyloidosis. This study reports the largest clinicopathologic series of renal amyloidosis. Design, setting, participants, & measurements This study provides characteristics of 474 renal amyloidosis cases evaluated at the Mayo Clinic Renal Pathology Laboratory from 2007 to 2011, including age, sex, serum creatinine, proteinuria, type of amyloid, and tissue distribution according to type. Results The type of amyloid was Ig amyloidosis in 407 patients (85.9%), AA amyloidosis in 33 (7.0%), leukocyte chemotactic factor 2 amyloidosis in 13 (2.7%), fibrinogen A α chain amyloidosis in 6 (1.3%), Apo AI, Apo AII, or Apo AIV amyloidosis in 3 (0.6%), combined AA amyloidosis/Ig heavy and light chain amyloidosis in 1 (0.2%), and unclassified in 11 (2.3%). Laser microdissection/mass spectrometry, performed in 147 cases, was needed to determine the origin of amyloid in 74 of the 474 cases (16%), whereas immunofluorescence failed to diagnose 28 of 384 light chain amyloidosis cases (7.3%). Leukocyte chemotactic factor 2 amyloidosis and Apo AI, Apo AII, or Apo AIV amyloidosis were characterized by diffuse interstitial deposition, whereas fibrinogen A α chain amyloidosis showed obliterative glomerular involvement. Compared with other types, Ig amyloidosis was associated with lower serum creatinine, higher degree of proteinuria, and amyloid spicules. Conclusions In the authors’ experience, the vast majority of renal amyloidosis cases are Ig derived. The newly identified leukocyte chemotactic factor 2 amyloidosis form was the most common of the rarer causes of renal amyloidosis. With the advent of laser microdissection/mass spectrometry for amyloid typing, the origin of renal amyloidosis can be determined in >97% of cases. PMID:23704299
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Tesar, Devin; Hötzel, Isidro
2013-10-01
A significant bottleneck in antibody discovery by phage display is the transfer of immunoglobulin variable regions from phage clones to vectors that express immunoglobulin G (IgG) in mammalian cells for screening. Here, we describe a novel phagemid vector for Fab phage display that allows expression of native IgG in mammalian cells without sub-cloning. The vector uses an optimized mammalian signal sequence that drives robust expression of Fab fragments fused to an M13 phage coat protein in Escherichia coli and IgG expression in mammalian cells. To allow the expression of Fab fragments fused to a phage coat protein in E.coli and full-length IgG in mammalian cells from the same vector without sub-cloning, the sequence encoding the phage coat protein was embedded in an optimized synthetic intron within the immunoglobulin heavy chain gene. This intron is removed from transcripts in mammalian cells by RNA splicing. Using this vector, we constructed a synthetic Fab phage display library with diversity in the heavy chain only and selected for clones binding different antigens. Co-transfection of mammalian cells with DNA from individual phage clones and a plasmid expressing the invariant light chain resulted in the expression of native IgG that was used to assay affinity, ligand blocking activity and specificity.
Kamil, Atif; Falk, Knut; Sharma, Animesh; Raae, Arnt; Berven, Frode; Koppang, Erling Olaf; Hordvik, Ivar
2011-09-01
Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) possess two distinct subpopulations of IgM which can be separated by anion exchange chromatography. Accordingly, there are two isotypic μ genes in these species, related to ancestral tetraploidy. In the present work it was verified by mass spectrometry that IgM of peak 1 (subpopulation 1) have heavy chains previously designated as μB type whereas IgM of peak 2 (subpopulation 2) have heavy chains of μA type. Two adjacent cysteine residues are present near the C-terminal part of μB, in contrast to one cysteine residue in μA. Salmon IgM of both peak 1 and peak 2 contain light chains of the two most common isotypes: IgL1 and IgL3. In contrast to salmon and brown trout, IgM of rainbow trout (Oncorhynchus mykiss) is eluted in a single peak when subjected to anion exchange chromatography. Surprisingly, a monoclonal antibody MAb4C10 against rainbow trout IgM, reacted with μA in salmon, whereas in brown trout it reacted with μB. It is plausible to assume that DNA has been exchanged between the paralogous A and B loci during evolution while maintaining the two sub-variants, with and without the extra cysteine. MAb4C10 was conjugated to magnetic beads and used to separate cells, demonstrating that μ transcripts residing from captured cells were primarily of A type in salmon and B type in brown trout. An analysis of amino acid substitutions in μA and μB of salmon and brown trout indicated that the third constant domain is essential for MAb4C10 binding. This was supported by 3D modeling and was finally verified by studies of MAb4C10 reactivity with a series of recombinant μ3 constructs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran
2014-01-01
Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404
Menéndez-Valladares, P; García-Sánchez, M I; Cuadri Benítez, P; Lucas, M; Adorna Martínez, M; Carranco Galán, V; García De Veas Silva, J L; Bermudo Guitarte, C; Izquierdo Ayuso, G
2015-01-01
Multiple sclerosis (MS) initiates with a first attack or clinically isolated syndrome (CIS). The importance of an early treatment in MS leads to the search, as soon as possible, for novel biomarkers which can predict conversion from CIS to MS. The purpose of this study was to assess the predictive value of the kappa index ([Formula: see text] index), using kappa free light light chains ([Formula: see text]FLCs) in cerebrospinal fluid (CSF), for the conversion of CIS patients to MS, and compare its accuracy with other parameters used in clinical practice. FLC levels were analysed in CSF from 176 patients: 70 as control group, 77 CIS, and 29 relapsing-remitting MS. FLC levels were quantified by nephelometry. [Formula: see text] Index sensitivity and specificity (93.1%; 95.7%) was higher than those from the immunoglobulin G (IgG) index (75.9%; 94.3%), and lower than those from oligoclonal IgG bands (OCGBs) (96.5%; 98.6%). The optimal cut-off for [Formula: see text] index was 10.62. Most of the CIS patients with [Formula: see text] index >10.62 presented OCGBs, IgG index >0.56 and fulfilled magnetic resonance imaging (MRI) criteria. CIS patients above [Formula: see text] index cut-off of 10.62 present 7.34-fold risk of conversion to MS than CIS below this value. The [Formula: see text] index correlated with positive OCGBs, IgG index above 0.56 and MRI criteria.
Menéndez-Valladares, P; García-Sánchez, MI; Cuadri Benítez, P; Lucas, M; Adorna Martínez, M; Carranco Galán, V; García De Veas Silva, JL; Bermudo Guitarte, C
2015-01-01
Background Multiple sclerosis (MS) initiates with a first attack or clinically isolated syndrome (CIS). The importance of an early treatment in MS leads to the search, as soon as possible, for novel biomarkers which can predict conversion from CIS to MS. Objective The purpose of this study was to assess the predictive value of the kappa index (κ index), using kappa free light light chains (κFLCs) in cerebrospinal fluid (CSF), for the conversion of CIS patients to MS, and compare its accuracy with other parameters used in clinical practice. Methods FLC levels were analysed in CSF from 176 patients: 70 as control group, 77 CIS, and 29 relapsing–remitting MS. FLC levels were quantified by nephelometry. Results κ Index sensitivity and specificity (93.1%; 95.7%) was higher than those from the immunoglobulin G (IgG) index (75.9%; 94.3%), and lower than those from oligoclonal IgG bands (OCGBs) (96.5%; 98.6%). The optimal cut-off for κ index was 10.62. Most of the CIS patients with κ index >10.62 presented OCGBs, IgG index >0.56 and fulfilled magnetic resonance imaging (MRI) criteria. Conclusion CIS patients above κ index cut-off of 10.62 present 7.34-fold risk of conversion to MS than CIS below this value. The κ index correlated with positive OCGBs, IgG index above 0.56 and MRI criteria. PMID:28607709
Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells
Tze, Lina E; Schram, Brian R; Lam, Kong-Peng; Hogquist, Kristin A; Hippen, Keli L; Liu, Jiabin; Shinton, Susan A; Otipoby, Kevin L; Rodine, Peter R; Vegoe, Amanda L; Kraus, Manfred; Hardy, Richard R; Schlissel, Mark S; Rajewsky, Klaus
2005-01-01
In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. PMID:15752064
Mochizuki, Hiroyuki; Takahashi, Masashi; Nishigaki, Kazuo; Ide, Tetsuya; Goto-Koshino, Yuko; Watanabe, Shinya; Sato, Hirofumi; Sato, Masahiko; Kotera, Yukiko; Fujino, Yasuhito; Ohno, Koichi; Uchida, Kazuyuki; Tsujimoto, Hajime
2011-04-15
We established a novel feline B-cell line, MS4, from the neoplastic pleural effusion of a cat with cutaneous B-cell lymphoma. Immunophenotype staining of the MS4 cells was positive for CD20, CD79α, and IgA and negative for CD3, CD4, CD5, CD8α, CD18, CD21, CD22, IgM, IgG, Ig light chain, and MHC class II. PCR analysis for immunoglobulin heavy chain gene rearrangements revealed a monoclonal rearrangement, whereas no clonal rearrangement of the T-cell receptor γ gene was detected. Southern blotting with an exogenous feline leukemia virus (FeLV) U3 probe revealed no integration of exogenous FeLV provirus. The MS4 cell line is the first FeLV-negative feline B-cell lymphoma cell line, and may be used to investigate the pathogenesis of spontaneously occurring feline lymphoma and the development of new therapies. Copyright © 2011 Elsevier B.V. All rights reserved.
Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination
HWANG, JOYCE K.; ALT, FREDERICK W.; YEAP, LENG-SIEW
2015-01-01
The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination. PMID:26104555
Juarez, Karla; Dubberke, Gudrun; Lugo, Pavel; Koch-Nolte, Friedrich; Buck, Friedrich; Haag, Friedrich; Licea, Alexei
2011-08-01
In addition to conventional antibodies, cartilaginous fish have evolved a distinctive type of immunoglobulin, designated as IgNAR, which lacks the light polypeptide chains and is composed entirely by heavy chains. IgNAR molecules can be manipulated by molecular engineering to produce the variable domain of a single heavy chain polypeptide (vNARs). These, together with the VHH camel domains, constitute the smallest naturally occurring domains able to recognize an antigen. Their special features, such as small size, long extended finger-like CDR3, and thermal and chemical stability, make them suitable candidates for biotechnological purposes. Here we describe the generation of two mouse monoclonal antibodies (MAbs), MAb 370-12 and MAb 533-10, that both specifically react with vNAR domains of the horn shark Heterodontus francisci. While the former recognizes a broad spectrum of recombinant vNAR proteins, the latter is more restricted. MAb 370-12 precipitated a single band from whole shark serum, which was identified as IgNAR by mass spectrometry. Additionally, we used MAb 370-12 to follow the IgNAR-mediated immune response of sharks during immunization protocols with two different antigens (complete cells and a synthethic peptide), thus corroborating that MAb 370-12 recognizes both isolated vNAR domains and whole IgNAR molecules. Both MAbs represent an affordable molecular, biochemical, and biotechnological tool in the field of shark single-domain antibodies.
Nollens, Hendrik H.; Ruiz, Carolina; Walsh, Michael T.; Gulland, Frances M. D.; Bossart, Gregory; Jensen, Eric D.; McBain, James F.; Wellehan, James F. X.
2008-01-01
Growing morphological and molecular evidence indicates that the porpoises, dolphins, and whales evolved within the even-toed ungulates, formerly known as Artiodactyla. These animals are now grouped in the Cetartiodactyla. We evaluated the antigenic similarity of the immunoglobulin G (IgG) molecules of 15 cetacean species and the domestic cow. The similarity was scored using three distinct antibodies raised against bottlenose dolphin (Tursiops truncatus) IgG in a Western blot, an indirect enzyme-linked immunosorbent assay (ELISA), and a competitive ELISA format. A score was generated for the genetic distance between each species and T. truncatus using the cytochrome b sequence. Each antibody displayed a distinct pattern of reactivity with the IgG antibodies of the various species. The monoclonal antibody (MAb) specific for the γ heavy chain of T. truncatus was reactive with all monodontids, delphinids, and phocoenids. The light-chain-specific MAb reacted with IgG of delphinoid and phocoenid species and one of the two mysticete species tested. The polyclonal antibody was broadly cross-reactive across all cetaceans and the domestic cow. Using the MAb specific for the γ heavy chain, the degree of IgG cross-reactivity ranged from less than 17% for the mysticetes to 106% for killer whale Orcinus orca. The IgG in beaked whale and baleen whale sera was significantly less cross-reactive with bottlenose dolphin IgG than sera from other toothed whales. A strong negative correlation was demonstrated between antigenic cross-reactivity of IgG molecules and the genetic distance of their hosts. The data generated will be useful for the development of clinical serodiagnostics in diverse cetacean species. PMID:18768672
Nollens, Hendrik H; Ruiz, Carolina; Walsh, Michael T; Gulland, Frances M D; Bossart, Gregory; Jensen, Eric D; McBain, James F; Wellehan, James F X
2008-10-01
Growing morphological and molecular evidence indicates that the porpoises, dolphins, and whales evolved within the even-toed ungulates, formerly known as Artiodactyla. These animals are now grouped in the Cetartiodactyla. We evaluated the antigenic similarity of the immunoglobulin G (IgG) molecules of 15 cetacean species and the domestic cow. The similarity was scored using three distinct antibodies raised against bottlenose dolphin (Tursiops truncatus) IgG in a Western blot, an indirect enzyme-linked immunosorbent assay (ELISA), and a competitive ELISA format. A score was generated for the genetic distance between each species and T. truncatus using the cytochrome b sequence. Each antibody displayed a distinct pattern of reactivity with the IgG antibodies of the various species. The monoclonal antibody (MAb) specific for the gamma heavy chain of T. truncatus was reactive with all monodontids, delphinids, and phocoenids. The light-chain-specific MAb reacted with IgG of delphinoid and phocoenid species and one of the two mysticete species tested. The polyclonal antibody was broadly cross-reactive across all cetaceans and the domestic cow. Using the MAb specific for the gamma heavy chain, the degree of IgG cross-reactivity ranged from less than 17% for the mysticetes to 106% for killer whale Orcinus orca. The IgG in beaked whale and baleen whale sera was significantly less cross-reactive with bottlenose dolphin IgG than sera from other toothed whales. A strong negative correlation was demonstrated between antigenic cross-reactivity of IgG molecules and the genetic distance of their hosts. The data generated will be useful for the development of clinical serodiagnostics in diverse cetacean species.
A Rare Case of Multiple Myeloma with Biclonal Gammopathy.
Banerjee, Abhik; Pimpalgaonkar, Kshama; Christy, Alap Lukiyas
2016-12-01
Multiple myeloma is a debilitating malignancy arising from plasma cells. These malignant plasma cells called myeloma cells proliferate and infiltrate the bone marrow. The disease is characterized by the presence of a monoclonal protein in plasma and/or the urine. In this report, we present a case of biclonal multiple myeloma which showed two M bands on serum protein electrophoresis. The patient had elevated serum IgA and IgG levels. To reveal the nature of M bands or clonality, serum Immunofixation study was performed which revealed IgA with Lambda and IgG with Kappa light chains. Such pattern is very rare if we consider the various immunofixation patterns observed in different gammopathies.
A Rare Case of Multiple Myeloma with Biclonal Gammopathy
Banerjee, Abhik; Christy, Alap Lukiyas
2016-01-01
Multiple myeloma is a debilitating malignancy arising from plasma cells. These malignant plasma cells called myeloma cells proliferate and infiltrate the bone marrow. The disease is characterized by the presence of a monoclonal protein in plasma and/or the urine. In this report, we present a case of biclonal multiple myeloma which showed two M bands on serum protein electrophoresis. The patient had elevated serum IgA and IgG levels. To reveal the nature of M bands or clonality, serum Immunofixation study was performed which revealed IgA with Lambda and IgG with Kappa light chains. Such pattern is very rare if we consider the various immunofixation patterns observed in different gammopathies. PMID:28208846
Dul, J L; Argon, Y
1990-01-01
Although immunoglobulin light chains are usually secreted in association with heavy chains, free light chains can be secreted by lymphocytes. To identify the structural features of light chains that are essential for their secretion, we mutated a conserved sequence in the variable domain of a lambda I light chain. The effects of the mutations on secretion were assayed by transient expression in COS-1 cells. One mutant (AV60), which replaced Ala-60 with Val, was secreted as efficiently as wild-type lambda I by transfected COS-1 cells. This result was not surprising because secreted lambda II chains contain valine in this position. However, a second lambda I mutant (AV60FS62), which replaced Phe-62 with Ser as well as Ala-60 with Val, was not secreted. This mutant was arrested in the endoplasmic reticulum, as judged by immunofluorescence and by its association with a lumenal endoplasmic reticulum protein, immunoglobulin heavy chain binding protein (BiP). The defect in secretion was not due to gross misfolding of the lambda I chain, since cells cotransfected with AV60FS62 and an immunoglobulin heavy chain gene produced functional antigen-binding antibodies. These assembled IgM molecules were still not secreted. Hence, the replacement of Phe-62 with Ser specifically affects a determinant on the lambda I light chain that is necessary for the intracellular transport of this molecule. Images PMID:2122454
Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K
2016-01-01
Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.
Townsend, Catherine L.; Laffy, Julie M. J.; Wu, Yu-Chang Bryan; Silva O’Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K.
2016-01-01
Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response. PMID:27729912
Bernstein, K E; Pavirani, A; Alexander, C; Jacobsen, F; Fitzmaurice, L; Mage, R
1983-01-01
Rabbits were infected by Trypanosoma equiperdum and the splenic mRNA was isolated. In vitro translation of this RNA and immunoprecipitation with anti-light chain, anti-heavy chain, anti-mu and anti-VH antibodies demonstrated that T. equiperdum infection elicits large quantities of splenic mRNA encoding mu and kappa chains. The mu and gamma heavy chains and the kappa light chains synthesized in the cell-free translation system were specifically immunoprecipitated by antisera to heavy chain VHa and light chain kappa b allotypes. In vitro labeling of spleen cells from trypanosome-infected animals demonstrated that the biosynthetically labeled IgM has a mu chain of higher molecular weight than the mu chain synthesized by in vitro translation, a difference that is largely abolished when cellular glycosylation is blocked with the antibiotic tunicamycin. Enrichment for heavy chain or light chain mRNA was achieved by fractionating mRNA from trypanosome-infected animals on a sucrose gradient. cDNA clones carrying mu heavy chain sequences were produced using a 'one tube' protocol and identified by cross species hybridization and hybridization selection. Infection of rabbits with T. equiperdum followed by sucrose gradient enrichment of splenic mRNA has provided sufficient quantities of mRNA encoding mu heavy chain suitable for cDNA cloning.
Seal, S N; Hoet, R M; Raats, J M; Radic, M Z
2000-09-01
To examine anti-double-stranded DNA (anti-dsDNA) IgG autoantibodies from the bone marrow of individuals with systemic lupus erythematosus (SLE). A library of single-chain variable fragments (scFv) was constructed from SLE bone marrow complementary DNA of gamma, kappa, and lambda isotype by cloning into the pHENIX phagemid vector. The library was screened with dsDNA in solution, and 2 anti-DNA phage, DNA1 and DNA4, were isolated and their Ig V genes sequenced. Soluble scFv corresponding to DNA1 and DNA4, and their heavy (H)- and light (L)-chain recombinants, were prepared, purified, and analyzed for binding to DNA by enzyme-linked immunosorbent assay. DNA1 and DNA4 used different Ig H-chain (3-30 and 5-51, respectively) and L-chain (DPK15 and DPK22, respectively) V genes. The ratios of replacement mutations to silent mutations in DNA1 and DNA4 suggest that their V genes were selected for improved antigen binding in vivo. The recombinant between DNA4VH and DNA1VL showed the highest relative affinity for both single-stranded DNA and dsDNA. These 2 Ig subunits contained third complementarity-determining region arginines and had acquired the majority of replacement mutations. Anti-dsDNA IgG autoantibodies from the bone marrow of SLE patients exploit diverse V genes and cationic V-D-J and V-J junctions for DNA binding, and accumulate replacement mutations that enhance binding.
Abudulai, Laila N; Fernandez, Sonia; Corscadden, Karli; Hunter, Michael; Kirkham, Lea-Ann S; Post, Jeffrey J; French, Martyn A
2016-04-01
To determine the effect of long-term antiretroviral therapy (ART) on HIV-1-induced B-cell dysfunction. Comparative study of ART-naive and ART-treated HIV-infected patients with non-HIV controls. B-cell dysfunction was examined in patients with HIV-1 infection (n = 30) who had received ART for a median time of 9.25 years (range: 1.3-21.7) by assessing proportions of CD21 B cells (a marker of B-cell exhaustion) and proportions of tumor necrosis factor-related apoptosis-inducing ligand or B and T lymphocyte attenuator B cells, and serum levels of immunoglobulin free light chains (markers of B-cell hyperactivation). The association of these markers with serum levels of IgG1 and IgG2, and production of IgG antibodies after vaccination with pneumococcal polysaccharides were also examined. ART-naive patients with HIV (n = 20) and controls (n = 20) were also assessed for comparison. ART-treated patients had increased proportions of CD21 and tumor necrosis factor-related apoptosis-inducing ligand B cells and, furthermore, although proportions of B and T lymphocyte attenuator B cells were not significantly different from controls, they correlated negatively with CD21 B cells. Proportions of CD21 B cells also correlated negatively with current CD4 T-cell counts. In ART-naive patients with HIV, free light chains correlated with CD21 B cells and IgG1, but not IgG2. Serum IgG2:IgG1 ratios were substantially lower than normal in patients with HIV and did not resolve on ART. In ART-treated patients, IgG antibody responses to pneumococcal polysaccharides after vaccination were not associated with markers of B-cell dysfunction. B-cell dysfunction persists in patients with HIV receiving long-term ART. The causes and consequences of this require further investigation.
Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D
2018-01-01
We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.
Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles
NASA Astrophysics Data System (ADS)
Giacomelli, Fernando C.; Stepánek, Petr; Schmidt, Vanessa; Jäger, Eliézer; Jäger, Alessandro; Giacomelli, Cristiano
2012-07-01
Selective protein fouling on block copolymer micelles with well-known potential for tumour-targeting drug delivery was evidenced by using dynamic light scattering measurements. The stability and interaction of block copolymer micelles with model proteins (BSA, IgG, lysozyme and CytC) is reported for systems featuring a hydrophobic (poly[2-(diisopropylamino)-ethyl methacrylate]) (PDPA) core and hydrophilic coronas comprising poly(ethylene oxide)/poly(glycerol monomethacrylate) (PEO-b-PG2MA) or poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). The results revealed that protein size and hydrophilic chain density play important roles in the observed interactions. The PEO113-b-PG2MA30-b-PDPA50 nanoparticles are stable and protein adsorption is prevented at all investigated protein environments. The successful protein-repellent characteristic of these nanoparticles is attributed to a high hydrophilic surface chain density (>0.1 chains per nm2) and to the length of the hydrophilic chains. On the other hand, although PMPC also has protein-repellent characteristics, the low surface chain density of the hydrophilic shell is supposed to enable interactions with small proteins. The PMPC40-b-PDPA70 micelles are stable in BSA and IgG environments due to weak repulsion forces between PMPC and the proteins, to the hydration layer, and particularly to a size-effect where the large BSA (RH = 4.2 nm) and IgG (RH = 7.0 nm) do not easily diffuse within the PMPC shell. Conversely, a clear interaction was observed with the 2.1 nm radius lysozyme. The lysozyme protein can diffuse within the PMPC micellar shell towards the PDPA hydrophobic core in a process favored by its smaller size and the low hydrophilic PMPC surface chain density (~0.049 chains per nm2) as compared to PEO-b-PG2MA (~0.110 chains per nm2). The same behavior was not evidenced with the 2.3 nm radius positively charged CytC, probably due to its higher surface hydrophilicity and the consequent chemical incompatibility with PDPA.Selective protein fouling on block copolymer micelles with well-known potential for tumour-targeting drug delivery was evidenced by using dynamic light scattering measurements. The stability and interaction of block copolymer micelles with model proteins (BSA, IgG, lysozyme and CytC) is reported for systems featuring a hydrophobic (poly[2-(diisopropylamino)-ethyl methacrylate]) (PDPA) core and hydrophilic coronas comprising poly(ethylene oxide)/poly(glycerol monomethacrylate) (PEO-b-PG2MA) or poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). The results revealed that protein size and hydrophilic chain density play important roles in the observed interactions. The PEO113-b-PG2MA30-b-PDPA50 nanoparticles are stable and protein adsorption is prevented at all investigated protein environments. The successful protein-repellent characteristic of these nanoparticles is attributed to a high hydrophilic surface chain density (>0.1 chains per nm2) and to the length of the hydrophilic chains. On the other hand, although PMPC also has protein-repellent characteristics, the low surface chain density of the hydrophilic shell is supposed to enable interactions with small proteins. The PMPC40-b-PDPA70 micelles are stable in BSA and IgG environments due to weak repulsion forces between PMPC and the proteins, to the hydration layer, and particularly to a size-effect where the large BSA (RH = 4.2 nm) and IgG (RH = 7.0 nm) do not easily diffuse within the PMPC shell. Conversely, a clear interaction was observed with the 2.1 nm radius lysozyme. The lysozyme protein can diffuse within the PMPC micellar shell towards the PDPA hydrophobic core in a process favored by its smaller size and the low hydrophilic PMPC surface chain density (~0.049 chains per nm2) as compared to PEO-b-PG2MA (~0.110 chains per nm2). The same behavior was not evidenced with the 2.3 nm radius positively charged CytC, probably due to its higher surface hydrophilicity and the consequent chemical incompatibility with PDPA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30623a
Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Forouzandeh, Mehdi; Allameh, Abdolamir; Sarrami, Ramin; Nasiry, Habib; Sadeghizadeh, Majid
2005-01-01
Camelidae are known to produce immunoglobulins (Igs) devoid of light chains and constant heavy-chain domains (CH1). Antigen-specific fragments of these heavy-chain IgGs (VHH) are of great interest in biotechnology applications. This paper describes the first example of successfully raised heavy-chain antibodies in Camelus dromedarius (single-humped camel) and Camelus bactrianus (two-humped camel) against a MUC1 related peptide that is found to be an important epitope expressed in cancerous tissue. Camels were immunized against a synthetic peptide corresponding to the tandem repeat region of MUC1 mucin and cancerous tissue preparation obtained from patients suffering from breast carcinoma. Three IgG subclasses with different binding properties to protein A and G were purified by affinity chromatography. Both conventional and heavy-chain IgG antibodies were produced in response to MUC1-related peptide. The elicited antibodies could react specifically with the tandem repeat region of MUC1 mucin in an enzyme linked immunosorbant assay (ELISA). Anti-peptide antibodies were purified after passing antiserum over two affinity chromatography columns. Using ELISA, immunocytochemistry and Western blotting, the interaction of purified antibodies with different antigens was evaluated. The antibodies were observed to be selectively bound to antigens namely: MUC1 peptide (tandem repeat region), human milk fat globule membrane (HMFG), deglycosylated human milk fat globule membrane (D-HMFG), homogenized cancerous breast tissue and a native MUC1 purified from ascitic fluid. Ka values of specific polyclonal antipeptide antibodies were estimated in C. dromedarius and C. bactrianus, as 7 x 10(10) M(-1) and 1.4 x 10(10) M(-1) respectively.
Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci.
Rother, Magdalena B; Palstra, Robert-Jan; Jhunjhunwala, Suchit; van Kester, Kevin A M; van IJcken, Wilfred F J; Hendriks, Rudi W; van Dongen, Jacques J M; Murre, Cornelis; van Zelm, Menno C
2016-01-08
Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag(-/-) progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, Igκ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Roux, K H; Greenberg, A S; Greene, L; Strelets, L; Avila, D; McKinney, E C; Flajnik, M F
1998-09-29
We recently have identified an antigen receptor in sharks called NAR (new or nurse shark antigen receptor) that is secreted by splenocytes but does not associate with Ig light (L) chains. The NAR variable (V) region undergoes high levels of somatic mutation and is equally divergent from both Ig and T cell receptors (TCR). Here we show by electron microscopy that NAR V regions, unlike those of conventional Ig and TCR, do not form dimers but rather are independent, flexible domains. This unusual feature is analogous to bona fide camelid IgG in which modifications of Ig heavy chain V (VH) sequences prevent dimer formation with L chains. NAR also displays a uniquely flexible constant (C) region. Sequence analysis and modeling show that there are only two types of expressed NAR genes, each having different combinations of noncanonical cysteine (Cys) residues in the V domains that likely form disulfide bonds to stabilize the single antigen-recognition unit. In one NAR class, rearrangement events result in mature genes encoding an even number of Cys (two or four) in complementarity-determining region 3 (CDR3), which is analogous to Cys codon expression in an unusual human diversity (D) segment family. The NAR CDR3 Cys generally are encoded by preferred reading frames of rearranging D segments, providing a clear design for use of preferred reading frame in antigen receptor D regions. These unusual characteristics shared by NAR and unconventional mammalian Ig are most likely the result of convergent evolution at the molecular level.
Production and characterization of monoclonal antibodies to IgM of Pacific herring (Clupea pallasii)
Purcell, Maureen K.; Bromage, Erin S.; Silva, Jessica; Hansen, John D.; Badil, Samantha M.; Woodson, James C.; Hershberger, Paul K.
2012-01-01
Pacific herring (Clupea pallasii) have a central role in the North Pacific ecosystem as a forage fish species and are natural reservoirs of several important finfish pathogens, including Viral hemorrhagic septicemia virus (VHSV). Here, we report the identification of the gene encoding the immunoglobulin mu (IgM) heavy chain, as well as the development and characterization of monoclonal antibodies (MAbs) that specifically react with Pacific herring IgM. Pacific herring immunoglobulin was purified and consisted of heavy and light chains of approximately 80 and 25 kDa. Three hybridoma clones were initially identified by ELISA as reactive with purified immunoglobulin but only one clone was able to detect an 80 kDa protein in Pacific and Atlantic herring (Clupea harengus) whole plasma by denaturing western blot. However, all three MAbs were able to precipitate an 80 kDa protein from Pacific herring and LCMS sequencing of peptide fragments derived from this protein matched the predicted amino acid sequence of the cloned, heavy chain gene. In addition, two of the MAbs stained cells within the putative lymphocyte gates for the spleen, anterior kidney and posterior kidney but were not reactive for myeloid/granulocyte gates, which is consistent with these MAbs reacting with surface IgM+ B-cells. To our knowledge, this is the first report of IgM-related gene sequences and anti-IgM monoclonal antibodies from any member of the family Clupeidae. The antibodies produced in this study are critical for achieving our long-term goal of conducting serological surveillance to assess pathogen exposure in natural populations of Pacific herring.
Diaz, Marilyn; Stanfield, Robyn L; Greenberg, Andrew S; Flajnik, Martin F
2002-10-01
The new antigen receptor (IgNAR) family has been detected in all elasmobranch species so far studied and has several intriguing structural and functional features. IgNAR protein, found in both transmembrane and secretory forms, is a dimer of heavy chains with no associated light chains, with each chain of the dimer having a single free and flexible V region. Four rearrangement events (among 1V, 3D, and 1J germline genes) generate an expressed NAR V gene, resulting in long and diverse CDR3 regions that contain cysteine residues. IgNAR mutation frequency is very high and "selected" mutations are found only in genes encoding the secreted form, suggesting that the primary repertoire is entirely CDR3-based. Here we further analyzed the two IgNAR types, "type 1" having one cysteine in CDR3 and "type 2" with an even number (two or four) of CDR3 cysteines, and discovered that placement of the disulfide bridges in the IgNAR V domain differentially influences the selection of mutations in CDR1 and CDR2. Ontogenetic analyses showed that IgNAR sequences from young animals were infrequently mutated, consistent with the paradigm that the shark immune system must become mature before high levels of mutation accompanied with selection can occur. Nevertheless, also in agreement with the idea that the IgNAR repertoire is entirely CDR3-based, but unlike studies in most other vertebrates, N-region diversity is present in expressed IgNAR clones at birth. During the investigation of this early IgNAR repertoire we serendipitously detected a third type of IgNAR gene that is expressed in all neonatal tissues; later in life its expression is perpetuated only in the epigonal organ, a tissue recently shown to be a (the?) primary lymphoid tissue in elasmobranchs. This "type 3" IgNAR gene still undergoes three rearrangement events (two D regions are "germline-joined"), yet CDR3 sequences were exactly of the same length and very similar sequence, suggesting that "type 3" CDR3s are selected early in ontogeny, perhaps by a self-ligand.
Biased Immunoglobulin Light Chain Gene Usage in the Shark.
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-10-15
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. Copyright © 2015 by The American Association of Immunologists, Inc.
Debaene, François; Wagner-Rousset, Elsa; Colas, Olivier; Ayoub, Daniel; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah
2013-10-15
Monoclonal antibodies (mAbs) and derivatives such as antibody-drug conjugates (ADC) and bispecific antibodies (bsAb), are the fastest growing class of human therapeutics. Most of the therapeutic antibodies currently on the market and in clinical trials are chimeric, humanized, and human immunoglobulin G1 (IgG1). An increasing number of IgG2s and IgG4s that have distinct structural and functional properties are also investigated to develop products that lack or have diminished antibody effector functions compared to IgG1. Importantly, wild type IgG4 has been shown to form half molecules (one heavy chain and one light chain) that lack interheavy chain disulfide bonds and form intrachain disulfide bonds. Moreover, IgG4 undergoes a process of Fab-arm exchange (FAE) in which the heavy chains of antibodies of different specificities can dissociate and recombine in bispecific antibodies both in vitro and in vivo. Here, native mass spectrometry (MS) and time-resolved traveling wave ion mobility MS (TWIM-MS) were used for the first time for online monitoring of FAE and bsAb formation using Hz6F4-2v3 and natalizumab, two humanized IgG4s which bind to human Junctional Adhesion Molecule-A (JAM-A) and alpha4 integrin, respectively. In addition, native MS analysis of bsAb/JAM-A immune complexes revealed that bsAb can bind up to two antigen molecules, confirming that the Hz6F4 family preferentially binds dimeric JAM-A. Our results illustrate how IM-MS can rapidly assess bsAb structural heterogeneity and be easily implemented into MS workflows for bsAb production follow up and bsAb/antigen complex characterization. Altogether, these results provide new MS-based methodologies for in-depth FAE and bsAb formation monitoring. Native MS and IM-MS will play an increasing role in next generation biopharmaceutical product characterization like bsAbs, antibody mixtures, and antibody-drug conjugates (ADC) as well as for biosimilar and biobetter antibodies.
2010-01-01
Trastuzumab (Herceptin®), a humanized IgG1 antibody raised against the human epidermal growth factor receptor 2 (HER2/neu), is the main antibody in clinical use against breast cancer. Pre-clinical evidence and clinical studies indicate that trastuzumab employs several anti-tumour mechanisms that most likely contribute to enhanced survival of patients with HER2/neu-positive breast carcinomas. New strategies are aimed at improving antibody-based therapeutics like trastuzumab, e.g. by enhancing antibody-mediated effector function mechanisms. Based on our previous findings that a chimaeric ovarian tumour antigen-specific IgE antibody showed greater efficacy in tumour cell killing, compared to the corresponding IgG1 antibody, we have produced an IgE homologue of trastuzumab. Trastuzumab IgE was engineered with the same light- and heavy-chain variable-regions as trastuzumab, but with an epsilon in place of the gamma-1 heavy-chain constant region. We describe the physical characterisation and ligand binding properties of the trastuzumab IgE and elucidate its potential anti-tumour activities in functional assays. Both trastuzumab and trastuzumab IgE can activate monocytic cells to kill tumour cells, but they operate by different mechanisms: trastuzumab functions in antibody-dependent cell-mediated phagocytosis (ADCP), whereas trastuzumab IgE functions in antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab IgE, incubated with mast cells and HER2/neu-expressing tumour cells, triggers mast cell degranulation, recruiting against cancer cells a potent immune response, characteristic of allergic reactions. Finally, in viability assays both antibodies mediate comparable levels of tumour cell growth arrest. These functional characteristics of trastuzumab IgE, some distinct from those of trastuzumab, indicate its potential to complement or improve upon the existing clinical benefits of trastuzumab. PMID:18941743
A descriptive study of plasma cell dyscrasias in Egyptian population.
Kassem, Neemat M; El Zawam, Hamdy; Kassem, Heba A; El Nahas, Tamer; El Husseiny, Noha M; El Azeeim, Hamdy Abd
2014-06-01
Plasma cell dyscrasias (PCDs) refer to a spectrum of disorders characterized by the monoclonal proliferation of lymphoplasmacytic cells in the bone marrow and, sometimes, tissue deposition of monoclonal immunoglobulins or their components. These disorders include multiple myeloma (MM) and Waldenström's macroglobulinemia, as well as rare conditions such as light-chain deposition disease (LCDD) and heavy-chain diseases (HCDs). The worldwide annual incidence of MM is estimated at 86,000, which is approximately 0.8% of all new cancer cases. Our retrospective study aims to highlight the immunologic and epidemiological features of PCDs mainly MM in Egyptian patients and compare our results with those of other populations. Two hundred seventeen Egyptian patients with PCD were enrolled in the study. Serum, urine protein electrophoresis and immunofixation were used to demonstrate M protein. One hundred thirty-eight patients (63.6%) had IgG monoclonal band, 38 patients (17.5%) had IgA, 12 patients (5.5%) had Waldenström's macroglobulinemia (IgM monoclonal band) and 29 patients (13.4%) were light chain myeloma. One hundred fifty-one (70%) were Kappa chain positive and 66 patients (30%) were lumbda positive. Conventional cytogenetics was available for 40 patients; of them12 patients (30%) showed 13q-. Mean OS was 37.5months (1-84months). Survival analysis was statistically insignificant according to age, sex and ISS or type of treatment (P value>0.05). Long term follow up is required to further define the role of different therapeutic lines of treatment including ASCT in the various stages of PCD based on OS data. Copyright © 2013. Production and hosting by Elsevier B.V.
Zhu, Lijuan; Liao, Wenjun; Zhu, Huifen; Lei, Ping; Wang, Zhihua; Shao, Jingfang; Zhang, Yue; Shen, Guanxin
2006-01-01
The expression vector of SmIg scFv fragment was constructed in patient with B cell chronic lymphocyte leukemia (B-CLL) and expressed in E. coli to obtain scFv fragment, and the effect of the protein on the proliferation of stimulated peripheral blood mononuclear cells (PBMC) was investigated in vitro. Two pairs of primers were designed, and variable region genes of light chain and heavy chain were amplified by PCR respectively from the pGEM-T vectors previously constructed in our laboratory which containing light chain gene or Fd fragment of heavy chain gene. The PCR product was digested, purified and inserted into pHEN2 vector to construct the soluble expression vector pHEN2-scFv. After the induction by IPTG, the scFv protein was identified by SDS-PAGE electrophoresis and purified by Ni-NTA-Chromatography. MTT was used to determine the effect of purified protein on the proliferation of stimulated PBMC in vitro. Plasmid PCR and restriction enzyme digestion of pHEN2-scFv revealed the pHEN2-scFv vector was constructed successfully. Id-scFv protein was expressed in positive clone after induced by IPTG. SDS-PAGE analysis showed that the relative molecular weight of fusion protein was about 30 kD (1 kD= 0.9921 ku), which was consistent with the theoretically predicted value. Proliferation of PBMC could be induced by purified Id-scFv. It was suggested that the expression vector of SmIg scFv fragment was constructed successfully, and scFv protein was expressed and secreted from E. coli, which could induce proliferation of PBMC. This may lay an experimental foundation for further research of Id-HSP complex vaccine for B-CLL.
Latrofa, F; Ricci, D; Montanelli, L; Piaggi, P; Mazzi, B; Bianchi, F; Brozzi, F; Santini, P; Fiore, E; Marinò, M; Tonacchera, M; Vitti, P
2014-01-01
The subclass distribution of thyroglobulin autoantibodies (TgAb) is debated, whereas their epitope pattern is restricted. Radioidine (131I) treatment for Graves' disease (GD) induces a rise in TgAb levels, but it is unknown whether it modifies subclass distribution and epitope pattern of TgAb as well. We collected sera from GD patients before 131I treatment and 3 and 6 months thereafter. We measured total TgAb, TgAb light chains and TgAb subclasses by enzyme-linked immunosorbent assay (ELISA) in 25 patients. We characterized the TgAb epitope pattern in 30 patients by inhibiting their binding to 125-ITg by a pool of four TgAb-Fab (recognizing Tg epitope regions A, B, C and D) and to Tg in ELISA by each TgAb-Fab. Total TgAb immunoglobulin (Ig)G rose significantly (P = 0·024). TgAb κ chains did not change (P = 0·052), whereas TgAb λ chains increased significantly (P = 0·001) and persistently. We observed a significant rise in IgG1 and IgG3 levels after 131I (P = 0·008 and P = 0·006, respectively), while IgG2 and IgG4 levels did not change. The rise of IgG1 was persistent, that of IgG3 transient. The levels of inhibition of TgAb binding to Tg by the TgAb-Fab pool were comparable. A slight, non-significant reduction of the inhibition by the immune-dominant TgAb-Fab A was observed 3 and 6 months after 131I. We conclude that 131I treatment for GD increases the levels of the complement-activating IgG1 and IgG3 subclasses and does not influence significantly the epitope pattern of TgAb. In autoimmune thyroid disease subclass distribution of autoantibodies is dynamic in spite of a stable epitope pattern. PMID:25134846
Silverman, G J; Carson, D A; Patrick, K; Vaughan, J H; Fong, S
1987-06-01
The mouse monoclonal antibody 17.109 recognizes a cross-reactive idiotype (CRI) associated with kappa IIIb light chains of human IgM-rheumatoid factor (RF) paraproteins. The 17.109 idiotypic determinant is encoded by one or a group of closely related V kappa genes. The association of the idiotype with IgM- and IgA-rheumatoid factors in certain autoimmune diseases necessitates an understanding of how human B lymphocytes can be induced to express the idiotype. To investigate the cellular expression of the 17.109 CRI, peripheral blood lymphocytes from normal donors were stimulated in vitro with Epstein-Barr virus (EBV) and pokeweed mitogen (PWM). EBV induced greater expression of IgM-associated 17.109 CRI than did PWM. The 17.109 CRI was preferentially associated with IgM rather than with IgG. In vivo EBV infection was studied in college students with infectious mononucleosis and displayed similar elevation of IgM-associated 17.109 CRI in sera obtained at presentation of clinical illness. Later, IgM levels declined while IgG-associated 17.109 CRI rose. The 17.109 idiotype was unrelated to antibodies against the Epstein-Barr virus nuclear antigen and the viral capsid antigen and was probably due to generalized activation of early B cells. These observations support the hypothesis that the 17.109 CRI is expressed by in vitro and in vivo EBV-infected cells. The 17.109 idiotype identifies a highly conserved V kappa gene product, which is expressed preferentially after EBV infection, but not exclusively with RF autoantibodies.
Excessive amounts of mu heavy chain block B-cell development.
Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley
2011-09-01
Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.
Strategies for leukemic biomarker detection using long-range surface plasmon-polaritons
NASA Astrophysics Data System (ADS)
Krupin, O.; Wang, C.; Berini, P.
2014-09-01
The suitability and use of long-range surface plasmon-polaritons for leukemic biomarker detection is discussed. A novel optical biosensor comprised of gold straight waveguides embedded in CYTOP with an etched microfluidic channel was tested for detecting leukemia in patient serum. Gold surface functionalization involved the interaction of protein G (PG) with antibodies by first adsorbing PG on bare gold and then antibodies (Immunoglobulin G, IgG). Differentiation between healthy and leukemia patients was based on the difference in ratios of Ig kappa (Igκ) and Ig lambda (Igλ) light chains in both serums. The ratio for a normal patient is ~1.4 - 2, whereas for a leukemia patient this ratio is altered. As a receptor (primary antibodies), goat anti-human anti-IgGκ and anti-IgGλ were used to functionalize the surface. Diluted normal and leukemia patient serums were tested over the aforementioned surfaces. The ratios of mass surface densities of IgGκ:IgGλ for normal serum (NS) and patient serum (PS) were found to be 1.55 and 1.92 respectively.
Ota, Tatsuya; Rast, Jonathan P.; Litman, Gary W.; Amemiya, Chris T.
2003-01-01
The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of VH utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages. PMID:12606718
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
NASA Technical Reports Server (NTRS)
Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.
2001-01-01
Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.
Kabir, S
1998-03-15
Jacalin, the major protein from the jackfruit (Artocarpus heterophyllus) seeds, is a tetrameric two-chain lectin (molecular mass 65 kDa) combining a heavy alpha chain of 133 amino acid residues with a light beta chain of 20-21 amino acid residues. It is highly specific for the alpha-O-glycoside of the disaccharide Thomsen-Friedenreich antigen (Gal beta1-3GalNAc), even in its sialylated form. This property has made jacalin suitable for studying various O-linked glycoproteins, particularly human IgA1. Jacalin's uniqueness in being strongly mitogenic for human CD4+ T lymphocytes has made it a useful tool for the evaluation of the immune status of patients infected with human immunodeficiency virus (HIV)-1. The abundance of source material for the production of jacalin, its ease of purification, yield and stability have made it an attractive cost-effective lectin. It has found applications in diverse areas such as the isolation of human plasma glycoproteins (IgA1, C1-inhibitor, hemopexin, alpha2-HSG), the investigation of IgA-nephropathy, the analysis of O-linked glycoproteins and the detection of tumours.
Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas
2011-01-01
B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810
Rossi, Davide; Franceschetti, Silvia; Cerri, Michaela; Conconi, Annarita; Lunghi, Monia; Capello, Daniela; Cantello, Roberto; Gaidano, Gianluca
2007-06-01
Hairy cell leukaemia (HCL) occasionally displays a monoclonal gammopathy, yet the association of HCL with paraproteinemic demyelinating neuropathy (PDN) has not been reported. We describe a HCL case complicated by PDN and high titers of monoclonal IgM against myelin associated glycoprotein (MAG). Heavy and light chains of the patient's anti-MAG monoclonal protein were consistent with those expressed by HCL cells. After treatment with cladribrine, remission of HCL strictly paralleled disappearance of the IgM monoclonal protein and of the serum anti-MAG activity, and led to PDN clinical and electrophysiological improvement. Purine analogs may represent a choice in IgM PDN associated with lymphoproliferative disorders.
J chain in the nurse shark: implications for function in a lower vertebrate.
Hohman, Valerie S; Stewart, Sue E; Rumfelt, Lynn L; Greenberg, Andrew S; Avila, David W; Flajnik, Martin F; Steiner, Lisa A
2003-06-15
J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.
Liu, Zhi; Leng, Esther C; Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Howard, Monique; Stoops, Janelle; Manchulenko, Kathy; Razinkov, Vladimir; Liu, Hua; Fanslow, William; Hu, Zhonghua; Sun, Nancy; Hasegawa, Haruki; Clark, Rutilio; Foltz, Ian N; Yan, Wei
2015-03-20
Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Baldini, L; Guffanti, A; Cesana, B M; Colombi, M; Chiorboli, O; Damilano, I; Maiolo, A T
1996-02-01
The presenting clinico-hematologic features of 386 patients with nonmyelomatous monoclonal gammopathy (MG) were correlated with the frequency of malignant transformation to evaluate the most important variables conditioning its evolution into multiple myeloma (MM) or Waldenström macroglobulinemia (WM). Most of the patients (335) had monoclonal gammopathy of undetermined significance (MGUS: 39 IgA, 242 IgG, 54 IgM): the remaining 51 patients (12 IgA, 39 IgG) fulfilled all of the MGUS diagnostic criteria (according to Durie) except that bone marrow plasma cell (BMPC) content was 10% to 30%, and so they were defined as having monoclonal gammopathy of borderline significance (MGBS). There were no significant differences between the MGUS and MGBS groups in terms of age, sex, or median follow-up. After a median follow-up of 70 and 53 months, respectively, 23 of 335 MGUS and 19 of 51 MGBS patients had undergone a malignant evolution. Univariate analysis of the IgA and IgG patients showed that the cumulative probability of the disease evolving into MM correlated with diagnostic definition (MGBS v MGUS), BMPC content (> or = 10% v < 5% and < or = 5% v > 5%) and reduced serum polyclonal Ig. In the IgG cases, there was also a significant correlation with detectable Bence Jones proteinuria, serum monoclonal component (MC) levels and age at diagnosis (> 70 v < = or 55 years). In the IgG cases as a whole, the same variables remained in the Cox model where the BMPC percentage was considered after natural logarithmic transformation and the monoclonal component as g/dL value. The relative risks of developing MM are the following: 2.4 for each 1 g/dL increase of IgG, serum MC, 3.5 for detectable light chain proteinuria, 4.4 for the increase of 1 unit in log. BMPC percentage, 6.1 for age > 70, 3.6 and 13.1 for a reduction in one or two polyclonal Ig. In conclusion, our study allows the identification of a particular subset of MGUS patients (MC < = or 1.5 g/dL, BMPC < 5%, no reduction in polyclonal Ig and no detectable light chain proteinuria) at very low-risk of evolution, who can be considered as having benign monoclonal gammopathies. We also describe a previously undefined group of MG patients (with monoclonal gammopathy of borderline significance) who are at high-risk of malignant evolution. These findings could have a considerable impact on the cost/benefit ratio of monitoring programs in these patients.
Cross-reactivity of anti-chicken IgY antibody with immunoglobulins of exotic avian species.
Cray, Carolyn; Villar, David
2008-09-01
A major challenge in the serologic diagnosis of infectious diseases in exotic birds is the limited availability of species-specific antibodies. The purpose of the current study was to determine if there is cross reactivity between commercially available anti-chicken IgY antibodies and immunoglobulins of several avian species, with particular emphasis on psittacines. To quantitate the reactivity with anti-chicken IgY, Western blot analysis was performed using plasma samples from many different avian species. Results were compared with gamma globulin fraction quantitation obtained by protein electrophoresis. By Western blot, 2 protein bands corresponding to the heavy and light chains of chicken IgY were identified in species from 21 avian orders using 1 of 2 rabbit anti-chicken IgY antibodies. Densitometric analysis showed that the amount of immunoglobulin estimated from Western blots correlated strongly with data from protein electrophoresis assays. The results demonstrate that some commercially available anti-chicken IgY antibodies exhibit good cross-reactivity with most avian species.
Hakim, Rahely
2009-01-01
Full-length antibodies and antibodies that ferry a cargo to target cells are desired biopharmaceuticals. We describe the production of full-length IgGs and IgG-toxin fusion proteins in E. coli. In the presented examples of anti CD30 and anti EGF-receptor antibodies, the antibody heavy and light chains or toxin fusions thereof were expressed in separate bacterial cultures, where they accumulated as insoluble inclusion bodies. Following refolding and purification, high yields (up to 50 mg/L of shake flask culture) of highly purified (>90%) full-length antibodies and antibody-toxin fusions were obtained. The bacterially produced antibodies, named “Inclonals,” equaled the performance of the same IgGs that were produced using conventional mammalian cell culture in binding properties as well as in cell killing potency. The rapid and cost effective IgG production process and the high quality of the resultant product may make the bacterial production of full-length IgG and IgG-drug fusion proteins an attractive option for antibody production and a significant contribution to recombinant antibody technology. PMID:20065645
Surface immunoglobulin on cultured foetal mouse thymocytes
Haustein, D.; Mandel, T. E.
1979-01-01
Organ cultures of 14–15 day foetal mouse thymus were used as a source of non-neoplastic differentiating T cells, free of contaminating B cells. Viable cells obtained from such cultured thymuses were radio-iodinated and immunoglobulins (Ig) were isolated by co-precipitation from the 125I-labelled cell-surface proteins released during 1 h of incubation at 37°. The precipitates, both reduced and unreduced, were then analysed by polyacrylamide gel electrophoresis. The unreduced material migrated in a 5% gel as a single peak with a mobility slightly faster than that of mouse IgG. After reduction, however, two peaks were obtained (in a 10% gel), one corresponding in migration to mouse light chain and the other which moved slightly faster than mouse μ chain. This pattern was identical with that previously seen for both surface Ig of normal mouse thymocytes and neoplastic T lymphoma cells. Uncultured, 15 day foetal thymocytes did not produce any detectable co-precipitated cell surface material. Ig detected in these experiments was therefore produced during in vitro culture by non-neoplastic T cells in a system free of contaminating B cells and mouse serum proteins. PMID:315364
Gurtner, Kari M; Shosha, Eslam; Bryant, Sandra C; Andreguetto, Bruna D; Murray, David L; Pittock, Sean J; Willrich, Maria Alice V
2018-02-19
Cerebrospinal fluid (CSF) used in immunoglobulin gamma (IgG) index testing and oligoclonal bands (OCBs) are common laboratory tests used in the diagnosis of multiple sclerosis. The measurement of CSF free light chains (FLC) could pose as an alternative to the labor-intensive isoelectric-focusing (IEF) gels used for OCBs. A total of 325 residual paired CSF and serum specimens were obtained after physician-ordered OCB IEF testing. CSF kappa (cKFLC) and lambda FLC (cLFLC), albumin and total IgG were measured. Calculations were performed based on combinations of analytes: CSF sum of kappa and lambda ([cKFLC+cLFLC]), kappa-index (K-index) ([cKFLC/sKFLC]/[CSF albumin/serum albumin]), kappa intrathecal fraction (KFLCIF) {([cKFLC/sKFLC]-[0.9358×CSF albumin/serum albumin]^[0.6687×sKFLC]/cKFLC)} and IgG-index ([CSF IgG/CSF albumin]/[serum IgG/serum albumin]). Patients were categorized as: demyelination (n=67), autoimmunity (n=53), non-inflammatory (n=50), inflammation (n=38), degeneration (n=28), peripheral neuropathy (n=24), infection (n=13), cancer (n=11), neuromyelitis optica (n=10) and others (n=31). cKFLC measurement used alone at a cutoff of 0.0611 mg/dL showed >90% agreement to OCBs, similar or better performance than all other calculations, reducing the number of analytes and variables. When cases of demyelinating disease were reviewed, cKFLC measurements showed 86% clinical sensitivity/77% specificity. cKFLC alone demonstrates comparable performance to OCBs along with increased sensitivity for demyelinating diseases. Replacing OCB with cKFLC would alleviate the need for serum and CSF IgG and albumin and calculated conversions. cKFLC can overcome challenges associated with performance, interpretation, and cost of traditional OCBs, reducing costs and maintaining sensitivity and specificity supporting MS diagnosis.
Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia
Ghiotto, Fabio; Fais, Franco; Valetto, Angelo; Albesiano, Emilia; Hashimoto, Shiori; Dono, Mariella; Ikematsu, Hideyuki; Allen, Steven L.; Kolitz, Jonathan; Rai, Kanti R.; Nardini, Marco; Tramontano, Anna; Ferrarini, Manlio; Chiorazzi, Nicholas
2004-01-01
Studies of B cell antigen receptors (BCRs) expressed by leukemic lymphocytes from patients with B cell chronic lymphocytic leukemia (B-CLL) suggest that B lymphocytes with some level of BCR structural restriction become transformed. While analyzing rearranged VHDJH and VLJL genes of 25 non–IgM-producing B-CLL cases, we found five IgG+ cases that display strikingly similar BCRs (use of the same H- and L-chain V gene segments with unique, shared heavy chain third complementarity-determining region [HCDR3] and light chain third complementarity-determining region [LCDR3] motifs). These H- and L-chain characteristics were not identified in other B-CLL cases or in normal B lymphocytes whose sequences are available in the public databases. Three-dimensional modeling studies suggest that these BCRs could bind the same antigenic epitope. The structural features of the B-CLL BCRs resemble those of mAb’s reactive with carbohydrate determinants of bacterial capsules or viral coats and with certain autoantigens. These findings suggest that the B lymphocytes that gave rise to these IgG+ B-CLL cells were selected for this unique BCR structure. This selection could have occurred because the precursors of the B-CLL cells were chosen for their antigen-binding capabilities by antigen(s) of restricted nature and structure, or because the precursors derived from a B cell subpopulation with limited BCR heterogeneity, or both. PMID:15057307
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases.
Zuckerman, Neta S; Hazanov, Helena; Barak, Michal; Edelman, Hanna; Hess, Shira; Shcolnik, Hadas; Dunn-Walters, Deborah; Mehr, Ramit
2010-12-01
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enhancing Antibody Fc Heterodimer Formation through Electrostatic Steering Effects
Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Garrett, Logan; Forte, Carla; Woodward, Anne; Ng, Soo Bin; Born, Teresa; Retter, Marc; Manchulenko, Kathy; Sweet, Heather; Foltz, Ian N.; Wittekind, Michael; Yan, Wei
2010-01-01
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications. PMID:20400508
Sakaguchi, M; Hori, H; Hattori, S; Irie, S; Imai, A; Yanagida, M; Miyazawa, H; Toda, M; Inouye, S
1999-09-01
Anaphylactic reactions to measles, mumps, and rubella vaccines, including gelatin as a stabilizer, have been reported. It had been found that most of these reactions to live vaccines are caused by the bovine gelatin included in these vaccines. Gelatin mainly includes denatured type I collagen, which consists of alpha1 and alpha2 chains. The current study was designed to investigate the IgE reactivity to alpha1 and alpha2 chains of bovine type I collagen in gelatin-sensitive children. Serum samples were taken from 10 children who had anaphylaxis to the vaccines and high levels of specific IgE to bovine gelatin. Bovine type I collagen was isolated from bovine skin and then separated to alpha1 and alpha2 chains by column chromatography. IgE reactivity to denatured type I collagen and its alpha1 and alpha2 chains was analyzed by immunoblotting, ELISA, and histamine release from the mast cells passive sensitized with IgE antibodies in pooled serum of the children. All children had specific IgE to bovine type I collagen. Furthermore, IgE antibodies in their sera reacted with the alpha;2 chain but not with the alpha1 chain. Similarly, the mast cells sensitized with pooled sera in the children showed alpha2 chain-specific histamine release but not alpha1 chain-specific histamine release. In gelatin allergy denatured bovine type I collagen is a major allergen and IgE-binding sites exist in the alpha2 chain of type I collagen.
Waldmann, Thomas A.; Johnson, John S.; Talal, Norman
1971-01-01
Hypogammaglobulinemia due to a new pathophysiological mechanism was studied in a patient with Sjögren's syndrome, a monoclonal IgM and a mixed (IgM-IgG) cryoglobulinemia. The IgM (IgMdk) component of the cryogel possessed light chains of λ-type with highly restricted electrophoretic mobility analagous to those of a Waldenström's macroglobulin. IgMdk reacted specifically with native IgG, with IgG subclasses 1, 2, and 4, and with the Fc piece of IgG to form a cryogel. Serum concentrations of IgG 1, 2, and 4 were 10% of normal, whereas the IgG3 level was slightly increased and the IgM level was markedly increased. Viscosity and analytical ultracentrifugation studies with the purified mixed cryogel (IgM-LgG) indicated soluble complex formation over a temperature range (36-38°C) attainable in vivo. Immunoglobulin turnover studies revealed a markedly elevated rate of IgM synthesis with a normal survival of IgM, IgA, and IgE. IgG3, which failed to form complexes with IgMdk at body temperature, had a normal synthetic rate and survival. In contrast, the other IgG subclasses showed reduced synthesis and shortened survival. These studies are the first indicating a short survival of some IgG subclasses with a normal survival of another. The hypogammaglobulinemia appears to be due in part to a new mechanism of accelerated protein catabolism: The rapid elimination of IgG due to its interaction with an IgG-reactive monoclonal IgM. PMID:4993860
Nie, Min; Chen, Dong; Gao, Zhenyan; Wu, Xinyu; Li, Tong
2016-01-01
Background Dental caries is a well-known biofilm-mediated disease initiated by Streptococcus mutans, which should infect and colonize in a milieu perfused with components of the mucosal immune system. Little is known, however, regarding the relationship between the natural secretory IgA activity and S. mutans of a variety of diverse genotypes. Objectives The current study aimed to use spousal pairs to investigate the natural immunoreactivity of salivary secretory IgA to different genotype strains of S. mutans. Patients and Methods Indigenous strains were characterized from nine spousal pairs using polymerase reaction chain (PCR) and arbitrarily primed polymerase chain reaction (AP-PCR) by genotype monitoring. Unstimulated submandibular/sublingual secretions were collected and the concentrations of secretory IgA were determined by the enzyme-linked immunosorbent assay (ELISA). Each saliva sample was examined by Western blot to analyze the immunoreactivity of naturally occurring salivary secretory IgA antibodies for his/her own indigenous strain, spouse’s strain and reference strains including S. mutans GS-5 and Ingbritt (C). Results The results showed that naturally induced salivary IgA antibodies against S. mutans were present in all subjects. Almost all subjects had the similar individual immunoblotting profiles to different genotype strains. Conclusions The current study indicated that the immunoreactivity of secretory IgA might have no direct correlation with the colonization of indigenous flora and rejection of exogenous strains in adults. The relationship of microbes, host and dental caries should be in the light of coevolved microecosystem as a whole, but not caused by one factor alone. PMID:27303613
Capello, Daniela; Cerri, Michaela; Muti, Giuliana; Lucioni, Marco; Oreste, Pierluigi; Gloghini, Annunziata; Berra, Eva; Deambrogi, Clara; Franceschetti, Silvia; Rossi, Davide; Alabiso, Oscar; Morra, Enrica; Rambaldi, Alessandro; Carbone, Antonino; Paulli, Marco; Gaidano, Gianluca
2006-12-01
Post-transplant lymphoproliferative disorders (PTLD) derive from antigen-experienced B-cells and represent a major complication of solid organ transplantation. We characterized usage, mutation frequency and mutation pattern of immunoglobulin variable (IGV) gene rearrangements in 50 PTLD (polymorphic PTLD, n=10; diffuse large B-cell lymphoma, n=35; and Burkitt/Burkitt-like lymphoma, n=5). Among PTLD yielding clonal IGV amplimers, a functional IGV heavy chain (IGHV) rearrangement was found in 40/50 (80.0%) cases, whereas a potentially functional IGV light chain rearrangement was identified in 36/46 (78.3%) PTLD. By combining IGHV and IGV light chain rearrangements, 10/50 (20.0%) PTLD carried crippling mutations, precluding expression of a functional B-cell receptor (BCR). Immunohistochemistry showed detectable expression of IG light chains in only 18/43 (41.9%) PTLD. Failure to detect a functional IGV rearrangement associated with lack of IGV expression. Our data suggest that a large fraction of PTLD arise from germinal centre (GC)-experienced B-cells that display impaired BCR. Since a functional BCR is required for normal B-cell survival during GC transit, PTLD development may implicate rescue from apoptosis and expansion of B-cells that have failed the GC reaction. The high frequency of IGV loci inactivation appears to be a peculiar feature of PTLD among immunodeficiency-associated lymphoproliferations.
De Nardis, Camilla; Hendriks, Linda J A; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B H; de Kruif, John
2017-09-01
Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G 1 We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed "DEKK" consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
De Nardis, Camilla; Hendriks, Linda J. A.; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B. H.; de Kruif, John
2017-01-01
Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G1. We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed “DEKK” consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. PMID:28655766
Process Research and Development of Antibodies as Countermeasures for C. botulinum
2009-02-01
1. Diagram of plasmid pS25. Plasmid contains the light ( LC ) and heavy chains (HC) of S25 antibody against BoNT serotype A, along with dhfr as a...column, an MEP-hypercel column (100mm · 4.6mm di- ameter), or an EDTPA modified zirconia column (Zir- chrom ) (50mm · 4.6mm diameter). Prior to loading...Human IgG (2lg), (3) Human IgG (0.4lg), (4) CHO-S-SFM II media, (5) CHO-DG44 S25 supernatant, (6) rProtein A pooled peak fraction (ultrafiltered load), (7
Hematopoiesis In The Equine Fetal Liver Suggests Immune Preparedness
Battista, JM; Tallmadge, RL; Stokol, T; Felippe, MJB
2014-01-01
We investigated how the equine fetus prepares its pre-immune humoral repertoire for an imminent exposure to pathogens in the neonatal period, particularly how the primary hematopoietic organs are equipped to support B cell hematopoiesis and immunoglobulin (Ig) diversity. We demonstrated that the liver and the bone marrow at approximately 100 days of gestation (DG) are active sites of hematopoiesis based on the expression of signature mRNA (c-KIT, CD34, IL7R, CXCL12, IRF8, PU.1, PAX5, NOTCH1, GATA1, CEBPA) and protein markers (CD34, CD19, IgM, CD3, CD4, CD5, CD8, CD11b, CD172A) of hematopoietic development and leukocyte differentiation molecules, respectively. To verify Ig diversity achieved during the production of B cells, V(D)J segments were sequenced in primary lymphoid organs of the equine fetus and adult horse, revealing that similar heavy chain VDJ segments and CDR3 lengths were most frequently used independent of life stage. In contrast, different lambda light chain segments were predominant in equine fetal compared to adult stage and, surprisingly, the fetus had less restricted use of variable gene segments to construct the lambda chain. Fetal Igs also contained elements of sequence diversity, albeit to a smaller degree than that of the adult horse. Our data suggest that the B cells produced in the liver and bone marrow of the equine fetus generate a wide repertoire of pre-immune Igs for protection, and the more diverse use of different lambda variable gene segments in fetal life may provide the neonate an opportunity to respond to a wider range of antigens at birth. PMID:25179685
Zhao, Yaofeng; Cui, Huiting; Whittington, Camilla M; Wei, Zhiguo; Zhang, Xiaofeng; Zhang, Ziding; Yu, Li; Ren, Liming; Hu, Xiaoxiang; Zhang, Yaping; Hellman, Lars; Belov, Katherine; Li, Ning; Hammarström, Lennart
2009-09-01
The evolutionary origins of mammalian immunoglobulin H chain isotypes (IgM, IgD, IgG, IgE, and IgA) are still incompletely understood as these isotypes differ considerably in structure and number from their counterparts in nonmammalian tetrapods. We report in this study that the platypus (Ornithorhynchus anatinus) Ig H chain constant region gene locus contains eight Ig encoding genes, which are arranged in an mu-delta-omicron-gamma2-gamma1-alpha1-epsilon-alpha2 order, spanning a total of approximately 200 kb DNA, encoding six distinct isotypes. The omicron (omicron for Ornithorhynchus) gene encodes a novel Ig H chain isotype that consists of four constant region domains and a hinge, and is structurally different from any of the five known mammalian Ig classes. This gene is phylogenetically related to upsilon (epsilon) and gamma, and thus appears to be a structural intermediate between these two genes. The platypus delta gene encodes ten heavy chain constant region domains, lacks a hinge region and is similar to IgD in amphibians and fish, but strikingly different from that in eutherian mammals. The platypus Ig H chain isotype repertoire thus shows a unique combination of genes that share similarity both to those of nonmammalian tetrapods and eutherian animals and demonstrates how phylogenetically informative species can be used to reconstruct the evolutionary history of functionally important genes.
Prozone effect of serum IgE levels in a case of plasma cell leukemia.
Talamo, Giampaolo; Castellani, William; Dolloff, Nathan G
2010-09-10
We describe a case of multiple myeloma (MM) and secondary plasma cell leukemia (PCL) secreting IgE-kappa immunoglobulin. To our knowledge, only 2 cases of IgE-producing secondary PCL have been reported in the medical literature. In our patient, the only tumor marker available for monitoring the therapeutic response to chemotherapy and allogeneic stem cell transplantation was the quantitative M component at serum protein electrophoresis (SPEP), because serum free light chains were in the normal range, Bence-Jones proteinuria was absent, and quantitative serum IgE levels provided inaccurate and erratic results, due to the prozone effect. This is a laboratory phenomenon that occurs when antigen excess interferes with antibody-based methods requiring immune complex formation for detection. It is important to recognize the presence of a prozone effect, because it can produce falsely normal results, and therefore it could lead clinicians to incorrect assessment of the response to therapy.
Change in IgHV Mutational Status of CLL Suggests Origin From Multiple Clones.
Osman, Afaf; Gocke, Christopher D; Gladstone, Douglas E
2017-02-01
Fluorescence in situ hybridization and immunoglobulin (Ig) heavy-chain variable-region (IgHV) mutational status are used to predict outcome in chronic lymphocytic leukemia (CLL). Although DNA aberrations change over time, IgHV sequences and mutational status are considered stable. In a retrospective review, 409 CLL patients, between 2008 and 2015, had IgHV analysis: 56 patients had multiple analyses performed. Seven patients' IgHV results changed: 2 from unmutated to mutated and 5 from mutated to unmutated IgHV sequence. Three concurrently changed their variable heavy-chain sequence. Secondary to allelic exclusion, 2 of the new variable heavy chains produced were biologically nonplausible. The existence of these new nonplausible heavy-chain variable regions suggests either the CLL cancer stem-cell maintains the ability to rearrange a previously silenced IgH allele or more likely that the cancer stem-cell produced at least 2 subclones, suggesting that the CLL cancer stem cell exists before the process of allelic exclusion occurs. Copyright © 2016 Elsevier Inc. All rights reserved.
IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia.
Bagnara, Davide; Callea, Vincenzo; Stelitano, Caterina; Morabito, Fortunato; Fabris, Sonia; Neri, Antonino; Zanardi, Sabrina; Ghiotto, Fabio; Ciccone, Ermanno; Grossi, Carlo Enrico; Fais, Franco
2006-04-01
Intraclonal diversification of immunoglobulin (Ig) variable (V) genes was evaluated in leukaemic cells from a B-cell chronic lymphocytic leukaemia (B-CLL) case over a 2-year period at four time points. Intraclonal heterogeneity was analysed by sequencing 305 molecular clones derived from polymerase chain reaction amplification of B-CLL cell IgV heavy (H) and light (C) chain gene rearrangements. Sequences were compared with evaluating intraclonal variation and the nature of somatic mutations. Although IgV intraclonal variation was detected at all time points, its level decreased with time and a parallel emergence of two more represented V(H)DJ(H) clones was observed. They differed by nine nucleotide substitutions one of which only caused a conservative replacement aminoacid change. In addition, one V(L)J(L) rearrangement became more represented over time. Analyses of somatic mutations suggest antigen selection and impairment of negative selection of neoplastic cells. In addition, a genealogical tree representing a model of clonal evolution of the neoplastic cells was created. It is of note that, during the period of study, the patient showed clinical progression of disease. We conclude that antigen stimulation and somatic hypermutation may participate in disease progression through the selection and expansion of neoplastic subclone(s).
Acquired immunity to amyloodiniosis is associated with an antibody response.
Cobb, C S; Levy, M G; Noga, E J
1998-10-08
The dinoflagellate Amyloodinium ocellatum, which causes amyloodiniosis or 'marine velvet disease', is one of the most serious ectoparasitic diseases plaguing warmwater marine fish culture worldwide. We report that tomato clownfish Amphiprion frenatus develop strong immunity to Amyloodinium ocellatum infection following repeated nonlethal challenges and that specific antibodies are associated with this response. Reaction of immune fish antisera against dinospore and trophont-derived antigens in Western blots indicated both shared and stage-specific antibody-antigen reactions. A mannan-binding-protein affinity column was used to isolate IgM-like antibody from A. frenatus serum. The reduced Ig consisted of one 70 kD heavy chain and one 32 kD light chain with an estimated molecular weight of 816 kD for the native molecule. Immunoglobulin (Ig) isolated from immune but not non-immune fish serum significantly inhibited parasite infectivity in vitro. An enzyme-linked immunosorbent assay (ELISA) was developed using polyclonal rabbit antibody produced against affinity-purified A. frenatus Ig. Anti-Amyloodinium serum antibody was not always detectable in immune fish, although serum antibody titers in immune fish increased after repeated exposure to the parasite. These results suggest that there may be a localized antibody response in skin/gill epithelial tissue, although antibody was rarely detected in skin mucus.
Antigen-binding thymus-derived lymphocytes
Hogg, Nancy M.; Greaves, M. F.
1972-01-01
Thymus-derived `rosette'-forming lymphocytes which have been separated from other SRBC-sensitive cells by means of cotton wool columns were examined for the presence of immunoglobulin. This was carried out by inhibition of rosette formation by anti-immunoglobulin sera. Inhibition was effected by a number of anti-IgM sera shown to contain antibodies with specificities directed towards the `hinge' region of the μ chain. No other heavy chain specific antisera were inhibitory. The ratio of rosette inhibition by anti-κ and anti-λ light chain sera varied during the course of the response to SRBC, the latter inhibiting by 89 per cent 3 days post-immunization. PMID:4113387
Hashim, O H; Cushley, W
1988-01-01
The effects of inhibiting selected pairs of oligosaccharide-processing activities upon the secretion of IgM and IgG molecules have been investigated. In the presence of castanospermine (CSP) plus swainsonine (SW) or deoxynojirimycin (dNM) plus deoxymannojirimycin (dMM), secretion of IgM and IgG from rat hybridoma cells was unimpaired relative to control cultures. The structures of the N-linked oligosaccharides found on the Ig heavy chains isolated from treated cells or culture supernatants were shown to be qualitatively different from those associated with control Ig by persistent sensitivity to digestion by endo H. Furthermore, the electrophoretic mobilities of mu and gamma chains on SDS-PAGE derived from treated cells were consistently slower than those of control heavy chains. IgM and IgG were also efficiently secreted when all glucosidase and mannosidase activities were blocked, and the secreted heavy chains bore endo H-sensitive oligosaccharides. The data suggest that Ig secretion from hybridomas can proceed in the absence of N-linked oligosaccharide processing. Images Figure 1 Figure 2 Figure 3 PMID:3350578
Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M
2004-10-27
Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.
Vittecoq, O; Brard, F; Jovelin, F; Le Loet, X; Tron, F; Gilbert, D
1999-01-01
Two IgM, κ anti-myeloperoxidase (MPO) monoclonal antibodies, 6D6 and 9B5, bound to MPO in a solid-phase enzyme-linked immunosorbent assay were derived from the splenocytes of (NZB × NZW) F1 and MRL/lpr-lpr mice, respectively. 6D6 gave a characteristic perinuclear immunofluorescence staining pattern on ethanol-fixed human neutrophils, bound to the native form of MPO by immunoblotting and had a high constant affinity for MPO as demonstrated by real-time specific interaction. 9B5 produced a cytoplasmic immunofluorescence staining pattern, reacted with the heavy chain of MPO and had a low constant affinity for MPO. The heavy-and light-chain variable region genes of monoclonal antibodies (mAb) 6D6 and 9B5 were sequenced and found to be highly homologous to germline genes and to contain negatively charged amino acids in the complementarity determining regions. IgM MPO-binding activity was observed in most BW and MRL/lpr-lpr mouse sera, which may correspond to polyclonal activation of B cells, whereas IgG anti-MPO antibodies could be rarely detected. Thus, this study indicates that (i) BW and MRL/lpr-lpr mice do not delete IgM anti-MPO secreting B cells, do not maintain these B cells in a state of anergy, but most individuals are not able to spontaneously induce the class-switching of this autoantibody population; (ii) IgM anti-MPO antibodies can recognize different epitopes on MPO and produce different immunofluorescence staining pattern on ethanol-fixed human neutrophils, as demonstrated by the immunochemical properties of the two lupus-mouse derived mAb. PMID:10540169
Highly sensitive and unbiased approach for elucidating antibody repertoires
Lin, Sherry G.; Ba, Zhaoqing; Du, Zhou; Zhang, Yu; Hu, Jiazhi; Alt, Frederick W.
2016-01-01
Developing B lymphocytes undergo V(D)J recombination to assemble germ-line V, D, and J gene segments into exons that encode the antigen-binding variable region of Ig heavy (H) and light (L) chains. IgH and IgL chains associate to form the B-cell receptor (BCR), which, upon antigen binding, activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. The ability of V(D)J recombination to generate vast primary B-cell repertoires results from a combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B-cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as high-throughput genome-wide translocation sequencing-adapted repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or nonproductive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions, and also for following antibody affinity maturation processes. PMID:27354528
Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt
2016-12-01
To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku
2017-07-01
Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.
Green turtles (Chelonia mydas) have novel asymmetrical antibodies
Work, Thierry M.; Dagenais, Julie; Breeden, Renee; Schneemann, Anette; Sung, Joyce; Hew, Brian; Balazs, George H.; Berestecky, John M.
2015-01-01
Igs in vertebrates comprise equally sized H and L chains, with exceptions such as H chain–only Abs in camels or natural Ag receptors in sharks. In Reptilia, Igs are known as IgYs. Using immunoassays with isotype-specific mAbs, in this study we show that green turtles (Chelonia mydas) have a 5.7S 120-kDa IgY comprising two equally sized H/L chains with truncated Fc and a 7S 200-kDa IgY comprised of two differently sized H chains bound to L chains and apparently often noncovalently associated with an antigenically related 90-kDa moiety. Both the 200- and 90-kDa 7S molecules are made in response to specific Ag, although the 90-kDa molecule appears more prominent after chronic Ag stimulation. Despite no molecular evidence of a hinge, electron microscopy reveals marked flexibility of Fab arms of 7S and 5.7S IgY. Both IgY can be captured with protein G or melon gel, but less so with protein A. Thus, turtle IgY share some characteristics with mammalian IgG. However, the asymmetrical structure of some turtle Ig and the discovery of an Ig class indicative of chronic antigenic stimulation represent striking advances in our understanding of immunology.
Remily-Wood, Elizabeth R; Benson, Kaaron; Baz, Rachid C; Chen, Y Ann; Hussein, Mohamad; Hartley-Brown, Monique A; Sprung, Robert W; Perez, Brianna; Liu, Richard Z; Yoder, Sean J; Teer, Jamie K; Eschrich, Steven A; Koomen, John M
2014-10-01
Quantitative MS assays for Igs are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, for example, multiple myeloma (MM). Using LC-MS/MS data, Ig constant region peptides, and transitions were selected for LC-MRM MS. Quantitative assays were used to assess Igs in serum from 83 patients. RNA sequencing and peptide-based LC-MRM are used to define peptides for quantification of the disease-specific Ig. LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1-4, IgA1-2, IgM, IgD, and IgE, as well as kappa (κ) and lambda (λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 MM cell line and two MM patients. LC-MRM assays targeting constant region peptides determine the type and isoform of the involved Ig and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher inter-assay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sadreddini, Sanam; Seifi-Najmi, Mehrnosh; Ghasemi, Babollah; Kafil, Hossein Samadi; Alinejad, Vahideh; Sadreddini, Sevil; Younesi, Vahid; Jadidi-Niaragh, Farhad; Yousefi, Mehdi
2015-12-23
Tetanus neurotoxin (TeNT) is composed of a light (LC) and heavy chain (HC) polypeptides, released by anaerobic bacterium Clostridium tetani and can cause fatal life-threatening infectious disease. Toxin HC and LC modules represents receptor binding and zinc metalloprotease activity, respectively. The passive administration of animal-derived antibodies against tetanus toxin has been considered as the mainstay therapy for years. However, this treatment is associated with several adverse effects due to the presence of anti-isotype antibodies. In the present study, we have produced the fully human single chain antibody fragments (HuScFv) from two human antibody phage display libraries. Twenty-four different HuscFvs were isolated from two anti TeNT immune libraries. Our produced human ScFv (HuScFv) were converted to IgG platform and analyzed regarding their specific reactivity to TeNT. All of the selected scFvs have the same VL but different VH. Three HuscFvs from the first library (TTX15, 51, 75) and two HuscFvs from the second library (TTX16, 20) were chosen to convert to IgG1 using pOptiVEC and pcDNA3.3 systems. Production of IgG1 from transfected DG44 and binding capacity of them to tetanus toxin and toxoid were measured by ELISA. ELISA results showed no detectable production of TTX16 and TTX20 IgG1. Although, TTX51 and TTX75 were converted and produced as IgG1, no reactivity to tetanus toxin and toxoid was observed. However, TTX15 was successfully produced as whole IgG1 platform with reactivity to both tetanus toxin and toxoid. The latter would be an appropriate replacement for conventional polyclonal antibodies if would meet the further characterization including specificity determination, affinity measurement and toxin neutralizing assays. Our results demonstrated production of functional IgG1 derived from TTX15 scFv and might be an appropriate replacement for polyclonal Tetabulin but it needs further characterization.
Immunoglobulin isotypes in Atlantic salmon, Salmo salar.
Hordvik, Ivar
2015-02-27
There are three major immunoglobulin (Ig) isotypes in salmonid fish: IgM, IgD and IgT, defined by the heavy chains μ, δ and τ, respectively. As a result of whole genome duplication in the ancestor of the salmonid fish family, Atlantic salmon (Salmo salar) possess two highly similar Ig heavy chain gene complexes (A and B), comprising two μ genes, two δ genes, three intact τ genes and five τ pseudogenes. The μA and μB genes correspond to two distinct sub-populations of serum IgM. The IgM-B sub-variant has a characteristic extra cysteine near the C-terminal part of the heavy chain and exhibits a higher degree of polymer disulfide cross-linking compared to IgM-A. The IgM-B:IgM-A ratio in serum is typically 60:40, but skewed ratios are also observed. The IgT isotype appears to be specialized to mucosal immune responses in salmonid fish. The concentration of IgT in serum is 100 to 1000 times lower than IgM. Secreted forms of IgD have been detected in rainbow trout, but not yet in Atlantic salmon.
Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A
2015-12-04
In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.
IgG-Paraoxonase-1 Fusion Protein for Targeted Drug Delivery Across the Human Blood-Brain Barrier
Boado, Ruben J.; Zhang, Yun; Zhang, Yufeng; Wang, Yuntao; Pardridge, William M.
2009-01-01
Paraoxonase (PON)-1 is the most potent human protein with organophosphatase activity against organophosphate (OP) toxins. OP compounds readily cross the blood-brain barrier (BBB), and have lethal mechanisms of action within the brain. The production of a brain penetrating form of human PON1, which crosses the BBB, is possible with the re-engineering of the enzyme as a fusion protein with a monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via the endogenous insulin receptor, and acts as a molecular Trojan horse to ferry the PON1 into brain. The human PON1 was fused to the carboxyl terminus of the heavy chain of the chimeric HIRMAb. COS cells were dual transfected with the heavy chain gene and the light chain gene, and the HIRMAb-PON1 fusion protein was affinity purified with protein A chromatography. Western blotting with antibodies to human IgG or human PON1 showed the heavy chain of the HIRMAb-PON1 fusion protein was 40 kDa larger than the heavy chain of the chimeric HIRMAb. The ED50 of binding to the HIR extracellular domain was 0.55 ± 0.07 nM and 1.1 ±0.1 nM, respectively, for the chimeric HIRMAb and the HIRMAb-PON1 fusion protein. The PON1 enzyme activity of the fusion protein was approximately 25% of the enzyme activity in human plasma, based on a fluorometric enzymatic assay. In conclusion, human PON1 has been re-engineered as an IgG-organophosphatase fusion protein that penetrates the human BBB. PMID:19434854
The Astonishing Diversity of Ig Classes and B Cell Repertoires in Teleost Fish
Fillatreau, Simon; Six, Adrien; Magadan, Susanna; Castro, Rosario; Sunyer, J. Oriol; Boudinot, Pierre
2013-01-01
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish. PMID:23408183
Almogren, Adel; Senior, Bernard W; Kerr, Michael A
2007-01-01
A detailed investigation of the binding of secretory component to immunoglobulin A (IgA) in human secretory IgA2 (S-IgA2) was made possible by the development of a new method of purifying S-IgA1, S-IgA2 and free secretory component from human colostrum using thiophilic gel chromatography and chromatography on Jacalin-agarose. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis of unreduced pure S-IgA2 revealed that, unlike in S-IgA1, a significant proportion of the secretory component was bound non-covalently in S-IgA2. When S-IgA1 was incubated with a protease purified from Proteus mirabilis the secretory component, but not the α-chain, was cleaved. This is in contrast to serum IgA1, in which the α-chain was cleaved under the same conditions – direct evidence that secretory component does protect the α-chain from proteolytic cleavage in S-IgA. Comparisons between the products of cleavage with P. mirabilis protease of free secretory component and bound secretory component in S-IgA1 and S-IgA2 also indicated that, contrary to the general assumption, the binding of secretory component to IgA is different in S-IgA2 from that in S-IgA1. PMID:17156102
Shuib, A S; Chua, C T; Hashim, O H
1998-01-01
Sera of IgA nephropathy (IgAN) patients and normal subjects were analysed by two-dimensional (2-D) gel electrophoresis. Densitometric analysis of the 2-D gels of IgAN patients and normal subjects revealed that their protein maps were comparable. There was no shift of pI values in the major alpha-heavy chain spots. However, the volume of the alpha-heavy chain bands were differently distributed. Distribution was significantly lower at the anionic region in IgAN patients (mean anionic:cationic ratio of 1.184 +/- 0.311) as compared to normal healthy controls (mean anionic:cationic ratio of 2.139 +/- 0.538). Our data are in support of the previously reported findings that IgA1 of IgAN patients were lacking in sialic acid residues.
van Anken, Eelco; Pena, Florentina; Hafkemeijer, Nicole; Christis, Chantal; Romijn, Edwin P.; Grauschopf, Ulla; Oorschot, Viola M. J.; Pertel, Thomas; Engels, Sander; Ora, Ari; Lástun, Viorica; Glockshuber, Rudi; Klumperman, Judith; Heck, Albert J. R.; Luban, Jeremy; Braakman, Ineke
2009-01-01
Plasma cells daily secrete their own mass in antibodies, which fold and assemble in the endoplasmic reticulum (ER). To reach these levels, cells require pERp1, a novel lymphocyte-specific small ER-resident protein, which attains expression levels as high as BiP when B cells differentiate into plasma cells. Although pERp1 has no homology with known ER proteins, it does contain a CXXC motif typical for oxidoreductases. In steady state, the CXXC cysteines are locked by two parallel disulfide bonds with a downstream C(X)6C motif, and pERp1 displays only modest oxidoreductase activity. pERp1 emerged as a dedicated folding factor for IgM, associating with both heavy and light chains and promoting assembly and secretion of mature IgM. PMID:19805154
Chitta, Kasyapa S; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A; Moser, Michael T; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C; Iancu, Dan M; Conroy, Jeffrey; Nowak, Norma J; Sait, Sheila N; Personett, David A; Coleman, Morton; Furman, Richard R; Martin, Peter; Ansell, Stephen M; Lee, Kelvin; Chanan-Khan, Asher A
2013-02-01
Understanding the biology of Waldenström macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secretes human immunoglobulin M (h-IgM) with κ-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2), with a consistent amplification of 14q32 (immunoglobulin heavy chain; IgH) identical to its founding tumor sample. The clonal relationship is confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in the MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Overall, RPCI-WM1 represents a valuable model to study Waldenström macroglobulinemia.
Kummalue, Tanawan; Chuphrom, Anchalee; Sukpanichanant, Sanya; Pongpruttipan, Tawatchai; Sukpanichanant, Sathien
2010-05-19
Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction followed by heteroduplex has currently become standard whereas fluorescent fragment analysis (GeneScan) has been used for confirmation test. In this study, three techniques had been compared: thermocycler polymerase chain reaction (PCR) followed by heteroduplex and polyacrylamide gel electrophoresis, GeneScan analysis, and real time PCR with High Resolution Melting curve analysis (HRM). The comparison was carried out with DNA extracted from paraffin embedded tissues diagnosed as B- cell non-Hodgkin lymphoma. Specific PCR primers sequences for IgH gene variable region 3, including fluorescence labeled IgH primers were used and results were compared with HRM. In conclusion, the detection IgH gene rearrangement by HRM in the LightCycler System showed potential for distinguishing monoclonality from polyclonality in B-cell non-Hodgkin lymphoma. Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The incidence rate as reported by Ministry of Public Health is 3.1 per 100,000 population in female whereas the rate in male is 4.5 per 100,000 population 1. At Siriraj Hospital, the new cases diagnosed as malignant lymphoma were 214.6 cases/year 2. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Therefore, detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction (PCR) assay has recently become a standard laboratory test for discrimination of reactive from malignant clonal lymphoproliferation 34. Analyzing DNA extracted from formalin-fixed, paraffin-embedded tissues by multiplex PCR techniques is more rapid, accurate and highly sensitive. Measuring the size of the amplicon from PCR analysis could be used to diagnose malignant lymphoma with monoclonal pattern showing specific and distinct bands detected on acrylamide gel electrophoresis. However, this technique has some limitations and some patients might require a further confirmation test such as GeneScan or fragment analysis 56.GeneScan technique or fragment analysis reflects size and peak of DNA by using capillary gel electrophoresis. This technique is highly sensitive and can detect 0.5-1% of clonal lymphoid cells. It measures the amplicons by using various fluorescently labeled primers at forward or reverse sides and a specific size standard. Using a Genetic Analyzer machine and GeneMapper software (Applied Bioscience, USA), the monoclonal pattern revealed one single, sharp and high peak at the specific size corresponding to acrylamide gel pattern, whereas the polyclonal pattern showed multiple and small peak condensed at the same size standard. This technique is the most sensitive and accurate technique; however, it usually requires high technical experience and is also of high cost 7. Therefore, rapid and more cost effective technique are being sought.LightCycler PCR performs the diagnostic detection of amplicon via melting curve analysis within 2 hours with the use of a specific dye 89. This dye consists of two types: one known as SYBR-Green I which is non specific and the other named as High Resolution Melting analysis (HRM) which is highly sensitive, more accurate and stable. Several reports demonstrated that this new instrument combined with DNA intercalating dyes can be used to discriminate sequence changes in PCR amplicon without manual handling of PCR product 1011. Therefore, current investigations using melting curve analysis are being developed 1213.In this study, three different techniques were compared to evaluate the suitability of LightCycler PCR with HRM as the clonal diagnostic tool for IgH gene rearrangement in B-cell non-Hogdkin lymphoma, i.e. thermocycler PCR followed by heteroduplex analysis and PAGE, GeneScan analysis and LightCycler PCR with HRM.
Cryoglobulins in acute and chronic liver diseases
Florin-Christensen, A.; Roux, María E. B.; Arana, R. M.
1974-01-01
Cryoglobulins were detected in the sera of thirteen patients with acute viral hepatitis and of twelve with chronic hepatic diseases (active chronic hepatitis, primary biliary cirrhosis and cryptogenic cirrhosis). Their nature and antibody activity was studied. In both groups, most of them consisted of mixed cryoimmunoglobulins (IgM, IgG and/or IgA), but some were single-class immunoglobulins with one or both types of light chains. Unusual components were also found. α1-fetoprotein was present in four cryoprecipitates: in two as the single constituent and in two associated to immunoglobulins; hepatitis-associated antigen co-existed in one of the latter. Some cryoglobulins showed antibody activity against human IgG, smooth muscle and mitochondrial antigens. In one case, the IgM-kappa of the cryoprecipitate had antibody activity against α1-fetoprotein; this antigen was also present in the cryoprecipitate, suggesting immune-complex formation. Autoantibodies were also looked for in the sera of the twenty-five patients; apart from the most common ones, antibodies to α1-fetoprotein were found in two patients. PMID:4143195
Kihira, T; Kawanishi, H
1995-08-01
The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.
Prozone effect of serum IgE levels in a case of plasma cell leukemia
2010-01-01
We describe a case of multiple myeloma (MM) and secondary plasma cell leukemia (PCL) secreting IgE-kappa immunoglobulin. To our knowledge, only 2 cases of IgE-producing secondary PCL have been reported in the medical literature. In our patient, the only tumor marker available for monitoring the therapeutic response to chemotherapy and allogeneic stem cell transplantation was the quantitative M component at serum protein electrophoresis (SPEP), because serum free light chains were in the normal range, Bence-Jones proteinuria was absent, and quantitative serum IgE levels provided inaccurate and erratic results, due to the prozone effect. This is a laboratory phenomenon that occurs when antigen excess interferes with antibody-based methods requiring immune complex formation for detection. It is important to recognize the presence of a prozone effect, because it can produce falsely normal results, and therefore it could lead clinicians to incorrect assessment of the response to therapy. PMID:20828419
The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.
Nikolova, E B; Tomana, M; Russell, M W
1994-01-01
In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504
Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V
2017-05-01
As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Ladwig, Paula M.; Barnidge, David R.; Willrich, Maria A. V.
2017-05-01
As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure.
Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Bakhtiari, A; Paknejad, M; Kashanian, S
2004-01-01
EGFRvIII is the type III deletion mutant form of the epidermal growth factor receptor (EGFR) with transforming activity. This tumor-specific antigen is ligand independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. In this study, we report the production and characterization of camel antibodies that are directed against the external domain of the EGFRvIII. Antibodies developed in camels are smaller (i.e. IgG2 and IgG3 subclasses lack light chains) than any other conventional mammalian antibodies. This property of camel antibodies makes them ideal tools for basic research and other applications such as tumor imaging and cancer therapy. In the present study, camel antibodies were generated by immunization of camelids (Camelus bactrianus and Camelus dromedarius) with a synthetic 14-amino acid peptide corresponding to the mutated sequence of the EGFR, tissue homogenates of several patients with human glioblastoma, medulloblastoma and aggressive breast carcinoma, as well as EGFR-expressing cell lines. Three subclasses of camel IgG [conventional (IgG1, 160 kD) and heavy chain-only antibodies (IgG2 and IgG3, 90 kD)] were separated by their different binding properties to protein A and protein G affinity columns. The anti-EGFRvIII peptide antibodies from immunized camels were purified further using the EGFRvIII synthetic peptide affinity column. The purified anti-EGFRvIII peptide camel antibodies selectively bound to the EGFRvIII peptide and affinity-purified EGFRvIII from malignant tissues and detected a protein band of 140 kD from malignant tissues by Western blot. Affinity analysis showed that the antibodies from C. bactrianus and C. dromedarius reacted with peptide and antigen purified from a small cell lung cancer ascitic fluid with affinities of 2 x 10(8) and 5 x 10(7)M(-1) to the same extent, respectively. Since the functional antigen-binding domain of the anti-EGFRvIII antibodies in camels is much simpler and located only on the heavy chains of proteins, we are currently developing recombinant and smaller versions of the variable domain of these naturally occurring heavy-chain antibodies (V(HH)) for use in tumor imaging and cancer therapy.
Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P
2012-07-13
The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.
Remily-Wood, Elizabeth R.; Benson, Kaaron; Baz, Rachid C.; Chen, Y. Ann; Hussein, Mohamad; Hartley-Brown, Monique A.; Sprung, Robert W.; Perez, Brianna; Liu, Richard Z.; Yoder, Sean; Teer, Jamie; Eschrich, Steven A.; Koomen, John M.
2014-01-01
Purpose Quantitative mass spectrometry assays for immunoglobulins (Igs) are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, e.g. multiple myeloma. Experimental design Using LC-MS/MS data, Ig constant region peptides and transitions were selected for liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM). Quantitative assays were used to assess Igs in serum from 83 patients. Results LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1–4, IgA1–2, IgM, IgD, and IgE, as well as kappa(κ) and lambda(λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 multiple myeloma cell line and two MM patients. Conclusions and Clinical Relevance LC-MRM assays targeting constant region peptides determine the type and isoform of the involved immunoglobulin and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher interassay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. PMID:24723328
Honey, Denise M.; Best, Annie; Qiu, Huawei
2018-01-01
ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938
Wang, Jing J; Al Kindi, Mahmood A; Colella, Alex D; Dykes, Lukah; Jackson, Michael W; Chataway, Tim K; Reed, Joanne H; Gordon, Tom P
2016-12-01
We have used high-resolution mass spectrometry to sequence precipitating anti-Ro60 proteomes from sera of patients with primary Sjögren's syndrome and compare immunoglobulin variable-region (IgV) peptide signatures in Ro/La autoantibody subsets. Anti-Ro60 were purified by elution from native Ro60-coated ELISA plates and subjected to combined de novo amino acid sequencing and database matching. Monospecific anti-Ro60 Igs comprised dominant public and minor private sets of IgG1 kappa and lambda restricted heavy and light chains. Specific IgV amino acid substitutions stratified anti-Ro60 from anti-Ro60/La responses, providing a molecular fingerprint of Ro60/La determinant spreading and suggesting that different forms of Ro60 antigen drive these responses. Sequencing of linked anti-Ro52 proteomes from individual patients and comparison with their anti-Ro60 partners revealed sharing of a dominant IGHV3-23/IGKV3-20 paired clonotype but with divergent IgV mutational signatures. In summary, anti-Ro60 IgV peptide mapping provides insights into Ro/La autoantibody diversification and reveals serum-based molecular markers of humoral Ro60 autoimmunity. Copyright © 2016 Elsevier Inc. All rights reserved.
IgG4 Expression in Primary Cutaneous Marginal Zone Lymphoma: A Multicenter Study.
De Souza, Aieska; Ferry, Judith A; Burghart, Daniel R; Tinguely, Marianne; Goyal, Amrita; Duncan, Lyn M; Kutzner, Heinz; Kempf, Werner
2017-02-01
Primary cutaneous marginal zone lymphoma (PCMZL) is the second most common B-cell lymphoma of the skin. A recent study has demonstrated a strikingly high prevalence of immunoglobulin (Ig)G4 expression in PCMZL with plasmacytic differentiation. The objective was to investigate the incidence of IgG4 expression in PCMZL, and its correlation with clinical and immunophenotypic features. Multicenter study that utilized immunohistochemistry and in-situ hybridization to evaluate the expression of IgG4, Ig light (κ and λ), and heavy chains (IgM, IgG), and the ratio of T (CD3+) and B (CD20+) cells in biopsy specimens from 30 patients with PCMZL and to correlate these findings with the clinical features. IgG4 expression was observed in 4 out of 30 patients (13%) with PCMZL. Patients with IgG4-positive lymphomas were 57 to 77 years of age (mean, 69) at biopsy. The lesions were solitary in 2 patients with IgG4-positive lymphomas, and were most commonly located on the trunk. Patients with IgG4-negative lymphomas experienced earlier disease onset at an average age of 53 years. The majority of the IgG4-negative cases presented with localized disease, on the trunk and upper extremities. There was no significant difference in the IgG4-positive versus negative cases for the following parameters: Ig κ or λ restriction, B-cell or T-cell predominance, and site of the lesions. IgG4 expression was observed in a minority of PCMZL patients. We did not identify significant clinical or immunophenotypic differences between IgG4 positive and negative cases.
Neuberger, M S; Rajewsky, K
1981-01-01
From a hybrid mouse cell line (B1-8) that secreted an IgM, lambda 1 anti-(4-hydroxy-3-nitrophenyl)acetyl antibody but that had no detectable surface IgM, selection for a variant with lambda 1 chains on the surface resulted in the isolation of a line that had switched from mu to delta expression. The surface and secreted Igs of this line were typed as IgD with two monoclonal antibodies, and the parental IgM and variant IgD molecules carried the same variable regions as judged by hapten-binding and idiotypic analysis. The surface and secreted delta chains of the IgD variant have apparent molecular weights of 64,000 and 61,000, respectively. However, the unglycosylated secreted delta polypeptide chain has a molecular weight of only 44,000. The secreted IgD exists predominantly in the delta 2 lambda A2 form, does not contain J protein, is relatively stable in serum, and does not fix complement. Images PMID:6940132
Castro, Caitlin D; Ohta, Yuko; Dooley, Helen; Flajnik, Martin F
2013-11-01
B-lymphocyte-induced maturation protein 1 (Blimp-1) is the master regulator of plasma cell development, controlling genes such as those encoding J-chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J-chain, and mammalian B1 cells secrete "natural" IgM antibodies without upregulating Blimp-1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp-1(-) antibody-secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically "19S") and monomeric (classically "7S") IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp-1 is expressed in splenic 7S IgM-secreting cells, though rarely detected in the J-chain(+) cells producing 19S IgM. Although IgM transcript levels are lower in J-chain(+) cells, these cells nevertheless secrete 19S IgM in the absence of Blimp-1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark BM equivalent (epigonal) are Blimp-1(-). Our data suggest that, in sharks, 19S-secreting cells and other secreting memory B cells in the epigonal are maintained for long periods without Blimp-1, but like in mammals, Blimp-1 is required for terminating the B-cell program following an adaptive immune response in the spleen. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Castro, Caitlin D.; Ohta, Yuko; Dooley, Helen; Flajnik, Martin F.
2014-01-01
Summary Blimp-1 is the master regulator of plasma cell development, controlling genes such as J-chain and secretory Ig heavy chain. However, some mammalian plasma cells do not express J-chain, and mammalian B1 cells secrete “natural” IgM antibodies without upregulating Blimp-1. While these results have been controversial in mammalian systems, here we describe subsets of normally occurring Blimp-1- antibody secreting cells in nurse sharks, found in lymphoid tissues at all ontogenic stages. Sharks naturally produce large amounts of both pentameric (classically ‘19S’) and monomeric (classically ‘7S’) IgM, the latter an indicator of adaptive immunity. Consistent with the mammalian paradigm, shark Blimp-1 is expressed in splenic 7S IgM-secreting cells, though rarely detected in the J-chain+ cells producing 19S IgM. Although IgM transcript levels are lower in J-chain+ cells, these cells nevertheless secrete 19S IgM in the absence of Blimp-1, as demonstrated by ELISPOT and metabolic labeling. Additionally, cells in the shark bone marrow equivalent (epigonal) are Blimp-1-. Our data suggest that, in sharks, 19S-secreting cells and other secreting memory B cells in the epigonal can be maintained for long periods without Blimp-1, but like in mammals, Blimp-1 is required for terminating the B cell program following an adaptive immune response in the spleen. PMID:23897025
Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch.
Han, Binyue; Li, Yan; Han, Haitang; Zhao, Yaofeng; Pan, Qingjie; Ren, Liming
2017-01-01
Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.
Tanaka, K; Sugiura, H; Uehara, M; Hashimoto, Y; Donnelly, C; Montgomery, D S
2001-10-01
The genetic background of atopic eczema might be heterogeneous and there is a possibility that immunoglobulin (Ig)E responsiveness in patients with atopic eczema is controlled separately from the development of atopic eczema. Although both interleukin (IL)-4 and the IL-4 receptor alpha chain have an important role for IgE production and are therefore possible candidate genes for atopy, it has not been clarified whether these genes play any roles in atopic eczema patients who have normal IgE productivity. We aimed to assess whether the polymorphisms of the IL-4 gene and the IL-4 receptor alpha chain gene play any roles in atopic eczema patients, particularly in patients who have normal IgE productivity. We determined the genotype with regard to polymorphisms in the genes for IL-4 and the IL-4 receptor alpha chain (- 589C/T of IL-4; Ile50Val, Ala375Glu and Arg551Gln of IL-4 receptor alpha chain) in patients with atopic eczema using the fluorogenic 5' nuclease assay. IL-4 and the IL-4 receptor alpha chain genotypes were not significantly associated with either total patients with atopic eczema or atopic eczema patients who had normal IgE productivity. The distribution of genotypes of IL-4-589C/T differed by the serum IgE levels in patients with atopic eczema. These results suggest that the polymorphisms in the IL-4 gene and the IL-4 receptor alpha chain gene play no role in the development of atopic eczema in patients who have normal IgE productivity.
Hori, Hisae; Hattori, Shunji; Inouye, Sakae; Kimura, Akinori; Irie, Shinkichi; Miyazawa, Hiroshi; Sakaguchi, Masahiro
2002-10-01
Anaphylaxis to measles, mumps, and rubella vaccines has been reported. It has been found that most of these reactions to live vaccines are caused by type I allergy with the bovine gelatin present in the vaccines as an allergen. Gelatin mainly includes denatured type I collagen, which consists of alpha1 and alpha2 chains. We previously reported that allergic reactions to gelatin are caused by the type I collagen alpha2 (alpha2[I]) chain. To aid in the development of gelatin that has little or no allergenicity in human subjects, we investigated epitopes of bovine alpha2(I) chain with use of IgE in gelatin-sensitive children. Serum samples were collected from 15 patients who had systemic allergic reactions to vaccines and high levels of specific IgE to bovine gelatin. Eleven overlapping recombinant proteins that cover bovine alpha2(I) were prepared with a bacterial expression vector. We examined IgE reactivity to these recombinant proteins by means of ELISA. Fifteen peptides covering a major reactive recombinant protein were synthesized. The IgE-reacting epitope was identified by means of IgE-ELISA inhibition with these synthetic peptides and pooled serum from the patients. We found that of the 15 patients, 13 showed IgE reactivity to a recombinant protein (no. 3) spanning the central region of the collagenous domain ((418)Gly-(662)Pro). Furthermore, all 13 patients showed IgE reactivity to the 4-kd recombinant protein (no. 3a) spanning the region from (461)Pro to (500)Glu. In IgE-ELISA inhibition we found that a minimum IgE epitope of gelatin allergen was composed of the 10-amino-acid sequence (485)Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro(494). This sequence is not observed in the human type I collagen alpha1 and alpha2 chains, nor is it found in the bovine type I collagen alpha1 chain. We found that Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro is a major IgE epitope of the alpha2 chain of bovine type I collagen in patients with gelatin allergy. The degree of anaphylaxis to gelatin in vaccines might be reduced by digestion of this IgE-binding site in gelatin.
Virella, G.; Parkhouse, R. M. E.
1972-01-01
The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255
Comparative Confocal and Histopathological Study of Corneal Changes in Multiple Myeloma.
Micali, Antonio; Roszkowska, Anna M; Postorino, Elisa I; Rania, Laura; Aragona, Emanuela; Wylegala, Edward; Nowinska, Anna; Ieni, Antonio; Calimeri, Sebastiano; Pisani, Antonina; Aragona, Pasquale; Puzzolo, Domenico
2017-01-01
Corneal opacities rarely occur in multiple myeloma (MM). Our study correlates the findings of in vivo confocal microscopy (IVCM), a useful diagnostic tool, with histopathological features of corneal opacities appearing in a patient with MM. Case report. A 53-year-old man developed corneal opacities in both eyes, more pronounced in the left eye. After IVCM examination, he underwent penetrating keratoplasty in the left eye, and the button was processed for light and electron microscopy and immunohistochemistry. The diagnosis of MM was made, as confirmed by the elevation of IgGk light chains. IVCM demonstrated hyperreflective areas at the epithelial level, hyperreflective keratocytes of dendritic and lamellar morphology in whole stroma, and hyperreflective endothelial cells. Histopathological examination disclosed many vacuoles in the epithelial cell cytoplasm and a homogenous granular material in the Bowman layer. In stroma, keratocytes of different shape and size, with vesicles laden with an abnormal material, were evident. In Descemet membrane, the posterior nonbanded zone had a honeycomb appearance because of the presence of many roundish spaces among wide-spaced collagen fibers. Endothelial cells demonstrated vesicles filled with a material of uneven electron density. Immunohistochemical analysis showed strong positivity for IgGk light chains in keratocytes and among stromal lamellae. This is the first study describing a correspondence between IVCM features and histopathological alterations observed in corneal opacities in MM. The results of this study improve the current understanding of the pictures obtained by IVCM studies.
Lin, H Y; Masso-Welch, P; Di, Y P; Cai, J W; Shen, J W; Subjeck, J R
1993-01-01
Anoxia, glucose starvation, calcium ionophore A23187, EDTA, glucosamine, and several other conditions that adversely affect the function of the endoplasmic reticulum (ER) induce the synthesis of the glucose-regulated class of stress proteins (GRPs). The primary GRPs induced by these stresses migrate at 78 and 94 kDa (GRP78 and GRP94). In addition, another protein of approximately 150-170 kDa (GRP170) has been previously observed and is coordinately induced with GRP78 and GRP94. To characterize this novel stress protein, we have prepared an antisera against purified GRP170. Immunofluorescence, Endoglycosidase H sensitivity, and protease resistance of this protein in microsomes indicates that GRP170 is an ER lumenal glycoprotein retained in a pre-Golgi compartment. Immunoprecipitation of GRP170 with our antibody coprecipitates the GRP78 (also referred to as the B cell immunoglobulin-binding protein) and GRP94 members of this stress protein family in Chinese hamster ovary cells under stress conditions. ATP depletion, by immunoprecipitation in the presence of apyrase, does not affect the interaction between GRP78 and GRP170 but results in the coprecipitation of an unidentified 60-kDa protein. In addition, GRP170 is found to be coprecipitated with immunoglobulin (Ig) in four different B cell hybridomas expressing surface IgM, cytoplasmic Ig light chain only, cytoplasmic Ig heavy chain only, or an antigen specific secreted IgG. In addition, in IgM surface expressing WEHI-231 B cells, anti-IgM coprecipitates GRP78, GRP94, as well as GRP170; antibodies against GRP170 and GRP94 reciprocally coprecipitate GRP94/GRP170 as well as GRP78. Results suggest that this 170-kDa GRP is a retained ER lumenal glycoprotein that is constitutively present and that may play a role in immunoglobulin folding and assembly in conjunction or consecutively with GRP78 and GRP94. Images PMID:8305733
Gorny, Miroslaw K.; Sampson, Jared; Li, Huiguang; Jiang, Xunqing; Totrov, Maxim; Wang, Xiao-Hong; Williams, Constance; O'Neal, Timothy; Volsky, Barbara; Li, Liuzhe; Cardozo, Timothy; Nyambi, Phillipe; Zolla-Pazner, Susan; Kong, Xiang-Peng
2011-01-01
Preferential usage of immunoglobulin (Ig) genes that encode antibodies (Abs) against various pathogens is rarely observed and the nature of their dominance is unclear in the context of stochastic recombination of Ig genes. The hypothesis that restricted usage of Ig genes predetermines the antibody specificity was tested in this study of 18 human anti-V3 monoclonal Abs (mAbs) generated from unrelated individuals infected with various subtypes of HIV-1, all of which preferentially used pairing of the VH5-51 and VL lambda genes. Crystallographic analysis of five VH5-51/VL lambda-encoded Fabs complexed with various V3 peptides revealed a common three dimensional (3D) shape of the antigen-binding sites primarily determined by the four complementarity determining regions (CDR) for the heavy (H) and light (L) chains: specifically, the H1, H2, L1 and L2 domains. The CDR H3 domain did not contribute to the shape of the binding pocket, as it had different lengths, sequences and conformations for each mAb. The same shape of the binding site was further confirmed by the identical backbone conformation exhibited by V3 peptides in complex with Fabs which fully adapted to the binding pocket and the same key contact residues, mainly germline-encoded in the heavy and light chains of five Fabs. Finally, the VH5-51 anti-V3 mAbs recognized an epitope with an identical 3D structure which is mimicked by a single mimotope recognized by the majority of VH5-51-derived mAbs but not by other V3 mAbs. These data suggest that the identification of preferentially used Ig genes by neutralizing mAbs may define conserved epitopes in the diverse virus envelopes. This will be useful information for designing vaccine immunogen inducing cross-neutralizing Abs. PMID:22164215
Ig heavy chain class switch recombination: mechanism and regulation
Stavnezer, Janet; Schrader, Carol E.
2014-01-01
Ig heavy chain class switching occurs rapidly after activation of mature naïve B cells, resulting in a switch from expressing IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of antibodies to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two different switch (S) regions, each of which is associated with a heavy chain constant (CH) region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase (AID), which converts cytosines in S regions to uracils. The uracils are subsequently removed by two DNA repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B-cell progenitors, the roles for transcription and chromosomal looping in CSR, and the roles of certain DNA repair enzymes in CSR. PMID:25411432
Wang, Jing; Anders, Robert A.; Wu, Qiang; Peng, Dacheng; Cho, Judy H.; Sun, Yonglian; Karaliukas, Reda; Kang, Hyung-Sik; Turner, Jerrold R.; Fu, Yang-Xin
2004-01-01
Whether and how T cells contribute to the pathogenesis of immunoglobulin A nephropathy (IgAN) has not been well defined. Here, we explore a murine model that spontaneously develops T cell–mediated intestinal inflammation accompanied by pathological features similar to those of human IgAN. Intestinal inflammation mediated by LIGHT, a ligand for lymphotoxin β receptor (LTβR), not only stimulates IgA overproduction in the gut but also results in defective IgA transportation into the gut lumen, causing a dramatic increase in serum polymeric IgA. Engagement of LTβR by LIGHT is essential for both intestinal inflammation and hyperserum IgA syndrome in our LIGHT transgenic model. Impressively, the majority of patients with inflammatory bowel disease showed increased IgA-producing cells in the gut, elevated serum IgA levels, and severe hematuria, a hallmark of IgAN. These observations indicate the critical contributions of dysregulated LIGHT expression and intestinal inflammation to the pathogenesis of IgAN. PMID:15067315
Unmasking of complements using proteinase-K in formalin fixed paraffin embedded renal biopsies.
Nada, R; Kumar, A; Kumar, V G; Gupta, K L; Joshi, K
2016-01-01
Renal biopsy interpretation requires histopathology, direct immunofluorescence (DIF) and electron microscopy. Formalin-fixed, paraffin-embedded tissue (FFPE) sent for light microscopy can be used for DIF after antigen retrieval. However, complement staining has not been satisfactory. We standardized DIF using proteinase-K for antigen retrieval in FFPE renal biopsies. A pilot study was conducted on known cases of membranous glomerulonephritis (MGN), membranoproliferative type-1 (MPGN-1), immunoglobulin A nephropathy (IgAN), and anti-glomerular basement disease (anti-GBM). Immunofluorescence panel included fluorescein isothiocyanate (FITC) conjugated IgG, IgA, IgM, complements (C3 and C1q), light chains (kappa, lambda) and fibrinogen antibodies. After standardization of the technique, 75 renal biopsies and 43 autopsies cases were stained. Out of 43 autopsy cases, immune-complex mediated glomerulonephritis (GN) was confirmed in 18 cases (Lupus nephritis-11, IgAN-6, MGN-1), complement-mediated dense deposit disease (DDD-1) and monoclonal diseases in 4 cases (amyloidosis-3, cast nephropathy-1). Immune-mediated injury was excluded in 17 cases (focal segmental glomerulosclerosis -3, crescentic GN-6 [pauci-immune-3, anti-GBM-3], thrombotic microangiopathy-5, atherosclerosis-3). Renal biopsies (n-75) where inadequate or no frozen sample was available; this technique classified 52 mesangiocapillary pattern as MPGN type-1-46, DDD-2 and (C3GN-4). Others were diagnosed as IgAN-3, lupus nephritis-2, MGN-4, diffuse proliferative glomerulonephritis (DPGN)-1, Non-IC crescentic GN-1, monoclonal diseases-3. In nine cases, DIF on FFPE tissue could not help in making diagnosis. Proteinase-K enzymatic digestion of FFPE renal biopsies can unmask complements (both C3 and C1q) in immune-complexes mediated and complement-mediated diseases. This method showed good results on autopsy tissues archived for as long as 15 years.
IgG4 plasma cell myeloma: new insights into the pathogenesis of IgG4-related disease.
Geyer, Julia T; Niesvizky, Ruben; Jayabalan, David S; Mathew, Susan; Subramaniyam, Shivakumar; Geyer, Alexander I; Orazi, Attilio; Ely, Scott A
2014-03-01
IgG4-related disease is a newly described systemic fibroinflammatory process, characterized by increase in IgG4-positive plasma cells. Its pathogenesis, including the role of IgG4, remains poorly understood. Plasma cell myeloma is typically associated with a large monoclonal serum spike, which is frequently of IgG isotype. We sought to identify and characterize a subset of IgG4-secreting myeloma, as it may provide a biological model of disease with high serum levels of IgG4. Six out of 158 bone marrow biopsies (4%) from patients with IgG myeloma expressed IgG4. Four patients were men and two were women, with a mean age of 64 (range 53-87) years. Imaging showed fullness of pancreatic head (1), small non-metabolic lymphadenopathy (1), and bone lytic lesions (6). Two patients developed necrotizing fasciitis. All had elevated serum M-protein (mean 2.4, range 0.5-4.2 g/dl), and none had definite signs or symptoms of IgG4-related disease. Four myelomas had plasmablastic morphology. Four had kappa and two had lambda light chain expression. Three cases expressed CD56. Two patients had a complex karyotype. In conclusion, the frequency of IgG4 myeloma correlates with the normal distribution of IgG4 isoform. The patients with IgG4 myeloma appear to have a high rate of plasmablastic morphology and could be predisposed to necrotizing fasciitis. Despite high serum levels of IgG4, none had evidence of IgG4-related disease. These findings suggest that the increased number of IgG4-positive plasma cells is not the primary etiologic agent in IgG4-related disease. Elevated serum levels of IgG4 is not sufficient to produce the typical disease presentation and should not be considered diagnostic of IgG4-related disease.
Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L
2014-01-01
The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.
Monoclonal antibody disulfide reduction during manufacturing
Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.
2013-01-01
Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615
Sjögren, Jonathan; Andersson, Linda; Mejàre, Malin; Olsson, Fredrik
2017-01-01
Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.
Zhang, Ruijun; Alam, S. Munir; Yu, Jae-Sung; Scearce, Richard; Lockwood, Bradley; Hwang, Kwan-Ki; Parks, Robert; Permar, Sallie; Brandtzaeg, Per; Haynes, Barton F.
2016-01-01
Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed “joining (J) chain,” which is also part of the binding site for an epithelial glycoprotein called “secretory component (SC),” whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the “polymeric Ig receptor,” is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens. To evaluate different forms of IgA, we have produced mouse monoclonal antibodies (MAbs) against human J-chain and free SC. We found that J-chain MAb 9A8 and SC MAb 9H7 identified human dimeric IgA and SIgA in enzyme-linked immunoassay and western blot analysis, as well as functioning in immunohistochemistry to identify cytoplasmic IgA of intestinal lamina propria plasmablasts/plasma cells and crypt epithelium of distal human intestine. Finally, we demonstrated that SC MAb 9H7 cross-reacted with rhesus macaque SIgA. These novel reagents should be of use in the study of the biology of various forms of IgA in humans and SIgA in macaques, as well as in monitoring the production and/or isolation of these forms of IgA. PMID:27386924
Naturally Occurring Structural Isomers in Serum IgA1 O-Glycosylation
Takahashi, Kazuo; Smith, Archer D.; Poulsen, Knud; Kilian, Mogens; Julian, Bruce A.; Mestecky, Jiri; Novak, Jan; Renfrow, Matthew B.
2013-01-01
IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr225, Thr228, Ser230, Ser232 and Thr236 have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC/MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser230, Thr233 or Thr236 produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability. PMID:22067045
Tu, Bailin; Tieman, Bryan; Moore, Jeffrey; Pan, You; Muerhoff, A Scott
2017-06-01
Monoclonal antibodies are widely used as the capture and detection reagents in diagnostic immunoassays. In the past, myeloma fusion partners expressing endogenous heavy and/or light chains were often used to generate hybridoma cell lines. As a result, mixed populations of antibodies were produced that can cause inaccurate test results, poor antibody stability, and significant lot-to-lot variability. We describe one such scenario where the P3U1 (P3X63Ag8U.1) myeloma fusion partner was used in the generation of a hybridoma producing protein induced vitamin K absence/antagonist-II (PIVKA II) antibody. The hybridoma produces three subpopulations of immunoglobulin as determined by ion exchange (IEx) chromatography that exhibit varying degrees of immunoreactivity (0%, 50%, or 100%) to the target antigen as determined by Surface Plasmon Resonance. To produce an antibody with the highest possible sensitivity and specificity, the antigen-specific heavy and light chain variable domains (VH and VL) were cloned from the hybridoma and tethered to murine IgG1 and kappa scaffolds. The resulting recombinant antibody was expressed in Chinese hamster ovary cells and is compatible for use in a diagnostic immunoassay.
Hunter, E. F.; Smith, J. F.; Lewis, J. S.; McGrew, B. E.; Schmale, J. D.
1972-01-01
Fluorescein-labeled anti-human globulins were examined to determine the need for standardization of conjugates used in the fluorescent treponemal antibody-absorption (FTA-ABS) test. Twenty-one of 33 conjugates submitted by commercial manufacturers to the Reagents Control Activity, Venereal Disease Research Laboratory, for evaluation in the FTA-ABS test were available for study. Conjugates, after evaluation in FTA-ABS performance tests, were examined by immunoelectrophoresis, by titration against immunoglobulins G and M (IgG, IgM) with FTA-ABS techniques, and by the biuret protein and fluorescein diacetate methods for determining fluorescein to protein (F/P) ratios. The conjugates were predominately anti-IgG globulin with anti-light-chain activity. Differences were noted in the ability of some conjugates to detect IgM antibody. The F/P ratios of those conjugates that could be determined varied from 2.6 to 17.8 μg of fluorescein per mg of protein. The need to identify and standardize both the immunologic capabilities and the optimum F/P ratio for FTA-ABS test conjugates is presented. PMID:4564403
Du, Yang; Tang, Xiaoqian; Zhan, Wenbin; Xing, Jing; Sheng, Xiuzhen
2016-01-01
Immunoglobulin tau (IgT) is a new teleost immunoglobulin isotype, and its potential function in adaptive immunity is not very clear. In the present study, the membrane-bound and secreted IgT (mIgT and sIgT) heavy chain genes were cloned for the first time and characterized in flounder (Paralichthys olivaceus), and found the nucleic acid sequence were exactly same in the Cτ1–Cτ4 constant domains of mIgT and sIgT, but different in variable regions and the C-terminus. The amino acid sequence of mIgT shared higher similarity with Bovichtus diacanthus (51.2%) and Dicentrarchus labrax (45.0%). Amino acid of flounder IgT, IgM, and IgD heavy chain was compared and the highest similarity was found between IgT Cτ1 and IgM Cμ1 (38%). In healthy flounder, the transcript levels of IgT mRNA were the highest in gill, spleen, and liver, and higher in peripheral blood leucocytes, skin, and hindgut. After infection and vaccination with Edwardsiella tarda via intraperitoneal injection and immersion, the qRT-PCR analysis demonstrated that the IgT mRNA level was significantly upregulated in all tested tissues, with similar dynamic tendency that increased firstly and then decreased, and higher in gill, skin, hindgut, liver, and stomach in immersion than in the injection group, but no significant difference existed in spleen and head kidney between immersion and injection groups. These results revealed that IgT responses could be simultaneously induced in both mucosal and systemic tissues after infection/vaccination via injection and immersion route, but IgT might play a more important role in mucosal immunity than in systemic immunity. PMID:27649168
Tacchi, Luca; Larragoite, Erin; Salinas, Irene
2013-01-01
J chain is a small polypeptide responsible for immunoglobulin (Ig) polymerization and transport of Igs across mucosal surfaces in higher vertebrates. We identified a J chain in dipnoid fish, the African lungfish (Protopterus dolloi) by high throughput sequencing of the transcriptome. P. dolloi J chain is 161 aa long and contains six of the eight Cys residues present in mammalian J chain. Phylogenetic studies place the lungfish J chain closer to tetrapod J chain than to the coelacanth or nurse shark sequences. J chain expression occurs in all P. dolloi immune tissues examined and it increases in the gut and kidney in response to an experimental bacterial infection. Double fluorescent in-situ hybridization shows that 88.5% of IgM+ cells in the gut co-express J chain, a significantly higher percentage than in the pre-pyloric spleen. Importantly, J chain expression is not restricted to the B-cell compartment since gut epithelial cells also express J chain. These results improve our current view of J chain from a phylogenetic perspective. PMID:23967082
Tsuchiya, N; Endo, T; Matsuta, K; Yoshinoya, S; Takeuchi, F; Nagano, Y; Shiota, M; Furukawa, K; Kochibe, N; Ito, K
1993-07-15
Although the galactose deficiency in the Asn297-linked sugar chains of serum IgG from patients with rheumatoid arthritis (RA) has been established, structural analysis of sugar chains has not been readily available. Psathyrella velutina lectin (PVL) preferentially interacts with the N-acetylglucosamine beta 1-->2Man group, exposed at the termini of sugar chains in agalacto IgG. Biotinylated PVL reacted strongly in Western blotting with H chains of IgG derived from patients with RA. An ELISA-based assay for the detection of agalacto IgG was developed using recombinant protein G and biotinylated PVL in combination, and the screening of patients' sera was performed. PVL binding of serum IgG significantly correlated with percentage of galactose-deficient IgG determined by the structural analysis. Age-related slight increase in PVL binding was observed among normal controls. Patients with RA showed significantly higher PVL binding (37.90 +/- 42.25 U/ml, n = 93) as compared with normal controls (5.75 +/- 2.92 U/ml, n = 112) (p = 0.0001). Patients with SLE showed lower but still significant PVL binding (17.86 +/- 5.18 U/ml, n = 10, p = 0.0001). PVL binding correlated with C-reactive protein level in serial analysis of individual RA patients, and was significantly higher in the synovial fluid compared with paired serum samples. PVL binding assay may provide an ideal tool for the simple and sensitive detection of agalacto IgG.
Adamczewski, M; Köhler, G; Lamers, M C
1991-03-01
We have generated and examined transgenic mice carrying a rearranged immunoglobulin transgene coding for the heavy chain of an IgE antibody. These mice produce the secreted form of the recombinant epsilon heavy chain. Serum IgE levels were increased at least 100-fold over control values. Transgenic epsilon mRNA was detected in spleen and thymus, not in liver and heart. Transgenic epsilon production in vitro was slightly up-regulated by T cells, but not affected by interleukin 4 in vitro or Nippostrongylus infestation in vivo. The B cell and T cell compartments and antigen-specific IgE, IgG1 and IgM responses as well as the increase in endogenous IgE after Nippostrongylus infestation in transgenic mice were normal. These data indicate that the presence of high levels of transgenic IgE did not induce class-specific suppressive mechanisms. Transgenic IgE bound to Fc epsilon receptor type I and Fc epsilon receptor type II and mediated histamine release from mast cells in vitro and an allergic skin reaction in vivo. It inhibited an ovalbumin-specific skin reaction in ovalbumin-immunized transgenic mice only during the initial phases of the immune response. This result has a bearing on the feasibility of immune therapy of allergic diseases with substances that block binding of IgE to its receptors.
[Clinical and pathological features of Alport syndrome in children].
Zhu, Chun-Hua; Huang, Song-Ming; Wu, Hong-Mei; Bao, Hua-Ying; Chen, Ying; Han, Yuan; Zhao, Fei; Zhang, Ai-Hua; Zhang, Wei-Zhen
2010-03-01
To study the clinical and pathological features of Alport syndrome in children. The clinical and histopathological data of 10 hospitalized children with Alport syndrome from February 2007 to February 2009 were retrospectively reviewed. There were 7 males and 3 females, with the age ranging from 2 years to 6 years and 7 months (mean 3 years and 2 months). Five of 10 cases had positive family history. X-linked dominant inheritance Alport syndrome was diagnosed in 8 cases, and autosomal recessive inheritance Alport syndrome in 2 cases. Recurrent gross hematuria was found in 5 cases, hematuria and proteinuria in 3 cases, massive proteinuria in 1 case, and nephritic syndrome in 1 case. Under the light microscope, 8 cases presented with mesangial proliferation glomerulonephritis, and 2 cases with focal segmental glomerulosclerosis. Immunofluorescence assay showed that all cases had IgM deposition in glomerulus. Only 1 case showed typical glomerular basement membrane (GBM) pathological changes. All cases showed abnormal alpha-chain distribution in renal collagen IV. The children with Alport syndrome have diverse clinical manifestations. Characteristic histopathological presentations could not be found under a light microscope, mesangial proliferation glomerulonephritis is the dominant pathological change, and IgM deposition in glomerulus is common. The GBM pathological change in children is not common. Immunofluorescence assay of alpha-chain in collagen IV is needed for the diagnosis of Alport syndrome.
Crespi, Ilaria; Sulas, Maria Giovanna; Mora, Riccardo; Naldi, Paola; Vecchio, Domizia; Comi, Cristoforo; Cantello, Roberto; Bellomo, Giorgio
2017-03-01
Isoelectrofocusing (IEF) to detect oligoclonal bands (OBCs) in cerebrospinal fluid (CSF) is the gold standard approach for evaluating intrathecal immunoglobulin synthesis in multiple sclerosis (MS) but the kappa free light chain index (KFLCi) is emerging as an alternative marker, and the combined/sequential uses of IEF and KFLCi have never been challenged. CSF and serum albumin, IgG, kFLC and lFLC were measured by nephelometry; albumin, IgG and kFLC quotients as well as Link and kFLC indexes were calculated; OCBs were evaluated by immunofixation. A total of 150 consecutive patients: 48 with MS, 32 with other neurological inflammatory diseases (NID), 62 with neurological non-inflammatory diseases (NNID), and 8 without any detectable neurological disease (NND) were investigated. Both IEF and KFLCi showed a similar accuracy as diagnostic tests for multiple sclerosis. The high sensitivity and specificity associated with the lower cost of KFLCi suggested to use this test first, followed by IEF as a confirmative procedure. The sequential use of IEF and KFLCi showed high diagnostic efficiency with cost reduction of 43 and 21%, if compared to the contemporary use of both tests, or the unique use of IEF in all patients. The "sequential testing" using KFLCi followed by IEF in MS represents an optimal procedure with accurate performance and lower costs.
Sano, Akiko; Matsushita, Hiroaki; Wu, Hua; Jiao, Jin-An; Kasinathan, Poothappillai; Sullivan, Eddie J; Wang, Zhongde; Kuroiwa, Yoshimi
2013-01-01
Therapeutic human polyclonal antibodies (hpAbs) derived from pooled plasma from human donors are Food and Drug Administration approved biologics used in the treatment of a variety of human diseases. Powered by the natural diversity of immune response, hpAbs are effective in treating diseases caused by complex or quickly-evolving antigens such as viruses. We previously showed that transchromosomic (Tc) cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin heavy-chain (hIGH) and kappa-chain (hIGK) germline loci (named as κHAC) are capable of producing functional hpAbs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, are homozygously inactivated (double knockouts or DKO). However, B lymphocyte development in these Tc cattle is compromised, and the overall production of hpAbs is low. Here, we report the construction of an improved HAC, designated as cKSL-HACΔ, by incorporating all of the human immunoglobulin germline loci into the HAC. Furthermore, for avoiding the possible human-bovine interspecies incompatibility between the human immunoglobulin mu chain protein (hIgM) and bovine transmembrane α and β immunoglobulins (bIgα and bIgβ) in the pre-B cell receptor (pre-BCR) complex, we partially replaced (bovinized) the hIgM constant domain with the counterpart of bovine IgM (bIgM) that is involved in the interaction between bIgM and bIgα/Igβ; human IgM bovinization would also improve the functionality of hIgM in supporting B cell activation and proliferation. We also report the successful production of DKO Tc cattle carrying the cKSL-HACΔ (cKSL-HACΔ/DKO), the dramatic improvement of B cell development in these cattle and the high level production of hpAbs (as measured for the human IgG isotype) in the plasma. We further demonstrate that, upon immunization by tumor immunogens, high titer tumor immunogen-specific human IgG (hIgG) can be produced from such Tc cattle.
Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz; Hennig, Janosch; Behnke, Julia; Ausländer, David; Herold, Eva M; Peschek, Jirka; Castro, Caitlin D; Flajnik, Martin; Hendershot, Linda M; Sattler, Michael; Groll, Michael; Buchner, Johannes
2014-06-03
Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that rely on antibodies as part of their adaptive immune system. They produce the immunoglobulin new antigen receptor (IgNAR), a homodimeric heavy chain-only antibody, as a major part of their humoral adaptive immune response. Here, we report the atomic resolution structure of the IgNAR constant domains and a structural model of this heavy chain-only antibody. We find that despite low sequence conservation, the basic Ig fold of modern antibodies is already present in the evolutionary ancient shark IgNAR domains, highlighting key structural determinants of the ubiquitous Ig fold. In contrast, structural differences between human and shark antibody domains explain the high stability of several IgNAR domains and allowed us to engineer human antibodies for increased stability and secretion efficiency. We identified two constant domains, C1 and C3, that act as dimerization modules within IgNAR. Together with the individual domain structures and small-angle X-ray scattering, this allowed us to develop a structural model of the complete IgNAR molecule. Its constant region exhibits an elongated shape with flexibility and a characteristic kink in the middle. Despite the lack of a canonical hinge region, the variable domains are spaced appropriately wide for binding to multiple antigens. Thus, the shark IgNAR domains already display the well-known Ig fold, but apart from that, this heavy chain-only antibody employs unique ways for dimerization and positioning of functional modules.
Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri
2006-01-01
Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events. PMID:16973752
Petry, Franck R; Nicholls, Samantha B; Hébert, Sébastien S; Planel, Emmanuel
2017-01-01
In Alzheimer's disease and other tauopathies, tau displays several abnormal post-translation modifications such as hyperphosphorylation, truncation, conformation, and oligomerization. Mouse monoclonal antibodies have been raised against such tau modifications for research, diagnostic, and therapeutic purposes. However, many of these primary antibodies are at risk of giving nonspecific signals in common Western blotting procedures. Not because they are unspecific, but because the secondary antibodies used to detect them will also detect the heavy chain of endogenous mouse immunoglobulins (Igs), and give a nonspecific signal at the same molecular weight than tau protein (around 50 kDa). Here, we propose the use of anti-light chain secondary antibodies as a simple and efficient technique to prevent nonspecific Igs signals at around 50 kDa. We demonstrate the efficacy of this method by removing artifactual signals when using monoclonal antibodies directed at tau phosphorylation (AT100, 12E8, AT270), tau truncation (TauC3), tau oligomerization (TOMA), or tau abnormal conformation (Alz50), in wild-type, 3×Tg-AD, and tau knockout mice.
Svoboda, Martin; Mann, Benjamin F.; Goetz, John A.; Novotny, Milos V.
2012-01-01
Among the most important proteins involved in the disease and healing processes are the immunoglobulins (Igs). Although many of the Igs have been studied through proteomics, aside from IgG, immunoglobulin carbohydrates have not been extensively characterized in different states of health. It seems valuable to develop techniques that permit us to understand changes in the structures and abundances of Ig glycans in the context of disease onset and progression. We have devised a strategy for characterization of the glycans for the Ig classes other than IgG (i.e. A, D, E, and M) that contain kappa light chains, while using only a few microliters of biological material. First, we designed a microcolumn containing the recombinant Protein L that was immobilized on macroporous silica particles. A similarly designed Protein G microcolumn was utilized to first perform an on-line depletion of the IgG from the sample, human blood serum, and thereby facilitate enrichment of the other Igs. While only 3 μL of serum were used in these analyses, we were able to recover a significantly-enriched fraction of non-IgG immunoglobulins. The enrichment properties of the Protein L column were characterized using a highly sensitive label-free quantitative proteomics LC-MS/MS approach, and the glycomic profiles of enriched immunoglobulins were measured by MALDI-TOF-MS. As a proof-of-principle, a comparative study was conducted using blood serum from a small group of lung cancer patients and a group of age-matched cancer-free individuals to demonstrate that the method is suitable for investigation of glycosylation changes in disease. The results were in agreement with a glycomic investigation of whole blood serum from a much larger lung cancer cohort. PMID:22360417
Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice
Sidor, Michelle M.; Sakic, Boris; Malinowski, Paul M.; Ballok, David A.; Oleschuk, Curtis J.; Macri, Joseph
2006-01-01
The systemic autoimmune disease lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric manifestations and brain lesions of unknown etiology. The MRL-lpr mice show behavioral dysfunction concurrent with progression of a lupus-like disease, thus providing a valuable model in understanding the pathogenesis of autoimmunity-induced CNS damage. Profound neurodegeneration in the limbic system of MRL-lpr mice is associated with cytotoxicity of their cerebrospinal fluid (CSF) to mature and immature neurons. We have recently shown that IgG-rich CSF fraction largely accounts for this effect. The present study examines IgG levels in serum and CSF, as well as the permeability of the blood–brain barrier in mice that differ in immune status, age, and brain morphology. In comparison to young MRL-lpr mice and age-matched congenic controls, a significant elevation of IgG and albumin levels were detected in the CSF of aged autoimmune MRL-lpr mice. Two-dimensional gel electrophoresis and MALDI-TOF MS confirmed elevation in IgG heavy and Ig light chain isoforms in the CSF. Increased permeability of the blood–brain barrier correlated with neurodegeneration (as revealed by Fluoro Jade B staining) in periventricular areas. Although the source and specificity of neuropathogenic antibodies remain to be determined, these results support the hypothesis that a breached blood–brain barrier and IgG molecules are involved in the etiology of CNS damage during SLE-like disease. PMID:15972238
Takeyama, Masahiro; Nogami, Keiji; Kajimoto, Takahiro; Ogiwara, Kenichi; Matsumoto, Tomoko; Shima, Midori
2018-01-01
We describe an 8-year-old boy with acquired hemophilia A (AHA) associated with streptococcal infection and amoxicillin. Laboratory data revealed low factor VIII activity (FVIII:C, 1.5 IU/dl), and FVIII inhibitor (15.9 BU/ml). Comprehensive coagulation function assays, including rotation thromboelastometry (ROTEM ® ), revealed a markedly prolonged clotting time. Thrombin and plasmin generation (TG/PG) appeared to be moderately impaired. The inhibitor epitope of his anti-FVIII autoantibody recognized light and heavy chains. He was treated with Novoseven ® and prednisolone, resulting in rapid improvement. ROTEM showed the return of coagulation time to normal level on day 20, and TG gradually improved. PG was moderately reduced in the clinical early phase, but improved at day 20. The patient's IgG subtype was IgG 4 at onset. IgG 1 was transiently positive on day 20, but negative on day 46. FVIII inhibitor gradually decreased and was completely absent after day 46, along with the elevated FVIII:C. IgG4 was again elevated on day 83, followed by a rapid decrease, indicative of the presence of non-neutralizing antibody, which remains currently undetected. We for the first time report changes in comprehensive coagulation function and IgG subtype of anti-FVIII antibody in a rare pediatric case of AHA.
Acquired cutis laxa following urticarial vasculitis associated with IgA myeloma.
Turner, Ryan B; Haynes, Harley A; Granter, Scott R; Miller, Danielle M
2009-06-01
Cutis laxa (CL) is an inherited or acquired connective tissue disorder characterized clinically by loosely hanging skin folds. There is often preceding cutaneous inflammatory eruption (ie, urticaria, eczema, erythema multiforme), and there is frequently internal organ involvement of the gastrointestinal, urogenital, pulmonary, and cardiovascular systems. Histologically, there are degenerative changes in the dermal elastic fibers. Of the few reports on this rare disorder, authors have speculated about an immune-mediated destruction of elastic fibers, and monoclonal gammopathies, such as multiple myeloma or heavy chain deposition disease, have a recognized association with CL. We report an unusual case of rapidly progressing acquired CL associated with leukocytoclastic vasculitis, IgA myeloma, and an immune complex-mediated glomerulonephritis. Light microscopy of the lax skin revealed complete absence of elastic fibers in areas of vasculitis.
Early response to therapy and survival in multiple myeloma.
Schaar, C G; Kluin-Nelemans, J C; le Cessie, S; Franck, P F H; te Marvelde, M C; Wijermans, P W
2004-04-01
Whether the response to chemotherapy is a prognosticator in multiple myeloma (MM) is still not known. Therefore, the relationship between survival and the rate of monoclonal protein (M-protein) decrement during the first cycles of therapy was prospectively assessed in 262 patients with newly diagnosed MM that were included in a phase III trial (HOVON-16). M-proteins were collected monthly during melphalan-prednisone therapy (MP: melphalan 0.25 mg/kg, prednisone 1.0 mg/kg orally for 5 d every 4 weeks). Patients with light chain disease (n = 18), immunoglobulin M (IgM)-MM (n = 1) and no immunotyping (n = 1) were excluded. Of the 242 patients studied, 75% had IgG M-protein and 25% IgA; MM stages: I: 1%, II: 35% and III: 64%. The median M-protein decrease after the first cycle of MP was 21% for IgG and 27% for IgA, and declined to < 5% after four cycles. An obvious survival advantage was seen for patients who had an M-protein decrease of at least 30% after the first MP cycle, which became significant when an M-protein decrease of 40% or more was reached. As established prognostic parameters (Salmon & Durie stage, serum creatinine, and haemoglobin) also remained prognostically significant, we concluded that early response to MP predicts for survival in MM.
Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana
2017-02-03
The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.
Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana
2017-01-01
The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers. PMID:28157181
Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod
2011-01-01
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827
Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor
NASA Astrophysics Data System (ADS)
Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.
2017-02-01
IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.
Cephalosporin and penicillin cross-reactivity in patients allergic to penicillins.
Liu, X-D; Gao, N; Qiao, H-L
2011-03-01
Bata-lactam antibiotics are the most commonly used antibiotics which usually cause serious IgE-mediated allergic reactions. Of all bata-lactam antibiotics, penicillins have so far been the best-studied, but the studies of cephalosporins and their cross-reactivity with penicillins are rare. We sought to evaluate the IgE response in vitro and estimate cross-reactivity between penicillins and cephalosporins in patients allergic to penicillins. We studied 87 control subjects and 420 subjects allergic to penicillins. Radioallergosorbent test (RAST) was performed to detect eight types of specific-penicillin IgE and eleven types of specific-cephalosporin IgE. The cross-reactivity and different molecules recognition by IgE were studied with a radioallergosorbent inhibition test. Of 420 patients allergic to penicillins, 95 patients (22.62%) showed specific-cephalosporin IgE positive, 73 patients (17.38%) showed IgEs positive to both penicillins and cephalosporins. In specific-penicillin IgE positive group, the positive rate of specific-cephalosporin IgE was significantly higher than in specific-penicillin IgE negative group (27.14% vs. 14.57%, p < 0.01). In urticaria group, the positive rate of specific-cephalosporin IgE was significantly higher than in other symptoms group (30.65% vs. 8.11%, p < 0.05). The analysis of drugs which have the same or similar side-chains showed that benzylpenicillanyl-IgE (BPA-IgE), ampicillanyl-IgE (APA-IgE), amoxicillanyl-IgE (AXA-IgE) were respectively related to cephalothanyl-IgE (CLA-IgE), cephalexanyl-IgE (CEXA-IgE), cephalexanyl-IgE (CEXA-IgE)in sera of penicillin-allergic patients we studied, and compared with patients who had negative amoxicillin-IgE, the positive rates of specific-ampicillin IgE and specific-cephalexin IgE were significantly higher in patients who had positive amoxicillin-IgE (14.43% vs. 3.72%, 14.00% vs. 2.96%, p < 0.01). Radioallergosorbent test and radioallergosorbent inhibition test confirmed that both nuclear structure and R1 side-chain contribute to IgE recognition. There exists cross-reactivity between cephalosporins and penicillins; patients allergic to several penicillins are more likely to develop allergic reaction to cephalosporins; due to sensitization to the similar structural characteristics (nuclear and R1 side-chain), penicillin-allergic patients may develop cross-allergic reactions with not only first-generation but also third-generation cephalosporins.
Comparing domain interactions within antibody Fabs with kappa and lambda light chains.
Toughiri, Raheleh; Wu, Xiufeng; Ruiz, Diana; Huang, Flora; Crissman, John W; Dickey, Mark; Froning, Karen; Conner, Elaine M; Cujec, Thomas P; Demarest, Stephen J
2016-10-01
IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.
Shin, Geewook; Lee, Hyungjun; Palaksha, K. J.; Kim, Youngrim; Lee, Eunyoung; Shin, Yongseung; Lee, Eunggoo; Park, Kyungdae
2006-01-01
The present study was undertaken to produce monoclonal antibodies (MAbs) against immunoglobulin (Ig) purified from black rockfish (Sebastes schlegeli Higendorf) serum using protein A, mannan binding protein, and goat IgG affinity columns. These three different ligands were found to possess high affinity for black rockfish serum Ig. All of the Igs purified eluted at only 0.46 M NaCl concentration in anion exchange column chromatography and consisted of two bands at 70 kDa and 25 kDa in SDS-PAGE; they also had similar antigenicity for MAbs to Ig heavy chain in immunoblot assays. Therefore, black rockfish Ig is believed to exist as a single isotype within serum. The MAbs produced against Ig heavy chain reacted specifically with spots distributed over the pI range from 4.8 to 5.6 with a molecular weight of 70 kDa on two dimensional gel electrophoresis immunoblot profiles. PMID:16871026
Chitta, Kasyapa S.; Paulus, Aneel; Ailawadhi, Sikander; Foster, Barbara A.; Moser, Michael T.; Starostik, Petr; Masood, Aisha; Sher, Taimur; Miller, Kena C.; Iancu, Dan M.; Conroy, Jeffrey; Nowak, Norma J.; Sait, Sheila N.; Personett, David A.; Coleman, Morton; Furman, Richard R.; Martin, Peter; Ansell, Stephen M.; Lee, Kelvin; Chanan-Khan, Asher A.
2015-01-01
Understanding the biology of Waldenström Macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secreted human IgM (hIgM) with k-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2) with a consistent amplification of 14q32 (IgH) identical to its founding tumor sample. Clonal relationship was confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Over all, RPCI-WM1 represents a valuable model to study WM. PMID:22812491
IMMUNOGLOBULIN SPOTS ON THE SURFACE OF RABBIT LYMPHOCYTES
Pernis, Benvenuto; Forni, Luciana; Amante, Luisa
1970-01-01
Small and medium lymphocytes from the peripheral blood and lymphoid tissues of the rabbit react in suspension with antibodies directed against different immunoglobulin determinants. Through immunofluorescence, it was possible to show that numerous discrete spots on the surface of the positive lymphocytes carry immunoglobulin molecules. The positive lymphocytes are about one-half of all lymphocytes in the different preparations; thymus lymphocytes are all negative. With antisera specific for rabbit IgM as well as with antisera directed against allotypic determinants specific for IgM or IgG, it was possible to show that about nine-tenths of the immunoglobulin-positive lymphocytes carry IgM molecules on their surface. With antisera directed against a- and b-locus determinants, it was also possible to demonstrate that both heavy and light chains were present in the surface immunoglobulins. Furthermore, in animals which were heterozygous at the a or the b locus, it was found that each lymphocyte had immunoglobulins synthesized under the influence of only one of two alleles. A very small proportion of lymphocytes could be shown to have a specific surface reaction with one antigen (horse ferritin); the proportion of these cells increased very much after immunization. PMID:4919141
Detection of epsilon class switching and IgE synthesis in human B cells.
Pène, Jérôme; Guilhot, Florence; Cognet, Isabelle; Guglielmi, Paul; Guay-Giroux, Angélique; Bonnefoy, Jean-Yves; Elson, Greg C; Yssel, Hans; Gauchat, Jean-François
2006-01-01
We observed that mast cells, as other cells expressing the CD40 ligand CD154, can trigger IgE synthesis in B cells in the presence of interleukin (IL)-4. Numerous complementary techniques can be used to follow the succession of molecular events leading to IgE synthesis. This chapter will illustrate how human B cells (naïve or memory) can be purified, stored, and cultivated in medium that is permissive for IgE synthesis and stimulated with IL-4 or IL-13 and CD40 activation, the latter being induced by soluble CD154, anti-CD40 antibodies, or CD154-expressing cells. All these molecules are expressed by mast cells. The quantification of the epsilon-sterile transcript synthesis by polymerase chain reaction or Northern blot, the epsilon excision circles produced during immunoglobulin heavy chain locus rearrangement by polymerase chain reaction, and the IgE production by enzyme-linked immunosorbent assay will be described.
Kumar, Rashmi; Bach, Martina P; Mainoldi, Federica; Maruya, Mikako; Kishigami, Satoshi; Jumaa, Hassan; Wakayama, Teruhiko; Kanagawa, Osami; Fagarasan, Sidonia; Casola, Stefano
2015-02-03
In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.
Tang, Xiaoqian; Liu, Fuguo; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin
2017-05-01
Immunoglobulin D (IgD) is considered to be an enigmatic Ig molecule because of the lack understanding of its immunological functions. In the present study, a partial δ region of the flounder IgD was recombinantly expressed, purified and used as an immunogen to produce monoclonal antibodies (MAbs) against the H chain of flounder IgD. After fusion, a total of 97 hybridomas were generated and observed under an inverted microscope One of the hybridomas, designated 5G7, gave strong positive results in an indirect enzyme-linked immunosorbent assay (ELISA) and was cloned and subcloned by limiting dilution. Western blot analysis showed that MAb 5G7 could specifically recognize a 118 kDa protein from peripheral blood lymphocytes (PBLs), which was identified to be the H chain of flounder IgD by mass spectrometric analysis. Indirect immunofluorescence assay tests (IIFAT) showed that specific fluorescence signals were observed on the membranes of the PBLs, which suggests that MAb 5G7 could recognize the membrane-bound IgD molecule. Moreover, only the subset of IgD+/IgM + B cells were observed in the PBLs of healthy flounder when tested by flow cytometry analysis. Consistent with the results of flow cytometry, a double immunofluorescence assay test (DIFAT) showed that the positive lymphocytes were stained with both green and red fluorescence signals, which represent the IgM+/IgD + lymphocytes subset. These results demonstrate that the produced MAb 5G7 could specifically recognize the flounder IgD, which provides a useful tool to study the functions of flounder IgD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Fang; Li, Li; Zhang, Wei; Wang, Qi
2013-04-01
This research was to construct the lentiviral expression vector for anti- p185(erbB2) mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-p185(erbB2) mAb and the constant regions of human IgG1 (kappa and gamma1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody expression was detected by RT-PCR and direct ELISA. The results showed that after 293T cells were transfected with recombination plasmid, both light and heavy chains of the chimeric antibody genes could express together. The chimeric antibody expressed could bind to p185(erbB2) specifically. This research may lay a sound foundation for further study of anti-p185(erbB2) engineered antibody.
Waisman, Ari; Kraus, Manfred; Seagal, Jane; Ghosh, Snigdha; Melamed, Doron; Song, Jian; Sasaki, Yoshiteru; Classen, Sabine; Lutz, Claudia; Brombacher, Frank; Nitschke, Lars; Rajewsky, Klaus
2007-01-01
We describe a mouse strain in which B cell development relies either on the expression of membrane-bound immunoglobulin (Ig) γ1 or μ heavy chains. Progenitor cells expressing γ1 chains from the beginning generate a peripheral B cell compartment of normal size with all subsets, but a partial block is seen at the pro– to pre–B cell transition. Accordingly, γ1-driven B cell development is disfavored in competition with developing B cells expressing a wild-type (WT) IgH locus. However, the mutant B cells display a long half-life and accumulate in the mature B cell compartment, and even though partial truncation of the Igα cytoplasmic tail compromises their development, it does not affect their maintenance, as it does in WT cells. IgG1-expressing B cells showed an enhanced Ca2+ response upon B cell receptor cross-linking, which was not due to a lack of inhibition by CD22. The enhanced Ca2+ response was also observed in mature B cells that had been switched from IgM to IgG1 expression in vivo. Collectively, these results suggest that the γ1 chain can exert a unique signaling function that can partially replace that of the Igα/β heterodimer in B cell maintenance and may contribute to memory B cell physiology. PMID:17420268
Protective Effect of Moderate Exercise for BALB/c Mice with Salmonella Typhimurium Infection.
Campos-Rodríguez, R; Godínez-Victoria, M; Arciniega-Martínez, I M; Reséndiz-Albor, A A; Reyna-Garfias, H; Cruz-Hernández, T R; Drago-Serrano, M E
2016-01-01
Moderate exercise enhances resistance to pathogen-associated infections. However, its influence on intestinal IgA levels and resistance to Salmonella typhimurium in mice has not been reported. The aim of this study was to assess the impact of moderate exercise on bacterial resistance and the intestinal-IgA response in a murine typhoid model. Sedentary and exercised (under a protocol of moderate swimming) BALB/c mice were orally infected with Salmonella typhimurium and sacrificed on days 7 or 14 post-infection (n=5 per group). Compared with infected sedentary mice, infected exercised animals had i) lower intestinal and systemic bacterial loads; ii) higher total and specific intestinal-IgA levels, iii) a higher percentage of IgA plasma cells in lamina propria; iv) a higher level on day 7 and lower level on day 14 of intestinal α- and J-chain mRNA and plasma corticosterone, v) unchanged mRNA expression of intestinal pIgR, and vi) a higher mRNA expression of liver pIgR, α-chain and J-chain on day 7. Hence, it is likely that an increase in corticosterone levels (stress response) induced by moderate exercise increased intestinal IgA levels by enabling greater liver expression of pIgR mRNA, leading to a rise in IgA transcytosis from the liver to intestine. The overall effect of these changes is an enhanced resistance to infection. © Georg Thieme Verlag KG Stuttgart · New York.
Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R
2007-09-01
To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.
USDA-ARS?s Scientific Manuscript database
The immunoglobulin (Ig) genes of many vertebrates have been characterized but IgG subclasses, IgD and IgE proteins are only available for three species in which plasmacytomas occur. This creates a major problem in the production and specificity verification of diagnostic anti-Ig reagents for the vas...
Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection
Farnell, Edward J.; Tyagi, Nidhi; Ryan, Stephanie; Chalmers, Iain W.; Pinot de Moira, Angela; Jones, Frances M.; Wawrzyniak, Jakub; Fitzsimmons, Colin M.; Tukahebwa, Edridah M.; Furnham, Nicholas; Maizels, Rick M.; Dunne, David W.
2015-01-01
The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our hypothesis that allergenicity is rooted in expression of certain protein domain families in metazoan parasites. PMID:25691884
Junejo, Shoaib; Ali, Yasir; Singh Lubana, Sandeep; Tuli, Sandeep S
2017-11-25
BACKGROUND Amyloidosis is the extracellular tissue deposition of plasma proteins, which after conformational changes, forms antiparallel beta pleated sheets of fibrils. Amyloid light-chain (AL) is a type of amyloidosis that is due to deposition of proteins derived from immunoglobulin (Ig) light chains. Gastrointestinal tract (GIT) involvement most often found in amyloid A (AA) amyloidosis type. There have been no reports of obstructive GIT AL amyloid patients having monoclonal gammopathy of undetermined significance (MGUS). Our case is the first case to show two coinciding conditions; one is the association of GIT AL amyloidosis with the incidental finding of a rare type of MGUS (LC-MGUS) and the other is the radiologic presentation of GIT amyloidosis with omental calcification mimicking the GIT malignancy. CASE REPORT A 68-year-old female presented with symptoms of partial bowel obstruction, including intermittent diffuse abdominal pain and constipation. After computed tomography (CT) abdomen and pelvis, an exploratory laparotomy was needed because of suspicion of abdominal carcinomatosis due to diffuse omental calcification. The tissue sent for biopsy surprisingly showed AL amyloidosis. The patient did not report any systemic symptoms. Further workup was advised to inquire about the plasma cell dyscrasia which eventually turned into a very rare version of MGUS knows as light chain MGUS (LC-MGUS). Following adequate resection of the involved structures, the patient was then placed on chemotherapy and successfully went into remission. CONCLUSIONS This case report illustrates that in an era of evidence based medicine, it is important to show through case reports the association of GIT AL amyloidosis with LC-MGUS, as the literature on this topic is lacking. It also points to the importance of timely intervention that can greatly enhance, not only the only the chances of remission but also prevention of further complications such as malignant transformation.
Chromosomal locations of mouse immunoglobulin genes.
Valbuena, O; Marcu, K B; Croce, C M; Huebner, K; Weigert, M; Perry, R P
1978-01-01
The chromosomal locations of the structural genes coding for the constant portions of mouse heavy (H) and light chain immunoglobulins were studied by molecular hybridization techniques. Complementary DNA probes containing the constant-region sequences of kappa and lambdaI light chain and alpha, gamma2b, and mu heavy chain mRNAs were annealed to a large excess of DNA from a series of eight mouse-human hybrid cell lines that are deficient for various mouse chromosomes. The lines were scored as positive when a high proportion of a probe annealed and negative when an insignificant proportion annealed. Some lines were clearly negative for H and lambda and clearly positive for kappa. Others were positive or intermediate for lambda, positive for kappa and negative for H. Still others, including a line that was selected for the absence of the mouse X chromosome, were positive for all immunoglobulin species. These results demonstrate that the Clambda, Ckappa, and CH genes are located on different autosomes in the mouse. In contrast, the three heavy-chain families exhibited consistently uniform hybridization results, suggesting that the genes for Calpha, Cgamma, and Cmu are located on the same chromosome. A comparison of karyotypic data with hybridization data has limited the possible locations of the Ig genes to only a few chromosomes. PMID:96442
DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George
2016-05-10
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.
Shanker, Sreejesh; Czakó, Rita; Sapparapu, Gopal; Alvarado, Gabriela; Viskovska, Maria; Sankaran, Banumathi; Atmar, Robert L; Crowe, James E; Estes, Mary K; Prasad, B V Venkataram
2016-10-04
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
Lanshoeft, Christian; Heudi, Olivier; Cianférani, Sarah
2016-05-15
The newly developed SMART Digest™ kit was applied for the sample preparation of human immunoglobulin G1 (hIgG1) in rat serum prior to qualitative and quantitative analyses by liquid chromatography tandem mass spectrometry (LC-MS/MS). The sequence coverages obtained for the light and heavy chains of hIgG1A were 50 and 76%, respectively. The calibration curve was linear from 1.00 to 1000 μg/ml for three of four generic peptides. Overall, the SMART Digest™ kit resulted in similar quantitative data (linearity, sensitivity, accuracy, and precision) compared with the pellet digestion protocol. However, the SMART Digest™ required only 2 h of sample preparation with fewer reagents. Copyright © 2016 Elsevier Inc. All rights reserved.
Ha, Ji-Hee; Kim, Jung-Eun; Kim, Yong-Sung
2016-01-01
The monospecific and bivalent characteristics of naturally occurring immunoglobulin G (IgG) antibodies depend on homodimerization of the fragment crystallizable (Fc) regions of two identical heavy chains (HCs) and the subsequent assembly of two identical light chains (LCs) via disulfide linkages between each HC and LC. Immunoglobulin Fc heterodimers have been engineered through modifications to the CH3 domain interface, with different mutations on each domain such that the engineered Fc fragments, carrying the CH3 variant pair, preferentially form heterodimers rather than homodimers. Many research groups have adopted different strategies to generate Fc heterodimers, with the goal of high heterodimerization yield, while retaining biophysical and biological properties of the wild-type Fc. Based on their ability to enforce heterodimerization between the two different HCs, the established Fc heterodimers have been extensively exploited as a scaffold to generate bispecific antibodies (bsAbs) in full-length IgG and IgG-like formats. These have many of the favorable properties of natural IgG antibodies, such as high stability, long serum half-life, low immunogenicity, and immune effector functions. As of July 2016, more than seven heterodimeric Fc-based IgG-format bsAbs are being evaluated in clinical trials. In addition to bsAbs, heterodimeric Fc technology is very promising for the generation of Fc-fused proteins and peptides, as well as cytokines (immunocytokines), which can present the fusion partners in the natural monomeric or heterodimeric form rather than the artificial homodimeric form with wild-type Fc. Here, we present relevant concepts and strategies for the generation of heterodimeric Fc proteins, and their application in the development of bsAbs in diverse formats for optimal biological activity. In addition, we describe wild-type Fc-fused monomeric and heterodimeric proteins, along with the difficulties associated with their preparations, and discuss the use of heterodimeric Fc as an alternative scaffold of wild-type Fc for naturally monomeric or heterodimeric proteins, to create Fc-fusion proteins with novel therapeutic modality.
Ezzatifar, Fatemeh; Majidi, Jafar; Baradaran, Behzad; Aghebati Maleki, Leili; Abdolalizadeh, Jalal; Yousefi, Mehdi
2015-01-01
Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori. PMID:25789225
Zengin, Adem; Caykara, Tuncer
2017-05-01
Herein, we have designed a novel multilayer system composed of poly(methyl methacrylate) [poly(MMA)] brush, biotin, streptavidin and protein-A on a silicon substrate to attach onanti-immunoglobulin G (anti-IgG). poly(MMA) brush with vinyl end-group was first synthesized by the interface-mediated catalytic chain transfer polymerization. The brush was then modified with cysteamine molecules to generate the polymer chains with amine end-group via a thiol-ene click chemistry. The amine end-groups of poly(MMA) chains were also modified with biotin units to ensure selective connection points for streptavidin molecules. Finally, a multilayer system on the silicon substrate was formed by using streptavidin and protein-A molecules, respectively. This multilayer system was employed to attach anti-IgG molecules in a highly oriented manner and provide anti-IgG molecular functional configuration on the multilayer. High reproducibility of the amount of anti-IgG adsorption and homogeneous anti-IgG adsorption layer on the silicon surface could be provided by this multilayer system. The multilayer system with protein A may be opened the door for designing an efficient immunoassay protein chip. Copyright © 2017. Published by Elsevier B.V.
Hsu, Ann; Siegler, Karen E.
2017-01-01
ABSTRACT Amino acid sequence differences in the variable region of immunoglobulin (Ig) cause wide variations in secretion outputs. To address how a primary sequence difference comes to modulate Ig secretion, we investigated the biosynthetic process of 2 human IgG2κ monoclonal antibodies (mAbs) that differ only by one amino acid in the light chain complementarity-determining region 1 while showing ∼20-fold variance in secretion titer. Although poorly secreted, the lower-secreting mAb of the 2 was by no means defective in terms of its folding stability, antigen binding, and in vitro biologic activity. However, upon overexpression in HEK293 cells, the low-secreting mAb revealed a high propensity to aggregate into enlarged globular structures called Russell bodies (RBs) in the endoplasmic reticulum. While Golgi morphology was affected by the formation of RBs, secretory pathway membrane traffic remained operational in those cells. Importantly, cellular protein synthesis was severely suppressed in RB-positive cells through the phosphorylation of eIF2α. PERK-dependent signaling was implicated in this event, given the upregulation and nuclear accumulation of downstream effectors such as ATF4 and CHOP. These findings illustrated that the underlining process of poor Ig secretion in RB-positive cells was due to downregulation of Ig synthesis instead of a disruption or blockade of secretory pathway trafficking. Therefore, RB formation signifies an end of active Ig production at the protein translation level. Consequently, depending on how soon and how severely an antibody-expressing cell develops the RB phenotype, the productive window of Ig secretion can vary widely among the cells expressing different mAbs. PMID:28379093
Characterization and screening of IgG binding to the neonatal Fc receptor
Neuber, Tobias; Frese, Katrin; Jaehrling, Jan; Jäger, Sebastian; Daubert, Daniela; Felderer, Karin; Linnemann, Mechthild; Höhne, Anne; Kaden, Stefan; Kölln, Johanna; Tiller, Thomas; Brocks, Bodo; Ostendorp, Ralf; Pabst, Stefan
2014-01-01
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. PMID:24802048
Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd
2016-01-01
B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca−/− mice. In this work we demonstrated that Fanca−/− animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM− to IgM+ transition of the B220low B-cell population. Pre-B cells from Fanca−/− mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca−/− mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig. PMID:27883081
Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd
2016-11-24
B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca -/- mice. In this work we demonstrated that Fanca -/- animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM - to IgM + transition of the B220 low B-cell population. Pre-B cells from Fanca -/- mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca -/- mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig.
Zhang, B; Evans, J S
2001-01-01
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble. PMID:11159428
Contribution of flow cytometry to the diagnosis of gastric lymphomas in endoscopic biopsy specimens.
Almasri, N M; Zaer, F S; Iturraspe, J A; Braylan, R C
1997-07-01
Gastric lymphomas seem to have unique clinical, pathologic, and immunophenotypic features that set them apart from nodal lymphomas. Microscopic examination of endoscopic biopsy specimens is the most frequent procedure used to diagnose gastric tumors, but it is very difficult, and sometimes impossible, to recognize lymphomas in endoscopic samples by histologic or even immunohistologic methods. Because most gastric lymphomas are of B-cell origin, we used flow cytometry to assess B-cell clonality in gastric biopsy specimens containing dense lymphocytic infiltrates thought to represent lymphoma. We prepared viable cell suspensions from unfixed specimens obtained from 29 consecutive patients who had a previous microscopic diagnosis of suspicious gastric lymphoid infiltrates. We performed immunophenotypic studies with multicolor flow cytometry, and we assessed clonality by examination of immunoglobulin (Ig) light-chain expression analyzed exclusively on B cells identified by anti-CD20 or CD19 antibodies. The mean number of cells recovered was 1.04 x 10(6), from an average of 5.5 gastric biopsy fragments per patient. In 26 of the 29 patients, the number of cells was adequate for analysis. We detected B-cell monoclonality in 16 cases, including 5 in which the percentage of clonal B cells was less than 5%. Of the 16 cases, only 8 could be diagnosed as lymphomas on morphologic grounds alone; the remaining 8 patients had either suspicious lymphoid infiltrates or chronic gastritis. The three cases with an insufficient number of cells were considered non-neoplastic either on histologic grounds alone or in conjunction with Southern analysis of Ig genes. We conclude that flow cytometric immunophenotypic analysis of freshly prepared cell suspensions obtained from endoscopic biopsy specimens can be used to evaluate gastric lymphocytic infiltrates. Specifically, the analysis of surface Ig light-chain expression on B cells distinguishes between monoclonal (lymphoma) and polyclonal (nonlymphoma) infiltrates. The rapidity, ease, quantitative properties, and sensitivity of this technique make it a supplement to the morphologic assessment of gastric lymphoid infiltrates.
Sharon, Galit; Nath, Pulak R; Isakov, Noah; Zilberg, Dina
2014-09-15
Analysis of the effectiveness of guppy (Poecilia reticulata Peters) immunization based on measurements of antibody (Ab) titers suffers from a shortage of reagents that can detect guppy antibodies (Abs). To overcome this problem, we immunized mice with different preparations of guppy immunoglobulins (Igs) and used the mouse antisera to develop a quantitative enzyme-linked immunosorbent assay (ELISA). The most efficient immunogen for mouse immunization was guppy Igs adsorbed on protein A/G beads. Antisera from mice boosted with this immunoglobulin (Ig) preparation were highly specific and contained high Ab titers. They immunoreacted in a Western blot with Ig heavy and light chains from guppy serum, and Ig heavy chain from guppy whole-body homogenate. The mouse anti-guppy Ig was applied in an ELISA aimed at comparing the efficiency of different routes of guppy immunization against Tetrahymena: (i) anal intubation with sonicated Tetrahymena (40,000 Tetrahymena/fish in a total volume of 10 μL) mixed with domperidon, deoxycholic acid and free amino acids (valine, leucine, isoleucine, phenylalanine and tryptophan), or (ii) intraperitoneal (i.p.) injection of sonicated Tetrahymena in complete Freund's adjuvant (15,000 Tetrahymena/fish in total a volume of 20 μL). Negative control fish were anally intubated with the intubation mixture without Tetrahymena, or untreated. ELISA measurement of anti-Tetrahymena Ab titer revealed a significantly higher level of Abs in i.p.-immunized guppies, compared to the anally intubated and control fish. In addition, the efficiency of immunization was tested by monitoring guppy mortality following (i) i.p. challenge with Tetrahymena (900 Tetrahymena/fish) or (ii) cold stress followed by immersion in water containing 10,000 Tetrahymena/mL. Fish mortality on day 14 post-Tetrahymena infection by i.p. injection exceeded 50% in the control and anally intubated fish, compared to 31% in i.p.-immunized fish. Immunization did not protect from pathogen challenge by immersion. The results suggest a direct correlation between the anti-Tetrahymena Ab response and fish resistance to i.p.-injected Tetrahymena, but not to infection by immersion preceded by cold stress. Copyright © 2014 Elsevier B.V. All rights reserved.
Immunoglobulin Heavy Chain Exclusion in the Shark
Malecek, Karolina; Lee, Victor; Feng, Wendy; Huang, Jing Li; Flajnik, Martin F; Ohta, Yuko; Hsu, Ellen
2008-01-01
The adaptive immune system depends on specific antigen receptors, immunoglobulins (Ig) in B lymphocytes and T cell receptors (TCR) in T lymphocytes. Adaptive responses to immune challenge are based on the expression of a single species of antigen receptor per cell; and in B cells, this is mediated in part by allelic exclusion at the Ig heavy (H) chain locus. How allelic exclusion is regulated is unclear; we considered that sharks, the oldest vertebrates possessing the Ig/TCR-based immune system, would yield insights not previously approachable and reveal the primordial basis of the regulation of allelic exclusion. Sharks have an IgH locus organization consisting of 15–200 independently rearranging miniloci (VH-D1-D2-JH-Cμ), a gene organization that is considered ancestral to the tetrapod and bony fish IgH locus. We found that rearrangement takes place only within a minilocus, and the recombining gene segments are assembled simultaneously and randomly. Only one or few H chain genes were fully rearranged in each shark B cell, whereas the other loci retained their germline configuration. In contrast, most IgH were partially rearranged in every thymocyte (developing T cell) examined, but no IgH transcripts were detected. The distinction between B and T cells in their IgH configurations and transcription reveals a heretofore unsuspected chromatin state permissive for rearrangement in precursor lymphocytes, and suggests that controlled limitation of B cell lineage-specific factors mediate regulated rearrangement and allelic exclusion. This regulation may be shared by higher vertebrates in which additional mechanistic and regulatory elements have evolved with their structurally complex IgH locus. PMID:18578572
Site-Specific N-Glycosylation of Recombinant Pentameric and Hexameric Human IgM
NASA Astrophysics Data System (ADS)
Moh, Edward S. X.; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.
2016-07-01
Glycosylation is known to play an important role in IgG antibody structure and function. Polymeric IgM, the largest known antibody in humans, displays five potential N-glycosylation sites on each heavy chain monomer. IgM can exist as a pentamer with a connecting singly N-glycosylated J-chain (with a total of 51 glycosylation sites) or as a hexamer (60 glycosylation sites). In this study, the N-glycosylation of recombinant pentameric and hexameric IgM produced by the same human cell type and culture conditions was site-specifically profiled by RP-LC-CID/ETD-MS/MS using HILIC-enriched tryptic and GluC glycopeptides. The occupancy of all putative N-glycosylation sites on the pentameric and hexameric IgM were able to be determined. Distinct glycosylation differences were observed between each of the five N-linked sites on the IgM heavy chains. While Asn171, Asn332, and Asn395 all had predominantly complex type glycans, differences in glycan branching and sialylation were observed between the sites. Asn563, a high mannose-rich glycosylation site that locates in the center of the IgM polymer, was only approximately 60% occupied in both the pentameric and hexameric IgM forms, with a difference in relative abundance of the glycan structures between the pentamer and hexamer. This study highlights the information obtained by characterization of the site-heterogeneity of a highly glycosylated protein of high molecular mass with quaternary structure, revealing differences that would not be seen by global glycan or deglycosylated peptide profiling.
Kanzawa, Maki; Hirai, Chihoko; Morinaga, Yukiko; Kawakami, Fumi; Hara, Shigeo; Matsuoka, Hiroshi; Itoh, Tomoo
2013-02-20
Gastric plasmacytoma (GP) is a rare variant of gastric lymphomas. In the exceptional event that a patient presents with GP, the lesion occupies the mucosal layer in the vast majority of cases. Here we report a case of nodular plasmacytoma confined to the submucosa with no evidence of Helicobacter pylori (Hp) infection. The patient was a 59-year old female presenting with no particular symptoms. The tumor was well-demarcated and consisted of a diffuse monomorphic proliferation of plasma cells with numerous lymphoid follicles scattered throughout the tumor. The mucosal surface was intact and not associated with any tumor nodules. The cells were diffusely positive for CD79a, Bob1, EMA and IgA and consistently negative for CD3, CD19, CD20, PAX5, CD56, IgM and IgG. Additionally, in situ hybridization demonstrated clonality in the form of λ light-chain restriction. This submucosal nodular proliferation pattern of plasmacytoma is poorly recognized and considered to be a novel variant of lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3489998708673079.
Buck, Dorothea; Albrecht, Eva; Aslam, Muhammad; Goris, An; Hauenstein, Natalie; Jochim, Angela; Cepok, Sabine; Grummel, Verena; Dubois, Bénédicte; Berthele, Achim; Lichtner, Peter; Gieger, Christian; Winkelmann, Juliane; Hemmer, Bernhard
2013-01-01
Intrathecal synthesis of immunoglobulin gamma (IgG) synthesis is frequently observed in patients with multiple sclerosis (MS). Whereas the extent of intrathecal IgG synthesis varies largely between patients, it remains rather constant in the individual patient over time. The aim of this study was to identify common genetic variants associated with the IgG index as a marker of intrathecal IgG synthesis in MS. We performed a genome-wide association study of the IgG index in a discovery series of 229 patients. For confirmation we performed a replication in 2 independent series comprising 256 and 153 patients, respectively. The impact of associated single nucleotide polymorphisms (SNPs) on MS susceptibility was analyzed in an additional 1,854 cases and 5,175 controls. Significant association between the IgG index and 5 SNPs was detected in the discovery and confirmed in both replication series reaching combined p values of p = 6.5 × 10(-11) to p = 7.5 × 10(-16) . All identified SNPs are clustered around the immunoglobulin heavy chain (IGHC) locus on chromosome 14q32.33 and are in linkage disequilibrium (r(2) range, 0.71-0.95). The best associated SNP is located in an intronic region of the immunoglobulin gamma3 heavy chain gene. Additional sequencing identified the GM21* haplotype to be associated with a high IgG index. Further evaluation of the IGHC SNPs revealed no association with susceptibility to MS in our data set. The extent of intrathecal IgG in MS is influenced by the IGHC locus. No association with susceptibility to MS was found. Therefore GM haplotypes might affect intrathecal IgG synthesis independently of the underlying disease. Copyright © 2012 American Neurological Association.
Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.
Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia
2018-03-01
Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.
Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.
Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F
2004-07-15
In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.
Evidence of IgY subclass diversification in snakes: evolutionary implications.
Wang, Tao; Sun, Yi; Shao, Wenwei; Cheng, Gang; Li, Lingxiao; Cao, Zubing; Yang, Zhi; Zou, Huiying; Zhang, Wei; Han, Binyue; Hu, Yang; Ren, Liming; Hu, Xiaoxiang; Guo, Ying; Fei, Jing; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng
2012-10-01
Mammalian IgG and IgE are thought to have evolved from IgY of nonmammalian tetrapods; however, no diversification of IgY subclasses has been reported in reptiles or birds, which are phylogenetically close to mammals. To our knowledge, we report the first evidence of the presence of multiple IgY-encoding (υ) genes in snakes. Two υ genes were identified in the snake Elaphe taeniura, and three υ genes were identified in the Burmese python (Python molurus bivittatus). Although four of the υ genes displayed a conventional four-H chain C region exon structure, one of the υ genes in the Burmese python lacked the H chain C region 2 exon, thus exhibiting a structure similar to that of the mammalian γ genes. We developed mouse mAbs specific for the IgY1 and IgY2 of E. taeniura and showed that both were expressed in serum; each had two isoforms: one full-length and one truncated at the C terminus. The truncation was not caused by alternative splicing or transcriptional termination. We also identified the μ and δ genes, but no α gene, in both snakes. This study provides valuable clues for our understanding of Ig gene evolution in tetrapods.
Zhang, Nu; Zhang, Xu-Jie; Chen, Dan-Dan; Sunyer, J. Oriol; Zhang, Yong-An
2017-01-01
As the teleost specific immunoglobulin, IgT plays important roles in systemic and mucosal immunity. In the current study, in rainbow trout, we have cloned the heavy chain (Igτ) genes of a secretory form of IgT2 as well as the membrane and secretory forms of a third IgT subclass, termed IgT3. Conserved cysteine and tryptophan residues that are crucial for the folding of the immunoglobulin domain as well as hydrophobic and hydrophilic residues within CART motif were identified in all IgT subclasses. Through analysis of the rainbow trout genome assembly, Igτ3 gene was found localized upstream of Igτ1 gene, while Igτ2 gene situated on another scaffold. At the transcriptional level, Igτ1 was mainly expressed in both systemic and mucosal lymphoid tissues, while Igτ2 was largely expressed in systemic lymphoid organs. After LPS and poly (I:C) treatment, Igτ1 and Igτ2 genes exhibited different expression profiles. Interestingly the transcriptional level of Igτ3 was negligible, although its protein product could be identified in trout serum. Importantly, a previously reported monoclonal antibody directed against trout IgT1 was able to recognize IgT2 and IgT3. These data demonstrate that there exist three subclasses of IgT in rainbow trout, and that their heavy chain genes display different expression patterns during stimulation. Overall, our data reflect the diversity and complexity of immunoglobulin in trout, thus provide a better understanding of the IgT system in the immune response of teleost fish. PMID:28062226
2017-01-01
The domestic ferret (Mustela putorius furo) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79β+ B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these MαF-Ig mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM. PMID:28286781
Fournier, Emilie M.; Velez, Maria-Gabriela; Leahy, Katelyn; Swanson, Cristina L.; Rubtsov, Anatoly V.; Torres, Raul M.
2012-01-01
Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity. PMID:22927551
Crystal-Storing Histiocytosis: A Clinicopathologic Study of 13 Cases
Kanagal-Shamanna, Rashmi; Xu-Monette, Zijun Y.; Miranda, Roberto N.; Dogan, Ahmet; Zou, Dehui; Luthra, Rajyalakshmi; Weber, Donna; O’Malley, Dennis P.; Jorgensen, Jeffrey L.; Khoury, Joseph D.; Bueso-Ramos, Carlos E.; Orlowski, Robert Z.; Medeiros, L. Jeffrey; Young, Ken H.
2015-01-01
Aims Crystal-storing histiocytosis (CSH) is a rare lesion composed of histiocytes with abnormal intra-lysosomal accumulation of immunoglobulin (Ig) as crystals, reported in patients with plasmacytic/ lymphoplasmacytic neoplasms. We report the clinicopathologic features of 13 patients with CSH and describe the proteomic composition of the crystals in 3 cases analyzed by mass spectrometry (MS). Methods and results There were 7 men and 6 women with a median age of 60 years (range, 33-79). CSH was generalized in 1 (8%) and localized in 12 (92%) patients involving various sites. CSH was associated with a low-grade B-cell lymphoma with plasmacytoid differentiation or a plasma cell neoplasm in all cases. In 10 (77%) cases, CSH represented more than 50% of the neoplastic infiltrate. By immunohistochemical studies, histiocytes were positive for monotypic kappa in 5 (50%), lambda in 4 (40%) cases; in 1 (10%) case, results were equivocal. MS analysis of the histiocyte contents in all 3 tested cases showed predominance of variable-region fragments of Ig light and/or heavy chains. Conclusions CSH is frequently associated with an underlying lymphoplasmacytic neoplasm. MS findings suggest that Ig alterations and/ or possibly defects in the ability of histiocytes to process Ig play a role in pathogenesis. PMID:26118455
Nagao, Tomoaki; Okura, Takafumi; Miyoshi, Ken-Ichi; Watanabe, Sanae; Manabe, Seiko; Kurata, Mie; Irita, Jun; Fukuoka, Tomikazu; Higaki, Jitsuo
2005-09-01
A 79-year-old woman was admitted to our hospital because of leg edema due to a nephrotic syndrome. Urinary and serum immunoelectrophoresis showed positive for the lambda type of Bence Jones protein. A bone marrow aspiration test revealed mild plasmacytosis (6.4% of the total cells). These findings confirmed her diagnosis of monoclonal gammopathy of undetermined significance (MGUS). Her renal biopsy specimen revealed mild mesangial cell proliferation and an increase in the mesangial matrix. Immunofluorescence studies showed positive staining for IgG, IgA, C3, and kappa and lambda light chains in the capillary wall and mesangium area. Electron microscopy showed that the electron deposits in the thickened basement membrane were formed by randomly arranged 16- to 18-nm nonbranching fibrils. A Congo red stain for amyloid was negative. These findings corresponded with the diagnosis of fibrillary glomerulonephritis. Therefore, this case showed a rare combination of fibrillary glomerulonephritis and MGUS.
Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.
Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon
2015-05-15
The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display. Copyright © 2015 Elsevier Inc. All rights reserved.
Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O.; Jauch, Anna
2017-01-01
Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. PMID:28341732
Koneczny, Inga; Stevens, Jo A A; De Rosa, Anna; Huda, Saif; Huijbers, Maartje G; Saxena, Abhishek; Maestri, Michelangelo; Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Tzartos, Socrates; Verschuuren, Jan; van der Maarel, Silvère M; van Damme, Philip; De Baets, Marc H; Molenaar, Peter C; Vincent, Angela; Ricciardi, Roberta; Martinez-Martinez, Pilar; Losen, Mario
2017-02-01
Autoimmunity mediated by IgG4 subclass autoantibodies is an expanding field of research. Due to their structural characteristics a key feature of IgG4 antibodies is the ability to exchange Fab-arms with other, unrelated, IgG4 molecules, making the IgG4 molecule potentially monovalent for the specific antigen. However, whether those disease-associated antigen-specific IgG4 are mono- or divalent for their antigens is unknown. Myasthenia gravis (MG) with antibodies to muscle specific kinase (MuSK-MG) is a well-recognized disease in which the predominant pathogenic IgG4 antibody binds to extracellular epitopes on MuSK at the neuromuscular junction; this inhibits a pathway that clusters the acetylcholine (neurotransmitter) receptors and leads to failure of neuromuscular transmission. In vitro Fab-arm exchange-inducing conditions were applied to MuSK antibodies in sera, purified IgG4 and IgG1-3 sub-fractions. Solid-phase cross-linking assays were established to determine the extent of pre-existing and inducible Fab-arm exchange. Functional effects of the resulting populations of IgG4 antibodies were determined by measuring inhibition of agrin-induced AChR clustering in C2C12 cells. To confirm the results, κ/κ, λ/λ and hybrid κ/λ IgG4s were isolated and tested for MuSK antibodies. At least fifty percent of patients had IgG4, but not IgG1-3, MuSK antibodies that could undergo Fab-arm exchange in vitro under reducing conditions. Also MuSK antibodies were found in vivo that were divalent (monospecific for MuSK). Fab-arm exchange with normal human IgG4 did not prevent the inhibitory effect of serum derived MuSK antibodies on AChR clustering in C2C12 mouse myotubes. The results suggest that a considerable proportion of MuSK IgG4 could already be Fab-arm exchanged in vivo. This was confirmed by isolating endogenous IgG4 MuSK antibodies containing both κ and λ light chains, i.e. hybrid IgG4 molecules. These new findings demonstrate that Fab-arm exchanged antibodies are pathogenic. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F
2010-04-01
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.
Ščudla, V; Lochaman, P; Pika, T; Zapletalová, J; Minařík, J; Bačovský, J
2015-01-01
The aim of the study was the comparison of two novel stratification models in multiple myeloma (MM), ie. according to Avet- Loiseau (A L) and according to Ludwig (L), based on the HLC r index (ratio of serum levels of involved- HLC/ uninvolved HLC, ie. HLC κ/ HLC λ assessed using ie. nephelometric/turbidimetric technique using specific polyclonal antibodies on a Binding Site SPA(PLUS)) technique) and β(2) microglobulin (β(2) M) with selected prognostic factors (PF) of MM and staging systems according to Durie- Salmon (D S) and International Staging System (ISS). In a cohort of 132 patients (94 with IgG and 38 with IgA type of MM) at the time of dia-gnosis, we assessed HLC r, select-ed PF and D S, ISS, A L and L stratification systems. Unlike in IgA isotype, in IgG isotype we found a significant relationship of HLC r to stratification according to D S and ISS with the difference between A and B substages according to D S (p = 0.049) and between ISS stages 1 vs. 3 (p = 0.001). In the IgG group, there was highly significant relationship of the depth of Hb and albumin decrease and β(2) M increase to the results of stratification according to ISS, A L and L model (p < 0.0001), increase of LDH in the ISS system and A L, and creatinine according to ISS and L but not the relationship of the stages according to any of the stratification systems to the values of FLC r (ratio of serum free light chains κ/ λ of immunoglobulin), thrombocytes and Ca. In the IgA type, there was a significant relationship of the depth of the decrease of Hb, thrombocytes, albumin and increase of β(2) M to the results of stratification according to ISS, A L and L and increase of creatinine in the case of ISS, but not of the values of FLC r, Ca and LDH in the case of any of the stratification systems. The degree of correlation of selected PF, especially of Hb, albumin and β(2) M, event. of thrombocytes, LDH and creatinine to the stages according to ISS and to stage 1-3 according to A L and L model was in IgG vs IgA isotype significantly different (p < 0.0001- 0.030). Staging system according to ISS had proportional distribution of stages 1- 3, whereas in the A L model prevailed in IgA and IgG isotype risk category 2, ie. intermediate-risk (47.3 and 44.7%) and in the L model prevailed risk category 3, ie. high-risk (41.5 and 52.6%) with low count of category 1, ie. low- risk category (23.4 and 10.5%). McNemar- Bowker test of symmetry showed in both types of MM the highest concordance between the stratification according to D S and L in category 3, ie. high-risk (31.9 vs. 28.9%) with overall accord only in 53.2 and 42.1% and with significant shift in the case of IgG isotype only (p = 0.036). In IgG and IgA isotype there was an overall concordance in the distribution of categories 1- 3 according to ISS vs. A L (62.4 and 63.2%) but with significant shift of the stratification (p = 0.002 and 0.028). In the case of IgG and IgA isotype there was a close relationship between the models A L and L (64.5 and 81.6%) with significant stratification shift (p < 0.0001 and 0.030). The new stratification models for MM according to A L and L are easily practically applicable, with close relationship to principal PF but they need separate assessment of IgG and IgA isotypes of MM. The choice of optimal model for routine practice needs a validation study aimed at progression free survival and overall survival.
Hansen, J.D.; Landis, E.D.; Phillips, R.B.
2005-01-01
During the analysis of Ig superfamily members within the available rainbow trout (Oncorhynchus mykiss) EST gene index, we identified a unique Ig heavy-chain (IgH) isotype. cDNAs encoding this isotype are composed of a typical IgH leader sequence and a VDJ rearranged segment followed by four Ig superfamily C-1 domains represented as either membrane-bound or secretory versions. Because teleost fish were previously thought to encode and express only two IgH isotypes (IgM and IgD) for their humoral immune repertoire, we isolated all three cDNA isotypes from a single homozygous trout (OSU-142) to confirm that all three are indeed independent isotypes. Bioinformatic and phylogenetic analysis indicates that this previously undescribed divergent isotype is restricted to bony fish, thus we have named this isotype "IgT" (??) for teleost fish. Genomic sequence analysis of an OSU-142 bacterial artificial chromosome (BAC) clone positive for all three IgH isotypes revealed that IgT utilizes the standard rainbow trout VH families, but surprisingly, the IgT isotype possesses its own exclusive set of DH and JH elements for the generation of diversity. The IgT D and J segments and ?? constant (C) region genes are located upstream of the D and J elements for IgM, representing a genomic IgH architecture that has not been observed in any other vertebrate class. All three isotypes are primarily expressed in the spleen and pronephros (bone marrow equivalent), and ontogenically, expression of IgT is present 4 d before hatching in developing embryos. ?? 2005 by The National Academy of Sciences of the USA.
DeKosky, Brandon J.; Lungu, Oana I.; Park, Daechan; Johnson, Erik L.; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D.; Ippolito, Gregory C.; Gray, Jeffrey J.; Georgiou, George
2016-01-01
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19+CD20+CD27− IgM-naive B cells, >120,000 antibody clusters from CD19+CD20+CD27+ antigen–experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ–Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511
Is Congo red an amyloid-specific dye?
Khurana, R; Uversky, V N; Nielsen, L; Fink, A L
2001-06-22
Congo red (CR) binding, monitored by characteristic yellow-green birefringence under crossed polarization has been used as a diagnostic test for the presence of amyloid in tissue sections for several decades. This assay is also widely used for the characterization of in vitro amyloid fibrils. In order to probe the structural specificity of Congo red binding to amyloid fibrils we have used an induced circular dichroism (CD) assay. Amyloid fibrils from insulin and the variable domain of Ig light chain demonstrate induced CD spectra upon binding to Congo red. Surprisingly, the native conformations of insulin and Ig light chain also induced Congo red circular dichroism, but with different spectral shapes than those from fibrils. In fact, a wide variety of native proteins exhibited induced CR circular dichroism indicating that CR bound to representative proteins from different classes of secondary structure such as alpha (citrate synthase), alpha + beta (lysozyme), beta (concavalin A), and parallel beta-helical proteins (pectate lyase). Partially folded intermediates of apomyoglobin induced different Congo red CD bands than the corresponding native conformation, however, no induced CD bands were observed with unfolded protein. Congo red was also found to induce oligomerization of native proteins, as demonstrated by covalent cross-linking and small angle x-ray scattering. Our data suggest that Congo red is sandwiched between two protein molecules causing protein oligomerization. The fact that Congo red binds to native, partially folded conformations and amyloid fibrils of several proteins shows that it must be used with caution as a diagnostic test for the presence of amyloid fibrils in vitro.
Caubet, Jean Christoph; Bencharitiwong, Ramon; Ross, Andrew; Sampson, Hugh A; Berin, M Cecilia; Nowak-Węgrzyn, Anna
2017-02-01
Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated food allergy manifesting within 1 to 4 hours of food ingestion with repetitive emesis and lethargy. We sought to characterize immune responses to casein in children with FPIES caused by cow's milk (CM). Total IgE and IgM, CM-specific IgG, and casein-specific IgE, IgG, IgG 4 , and IgM levels, as well as immunoglobulin free light chains, were measured in both patients with active and those with resolved CM-FPIES. Proliferating casein/T-effector cell counts were measured in children with CM-FPIES, children with IgE-mediated CM allergy, and those tolerating CM. Cytokine concentrations in the supernatants were quantified. Serum cytokine and tryptase levels were measured before and after a positive oral food challenge (OFC) result and compared with levels in those with a negative OFC result. We found low levels of CM and casein-specific IgG and casein-specific IgG 4 in patients with CM-FPIES versus those tolerating CM (P < .05). Although we found both a high CD4 + T cell-proliferative response and T H 2 cytokines production after casein stimulation in children with CM-FPIES, results were similar to those in control subjects. Significantly lower secretion of IL-10 and higher secretion of IL-9 by casein-stimulated T cells were found in patients with CM-FPIES versus those with IgE-mediated CM allergy. Lower baseline serum levels of IL-10 and higher tryptase levels were found in active CM-FPIES versus resolved CM-FPIES. We found a significant increase in serum IL-10 and IL-8 levels after a positive OFC result. We confirm the paucity of humoral response in patients with CM-FPIES. IL-10 might play a key role in acquisition of tolerance in patients with CM-FPIES. Increased serum IL-8 levels in patients with active FPIES suggest neutrophil involvement. Elevated baseline serum tryptase levels in patients with active FPIES suggest low-grade intestinal mast cell activation or increased mast cell load. Copyright © 2016. Published by Elsevier Inc.
[Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].
Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong
2016-01-01
The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.
The formation of pyrrolid-2-one-5-carboxylic acid at the N-terminus of immunoglobulin G heavy chain
Stott, D. I.; Munro, A. J.
1972-01-01
We propose that pyrrolid-2-one-5-carboxyl-tRNA is not involved in the initiation of protein synthesis in eukaryotic cells and that the N-terminal pyrrolid-2-one-5-carboxylic acid group of an IgG (immunoglobulin G) (that secreted by the mouse plasmacytoma Adj PC5) is formed by the enzymic cyclization of the N-terminal glutamine of the heavy chain of the completed IgG molecule and that the cyclization takes place inside the cell. We base these conclusions on the following evidence. (1) Pyrrolidonecarboxyl-tRNA was not found in incorporation experiments with rat liver preparations and [U-14C]-pyrrolidonecarboxylic acid, glutamic acid and glutamine, even though an incorporation extent of less than 2% of the total products could have been detected. (2) Double-labelling experiments showed that less than 8% of the nascent peptides of heavy chains (those obtained by precipitation by the antibody to Fc fragment) began with pyrrolidonecarboxylic acid. (3) Further double-labelling experiments showed that 60–66% of the heavy chains of the completed intracellular IgG molecule began with pyrrolidonecarboxylic acid after both 1 and 5h of labelling. (4) The IgG, after secretion by plasmacytoma Adj PC5, was found to have the sequence [unk]Glu- Val-Gln-Leu- at the N-termini of the heavy chains. PMID:4674626
Immature surface Ig+ B cells can continue to rearrange kappa and lambda L chain gene loci
1993-01-01
Pro and pre B cells possess the long-term capacity to proliferate in vitro on stromal cells and interleukin 7 (IL-7) and can differentiate to surface immunoglobulin (sIg+) cells upon removal of IL-7 from the cultures. A key event in this differentiation is the extensive cell loss due to apoptosis. Because the proto-oncogene bcl-2 can promote cell survival, we established pre-B cell lines from E mu-bcl-2 transgenic mice. These pre-B cells have the same properties as those derived from non-bcl-2 transgenic mice except that they do not die by apoptosis. This allowed us to study the fate of newly formed B cells in vitro for a longer period of time. Here we show that early during the differentiation of pre-B cells, upregulation of RAG-1 and RAG-2 expression go hand in hand with rearrangements of the Ig gene loci. Moreover, the newly formed sIg+ B cells continue to express RAG-1 and RAG-2 and continue to rearrange L chain gene loci, even in the absence of proliferation, in an orderly fashion, so that kappa L+ sIg+ cells can become lambda L+ sIg+ or sIg- cells, whereas lambda L+ sIg+ cells can become sIg-, but not kappa L+ sIg+ cells. Thus, deposition of a complete Ig molecule on the surface of a B cell does not automatically stop the Ig-rearrangement machinery. PMID:8376934
Monteiro, Renato C; Van De Winkel, Jan G J
2003-01-01
The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
Stoops, Janelle; Byrd, Samantha; Hasegawa, Haruki
2012-10-01
Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting. Copyright © 2012 Elsevier B.V. All rights reserved.
Rosa, Sofia Tabares-da; Rossotti, Martin; Carleiza, Carmen; Carrión, Federico; Pritsch, Otto; Ahn, Ki Chang; Last, Jerold A.; Hammock, Bruce D; González-Sapienza, Gualberto
2011-01-01
Single-domain antibodies (sdAbs) found in camelids, lack a light chain and their antigen-binding site sits completely in the heavy-chain variable domain (VHH). Their simplicity, thermostability, and ease in expression have made VHHs highly attractive. While this has been successfully exploited for macromolecular antigens, their application to the detection of small molecules is still limited to a very few reports, mostly describing low affinity VHHs. Using triclocarban (TCC) as a model hapten, we found that conventional antibodies, IgG1 fraction, reacted with free TCC with a higher relative affinity (IC50 51.0 ng/mL) than did the sdAbs (IgG2 and IgG3, 497 and 370 ng/mL, respectively). A VHH library was prepared, and by elution of phage with limiting concentrations of TCC and competitive selection of binders, we were able to isolate high-affinity clones, KD 0.98–1.37 nM (SPR) which allowed development of a competitive assay for TCC with an IC50 = 3.5 ng/mL (11 nM). This represents a 100-fold improvement with regard to the performance of the sdAb serum fraction, and it is 100-fold better than the IC50 attained with other anti-hapten VHHs reported thus far. Despite the modest overall anti-hapten sdAbs response in llamas, a small subpopulation of high affinity VHHs are generated that can be isolated by carefully design of the selection process. PMID:21827167
Aga, Mitsuharu; Kondo, Satoru; Yamada, Kazunori; Wakisaka, Naohiro; Yagi-Nakanishi, Sayaka; Tsuji, Akira; Endo, Kazuhira; Murono, Shigeyuki; Ito, Makoto; Muramatsu, Masamichi; Kawano, Mitsuhiro; Yoshizaki, Tomokazu
2014-04-01
We previously reported a case of immunoglobulin (Ig)G4-related immune inflammation in Warthin tumor. Increased serum IgG4 levels and tissue infiltration of IgG4-positive plasma cells are characteristics of IgG4-related disease (IgG4-RD), a newly emerging clinicopathological entity. However, the relationship between IgG4-RD and Warthin tumor remains to be elucidated. We aimed to investigate the involvement of systemic and local IgG4 production and class-switch recombination in Warthin tumor. We examined serum IgG4 levels and also analyzed the involvement of IgG4-positive plasma cells in Warthin tumors (18 cases) compared with those of pleomorphic adenomas (19 cases) as controls. Furthermore, in specimens of Warthin tumors (3 cases), pleomorphic adenomas (2 cases), and IgG4-RDs (2 cases), we examined messenger RNA expression of activation-induced cytidine deaminase, IgG4 germline transcripts and productive IgG4 by reverse transcription polymerase chain reaction. Serum IgG4 levels were increased in 5 of 18 Warthin tumors and not in any of the 19 pleomorphic adenomas. Infiltration of IgG4-positive plasma cells was detected in 4 Warthin tumors and none in the pleomorphic adenomas. Moreover, activation-induced cytidine deaminase, IgG4 germline transcripts, and productive IgG4 messenger RNA were found to be expressed in 2 of 3 Warthin tumors as well as IgG4-RDs by reverse transcription polymerase chain reaction, but not in pleomorphic adenomas. In conclusion, immunoglobulin class switching to IgG4 may be involved in the pathogenesis of Warthin tumor, and it is possible that certain inflammatory background with an immune reaction is involved in the pathogenesis of Warthin tumor. © 2013.
The evolution of multiple isotypic IgM heavy chain genes in the shark.
Lee, Victor; Huang, Jing Li; Lui, Ming Fai; Malecek, Karolina; Ohta, Yuko; Mooers, Arne; Hsu, Ellen
2008-06-01
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Generalization of Filament Braiding Model for Amyloid Fibril Assembly
NASA Astrophysics Data System (ADS)
Pope, Maighdlin; Ionescu-Zanetti, Cristian; Khurana, Ritu; Carter, Sue
2001-03-01
Research into the formation of amyloid fibrils is motivated by their association with several prominent diseases, among these Alzheimer's Disease, Parkinson's Disease and amyloidosis. Previous work in monitering the aggregation of immunoglobulin light chains to form amyloid fibrils suggests a braided structure where filaments and protofibrils wind together to form Type I and Type II fibrils. Non-contact atomic force microscopy is used to image and explore the kinetics of several other amyloid fibril forming proteins in an effort to generalize the filament braiding model. Included in this study are insulin and the B1 domain of G. Both of these have been shown to form fibrils in vitro. Alpha-synuclein is also included in this study. It is involved in the formation of Lewy bodies in Parkinson's Disease. The fourth protein used in this comparitive study is human amylin that is the cause of a systemic amyloidosis. Results from these four proteins and their associated fibrils are compared to the Ig light chain fibril structure in an effort to show the universality of the filament braiding model.
Influence of Length and Amino Acid Composition on Dimer Formation of Immunoglobulin based Chimera.
Manoj, Patidar; Naveen, Yadav; Dalai, Sarat Kumar
2017-10-18
The dimeric immunoglobulin (Ig) chimeras used for drug targeting and delivery are preferred biologics over their monomeric forms. Designing these Ig chimeras involves critical selection of a suitable Ig base that ensures dimer formation. In the present study, we systematically analyzed several factors that influence the formation of dimeric chimera. We designed and predicted 608 cytokine-Ig chimeras where we tested the contributions of (1) different domains of Ig constant heavy chain, (2) length of partner proteins, (3) amino acid (AA) composition and (4) position of cysteine in the formation of homodimer. The sequences of various Ig and cytokines were procured from Uniprot database, fused and submitted to COTH (CO-THreader) server for the prediction of dimer formation. Contributions of different domains of Ig constant heavy chain, length of chimeric proteins, AA composition and position of cysteine were tested to the homodimer formation of 608 cytokine-Ig chimeras. Various in silico approaches were adopted for validating the in silico findings. Experimentally we also validated our approach by expressing in CHO cells the chimeric design of shorter cytokine with Ig domain and analyzing the protein by SDS-PAGE. Our results advocate that while the CH1 region and the Hinge region of Ig heavy chain are critical, the length of partner proteins also crucially influences homodimer formation of the Ig-based chimera. We also report that the CH1 domain of Ig is not required for dimer formation of Ig based chimera in the presence of larger partner proteins. For shorter partner proteins fused to CH2-CH3, however, careful selection of partner sequence is critical, particularly the hydrophobic AA composition, cysteine content & their positions, disulphide bond formation property, and the linker sequences. We validated our in silico observation by various bioinformatics tools and checked the ability of chimeras to bind with the receptors of native protein by docking studies. As a proof of concept, we have expressed the chimeric proteins in CHO cells and found that our design favors the synthesis of dimeric proteins. Our structural prediction study suggests that extra amino acids in the range of 15-20 added to the CH2 domain of Ig is a critical requirement to make homodimer. This information from our study will have implication in designing efficacious homodimeric chimera. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tatematsu, Kenji; Iijima, Masumi; Yoshimoto, Nobuo; Nakai, Tadashi; Okajima, Toshihide; Kuroda, Shun'ichi
2016-04-15
The bio-nanocapsule (BNC) is an approximately 30-nm particle comprising the hepatitis B virus (HBV) envelope L protein and a lipid bilayer. The L protein harbors the HBV-derived infection machinery; therefore, BNC can encapsulate payloads such as drugs, nucleic acids, and proteins and deliver them into human hepatocytes specifically in vitro and in vivo. To diversify the possible functions of BNC, we generated ZZ-BNC by replacing the domain indispensable for the human hepatotrophic property of BNC (N-terminal region of L protein) with the tandem form of the IgG Fc-binding Z domain of Staphylococcus aureus protein A. Thus, the ZZ-BNC is an active targeting-based drug delivery system (DDS) nanocarrier that depends on the specificity of the IgGs displayed. However, the Z domain limits the animal species and subtypes of IgGs that can be displayed on ZZ-BNC. In this study, we introduced into BNC an Ig κ light chain-binding B1 domain of Finegoldia magna protein L (protein-L B1 domain) and an Ig Fc-binding C2 domain of Streptococcus species protein G (protein-G C2 domain) to produce LG-BNC. The LL-BNC was constructed in a similar way using a tandem form of the protein-L B1 domain. Both LG-BNC and LL-BNC could display rat IgGs, mouse IgG1, human IgG3, and human IgM, all of which not binding to ZZ-BNC, and accumulate in target cells in an antibody specificity-dependent manner. Thus, these BNCs could display a broad spectrum of Igs, significantly improving the prospects for BNCs as active targeting-based DDS nanocarriers. We previously reported that ZZ-BNC, bio-nanocapsule deploying the IgG-binding Z domain of protein A, could display cell-specific antibody in an oriented immobilization manner, and act as an active targeting-based DDS nanocarrier. Since the Z domain can only bind to limited types of Igs, we generated BNCs deploying other Ig-binding domains: LL-BNC harboring the tandem form of Ig-binding domain of protein L, and LG-BNC harboring the Ig binding domains of protein L and protein G sequentially. Both BNCs could display a broader spectrum of Igs than does the ZZ-BNC. When these BNCs displayed anti-CD11c IgG or anti-EGFR IgG, both of which cannot bind to Z domain, they could bind to and then enter their respective target cells. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bradley, Amanda; Estes, Amy; Ulrich, Lane; Thomas, Dilip; Gay, David
2017-02-01
We report a 75-year-old woman with a history of multiple myeloma immunoglobulin D (IgD) variant, who presented with an epibulbar plasmacytoma masquerading as a subconjunctival hemorrhage. Magnetic resonance imaging of the brain and orbits with and without contrast was obtained and surgical biopsy of the subconjunctival lesion was performed; histopathology confirmed the diagnosis of plasmacytoma. Subconjunctival biopsy revealed a plasma cell neoplasm infiltrate in the episcleral layer. The subconjunctival biopsy stained positive for CD138 and lambda-immunohistochemistry in the majority of plasma cells. Histologic findings were consistent with involvement by known IgD plasma cell myeloma where previous bone marrow biopsy demonstrated myeloma cells which stained monoclonally for IgD-lambda light chains. Although plasma cell neoplasms seldom present with ocular manifestations, it is crucial to recognize that these tumors may be associated with multiple myeloma. In patients with known multiple myeloma who present with subconjunctival hemorrhage, close follow-up is highly recommended, as this may be the initial presentation of an ocular plasmacytoma. Although a plasmacytoma is a rare subconjunctival lesion, it should not be immediately excluded from the differential diagnosis of such lesions.
Rearrangement of Immunoglobulin Genes in Shark Germ Cells
Lee, Susan S.; Fitch, David; Flajnik, Martin F.; Hsu, Ellen
2000-01-01
The variable (V), (diversity [D]), and joining (J) region recombinases (recombination activating genes [RAGs]) can perform like transposases and are thought to have initiated development of the adaptive immune system in early vertebrates by splitting archaic V genes with transposable elements. In cartilaginous fishes, the immunoglobulin (Ig) light chain genes are organized as multiple VJ-constant (C) clusters; some loci are capable of rearrangement while others contain fused VJ. The latter may be key to understanding the evolutionary role of RAG. Are they relics of the archaic genes, or are they results of rearrangement in germ cells? Our data suggest that some fused VJ genes are not only recently rearranged, but also resulted from RAG-like activity involving hairpin intermediates. Expression studies show that these, like some other germline-joined Ig sequences, are expressed at significant levels only early in ontogeny. We suggest that a rejoined Ig gene may not merely be a sequence restricting antibody diversity, but is potentially a novel receptor no longer tied to somatic RAG expression and rearrangement. From the combined data, we arrived at the unexpected conclusion that, in some vertebrates, RAG is still an active force in changing the genome. PMID:10811858
Conjunctival lymphoma arising from reactive lymphoid hyperplasia.
Fukuhara, Junichi; Kase, Satoru; Noda, Mika; Ishijima, Kan; Yamamoto, Teppei; Ishida, Susumu
2012-09-18
Extra nodal marginal zone B-cell lymphoma (EMZL) of the conjunctiva typically arises in the marginal zone of mucosa-associated lymphoid tissue. The pathogenesis of conjunctival EMZL remains unknown. We describe an unusual case of EMZL arising from reactive lymphoid hyperplasia (RLH) of the conjunctiva. A 35-year-old woman had fleshy salmon-pink conjunctival tumors in both eyes, oculus uterque (OU). Specimens from conjunctival tumors in the right eye, oculus dexter (OD), revealed a collection of small lymphoid cells in the stroma. Immunohistochemically, immunoglobulin (Ig) light chain restriction was not detected. In contrast, diffuse atypical lymphoid cell infiltration was noted in the left eye, oculus sinister (OS), and positive for CD20, a marker for B cells OS. The tumors were histologically diagnosed as RLH OD, and EMZL OS. PCR analysis detected IgH gene rearrangement in the joining region (JH) region OU. After 11 months, a re-biopsy specimen demonstrated EMZL based on compatible pathological and genetic findings OD, arising from RLH. This case suggests that even if the diagnosis of the conjunctival lymphoproliferative lesions is histologically benign, confirmation of the B-cell clonality by checking IgH gene rearrangement should be useful to predict the incidence of malignancy.
Holwerda, Sjoerd J. B.; van de Werken, Harmen J. G.; Ribeiro de Almeida, Claudia; Bergen, Ingrid M.; de Bruijn, Marjolein J. W.; Verstegen, Marjon J. A. M.; Simonis, Marieke; Splinter, Erik; Wijchers, Patrick J.; Hendriks, Rudi W.; de Laat, Wouter
2013-01-01
In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element. PMID:23748562
A double-strand break can trigger immunoglobulin gene conversion
Bastianello, Giulia; Arakawa, Hiroshi
2017-01-01
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075
Defining active progressive multiple sclerosis.
Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie; Nielsen, Jørgen Erik; Vinther-Jensen, Tua; Hjermind, Lena Elisabeth; von Essen, Marina; Ratzer, Rikke Lenhard; Soelberg Sørensen, Per; Romme Christensen, Jeppe
2017-11-01
It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.
Schorling, Stefan; Schalasta, Gunnar; Enders, Gisela; Zauke, Michael
2004-01-01
The COBAS AmpliPrep instrument (Roche Diagnostics GmbH, D-68305 Mannheim, Germany) automates the entire sample preparation process of nucleic acid isolation from serum or plasma for polymerase chain reaction analysis. We report the analytical performance of the LightCycler Parvovirus B19 Quantification Kit (Roche Diagnostics) using nucleic acids isolated with the COBAS AmpliPrep instrument. Nucleic acids were extracted using the Total Nucleic Acid Isolation Kit (Roche Diagnostics) and amplified with the LightCycler Parvovirus B19 Quantification Kit. The kit combination processes 72 samples per 8-hour shift. The lower detection limit is 234 IU/ml at a 95% hit-rate, linear range approximately 104-1010 IU/ml, and overall precision 16 to 40%. Relative sensitivity and specificity in routine samples from pregnant women are 100% and 93%, respectively. Identification of a persistent parvovirus B19-infected individual by the polymerase chain reaction among 51 anti-parvovirus B19 IgM-negative samples underlines the importance of additional nucleic acid testing in pregnancy and its superiority to serology in identifying the risk of parvovirus B19 transmission via blood or blood products. Combination of the Total Nucleic Acid Isolation Kit on the COBAS AmpliPrep instrument with the LightCycler Parvovirus B19 Quantification Kit provides a reliable and time-saving tool for sensitive and accurate detection of parvovirus B19 DNA. PMID:14736825
Huin-Schohn, Cécile; Guéguinou, Nathan; Schenten, Véronique; Bascove, Matthieu; Koch, Guillemette Gauquelin; Baatout, Sarah; Tschirhart, Eric; Frippiat, Jean-Pol
2013-01-01
Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is affected when animal development occurs onboard a space station. To answer this question, embryos of the Iberian ribbed newt, Pleurodeles waltl, were sent to the International Space Station (ISS) before the initiation of immunoglobulin heavy-chain expression. Thus, antibody synthesis began in space. On landing, we determined the effects of spaceflight on P. waltl development and IgM heavy-chain transcription. Results were compared with those obtained using embryos that developed on Earth. We find that IgM heavy-chain transcription is doubled at landing and that spaceflight does not affect P. waltl development and does not induce inflammation. We also recreated the environmental modifications encountered by the embryos during their development onboard the ISS. This strategy allowed us to demonstrate that gravity change is the factor responsible for antibody heavy-chain transcription modifications that are associated with NF-κB mRNA level variations. Taken together, and given that the larvae were not immunized, these data suggest a modification of lymphopoiesis when gravity changes occur during ontogeny.
Madritsch, Christoph; Gadermaier, Elisabeth; Roder, Uwe W.; Lupinek, Christian; Valenta, Rudolf; Flicker, Sabine
2015-01-01
The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ~25–30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen–allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1–derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens’ C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients’ polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen. PMID:25637023
Draborg, Anette H.; Lydolph, Magnus C.; Westergaard, Marie; Olesen Larsen, Severin; Nielsen, Christoffer T.; Duus, Karen; Jacobsen, Søren; Houen, Gunnar
2015-01-01
Objective In this study, we examined the concentration of serum immunoglobulin free light chains (FLCs) in systemic lupus erythematosus (SLE) patients and investigated its association with various disease parameters in order to evaluate the role of FLCs as a potential biomarker in SLE. Furthermore, FLCs’ association with Epstein-Barr virus (EBV) antibodies was examined. Methods Using a nephelometric assay, κFLC and λFLC concentrations were quantified in sera from 45 SLE patients and 40 healthy controls. SLE patients with renal insufficiency were excluded in order to preclude high concentrations of serum FLCs due to decreased clearance. Results Serum FLC concentrations were significantly elevated in SLE patients compared to healthy controls (p<0.0001) also after adjusting for Ig levels (p<0.0001). The concentration of serum FLCs correlated with a global disease activity (SLE disease activity index (SLEDAI)) score of the SLE patients (r = 0.399, p = 0.007). Furthermore, concentrations of FLCs correlated with titers of dsDNA antibodies (r = 0.383, p = 0.009), and FLC levels and SLEDAI scores correlated in the anti-dsDNA-positive SLE patients, but not in anti-dsDNA-negative SLE patients. Total immunoglobulin (IgG and IgA) concentrations correlated with FLC concentrations and elevated FLC levels were additionally shown to associate with the inflammatory marker C-reactive protein and also with complement consumption determined by low C4 in SLE patients. Collectively, results indicated that elevated serum FLCs reflects increased B cell activity in relation to inflammation. SLE patients had an increased seropositivity of EBV-directed antibodies that did not associate with elevated FLC concentrations. An explanation for this could be that serum FLC concentrations reflect the current EBV activity (reactivation) whereas EBV-directed antibodies reflect the extent of previous infection/reactivations. Conclusion SLE patients have elevated concentrations of serum FLCs that correlate with global disease activity scores and especially serologic markers for active disease. These findings are suggestive of circulating FLCs having potential as a new supplementary serologic biomarker in SLE. PMID:26402865
Heaney, Jennifer L J; Killer, Sophie C; Svendsen, Ida S; Gleeson, Michael; Campbell, John P
2018-05-01
Periods of short-term intensified training (IT) are often used by athletes during training cycles over the season and undergoing phases of increased physical stress may impact upon the immune system. This study investigated the effects of a period of IT on free light chains (FLCs) in saliva - an emerging immune biomarker of oral inflammation - and matched serum samples in well-trained athletes. It also examined if IT influences basal FLC levels and FLC flux during acute exercise. Highly trained male cyclists (n = 10) underwent a 9-day period of IT; before and after IT participants performed a 1 h time trial (TT) on a cycle ergometer, with blood and saliva samples collected pre- and post-exercise. FLCs were assessed in serum and saliva, and IgG, IgA, IgM and creatinine were also measured in serum. Weekly training volume increased by 143% (95% CI 114-172%), p < 0.001, during IT compared with pre-trial baseline training. Following IT, the cyclists demonstrated higher salivary FLC levels. Both salivary lambda FLC concentrations (p < 0.05, η 2 = 0.384) and secretion rates, and kappa FLC concentrations and secretion rates increased after IT. Salivary FLCs concentration and secretion rates decreased in response to the TT following IT (p < 0.05, η 2 = 0.387-0.428), but not in response to the TT prior to IT. No significant effects of IT on serum FLCs were observed. There were no significant changes in serum FLCs in response to the TT, before or after the IT period, nor did IT impact upon other serological responses to the TT. In conclusion, IT increased basal salivary FLC parameters and amplified decreases in salivary FLCs in response to acute exercise. Increases in salivary FLC concentration likely reflects alterations to oral inflammation during times of heavy training, and we show for the first time that FLCs may have utility as a marker of exercise stress and oral health status. Copyright © 2018 Elsevier Inc. All rights reserved.
Peckham, Gabriel D; Kaneshiro, Wendy S; Luu, Van; Berestecky, John M; Alvarez, Anne M
2010-10-01
During a severe outbreak of bacterial heart rot that occurred in pineapple plantations on Oahu, Hawaii, in 2003 and years following, 43 bacterial strains were isolated from diseased plants or irrigation water and identified as Erwinia chrysanthemi (now Dickeya sp.) by phenotypic, molecular, and pathogenicity assays. Rep-PCR fingerprint patterns grouped strains from pineapple plants and irrigation water into five genotypes (A-E) that differed from representatives of other Dickeya species, Pectobacterium carotovorum and other enteric saprophytes isolated from pineapple. Monoclonal antibodies produced following immunization of mice with virulent type C Dickeya sp. showed only two specificities. MAb Pine-1 (2D11G1, IgG1 with kappa light chain) reacted to all 43 pineapple/water strains and some reference strains (D. dianthicola, D. chrysanthemi, D. paradisiaca, some D. dadantii, and uncharacterized Dickeya sp.) but did not react to reference strains of D. dieffenbachiae, D. zeae, or one of the two Malaysian pineapple strains. MAb Pine-2 (2A7F2, IgG3 with kappa light chain) reacted to all type B, C, and D strains but not to any A or E strains or any reference strains except Dickeya sp. isolated from Malaysian pineapple. Pathogenicity tests showed that type C strains were more aggressive than type A strains when inoculated during cool months. Therefore, MAb Pine-2 distinguishes the more virulent type C strains from less virulent type A pineapple strains and type E water strains. MAbs with these two specificities enable development of rapid diagnostic tests that will distinguish the systemic heart rot pathogen from opportunistic bacteria associated with rotted tissues. Use of the two MAbs in field assays also permits the monitoring of a known subpopulation and provides additional decision tools for disease containment and management practices.
Smirnov, Ivan; Carletti, Eugénie; Kurkova, Inna; Nachon, Florian; Nicolet, Yvain; Mitkevich, Vladimir A.; Débat, Hélène; Avalle, Bérangère; Belogurov, Alexey A.; Kuznetsov, Nikita; Reshetnyak, Andrey; Masson, Patrick; Tonevitsky, Alexander G.; Ponomarenko, Natalia; Makarov, Alexander A.; Friboulet, Alain; Tramontano, Alfonso; Gabibov, Alexander
2011-01-01
Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (VL) and variable heavy (VH) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes. PMID:21896761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipps, T.J.; Fong, S.; Tomhave, E.
Malignant B lymphocytes from several patients with chronic lymphocytic leukemia (CLL) were examined for reactivity with murine monoclonal antibody 17.109. This antibody, prepared against the rheumatoid factor (RF) paraprotein Sie, recognizes a cross reactive idiotype on 48% of human IgM RF paraproteins, but does not react with IgM paraproteins without RF activity or substantially with normal pooled immunoglobulin. The 17.109-reactive idiotype is a marker for a kappa III variable-region gene, designated V/sub kappa/RF, that is conserved in outbred human populations. In a limited study of 31 CLL patients, the leukemic cells from 5 of 20 patients with kappa light chain-expressingmore » CLL were recognized by the 17.109 monoclonal antibody. Despite having malignant cells specifically reactive with this antibody, patients with 17.109-positive CLL did not have elevated serum levels of circulating antibody bearing 17.109-reactive determinants. Total RNAs isolated from the CLL B lymphocytes, or from hybridomas produced by fusing the CLL cells with the WI-L2-729-HF/sub 2/ cell line, were fractionated electrophoretically and examined by blot hybridization. Under stringent hybridization conditions capable of discerning a single base-pair mismatch, RNA from the 17.109-idiotype-positive CLL cells hybridized to synthetic oligonucleotide probes corresponding to framework and complementary-determining regions in the V/sub kappa/RF gene. The high frequency of the 17.109-associated idiotype and the V/sub kappa/RF gene in CLL suggests that the disease may arise from B lymphocytes that express a restricted set of inherited immunoglobulin variable-region genes with little or no somatic mutation.« less
Engels, Eric A.; Savoldo, Barbara; Pfeiffer, Ruth M.; Costello, Rene; Zingone, Adriana; Heslop, Helen E.; Landgren, Ola
2012-01-01
Introduction Transplant recipients are at risk of post-transplant lymphoproliferative disease (PTLD). Methods: Thirty-six pediatric transplant recipients were evaluated (18 hematopoietic stem cell and 18 liver recipients; 12 had PTLD). We studied 207 longitudinal plasma samples from these recipients for three markers of B-cell activation or clonality: immunoglobulin free light chains (FLCs), soluble CD30 (sCD30), and monoclonal immunoglobulins (M-proteins). Results Kappa FLCs, lambda FLCs, and sCD30 were elevated in 20.8%, 28.0%, and 94.2% of plasma specimens, respectively. FLC and sCD30 levels increased significantly 1.18–1.82 fold per log10 Epstein Barr virus (EBV) load in peripheral blood. Five PTLD cases manifested elevated FLCs with an abnormal kappa/lambda ratio, suggesting monoclonal FLC production. M-proteins were present in 91% of PTLD cases, vs. 50–67% of other recipients with high or low EBV loads (p=0.13). Concordance of FLCs, M-proteins, and PTLD tumor light chain restriction was imperfect. For example, one PTLD case with an IgG lambda M-protein had a tumor that was kappa restricted, and another case with an M-protein had a T-cell PTLD. In an additional case, an IgM kappa M-protein and excess kappa FLCs were both detected in plasma at PTLD diagnosis; while the tumor was not restricted at diagnosis, kappa restriction was present 5 years later when the PTLD relapsed. Discussion Plasma markers of B-cell dysfunction are frequent following transplantation and associated with poor EBV control. These abnormal markers may be produced by oligoclonal B-cell populations or PTLD tumor cells, and could potentially help identify recipients at high risk of PTLD. PMID:23222884
The Immunoglobulins of Cold-Blooded Vertebrates
Pettinello, Rita; Dooley, Helen
2014-01-01
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species. PMID:25427250
Preparation and characterization of monoclonal antibody against melatonin.
Soukhtanloo, Mohammad; Ansari, Mohammad; Paknejad, Maliheh; Parizadeh, Mohammad Reza; Rasaee, Mohammad Javad
2008-06-01
Anti-melatonin monoclonal antibodies (MAb) were prepared following coupling melatonin to bovine serum albumin (BSA) by Mannich reaction. Balb/c mice were immunized via injection of the melatonin-BSA intraperitonally. The spleen cells producing high titer of antibody were fused with myeloma cells of SP2/0 origin. After two limiting dilutions, two stable clones (AS-H10 and AS-D26) exhibiting best properties were selected for further studies. The class and subclass of two MAbs were found to be IgG(1) and IgG(2a) with lambda and kappa light chains, respectively. Antibodies secreted by these two clones showed high affinity of about 10(9)M(1). Study of the specificity criteria showed that these clones had no cross reactivity with indolic, aromatic, and imidazole ring-containing compounds, and had high specificity towards melatonin. The calibration curve was constructed with a sensitivity range of 10 ng/mL to 10 microg/mL. In conclusion, these MAbs may be useful for immunoassay of melatonin.
Campos-Rodríguez, Rafael; Godínez-Victoria, Marycarmen; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Reséndiz-Albor, Aldo Arturo; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Drago-Serrano, Maria Elisa
2016-02-01
Intermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S. typhimurium. Thereafter, infected animals were all fed AL (to maximize their viability) until sacrifice on day 7 or 14 post-infection. We evaluated body weight, bacterial load (in feces, Peyer's patches, spleen and liver), total and specific intestinal IgA, lamina propria IgA+ plasma cells, plasma corticosterone, and messenger RNA (mRNA) expression of α-chain, J-chain, and the polymeric immunoglobulin receptor (pIgR) in liver and intestinal mucosa. In comparison with the infected AL counterpart, the infected IF group (long-term IF followed by post-infection AL feeding) generally had lower intestinal and systemic bacterial loads as well as higher total IgA on both post-infection days. Both infected groups showed no differences in corticosterone levels, body weight, or food and caloric intake. The increase in intestinal IgA was associated with enhanced pIgR mRNA expression in the intestine (day 7) and liver. Thus, to maintain body weight and caloric intake, IF elicited metabolic signals that possibly induced the increased hepatic and intestinal pIgR mRNA expression found. The increase in IgA probably resulted from intestinal IgA transcytosis via pIgR. This IgA response along with phagocyte-induced killing of bacteria in systemic organs (not measured) may explain the resolution of the S. typhimurium infection.
Yamamoto, Yuko; Takahahi, Toru; To, Masahiro; Nakagawa, Yusuke; Hayashi, Takashi; Shimizu, Tomoko; Kamata, Yohei; Saruta, Juri; Tsukinoki, Keiichi
2016-01-01
Salivary immunoglobulin A (IgA) serves as a major effector in mucosal immunity by preventing submucosal invasion of pathogens. However, the mechanism by which consumption of fermentable fibers increases IgA in saliva was not fully elucidated. This study investigated the effects of fructooligosaccharides (FOS) intake and time after feeding on IgA levels in the saliva and cecal digesta and on the concentration of short-chain fatty acids (SCFA) in the cecum in rats. Five-week-old rats were fed a fiber-free diet or a diet with 50 g/kg FOS for zero, one, four, and eight weeks. Ingestion of FOS at one and eight weeks led to a higher IgA flow rate of saliva per weight of submandibular gland tissue (p < 0.05), which positively correlated with the concentration of SCFA in the cecal digesta (rs = 0.86, p = 0.0006, n = 12), but showed no correlation with the concentration of IgA in the cecal digesta (rs = 0.15, p = 0.3, n = 48). These results suggested that ingestion of FOS increased salivary IgA secretion through high levels of SCFA in the large intestine, which was produced by fermentation of FOS. Thus, continuously ingesting FOS for more than one week could increase secretion of salivary IgA. PMID:27548207
Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna
2017-07-01
Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.
Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule
2017-06-26
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Parvari, R; Avivi, A; Lentner, F; Ziv, E; Tel-Or, S; Burstein, Y; Schechter, I
1988-03-01
cDNA clones encoding the variable and constant regions of chicken immunoglobulin (Ig) gamma-chains were obtained from spleen cDNA libraries. Southern blots of kidney DNA show that the variable region sequences of eight cDNA clones reveal the same set of bands corresponding to approximately 30 cross-hybridizing VH genes of one subgroup. Since the VH clones were randomly selected, it is likely that the bulk of chicken H-chains are encoded by a single VH subgroup. Nucleotide sequence determinations of two cDNA clones reveal VH, D, JH and the constant region. The VH segments are closely related to each other (83% homology) as expected for VH or the same subgroup. The JHs are 15 residues long and differ by one amino acid. The Ds differ markedly in sequence (20% homology) and size (10 and 20 residues). These findings strongly indicate multiple (at least two) D genes which by a combinatorial joining mechanism diversify the H-chains, a mechanism which is not operative in the chicken L-chain locus. The most notable among the chicken Igs is the so-called 7S IgG because its H-chain differs in many important aspects from any mammalian IgG. The sequence of the C gamma cDNA reported here resolves this issue. The chicken C gamma is 426 residues long with four CH domains (unlike mammalian C gamma which has three CH domains) and it shows 25% homology to the chicken C mu. The chicken C gamma is most related to the mammalian C epsilon in length, the presence of four CH domains and the distribution of cysteines in the CH1 and CH2 domains. We propose that the unique chicken C gamma is the ancestor of the mammalian C epsilon and C gamma subclasses, and discuss the evolution of the H-chain locus from that of chicken with presumably three genes (mu, gamma, alpha) to the mammalian loci with 8-10 H-chain genes.
Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells
NASA Technical Reports Server (NTRS)
Towmey, J. J.
1976-01-01
Some immune response are effected through immunoglobulins (Ig), of which five classes have been recognized, namely, IgA, IgD, IgE, IgG, and IgM. Auto-antibodies associated with rheumatoid arthritis, termed rheumatoid factors (RF) react with antigenic determinants on IgG heavy chains. RF has predominant but not complete IgM specificity. This auto-antibody response was not detected in treated patients with primary brain tumors (where tissue is sequestered from the immune system by an intact bloodbrain barrier) or with multiple myeloma where humoral immunity is usually impaired. In addition, the prevalence of RF is not increased with solid tumors prior to initiation of chemotherapy or radiotherapy. It is proposed that RF is related to prior chemotherapy or radiotherapy of tumors anatomically accessible to immunologic tissues capable of antibody responses. A primary IgG response occurs, antigen-antibody complexes form, complexed IgG becomes immunologic, and an RF response results.
Ramirez-Gomez, F.; Greene, W.; Rego, K.; Hansen, J.D.; Costa, G.; Kataria, P.; Bromage, E.S.
2012-01-01
The gene encoding IgH δ has been found in all species of teleosts studied to date. However, catfish (Ictalurus punctatus) is the only species of fish in which a secretory form of IgD has been characterized, and it occurs through the use of a dedicated δ-secretory exon, which is absent from all other species examined. Our studies have revealed that rainbow trout (Oncorhynchus mykiss) use a novel strategy for the generation of secreted IgD. The trout secretory δ transcript is produced via a run-on event in which the splice donor site at the end of the last constant domain exon (D7) is ignored and transcription continues until a stop codon is reached 33 nt downstream of the splice site, resulting in the production of an in-frame, 11-aa secretory tail at the end of the D7 domain. In silico analysis of several published IgD genes suggested that this unique splicing mechanism may also be used in other species of fish, reptiles, and amphibians. Alternative splicing of the secretory δ transcript resulted in two δ-H chains, which incorporated Cμ1 and variable domains. Secreted IgD was found in two heavily glycosylated isoforms, which are assembled as monomeric polypeptides associated with L chains. Secretory δ mRNA and IgD+ plasma cells were detected in all immune tissues at a lower frequency than secretory IgM. Our data demonstrate that secretory IgD is more prevalent and widespread across taxa than previously thought, and thus illustrate the potential that IgD may have a conserved role in immunity.
Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody
2015-01-01
Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741
Abramenko, Iryna; Bilous, Nadia; Chumak, Anatoliy; Davidova, Ekaterina; Kryachok, Iryna; Martina, Zoya; Nechaev, Stanislav; Dyagil, Iryna; Bazyka, Dmytriy; Bebeshko, Vladimir
2008-04-01
Clinical data and immunoglobulin variable heavy chain (IgVH) gene configuration were analyzed in 47 CLL patients, exposed to ionizing radiation (IR) due to Chernobyl NPP accident, and 141 non-exposed patients. Clean-up workers of the second quarter of 1986 (n=19) were picked out as separate group with the highest number of unmutated cases (94.4%), increased usage of IgVH1-69 (33.3%) and IgVH3-21 (16.7%) genes, high frequency of secondary solid tumors (6 cases) and Richter transformation (4 cases). These preliminary data suggest that CLL in the most suffered contingent due to Chernobyl NPP accident might have some specific features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B.
1990-10-01
B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected.more » Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.« less
Matulova, Marta; Rajova, Jana; Vlasatikova, Lenka; Volf, Jiri; Stepanova, Hana; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan
2012-01-01
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens. PMID:23094107
Sakamoto, Kenichi; Tanaka, Seiji; Tomoyasu, Chihiro; Tomii, Toshihiro; Yano, Mio; Takagi, Kazutaka; Yasuhiko, Tsutsumi; Uoshima, Nobuhiko; Komatsu, Hiroshi; Imamura, Toshihiko
2016-12-01
We report the first patient to develop ALL with a fusion gene of the erythropoietin receptor (EPOR) with immunoglobulin heavy chain (IgH) 22 years after a diagnosis of secondary erythrocytosis with unknown etiology. The IgH-EPOR rearrangement is known to induce increased expression of EPOR, and activates EPO-associated signal pathways by exogenous EPO stimulation, resulting in the increased proliferation and survival of IgH-EPOR-positive leukemic cells. Interestingly, this case may provide supporting the possibility that IgH-EPOR-positive ALL has a growth advantage under sustained high concentrations of EPO.
Variability in gut mucosal secretory IgA in mice along a working day.
Burns, Patricia; Oddi, Sofia; Forzani, Liliana; Tabacman, Eduardo; Reinheimer, Jorge; Vinderola, Gabriel
2018-02-05
To assess the variability of secretory immunoglobulin A (S-IgA) in the lumen and feces of mice along a working day. Mice were maintained under a 12 h light-dark cycle, light period starting at 8 AM. S-IgA was determined in feces and intestinal content (after one or three washes) at three points along the day: at the beginning, in the middle and at the end of the light period (ELP). Significant reduction in the content of S-IgA in the small intestine fluid and in feces was observed at the end of the light cycle, which coincides with the end of a regular working day (8 PM) in any given animal facility. It was also observed that three washes of the small intestine were more effective than one flush to recover a significant higher amount of S-IgA, with the smallest coefficient of variation observed by the ELP. A smaller CV would imply a reduced number of animals needed to achieve the same meaningful results. The results may be useful when designing animal trials for the selection of probiotic candidates based on their capacity of activating S-IgA, since it would imply a more rational use of experimental animals.
[POEMS syndrome with plasmocytoma lytic bone lesion].
Rafai, M A; Fadel, H; Boulaajaj, F Z; Sibai, M; Rafai, M; El Moutawakkil, B; Bourezgui, M; Trafeh, M; Slassi, I
2008-01-01
Crow-Fukase or Polyneuropathy, Organomegaly, Endocrinopathy, M-protein, and Skin changes syndrome (POEMS) is a rare multisystemic affection with incompletely elucidated etiopathogenesis. We report a case of POEMS syndrome in a 48-year-old adult revealed four months before admission by areflexic flask tetraparesis prevalent on the lower limbs in connection with demyelinating and axonal CIDP "like" sensoriomotor neuropathy of the four limbs electroneuromyographically. The patient presented elevated protein level in the CSF with monoclonal standard IgG gammapathy associated with a narrow band lambda, suggesting POEMS syndrome. Further explorations revealed skin lesions with glomeruloid angiomas, edematous vasomotor disorders as well as erythrocyanose, hypogonadism, papillar edema and a lytic bone lesion of the left scapula. Radiotherapy was associated with corticosteroids and plasma exchanges. Outcome was good with resolution of the symptoms and stabilization of the neuropathy. POEMS syndrome is rare; the diagnosis is based on necessary criteria, the presence of a demyelinating and axonal polyneuropathy associated with an IgA or IgG monoclonal gammapathy, the light chain being almost entirely lambda, associated to other characteristic elements, in particular glomeruloid angiomas, endocrinopathy, sclerosing plasmocytoma which must be carefully required. Treatment is based on surgical cure or radiotherapy for bone lesion and non specific treatments such as corticosteroid therapy, plasma exchanges and IVIG.
Rahbarizadeh, F; Rasaee, M J; Madani, R; Rahbarizadeh, M H; Omidfar, K
2000-10-01
A C6-hemisuccinate derivative of morphine was prepared and conjugated to bovine serum albumin. High titer antibody producing spleen cells were removed and fused with myeloma cells of Sp2/0 origin. A C3-hemisuccinate derivative of morphine was prepared and conjugated to enzyme penicillinase used as a tracer molecule. A novel enzyme-linked immunoadsorbent assay was developed using this conjugate to screen and characterize the monoclonal antibody produced in these experiments. After two successive limiting dilutions, antibodies produced by 5 clones with good affinities ranging from 10(8) to 10(12) M(-1) and less cross-reaction (least for codeine and other structurally related molecules) were selected. These clones were found to be of IgG class with kappa light chain. Subclass determination showed that two of the clones produced IgG2b and three of them produced IgG1 type of antibody. Affinity purifications were performed for the selected clone (MOR-I). Purified antibody was coated onto the wells of microtiter plate. The standard curve was constructed with a sensitivity of 100 pg/mL covering up to 10 ng/mL in buffer and urine. The slope of the standard curve for selected clone in buffer and urine was calculated to be -0.7 and -0.64, respectively.
Guddat, L W; Shan, L; Broomell, C; Ramsland, P A; Fan, Z; Anchin, J M; Linthicum, D S; Edmundson, A B
2000-09-29
The three-dimensional structure of a complex of an Fab from a murine IgG2b(lambda) antibody (NC10.14) with a high potency sweet tasting hap- ten, N-(p-cyanophenyl)-N'-(diphenylmethyl)-N"-(carboxymethyl)guan idine (NC174), has been determined to 2.6 A resolution by X-ray crystallography. This complex crystallized in the triclinic space group P1, with two molecules in the asymmetric unit. In contrast to a companion monoclonal antibody (NC6.8) with a kappa-type light chain and similar high affinity for the NC174 ligand, the NC10.14 antibody possessed a large and deep antigen combining site bounded primarily by the third complementarity-determining regions (CDR3s) of the light and heavy chains. CDR3 of the heavy chain dominated the site and its crown protruded into the external solvent as a type 1' beta-turn. NC174 was nested against HCDR3 and was held in place by two tryptophan side-chains (L91 and L96) from LCDR3. The diphenyl rings were accommodated on an upper tier of the binding pocket that is largely hydrophobic. At the floor of the site, a positively charged arginine side-chain (H95) stabilized the orientation of the electronegative cyano group of the hapten. The negative charge on the acetate group was partially neutralized by a hydrogen bond with the phenolic hydroxyl group of tyrosine H58. Comparisons of the modes of binding of NC174 to the NC6.8 and NC10.14 antibodies illustrate the enormous structural and mechanistic diversity manifest by immune responses. Copyright 2000 Academic Press.
Maruyama, Masashi; Shibuya, Keisuke
2017-08-22
Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.
IgX antibodies in the urodele amphibian Ambystoma mexicanum.
Schaerlinger, Bérénice; Frippiat, Jean-Pol
2008-01-01
Until recently, it was believed that urodele amphibians are able to synthesize only two immunoglobulin isotypes, IgM and IgY. We reinvestigated this issue in the Iberian ribbed newt Pleurodeles waltl and reported recently that this urodele expresses at least three isotypes: IgM, IgP and IgY. In this study, we demonstrate that another urodele, Ambystoma mexicanum, has also a third isotype whose amino acid sequence presents the highest homology with the amino acid sequence of Xenopus IgX. This isotype has typical Ig H-chain characteristics, could form multimers and is mainly expressed in mucosal tissues thereby indicating that it is likely the physiological counterpart of Xenopus IgX and mammalian IgA. Interestingly, no IgP could be found in A. mexicanum, in contrast to P. waltl, in which IgX was not found in previous investigations. These data indicate, for the first time, that different families of urodeles can express different immunoglobulin isotypes.
Imai, Kohsuke; Catalan, Nadia; Plebani, Alessandro; Maródi, László; Sanal, Özden; Kumaki, Satoru; Nagendran, Vasantha; Wood, Philip; Glastre, Catherine; Sarrot-Reynauld, Françoise; Hermine, Olivier; Forveille, Monique; Revy, Patrick; Fischer, Alain; Durandy, Anne
2003-01-01
Hyper-IgM syndrome (HIGM) is a heterogeneous condition characterized by impaired Ig class-switch recombination (CSR). The molecular defects that have so far been associated with this syndrome — which affect the CD40 ligand in HIGM type 1 (HIGM1), CD40 in HIGM3, and activation-induced cytidine deaminase (AID) in HIGM2 — do not account for all cases. We investigated the clinical and immunological characteristics of 15 patients with an unidentified form of HIGM. Although the clinical manifestations were similar to those observed in HIGM2, these patients exhibited a slightly milder HIGM syndrome with residual IgG production. We found that B cell CSR was intrinsically impaired. However, the generation of somatic hypermutations was observed in the variable region of the Ig heavy chain gene, as in control B lymphocytes. In vitro studies showed that the molecular defect responsible for this new HIGM entity (HIGM4) occurs downstream of the AID activity, as the AID gene was induced normally and AID-induced DNA double-strand breaks in the switch μ region of the Ig heavy chain locus were detected during CSR as normal. Thus, HIGM4 is probably the consequence of a selective defect either in a CSR-specific factor of the DNA repair machinery or in survival signals delivered to switched B cells. PMID:12840068
Carneiro, Raquel; Reefer, Amanda; Wilson, Barbara; Hammer, Juergen; Platts-Mills, Thomas; Custis, Natalie; Woodfolk, Judith
2004-04-01
Atopic dermatitis (AD) is often associated with high titer IgE antibodies (ab) to allergens, and IL-10-mediated regulation of IFN-gamma has been proposed to contribute to this IgE ab production. However, the relevance of IL-10 and IFN-gamma to IgE associated with AD has not been examined in the context of an allergen-specific system. Analysis of PBMC responses in vitro showed deficient T cell proliferation to overlapping IL-10- (peptide (P) 2:1) and IFN-gamma- (P2:2) inducing chain 2 major epitopes of cat allergen (Fel d 1) in cultures from sensitized AD patients (mean IgE to cat=20.9 IU/ml). Diminished IFN-gamma induction by Fel d 1 and P2:2, along with elevated peptide-induced IL-10 (except for P2:1) was observed in PBMC cultures from AD subjects compared with non-AD (sensitized and non-sensitized) subjects. Neither T cell proliferation nor IFN-gamma production to chain 2 epitopes could be restored by anti-IL-10 mAb in cultures from sensitized AD subjects. Moreover, allergen avoidance was associated with a paradoxical decrease in both IL-10 and IFN-gamma in peptide-stimulated PBMC from these subjects. Control of IFN-gamma production to chain 2 epitopes by IL-10 may be relevant to sensitization status. Development of high titer IgE ab in AD could reflect a failure of this mechanism.
Oli, Angus Nnamdi; Agu, Remigius Uchenna; Ihekwereme, Chibueze Peter; Esimone, Charles Okechukwu
2017-01-01
Vaccines are biological products and their efficacy is affected by storage conditions. They are vital in promoting public health. Failures in immunization programmes often times are blamed on disruption in vaccine cold-chain. This study assessed the immunogenicity/potency of the measles vaccines utilized in childhood immunization in South-East, Nigeria and indirectly assessed the effectiveness of the cold-chain technology in the region. This was an experimental study carried out between December 2011 and June 2013. Antibody induction method was used to evaluate the immunogenicity/potency of the measles vaccines sourced from the central cold chain facilities in South-east, Nigeria and indirectly, the effectiveness of the cold chain technology in the zone in maintaining vaccine potency. The neutralizing antibodies in a control group (administered with measles vaccines stored at 37°C for 12 months) and in immunized group were determined after 30 days of immunization using ELISA. The mean storage temperature of the vaccines at the states vaccines central cold chain facilities was -2.4°C and before storage at study site, it was 5.8°C but at the study site it was -4.54°C. Mean ±Standard Error in the Mean (SEM) IgG titers for the measles vaccines sourced from "Open Market", Ebonyi, Enugu, Imo, Anambra and Abia States were 0.793±0.051, 1.621±0.015, 1.621±0.015, 1.715±0.081, 1.793±0.051 and 1.683±0.078 respectively while the mean ±Standard Error in the Mean (SEM) IgM titres were 0.857±0.037, 1.400±0.030, 1.391±0.032, 1.339±0.037, 1.405±0.066 and 1.279±0.025 respectively. One way analysis of variance shows that there is statistical difference in the IgG and IgM antibodies titers produced by the control compared to the vaccines (P value < 0.0001). Also, Bartlett's test for equal variances showed that there was statistical difference (P value < 0.0001 for IgG and = 0.036 for IgM). The antibodies elicited by the vaccines from the states were enough to confer protection but the vaccine samples from "Open Market" (control) could not evoke enough antibodies. The cold-chain technology in the region was judged to be optimal as at the time of vaccine sampling since all the measles vaccines had good immunogenicity profile. However, efforts are still needed to maintain these facilities in good condition in order to ensure effective immunization program in the region.
Frankowiack, Marcel; Hellman, Lars; Zhao, Yaofeng; Arnemo, Jon M; Lin, Miaoli; Tengvall, Katarina; Møller, Torsten; Lindblad-Toh, Kerstin; Hammarström, Lennart
2013-06-01
Low mean concentrations of serum immunoglobulin A (IgA) and an increased frequency of overt IgA deficiency (IgAD) in certain dog breeds raises the question whether it is a breeding-enriched phenomenon or a legacy from the dog's ancestor, the gray wolf (Canis lupus). The IgA concentration in 99 serum samples from 58 free-ranging and 13 captive Scandinavian wolves, was therefore measured by capture ELISA. The concentrations were markedly lower in the wolf serum samples than in the dog controls. Potential differences in the IgA molecule between dogs and wolves were addressed by sequencing the wolf IgA heavy chain constant region encoding gene (IGHA). Complete amino acid sequence homology was found. Detection of wolf and dog IgA was ascertained by showing identity using double immunodiffusion. We suggest that the vast majority of wolves, the ancestor of the dog, are IgA deficient. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pong Ng, Hang; Burris, Ramona L.; Nagarajan, Shanmugam
2011-01-01
Though the presence of anti-oxLDL IgG is well documented in clinical and animal studies, the role for FcγRs to the progression of atherosclerosis has not been studied in detail. In the present study, we investigated the role for activating FcγR in the progression of atherosclerosis using apoE-Fcγ chain double knockout (DKO) mice. Relative to apoE KO mice, arterial lesion formation was significantly decreased in apoE-Fcγ chain DKO mice. Bone marrow chimera studies showed reduced lesions in apoE KO mice receiving the bone marrow of apoE-Fcγ chain DKO mice. Compared to apoE KO mice, anti-oxLDL IgG1 (Th2) and IgG2a (Th1), IL-10, and IFN-γ secretion by activated T cells were increased in apoE-Fc γ chain DKO mice. These findings suggest that reduced atherosclerotic lesion in apoE-Fcγ chain DKO mice is not due to Th1/Th2 imbalance. Interestingly, number of Th17 cells and the secretion of IL-17 by activated CD4+ cells were decreased in apoE-Fcγ chain DKO mice. Notably, the number of T-regulatory cells, expression of mRNA, and secretion of TGF-β and IL-10 were increased in apoE-Fcγ chain DKO mice. Furthermore, secretions of IL-6 and STAT-3 phosphorylation essential for Th17 cell genesis were reduced in apoE-Fcγ chain DKO mice. Importantly, decrease in Th17 cells in apoE-Fcγ chain DKO mice was due to reduced IL-6 release by antigen presenting cells of apoE-Fcγ chain DKO mice. Collectively, our data suggest that activating FcγR promotes atherosclerosis by inducing Th17 response in the hyperlipidemic apoE KO mouse model. PMID:22043015
Dombrowicz, D; Flamand, V; Miyajima, I; Ravetch, J V; Galli, S J; Kinet, J P
1997-01-01
In mouse mast cells, both Fc epsilonRI and Fc gammaRIII are alpha beta gamma2 tetrameric complexes in which different alpha chains confer IgE or IgG ligand recognition while the signaling FcR beta and gamma chains are identical. We used primarily noninvasive techniques (changes in body temperature, dye extravasation) to assess systemic anaphylactic responses in nonanesthetized wild-type, Fc epsilonRI alpha chain -/- and FcR gamma chain -/- mice. We confirm that systemic anaphylaxis in mice can be mediated largely through IgG1 and Fc gammaRIII and we provide direct evidence that these responses reflect activation of Fc gammaRIII rather than Fc gammaRI. Furthermore, we show that Fc gammaRIII-dependent responses are more intense in normal than in congenic mast cell-deficient KitW/KitW-v mice, indicating that Fc gammaRIII responses have mast cell-dependent and -independent components. Finally, we demonstrate that the upregulation of cell surface expression of Fc gammaRIII seen in Fc epsilonRI alpha chain -/- mice corresponds to an increased association of Fc gammaRIII alpha chains with FcR beta and gamma chains and is associated with enhanced Fc gammaRIII-dependent mast cell degranulation and systemic anaphylactic responses. Therefore, the phenotype of the Fc epsilonRI alpha chain -/- mice suggests that expression of Fc epsilonRI and Fc gammaRIII is limited by availability of the FcR beta and gamma chains and that, in normal mice, changes in the expression of one receptor (Fc epsilonRI) may influence the expression of functional responses dependent on the other (Fc gammaRIII). PMID:9062349
Spadaccio, Cristiano; Coccia, Raffaella; Perluigi, Marzia; Pupo, Gilda; Schininà, Maria Eugenia; Giorgi, Alessandra; Blarzino, Carla; Nappi, Francesco; Sutherland, Fraser W; Chello, Massimo; Di Domenico, Fabio
2016-06-21
oxidative stress is undoubtedly one of the main players in abdominal aortic aneurysm (AAA) pathophysiology. Recent studies in AAA patients reported an increase in the indices of oxidative damage at the tissue level and in biological fluids coupled with the loss of counter-regulatory mechanisms of protection from oxidative stress. We recently reported, in a proteomic analysis of AAA patient sera, changes in the expression of several proteins exerting important modulatory activities on cellular proliferation, differentiation and response to damage. This study aimed to explore the involvement of protein oxidation, at peripheral levels, in AAA. a redox proteomic approach was used to investigate total and specific protein carbonylation and protein-bound 4-hydroxy-2-nonenal (HNE) in the serum of AAA patients compared with age-matched controls. our results show increased oxidative damage to protein as indexed by the total carbonyl levels and total protein-bound HNE. By redox proteomics we identified specific carbonylation of three serum proteins: serum retinol-binding protein, vitamin D-binding protein and fibrinogen α-chain HNE. We also identified increased protein-bound HNE levels for hemopexin, IgK chain C region and IgK chain V-III region SIE. In addition we found a high correlation between specific protein carbonylation and protein-bound HNE and the aortic diameter. Moreover the analysis of serum proteins with antioxidant activity demonstrates the oxidation of albumin together with the overexpression of transferrin, haptoglobin and HSPs 90, 70, 60 and 32. this study support the involvement of oxidative stress in the pathogenesis of AAA and might provide a further degree of knowledge in the cause-effect role of oxidative stress shedding new light on the molecular candidates involved in the disease.
Evolution of the Iga Heavy Chain Gene in the Genus Mus
Osborne, B. A.; Golde, T. E.; Schwartz, R. L.; Rudikoff, S.
1988-01-01
To examine questions of immunoglobulin gene evolution, the IgA α heavy chain gene from Mus pahari, an evolutionarily distant relative to Mus musculus domesticus, was cloned and sequenced. The sequence, when compared to the IgA gene of BALB/c or human, demonstrated that the IgA gene is evolving in a mosaic fashion with the hinge region accumulating mutations most rapidly and the third domain at a considerably lower frequency. In spite of this pronounced accumulation of mutations, the hinge region appears to maintain the conformation of a random coil. A marked propensity to accumulate replacement over silent site changes in the coding regions was noted, as was a definite codon bias. The possibility that these two phenomena are interrelated is discussed. PMID:2842228
The amyloid fold of Gad m 1 epitopes governs IgE binding
Sánchez, Rosa; Martínez, Javier; Castro, Ana; Pedrosa, María; Quirce, Santiago; Rodríguez-Pérez, Rosa; Gasset, María
2016-01-01
Amyloids are polymeric structural states formed from locally or totally unfolded protein chains that permit surface reorganizations, stability enhancements and interaction properties that are absent in the precursor monomers. β-Parvalbumin, the major allergen in fish allergy, forms amyloids that are recognized by IgE in the patient sera, suggesting a yet unknown pathological role for these assemblies. We used Gad m 1 as the fish β-parvalbumin model and a combination of approaches, including peptide arrays, recombinant wt and mutant chains, biophysical characterizations, protease digestions, mass spectrometry, dot-blot and ELISA assays to gain insights into the role of amyloids in the IgE interaction. We found that Gad m 1 immunoreactive regions behave as sequence-dependent conformational epitopes that provide a 1000-fold increase in affinity and the structural repetitiveness required for optimal IgE binding and cross-linking upon folding into amyloids. These findings support the amyloid state as a key entity in type I food allergy. PMID:27597317
Yazaki, A; Ohno, S
1983-01-01
Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948
Khoryati, Liliane; Augusto, Jean-François; Shipley, Emilie; Contin-Bordes, Cécile; Douchet, Isabelle; Mitrovic, Stéphane; Truchetet, Marie-Elise; Lazaro, Estibaliz; Duffau, Pierre; Couzi, Lionel; Jacquemin, Clément; Barnetche, Thomas; Vacher, Pierre; Schaeverbeke, Thierry; Blanco, Patrick; Richez, Christophe
2016-09-01
Plasmacytoid dendritic cells (PDCs) play a central role in pathogenesis of systemic lupus erythematosus (SLE) through their unique ability to produce large amounts of type I interferon (IFN) upon Toll-like receptor 7 (TLR-7) and TLR-9 triggering. PDCs express specific surface regulatory receptors involved in negative regulation of IFNα secretion. These receptors use the γ-chain of high-affinity Fc receptor (FcR) for IgE, FcɛRI. We undertook this study to test our hypothesis that IgE engagement of FcɛRI on PDCs may impact IFNα production in SLE patients. Serum levels of total IgE were measured in healthy volunteers, SLE patients, and patients with IgE-dependent allergic disorders. FcɛRI expression on PDCs from SLE patients was evaluated by flow cytometry. Purified PDCs were incubated with monoclonal IgE for 24 hours, then stimulated for 18 hours with TLR agonists or immune complexes (ICs). IFNα production by PDCs was detected by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Expression of TLR-7, TLR-9, and IFN regulatory factor 7 (IRF-7) in PDCs was quantified by quantitative real-time PCR. We observed significantly higher IgE levels in SLE patients with quiescent disease than in those with active disease. In SLE patients, IgE levels correlated inversely with disease activity. IgE levels were not associated with the presence of antinuclear IgE. Purified PDCs treated for 24 hours with monoclonal IgE up-regulated FcɛRI expression in an IgE dose-dependent manner. IgE-treated PDCs significantly decreased IFNα secretion and down-regulated CCR7 expression upon stimulation with TLR-7 and TLR-9 ligands and ICs from lupus patients. IgE treatment down-regulated expression of TLR-9 and IRF-7. Our results support the notion that IgE plays a protective role in SLE pathogenesis through the modulation of inflammatory response by PDCs. © 2016, American College of Rheumatology.
Shan, Guo-Dong; Hu, Feng-Ling; Yang, Ming; Chen, Hong-Tan; Chen, Wen-Guo; Wang, Yun-Gui; Chen, Li-Hua; Li, You-Ming; Xu, Guo-Qiang
2013-09-14
To study the diagnostic value of immunoglobulin heavy chain (IgH) and T-cell receptor γ (TCR-γ) gene monoclonal rearrangements in primary gastric lymphoma (PGL). A total of 48 patients with suspected PGL at our hospital were prospectively enrolled in this study from January 2009 to December 2011. The patients were divided into three groups (a PGL group, a gastric linitis plastica group, and a benign gastric ulcer group) based on the pathological results (gastric mucosal specimens obtained by endoscopy or surgery) and follow-up. Endoscopic ultrasonography (EUS) and EUS-guided biopsy were performed in all the patients. The tissue specimens were used for histopathological examination and for IgH and TCR-γ gene rearrangement polymerase chain reaction analyses. EUS and EUS-guided biopsy were successfully performed in all 48 patients. In the PGL group (n = 21), monoclonal IgH gene rearrangements were detected in 14 (66.7%) patients. A positive result for each set of primers was found in 12 (57.1%), 8 (38.1%), and 4 (19.0%) cases using FR1/JH, FR2/JH, and FR3/JH primers, respectively. Overall, 12 (75%) patients with mucosal-associated lymphoid tissue lymphoma (n = 16) and 2 (40%) patients with diffuse large B-cell lymphoma (n = 5) were positive for monoclonal IgH gene rearrangements. No patients in the gastric linitis plastica group (n = 17) and only one (10%) patient in the benign gastric ulcer group (n = 10) were positive for a monoclonal IgH gene rearrangement. No TCR-γ gene monoclonal rearrangements were detected. The sensitivity of monoclonal IgH gene rearrangements was 66.7% for a PGL diagnosis, and the specificity was 96.4%. In the PGL group, 8 (100%) patients with stage IIE PGL (n = 8) and 6 (46.1%) patients with stage IE PGL (n = 13) were positive for monoclonal IgH gene rearrangements. IgH gene rearrangements may be associated with PGL staging and may be useful for the diagnosis of PGL and for differentiating between PGL and gastric linitis plastica.
Shriver, Sandra; Yang, Wade; Chung, Si-Yin; Percival, Susan
2011-07-01
Pulsed ultraviolet light (PUV), a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa), and to attenuate immunoglobulin E (IgE) binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus) extract was treated with PUV (3 pulses/s, 10 cm from light source) for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA) using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarlinton, D.; Strasser, A.; McLean, M.
1995-04-01
Mouse B cell precursors containing Ig D{sub H}J{sub H} junctions in one particular reading frame are selectively lost during B cell development. In this register, arbitrarily referred to as reading frame 2, D{sub H}J{sub H} junctions give rise to an open reading frame starting upstream of the D{sub H} element and including the D{sub H}J{sub H}-peptide fused to the constant region of IgM. Expression of this protein, called D{mu}, has been strongly implicated in the loss of B cell precursors containing reading frame 2 D{sub H}J{sub H} junctions. In an attempt to elucidate the means of D{mu} counterselection, we havemore » examined the reading frame distribution of D{sub H}J{sub H} junctions in peripheral B cells from mice transgenic for either the human bcl-2 oncogene or for a functionally rearranged Ig {mu} heavy chain. In bcl-2 transgenic mice, reading frame 2 accounted for < 5% of the D{sub H}J{sub H} junctions in peripheral B cells, a value not significantly different from controls. Reading frames 1 and 3 were equally represented among the remaining junctions. By contrast, the reading frame distribution of endogenous D{sub H}J{sub H} junctions in splenic B cells from Ig {mu} heavy chain transgenic mice showed no evidence of bias against D{mu} encoding D{sub H}J{sub H} junctions. Reading frames 2 and 3 accounted for 27% and 30% of the sequenced D{sub H}J{sub H} junctions, respectively, and the remaining 43% were reading frame 1. Thus although the presence of BCL-2 cannot prevent the selective loss of reading frame 2 D{sub H}J{sub H} B cells, a functional {mu} heavy chain can. These results suggest that D{mu}-expressing B cell precursors may be selectively lost because of the premature and inappropriate cessation of heavy chain gene rearrangement rather than because of the induction of an apoptotic process which can be blocked by BCL-2. 42 refs., 4 figs., 4 tabs.« less
Clinical and molecular predictors of disease severity and survival in chronic lymphocytic leukemia.
Weinberg, J Brice; Volkheimer, Alicia D; Chen, Youwei; Beasley, Bethany E; Jiang, Ning; Lanasa, Mark C; Friedman, Daphne; Vaccaro, Gina; Rehder, Catherine W; Decastro, Carlos M; Rizzieri, David A; Diehl, Louis F; Gockerman, Jon P; Moore, Joseph O; Goodman, Barbara K; Levesque, Marc C
2007-12-01
Several parameters may predict disease severity and overall survival in chronic lymphocytic leukemia (CLL). The purpose of our study of 190 CLL patients was to compare immunoglobulin heavy chain variable region (IgV(H)) mutation status, cytogenetic abnormalities, and leukemia cell CD38 and Zap-70 to older, traditional parameters. We also wanted to construct a simple, inexpensive prognosis score that would significantly predict TTT and survival in patients at the time of diagnosis and help practicing clinicians. In univariate analyses, patients with higher clinical stage, higher leukocyte count at diagnosis, shorter leukocyte doubling time, elevated serum lactate dehydrogenase (LDH), unmutated immunoglobulin heavy chain variable region (IgV(H)) genes, and higher CD38 had a shorter overall survival and time-to-treatment (TTT). CLL cell Zap-70 expression was higher in patients with unmutated IgV(H), and those with higher Zap-70 tended to have shorter survival. IgV(H)4-34 or IgV(H)1-69 was the most common IgV(H) genes used (16 and 12%, respectively). Of those with IgV(H)1-69, 86% had unmutated IgV(H) and had a significantly shorter TTT. A cytogenetic abnormality was noted in 71% of the patients tested. Patients with 11q22 del and 17p13 del or complex abnormalities were significantly more likely to have unmutated IgV(H). We found that a prognostic score constructed using modified Rai stage, cellular CD38, and serum LDH (parameters easily obtained clinically) significantly predicted TTT and survival in patients at the time of diagnosis and performed as well or better than models using the newer markers.
Zhang, Zheng Z; Hsieh, Chih-Lin; Okitsu, Cindy Yen; Han, Li; Yu, Kefei; Lieber, Michael R
2015-08-01
Immunoglobulin (Ig) heavy chains undergo class switch recombination (CSR) to change the heavy chain isotype from IgM to IgG, A or E. The switch regions are several kilobases long, repetitive, and G-rich on the nontemplate strand. They are also relatively depleted of CpG (also called CG) sites for unknown reasons. Here we use synthetic switch regions at the IgH switch alpha (Sα) locus to test the effect of CpG sites and to try to understand why the IgH switch sequences evolved to be relatively depleted of CpG. We find that even just two CpG sites within an 80 bp synthetic switch repeat iterated 15 times (total switch region length of 1200 bp containing 30 CpG sites) are sufficient to dramatically reduce both Ig CSR and transcription through the switch region from the upstream Iα sterile transcript promoter, which is the promoter that directs transcripts through the Sα region. De novo DNA methylation occurs at the four CpG sites in and around the Iα promoter when each 80 bp Iα switch repeat contains the two CpG sites. Thus, a relatively low density of CpG sites within the switch repeats can induce upstream CpG methylation at the IgH alpha locus, and cause a substantial decrease in transcription from the sterile transcript promoter. This effect is likely the reason that switch regions evolved to contain very few CpG sites. We discuss these findings as they relate to DNA methylation and to Ig CSR. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cytokine profile of NALT during acute stress and its possible effect on IgA secretion.
Gutiérrez-Meza, Juan Manuel; Jarillo-Luna, Rosa Adriana; Rivera-Aguilar, Victor; Miliar-García, Angel; Campos-Rodríguez, Rafael
2017-08-01
Stress stimuli affect the immune system responses that occur at mucosal membranes, particularly IgA secretion. It has been suggested that acute stress increases the levels of IgA and that sympathetic innervation plays an important role in this process. We herein explore in a murine model how acute stress affects the Th1/Th2/Treg cytokine balance in NALT, and the possible role of glucocorticoids in this effect. Nine-week-old male CD1 mice were divided into three groups: unstressed (control), stressed (subjected to 4h of immobilization), and stressed after pretreatment with a single dose of the corticosterone receptor antagonist RU-486. The parameters evaluated included plasma corticosterone and epinephrine, IgA levels in nasal fluid (by ELISA), the percentage of CD19 + B220 + IgA + lymphocytes and CD138 + IgA + plasma cells, and the mRNA expression of heavy α chain, J chain and pIgR. Moreover, the gene and protein expression of Th1 cytokines (TNFα, IL-2 and INF-γ), Th2 cytokines (IL-4 and IL-5) and Treg cytokines (IL-10 and TGFβ) were determined in nasal mucosa. The results show that acute stress generated a shift towards the dominance of an anti-inflammatory immune response (Th2 and Treg cytokines), evidenced by a significant rise in the amount of T cells that produce IL4, IL-5 and IL-10. This immune environment may favor IgA biosynthesis by CD138 + IgA + plasma cells, a process mediated mostly by glucocorticoids. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Brown, P H; Hickman, S
1986-02-25
Processing of the asparagine-linked oligosaccharides at the known glycosylation sites on the mu-chain of IgM secreted by MOPC 104E murine plasmacytoma cells was investigated. Oligosaccharides present on intracellular mu-chain precursors were of the high mannose type, remaining susceptible to endo-beta-N-acetylglucosaminidase H. However, only 26% of the radioactivity was released from [3H]mannose-labeled secreted IgM glycopeptides, consistent with the presence of high mannose-type and complex-type oligosaccharides on the mature mu-chain. [3H]Mannose-labeled cyanogen bromide glycopeptides derived from mu-chains of secreted IgM were isolated and analyzed to identify the glycopeptide containing the high mannose-type oligosaccharide from those containing complex-type structures. [3H]Mannose-labeled intracellular mu-chain cyanogen bromide glycopeptides corresponding to those from secreted IgM were isolated also, and the time courses of oligosaccharide processing at the individual glycosylation sites were determined. The major oligosaccharides on all intracellular mu-chain glycopeptides after 20 min of pulse labeling with [3H]mannose were identified as Man8GlcNAc2, Man9GlcNAc2, and Glc1Man9GlcNAc2. Processing of the oligosaccharide destined to become the high mannose-type structure on the mature protein was rapid. After 30 min of chase incubation the predominant structures of this oligosaccharide were Man5GlcNAc2 and Man6GlcNAc2 which were also identified on the high mannose-type oligosaccharide of the secreted mu-chain. In contrast, processing of oligosaccharides destined to become complex type was considerably slower. Even after 180 min of chase incubation, Man7GlcNAc2 and Man8GlcNAc2 were the predominant structures at some of these glycosylation sites. The isomeric structures of Man8GlcNAc2 obtained from all of the glycosylation sites were identical. Thus, the different rates of processing were not the result of a different sequence of alpha 1,2-mannose removal.
cDNA sequences and organization of IgM heavy chain genes in two holostean fish.
Wilson, M R; van Ravenstein, E; Miller, N W; Clem, L W; Middleton, D L; Warr, G W
1995-01-01
Immunoglobulin M heavy chain (mu) sequences of two holostean fish, the bowfin, Amia calva, and the longnose gar, Lepisosteus osseus, were amplified from spleen mRNA by RACE-PCR, cloned, and sequenced. Each mu chain showed the conserved four constant domain structure typical of a secreted mu chain. Southern blot analyses with specific heavy chain variable (VH) and constant (CH) region probes suggest that both fish possess an IgH locus that resembles that of the teleosts, amphibians, and mammals in its organization. The overall sequence similarity of gar and bowfin mu chains was 60% and 48% at the nucleotide and amino acid levels, respectively, while similarity to the mu chains of teleosts and elasmobranchs was lower. The bowfin mu chain possesses a distinctive proline-rich sequence at the C mu 1/C mu 2 boundary; a shorter proline-rich sequence is present at this position in the gar mu chain. Both gar and bowfin show, in their C mu 4 sequences, motifs that could serve as cryptic splice donor sites for the production of mRNA encoding the membrane-bound form of the mu chains, and the bowfin also shows a potential cryptic splice donor site in the C mu 3 exon.
Rassenti, Laura Z; Huynh, Lang; Toy, Tracy L; Chen, Liguang; Keating, Michael J; Gribben, John G; Neuberg, Donna S; Flinn, Ian W; Rai, Kanti R; Byrd, John C; Kay, Neil E; Greaves, Andrew; Weiss, Arthur; Kipps, Thomas J
2004-08-26
The course of chronic lymphocytic leukemia (CLL) is variable. In aggressive disease, the CLL cells usually express an unmutated immunoglobulin heavy-chain variable-region gene (IgV(H)) and the 70-kD zeta-associated protein (ZAP-70), whereas in indolent disease, the CLL cells usually express mutated IgV(H) but lack expression of ZAP-70. We evaluated the CLL B cells from 307 patients with CLL for ZAP-70 and mutations in the rearranged IgV(H) gene. We then investigated the association between the results and the time from diagnosis to initial therapy. We found that ZAP-70 was expressed above a defined threshold level in 117 of the 164 patients with an unmutated IgV(H) gene (71 percent), but in only 24 of the 143 patients with a mutated IgV(H) gene (17 percent, P<0.001). Among the patients with ZAP-70-positive CLL cells, the median time from diagnosis to initial therapy in those who had an unmutated IgV(H) gene (2.8 years) was not significantly different from the median time in those who had a mutated IgV(H) gene (4.2 years, P=0.07). However, the median time from diagnosis to initial treatment in each of these groups was significantly shorter than the time in patients with ZAP-70-negative CLL cells who had either mutated or unmutated IgV(H) genes (P<0.001). The median time from diagnosis to initial therapy among patients who did not have ZAP-70 was 11.0 years in those with a mutated IgV(H) gene and 7.1 years in those with an unmutated IgV(H) gene (P<0.001). Although the presence of an unmutated IgV(H) gene is strongly associated with the expression of ZAP-70, ZAP-70 is a stronger predictor of the need for treatment in B-cell CLL. Copyright 2004 Massachusetts Medical Society
Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs)
Maass, David R.; Sepulveda, Jorge; Pernthaner, Anton; Shoemaker, Charles B.
2007-01-01
Recombinant single domain antibody fragments (VHHs) that derive from the unusual camelid heavy chain only IgG class (HCAbs) have many favourable properties compared with single-chain antibodies prepared from conventional IgG. As a result, VHHs have become widely used as binding reagents and are beginning to show potential as therapeutic agents. To date, the source of VHH genetic material has been camels and llamas despite their large size and limited availability. Here we demonstrate that the smaller, more tractable and widely available alpaca is an excellent source of VHH coding DNA. Alpaca sera IgG consists of about 50% HCAbs, mostly of the short-hinge variety. Sequencing of DNA encoding more than 50 random VHH and hinge domains permitted the design of PCR primers that will amplify virtually all alpaca VHH coding DNAs for phage display library construction. Alpacas were immunized with ovine tumour necrosis factor α (TNFα) and a VHH phage display library was prepared from a lymph node that drains the sites of immunizations and successfully employed in the isolation of VHHs that bind and neutralize ovine TNFα. PMID:17568607
Falsely Elevated Plasma Creatinine Due to an Immunoglobulin M Paraprotein.
McGill, Mitchell R; Vijayan, Anitha; Trulock, Elbert P; Witt, Chad A; Kohler, Giselle D; Scott, Mitchell G
2016-11-01
The most common method for measuring plasma creatinine is based on its reaction with picric acid. However, enzymatic methods are becoming more popular due to improved specificity. We present a case of falsely elevated plasma creatinine values obtained by an enzymatic method that turned out to be due to a monoclonal immunoglobulin M (IgM) paraprotein. A 63-year-old woman evaluated for lung transplantation had falsely increased plasma creatinine levels (1.54-1.71mg/dL; corresponding to estimated glomerular filtration rates of 32-36 mL/min/1.73m 2 ) as measured by the Roche Creatinine plus enzymatic assay when compared with the picric acid-based procedure and several other enzymatic methods, which gave plasma creatinine values of 0.7 to 0.8mg/dL. Serum protein electrophoresis revealed an IgM κ light chain paraprotein. Removal of high-molecular-weight (>30kDa) proteins by ultrafiltration reduced the patient's plasma creatinine level by the Roche enzymatic method to 0.7mg/dL. Addition of the patient's immunoglobulin fraction to plasma from other patients with normal plasma creatinine levels resulted in values that were increased by 0.58 to 0.62mg/dL. Furthermore, removal of non-IgM immunoglobulins with protein G-coupled beads did not eliminate the interference from the patient's plasma. Taken together, these studies demonstrate that falsely elevated plasma creatinine values by the Roche enzymatic method can be due to an IgM paraprotein. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus)
Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng
2012-01-01
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 VH segments (94 potentially functional genes and 413 pseudogenes), 41 DH segments, six JH segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many VH pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 Vκ (111 potentially functional genes and 238 pseudogenes), three Jκ and one Cκ genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 Vλ (58 potentially functional genes and 84 pseudogenes) and 11 Jλ -Cλ clusters. Phylogenetic analysis suggested the guinea pig’s large germline VH gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves. PMID:22761756
A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.
Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah
2012-12-01
Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.
Baculovirus display of functional antibody Fab fragments.
Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki
2015-08-01
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark.
Malecek, Karolina; Brandman, Julie; Brodsky, Jennie E; Ohta, Yuko; Flajnik, Martin F; Hsu, Ellen
2005-12-15
We estimate there are approximately 15 IgM H chain loci in the nurse shark genome and have characterized one locus. It consists of one V, two D, and one J germline gene segments, and the constant (C) region can be distinguished from all of the others by a unique combination of restriction endonuclease sites in Cmu2. On the basis of these Cmu2 markers, 22 cDNA clones were selected from an epigonal organ cDNA library from the same individual; their C region sequences proved to be the same up to the polyadenylation site. With the identification of the corresponding germline gene segments, CDR3 from shark H chain rearrangements could be analyzed precisely, for the first time. Considerable diversity was generated by trimming and N addition at the three junctions and by varied recombination patterns of the two D gene segments. The cDNA sequences originated from independent rearrangements events, and most carried both single and contiguous substitutions. The 53 point mutations occurred with a bias for transition changes (53%), whereas the 78 tandem substitutions, mostly 2-4 bp long, do not (36%). The nature of the substitution patterns is the same as for mutants from six loci of two nurse shark L chain isotypes, showing that somatic hypermutation events are very similar at both H and L chain genes in this early vertebrate. The cis-regulatory elements targeting somatic hypermutation must have already existed in the ancestral Ig gene, before H and L chain divergence.
Langerak, A W; Molina, T J; Lavender, F L; Pearson, D; Flohr, T; Sambade, C; Schuuring, E; Al Saati, T; van Dongen, J J M; van Krieken, J H J M
2007-02-01
Lymphoproliferations are generally diagnosed via histomorphology and immunohistochemistry. Although mostly conclusive, occasionally the differential diagnosis between reactive lesions and malignant lymphomas is difficult. In such cases molecular clonality studies of immunoglobulin (Ig)/T-cell receptor (TCR) rearrangements can be useful. Here we address the issue of clonality assessment in 106 histologically defined reactive lesions, using the standardized BIOMED-2 Ig/TCR multiplex polymerase chain reaction (PCR) heteroduplex and GeneScan assays. Samples were reviewed nationally, except 10% random cases and cases with clonal results selected for additional international panel review. In total 75% (79/106) only showed polyclonal Ig/TCR targets (type I), whereas another 15% (16/106) represent probably polyclonal cases, with weak Ig/TCR (oligo)clonality in an otherwise polyclonal background (type II). Interestingly, in 10% (11/106) clear monoclonal Ig/TCR products were observed (types III/IV), which prompted further pathological review. Clonal cases included two missed lymphomas in national review and nine cases that could be explained as diagnostically difficult cases or probable lymphomas upon additional review. Our data show that the BIOMED-2 Ig/TCR multiplex PCR assays are very helpful in confirming the polyclonal character in the vast majority of reactive lesions. However, clonality detection in a minority should lead to detailed pathological review, including close interaction between pathologist and molecular biologist.
Ayuso, Rosalía; Sánchez-Garcia, Silvia; Lin, Jing; Fu, Zhiyan; Ibáñez, María Dolores; Carrillo, Teresa; Blanco, Carlos; Goldis, Marina; Bardina, Ludmila; Sastre, Joaquín; Sampson, Hugh A
2010-06-01
Shellfish allergy is a long-lasting disorder typically affecting adults. Despite its high prevalence, there is limited information about allergenic shrimp proteins and the epitopes implicated in such allergic reactions. We sought to identify the IgE-binding epitopes of the 4 shrimp allergens and to characterize epitope recognition profiles of children and adults with shrimp allergy. Fifty-three subjects, 34 children and 19 adults, were selected with immediate allergic reactions to shrimp, increased shrimp-specific serum IgE levels, and positive immunoblot binding to shrimp. Study subjects and 7 nonatopic control subjects were tested by means of peptide microarray for IgE binding with synthetic overlapping peptides spanning the sequences of Litopenaeus vannamei shrimp tropomyosin, arginine kinase (AK), myosin light chain (MLC), and sarcoplasmic calcium-binding protein (SCP). The Wilcoxon test was used to determine significant differences in z scores between patients and control subjects. The median shrimp IgE level was 4-fold higher in children than in adults (47 vs 12.5 kU(A)/L). The frequency of allergen recognition was higher in children (tropomyosin, 81% [94% for children and 61% for adults]; MLC, 57% [70% for children and 31% for adults]; AK, 51% [67% for children and 21% for adults]; and SCP, 45% [59% for children and 21% for adults]), whereas control subjects showed negligible binding. Seven IgE-binding regions were identified in tropomyosin by means of peptide microarray, confirming previously identified shrimp epitopes. In addition, 3 new epitopes were identified in tropomyosin (epitopes 1, 3, and 5b-c), 5 epitopes were identified in MLC, 3 epitopes were identified in SCP, and 7 epitopes were identified in AK. Interestingly, frequency of individual epitope recognition, as well as intensity of IgE binding, was significantly greater in children than in adults for all 4 proteins. Children with shrimp allergy have greater shrimp-specific IgE antibody levels and show more intense binding to shrimp peptides and greater epitope diversity than adults. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene
Esteves, Pedro J.; Knight, Katherine L.
2017-01-01
Although IgD first appeared, along with IgM, in the cartilaginous fishes and has been retained throughout subsequent vertebrate evolution, it has been lost in a diverse group of vertebrate species. We previously showed that, unlike vertebrates that express IgD, the rabbit lacks an IgD (Cδ) gene within 13.5 kb downstream of the IgM gene. We report here that, by conducting BLAST searches of rabbit Ig heavy chain genomic DNA with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene approximately 21 kb downstream of the IgM gene. The remnant Cδ locus lacks the δCH1 and hinge exons, but contains truncated δCH2 and δCH3 exons, as well as largely intact, but non-functional, secretory and transmembrane exons. In addition, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago. PMID:28832642
Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis.
Rižner, Tea Lanišnik
2014-01-01
This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG and IgM are studied using electrophoretic methods. Through SDS-PAGE analysis under reducing conditions, the students determine the number and molecular masses of the polypeptide chains, while through SDS-PAGE under nonreducing conditions, the students assess the oligomerization of these Ig molecules. The aims of this class are to expand upon the knowledge and understanding of the Ig structure that the students have gained from classroom lectures. The combination of this molecular visualization of the Ig molecules and the SDS-PAGE experimentation ensures variety in the teaching techniques, while the implication of the Ig molecules in human disease promotes interest for biomedical students. © 2014 by The International Union of Biochemistry and Molecular Biology.
Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong
2015-07-01
The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (p<0.05). The weights of their liver and gizzard were similar but the weights of the thymus and bursa of fabricius (F) were higher in groups T1 and T2 (p<0.05). It was observed that groups T1 and T2 displayed higher concentrations of blood triglyceride, total cholesterol, HDL-cholesterol and blood sugar as compared to T3 and T4; however LDL-cholesterol level was higher in groups T3 and T4 (p<0.05). T1 and T2 displayed higher levels of immunity substances such as IgG, IgAand IgM as compared to T3 and T4, but the blood level of corticosterone was lower in groups T1 and T2 (p<0.05). Ti and T2 contained higher amount of fecal Lactobacill as compared to T3 and T4; howeverT3 and T4 contained higher amount of fecal E. coli, total aerobic bacteria and coliform bacteria (p<0.05). Groups T1 and T2 displayed higher concentrations of cecal total short chain fatty acids, acetic acid and propionic acid but groups T3 and T4 displayed higher concentrations of butyric acid, isobutyric acid, valeric acid and isovaleric acid (p<0.05). The present study reports novel results such that the supply of extreme heat stress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.
Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J.; Arntzen, Charles J.
2010-01-01
Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of heterooligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the “competing” nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al. 2009). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al. 2000) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for heterooligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a significant advance in transient expression technology for antibody production in plants. PMID:20047189
The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization.
Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P; Mirokhin, Yuri A; Tchekhovskoi, Dmitrii V; Bukhari, Tallat H; Stein, Stephen E
2018-04-01
We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins.
The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization
Dong, Qian; Liang, Yuxue; Yan, Xinjian; Markey, Sanford P.; Mirokhin, Yuri A.; Tchekhovskoi, Dmitrii V.; Bukhari, Tallat H.; Stein, Stephen E.
2018-01-01
ABSTRACT We describe the creation of a mass spectral library composed of all identifiable spectra derived from the tryptic digest of the NISTmAb IgG1κ. The library is a unique reference spectral collection developed from over six million peptide-spectrum matches acquired by liquid chromatography-mass spectrometry (LC-MS) over a wide range of collision energy. Conventional one-dimensional (1D) LC-MS was used for various digestion conditions and 20- and 24-fraction two-dimensional (2D) LC-MS studies permitted in-depth analyses of single digests. Computer methods were developed for automated analysis of LC-MS isotopic clusters to determine the attributes for all ions detected in the 1D and 2D studies. The library contains a selection of over 12,600 high-quality tandem spectra of more than 3,300 peptide ions identified and validated by accurate mass, differential elution pattern, and expected peptide classes in peptide map experiments. These include a variety of biologically modified peptide spectra involving glycosylated, oxidized, deamidated, glycated, and N/C-terminal modified peptides, as well as artifacts. A complete glycation profile was obtained for the NISTmAb with spectra for 58% and 100% of all possible glycation sites in the heavy and light chains, respectively. The site-specific quantification of methionine oxidation in the protein is described. The utility of this reference library is demonstrated by the analysis of a commercial monoclonal antibody (adalimumab, Humira®), where 691 peptide ion spectra are identifiable in the constant regions, accounting for 60% coverage for both heavy and light chains. The NIST reference library platform may be used as a tool for facile identification of the primary sequence and post-translational modifications, as well as the recognition of LC-MS method-induced artifacts for human and recombinant IgG antibodies. Its development also provides a general method for creating comprehensive peptide libraries of individual proteins. PMID:29425077
Immunoglobulin (Gm and Km) allotypes in nine endogamous groups of West Bengal, India.
Chakraborty, R; Walter, H; Sauber, P; Mukherjee, B N; Malhotra, K C; Banerjee, S; Roy, M
1987-01-01
Blood samples from 898 individuals of nine endogamous groups of West Bengal, India were typed for determining the haplotypic structure in the gamma-light chain (Gm) and kappa-light chain (Km) of immunoglobulin (IgG). The Gm haplotype frequencies detected by Glm (1), Glm (2) and G3m (5) markers suggest that in this eastern state of India there is considerable variation of frequencies of the typical Mongoloid haplotype Gm1,5, which shows a high incidence in Rajbanshi, Rabha, Garo and Lodha groups. On the contrary, this haplotype is probably absent in the high caste groups, Rarhi Brahmin and Vaidya, and is relatively infrequent in Jalia Kaibarta, a scheduled caste of the south-western part of the state. The Km1 allele is also high in frequency among Rajbanshi, Rabha, Garo and Munda in comparison with Rarhi Brahmin and Vaidya, suggesting the former four groups' strong Mongoloid affiliation. This survey signifies that there is considerable variation in the extent of Mongoloid admixture in Bengali populations. Such admixture is not restricted in specific social class either. It further demonstrates that heterogeneity of the genetic structure of Bengali populations do not correspond to the present social ranking on the basis of caste hierarchy.
Sheikholeslami, M R; Jilani, I; Keating, M; Uyeji, J; Chen, K; Kantarjian, H; O'Brien, S; Giles, F; Albitar, M
2006-07-15
Lack of immunoglobulin heavy chain genes (IgV(H)) mutation in patients with chronic lymphocytic leukemia (CLL) is associated with rapid disease progression and shorter survival. The zeta-chain (T-cell receptor) associated protein kinase 70 kDa (ZAP-70) has been reported to be a surrogate marker for IgV(H) mutation status, and its expression in leukemic cells correlates with unmutated IgV(H). However, ZAP-70 detection by flow cytometry varies significantly dependant on the antibodies used, the method of performing the assay, and the condition of the cells in the specimen. The clinical value of ZAP-70 testing when samples are shipped under poorly controlled conditions is not known. Furthermore, testing in a research environment may differ from testing in a routine clinical laboratory. We validated an assay for ZAP-70 by comparing results with clinical outcome and the mutation status of the IgV(H). Using stored samples, we show significant correlation between ZAP-70 expression and clinical outcome as well as IgV(H) mutation at a cut-off point of 15%. While positive samples (>15% positivity) remain positive when kept in the laboratory environment for 48 h after initial testing, results obtained from samples from CLL patients tested after shipping at room temperature for routine testing showed no correlation with IgV(H) mutation status when 15% cut-off was used. In these samples, cut-point of 10% correlated with the IgV(H) mutation (P = 0.0001). This data suggests that although ZAP-70 positivity correlates with IgV(H) mutation status and survival, variations in sample handling and preparation may influence results. We show that IgV(H) mutation results, unlike ZAP-70 remain correlated with CD38 expression and beta-2 microglobulin in shipped samples, and ZAP-70 testing should not be used as the sole criterion for stratifying patients for therapy. (c) 2006 International Society for Analytical Cytology.
Kirkeby, Line; Rasmussen, Trine Tang; Reinholdt, Jesper; Kilian, Mogens
2000-01-01
Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro. Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11 healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and, subsequently, concentrations in undiluted secretions could thereby be calculated. IgA, mainly in the secretory form, was found by enzyme-linked immunosorbent assay to be the dominant isotype in all subjects, and the vast majority of IgA (median, 91%) was of the A1 subclass, corroborating results of previous analyses at the level of immunoglobulin-producing cells. Levels of serum-type immunoglobulins were low, except for four subjects in whom levels of IgG corresponded to 20 to 66% of total IgA. Cumulative levels of IgA, IgG, and IgM in undiluted secretions ranged from 260 to 2,494 (median, 777) μg ml−1. IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, or Streptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 × 103 to 7.2 × 106 CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, α-chain fragments characteristic of IgA1 protease activity were not detected in secretions from any subject by immunoblotting. Neutralizing antibodies to IgA1 proteases of autologous isolates were detected in secretions from five of the seven subjects but not in those from two subjects harboring IgA1 protease-producing S. mitis biovar 1. α-chain fragments different from Fcα and Fdα were detected in some samples, possibly reflecting nonspecific proteolytic activity of microbial or host origin. These results add to previous evidence for a role of secretory immunity in the defense of the nasal mucosa but do not help identify conditions under which bacterial IgA1 proteases may interfere with this defense. PMID:10618273
Matheson, Louise S; Bolland, Daniel J; Chovanec, Peter; Krueger, Felix; Andrews, Simon; Koohy, Hashem; Corcoran, Anne E
2017-01-01
V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa ( Igκ ) light chain recombination follows immunoglobulin heavy chain ( Igh ) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh , as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations.
Matheson, Louise S.; Bolland, Daniel J.; Chovanec, Peter; Krueger, Felix; Andrews, Simon; Koohy, Hashem; Corcoran, Anne E.
2017-01-01
V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations. PMID:29204143
Rawstron, Andy C; Green, Michael J; Kuzmicki, Anita; Kennedy, Ben; Fenton, James A L; Evans, Paul A S; O'Connor, Sheila J M; Richards, Stephen J; Morgan, Gareth J; Jack, Andrew S; Hillmen, Peter
2002-07-15
Molecular and cellular markers associated with malignant disease are frequently identified in healthy individuals. The relationship between these markers and clinical disease is not clear, except where a neoplastic cell population can be identified as in myeloma/monoclonal gammopathies of undetermined significance (MGUS). We have used the distinctive phenotype of chronic lymphocytic leukemia (CLL) cells to determine whether low levels of these cells can be identified in individuals with normal complete blood counts. CLL cells were identified by 4-color flow cytometric analysis of CD19/CD5/CD79b/CD20 expression in 910 outpatients over 40 years old. These outpatients were age- and sex-matched to the general population with normal hematologic parameters and no evident history of malignant disease. CLL phenotype cells were detectable in 3.5% of individuals at low level (median, 0.013; range, 0.002- 1.458 x 10(9) cells/L), and represented a minority of B lymphocytes (median, 11%; range, 3%-95%). Monoclonality was demonstrated by immunoglobulin light-chain restriction in all cases with CLL phenotype cells present and confirmed in a subset of cases by consensus-primer IgH-polymerase chain reaction. As in clinical disease, CLL phenotype cells were detected with a higher frequency in men (male-to-female ratio, 1.9:1) and elderly individuals (2.1% of 40- to 59-year-olds versus 5.0% of 60- to 89-year-olds, P =.01). The neoplastic cells were identical to good-prognosis CLL, being CD5+23+20(wk)79b(wk)11a(-)22(wk)sIg(wk)CD38-, and where assessed had a high degree (4.8%-6.6%) of IgH somatic hypermutation. The monoclonal CLL phenotype cells present in otherwise healthy individuals may represent a very early stage of indolent CLL and should be useful in elucidating the mechanisms of leukemogenesis.
A peptide extension dictates IgM assembly.
Pasalic, Dzana; Weber, Benedikt; Giannone, Chiara; Anelli, Tiziana; Müller, Roger; Fagioli, Claudio; Felkl, Manuel; John, Christine; Mossuto, Maria Francesca; Becker, Christian F W; Sitia, Roberto; Buchner, Johannes
2017-10-10
Professional secretory cells can produce large amounts of high-quality complex molecules, including IgM antibodies. Owing to their multivalency, polymeric IgM antibodies provide an efficient first-line of defense against pathogens. To decipher the mechanisms of IgM assembly, we investigated its biosynthesis in living cells and faithfully reconstituted the underlying processes in vitro. We find that a conserved peptide extension at the C-terminal end of the IgM heavy (Ig-μ) chains, termed the tailpiece, is necessary and sufficient to establish the correct geometry. Alanine scanning revealed that hydrophobic amino acids in the first half of the tailpiece contain essential information for generating the correct topology. Assembly is triggered by the formation of a disulfide bond linking two tailpieces. This induces conformational changes in the tailpiece and the adjacent domain, which drive further polymerization. Thus, the biogenesis of large and topologically challenging IgM complexes is dictated by a local conformational switch in a peptide extension.
Walther, Stefanie; Tietze, Manfred; Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11-47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism.
Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S.
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11–47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism. PMID:27828971
Shen, Liming; Chen, Youjiao; Yang, Aochu; Chen, Cheng; Liao, Liping; Li, Shuiming; Ying, Ming; Tian, Jing; Liu, Qiong; Ni, Jiazuan
2016-04-12
Oxidative stress is a key event in the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). To investigate the role of oxidative stress in AD and to search for potential biomarkers in peripheral blood, serums were collected in this study from the 3-, 6-, and 12-month-old triple transgenic AD mice (3×Tg-AD mice) and the age- and sex-matched non-transgenic (non-Tg) littermates. The serum oxidized proteins were quantified by slot-blot analysis and enzyme-linked immunosorbent assay (ELISA) to investigate the total levels of serum protein carbonyl groups. Western blotting, in conjunction with two-dimensional gel electrophoresis (2D-Oxyblot), was employed to identify and quantify the specifically-carbonylated proteins in the serum of 3×Tg-AD mice. The results showed that the levels of serum protein carbonyls were increased in the three month old 3×Tg-AD mice compared with the non-Tg control mice, whereas no significant differences were observed in the six and 12 months old AD mice, suggesting that oxidative stress is an early event in AD progression. With the application of 2D-Oxyblot analysis, (immunoglobin) Ig gamma-2B chain C region (IGH-3), Ig lambda-2 chain C region (IGLC2), Ig kappa chain C region (IGKC), and Ig kappa chain V-V region HP R16.7 were identified as significantly oxidized proteins compared with the control. Among them IGH-3 and IGKC were validated via immunoprecipitation and Western blot analysis. Identification of oxidized proteins in the serums of 3×Tg-AD mice can not only reveal potential roles of those proteins in the pathogenesis of AD but also provide potential biomarkers of AD at the early stage.
Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations
West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.
2012-01-01
The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046
Multiplex polymerase chain reaction test for the diagnosis of acute viral hepatitis A.
Heo, Nae-Yun; Lim, Young-Suk; An, Jihyun; Ko, Sun-Young; Oh, Heung-Bum
2012-12-01
The early diagnosis of acute hepatitis A (AHA) is hindered because serum IgM against hepatitis A virus (HAV) can yield false-negative results during the window period. This study evaluated the diagnostic accuracy of a polymerase chain reaction (PCR) kit for HAV RNA for the diagnosis of AHA. Samples were collected from 136 patients with acute severe hepatitis at their admission to Asan Medical Center between June 2010 and July 2010. Samples were analyzed for serum IgM anti-HAV using an immunoassay test and for qualitative HAV RNA using the Magicplex HepaTrio PCR test kit. The diagnostic accuracies of these methods were tested on the basis of clinical and laboratory diagnoses of AHA. The concordance rate and kappa value between IgM anti-HAV and HAV RNA PCR were 88.2% and 0.707, respectively. For the diagnosis of AHA, the sensitivity and specificity of IgM anti-HAV were 90.7% and 100%, respectively, when an "equivocal" result was regarded as positive; and 79.1% and 100%, respectively, when an "equivocal" result was regarded as negative. The sensitivity and specificity of HAV RNA PCR were 81.4% and 100%, respectively. All four patients with negative IgM anti-HAV and positive HAV RNA PCR results and all four patients with equivocal IgM anti-HAV RNA and positive HAV RNA PCR results were eventually diagnosed with AHA. The qualitative HAV RNA PCR test has an equivalent diagnostic accuracy for AHA compared to IgM anti-HAV and may be more sensitive during the window period.
Myosin light chains: Teaching old dogs new tricks
Heissler, Sarah M; Sellers, James R
2014-01-01
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737
Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari
2017-01-01
Objective: It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti-Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). Materials and Methods: The activity of IgY anti-M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). Results: IgY anti-M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti-M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis. Conclusions: We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti-M. tuberculosis, stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. SUMMARY Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti-Mycobacterium tuberculosis complexIgY anti-M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti-M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosisThe increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti-M. tuberculosis: Immunoglobulin Y anti-Mycobacterium tuberculosis; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells. PMID:29333035
Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari
2017-12-01
It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti- Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). The activity of IgY anti- M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). IgY anti- M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti- M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti- M. tuberculosis . We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti- M. tuberculosis , stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti- Mycobacterium tuberculosis complexIgY anti- M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti- M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis The increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti- M . tuberculosis: Immunoglobulin Y anti- Mycobacterium tuberculosis ; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells.
USDA-ARS?s Scientific Manuscript database
The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...
Development of a security system for assisted reproductive technology (ART).
Hur, Yong Soo; Ryu, Eun Kyung; Park, Sung Jin; Yoon, Jeong; Yoon, San Hyun; Yang, Gi Deok; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho
2015-01-01
In the field of assisted reproductive technology (ART), medical accidents can result in serious legal and social consequences. This study was conducted to develop a security system (called IVF-guardian; IG) that could prevent mismatching or mix-ups in ART. A software program was developed in collaboration with outside computer programmers. A quick response (QR) code was used to identify the patients, gametes and embryos in a format that was printed on a label. There was a possibility that embryo development could be affected by volatile organic components (VOC) in the printing material and adhesive material in the label paper. Further, LED light was used as the light source to recognize the QR code. Using mouse embryos, the effects of the label paper and LED light were examined. The stability of IG was assessed when applied in clinical practice after developing the system. A total of 104 cycles formed the study group, and 82 cycles (from patients who did not want to use IG because of safety concerns and lack of confidence in the security system) to which IG was not applied comprised the control group. Many of the label paper samples were toxic to mouse embryo development. We selected a particular label paper (P touch label) that did not affect mouse embryo development. The LED lights were non-toxic to the development of the mouse embryos under any experimental conditions. There were no differences in the clinical pregnancy rates between the IG-applied group and the control group (40/104 = 38.5 % and 30/82 = 36.6 %, respectively). The application of IG in clinical practice did not affect human embryo development or clinical outcomes. The use of IG reduces the misspelling of patient names. Using IG, there was a disadvantage in that each treatment step became more complicated, but the medical staff improved and became sufficiently confident in ART to offset this disadvantage. Patients who received treatment using the IG system also went through a somewhat tedious process, but there were no complaints. These patients gained further confidence in the practitioners over the course of treatment.
LASIC: Light Activated Site-Specific Conjugation of Native IgGs.
Hui, James Z; Tamsen, Shereen; Song, Yang; Tsourkas, Andrew
2015-08-19
Numerous biological applications, from diagnostic assays to immunotherapies, rely on the use of antibody-conjugates. The efficacy of these conjugates can be significantly influenced by the site at which Immunoglobulin G (IgG) is modified. Current methods that provide control over the conjugation site, however, suffer from a number of shortfalls and often require large investments of time and cost. We have developed a novel adapter protein that, when activated by long wavelength UV light, can covalently and site-specifically label the Fc region of nearly any native, full-length IgG, including all human IgG subclasses. Labeling occurs with unprecedented efficiency and speed (>90% after 30 min), with no effect on IgG affinity. The adapter domain can be bacterially expressed and customized to contain a variety of moieties (e.g., biotin, azide, fluorophores), making reliable and efficient conjugation of antibodies widely accessible to researchers at large.
Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.
Perols, Anna; Karlström, Amelie Eriksson
2014-03-19
Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
Li, Lingxiao; Wang, Tao; Sun, Yi; Cheng, Gang; Yang, Hui; Wei, Zhiguo; Wang, Ping; Hu, Xiaoxiang; Ren, Liming; Meng, Qingyong; Zhang, Ran; Guo, Ying; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng
2012-10-15
IgY(ΔFc), containing only CH1 and CH2 domains, is expressed in the serum of some birds and reptiles, such as ducks and turtles. The duck IgY(ΔFc) is produced by the same υ gene that expresses the intact IgY form (CH1-4) using different transcriptional termination sites. In this study, we show that intact IgY and IgY(ΔFc) are encoded by distinct genes in the red-eared turtle (Trachemys scripta elegans). At least eight IgY and five IgY(ΔFc) transcripts were found in a single turtle. Together with Southern blotting, our data suggest that multiple genes encoding both IgY forms are present in the turtle genome. Both of the IgY forms were detected in the serum using rabbit polyclonal Abs. In addition, we show that multiple copies of the turtle δ gene are present in the genome and that alternative splicing is extensively involved in the generation of both the secretory and membrane-bound forms of the IgD H chain transcripts. Although a single μ gene was identified, the α gene was not identified in this species.
Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells
Bidgood, Susanna R.; Tam, Jerry C. H.; McEwan, William A.; Mallery, Donna L.; James, Leo C.
2014-01-01
IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA–virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment. PMID:25169018
Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells.
Bidgood, Susanna R; Tam, Jerry C H; McEwan, William A; Mallery, Donna L; James, Leo C
2014-09-16
IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA-virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment.
Immunoglobulin genomics in the guinea pig (Cavia porcellus).
Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng
2012-01-01
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.
Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E M; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E; Farooqui, Mohammed Z; Notkins, Abner L; Wiestner, Adrian; Aue, Georg
2015-11-05
Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330.
Sun, Clare; Tian, Xin; Lee, Yuh Shan; Gunti, Sreenivasulu; Lipsky, Andrew; Herman, Sarah E. M.; Salem, Dalia; Stetler-Stevenson, Maryalice; Yuan, Constance; Kardava, Lela; Moir, Susan; Maric, Irina; Valdez, Janet; Soto, Susan; Marti, Gerald E.; Farooqui, Mohammed Z.; Notkins, Abner L.; Aue, Georg
2015-01-01
Chronic lymphocytic leukemia (CLL) is characterized by immune dysregulation, often including hypogammaglobulinemia, which contributes to a high rate of infections and morbidity. Ibrutinib, a covalent inhibitor of Bruton tyrosine kinase (BTK), inhibits B-cell receptor signaling and is an effective, US Food and Drug Administration (FDA)-approved treatment of CLL. Inactivating germline mutations in BTK cause a severe B-cell defect and agammaglobulinemia. Therefore, we assessed the impact of ibrutinib on immunoglobulin levels, normal B cells, and infection rate in patients with CLL treated with single-agent ibrutinib on a phase 2 investigator-initiated trial. Consistent with previous reports, immunoglobulin G (IgG) levels remained stable during the first 6 months on treatment, but decreased thereafter. In contrast, there were a transient increase in IgM and a sustained increase in IgA (median increase 45% at 12 months, P < .0001). To distinguish the effects on clonal B cells from normal B cells, we measured serum free light chains (FLCs). In κ-clonal CLL cases, clonal (κ) FLCs were elevated at baseline and normalized by 6 months. Nonclonal (λ) FLCs, which were often depressed at baseline, increased, suggesting the recovery of normal B cells. Consistently, we observed normal B-cell precursors in the bone marrow and an increase in normal B-cell numbers in the peripheral blood. Patients with superior immune reconstitution, as defined by an increase in serum IgA of ≥50% from baseline to 12 months, had a significantly lower rate of infections (P = .03). These data indicate that ibrutinib allows for a clinically meaningful recovery of humoral immune function in patients with CLL. This trial was registered at www.clinicaltrials.gov as #NCT015007330. PMID:26337493
Ramsland, Paul A.; Terzyan, Simon S.; Cloud, Gwendolyn; Bourne, Christina R.; Farrugia, William; Tribbick, Gordon; Geysen, H. Mario; Moomaw, Carolyn R.; Slaughter, Clive A.; Edmundson, Allen B.
2006-01-01
The 2.6 Å (1 Å=0.1 nm) resolution structure has been determined for the glycosylated Fab (fragment antigen binding) of an IgM (Yvo) obtained from a subject with Waldenström's macroglobulinaemia. Dynamic light scattering was used to estimate the gel point and monitor the formation of an ordered hydroscopic gel of Yvo IgM upon cooling. If a cryoglobulin forms gels in peripheral tissues and organs, the associated swelling and damage to microvasculature can result in considerable morbidity and mortality. The three-dimensional structure of the branched N-linked oligosaccharide associated with the CH1 domain (first constant domain of heavy chain) is reported. The carbohydrate may act to shield part of the lateral surface of the CH1 domain and crowd the junction between the CH1 and CH2 domains, thereby limiting the segmental flexibility of the Fab arms in intact Yvo IgM, especially at low temperatures. Recently, Yvo IgM was shown to have the properties of a naturally occurring proteolytic antibody [Paul, Karle, Planque, Taguchi, Salas, Nishiyama, Handy, Hunter, Edmundson and Hanson (2004) J. Biol. Chem. 279, 39611–39619; Planque, Bangale, Song, Karle, Taguchi, Poindexter, Bick, Edmundson, Nishiyama and Paul (2004) J. Biol Chem. 279, 14024–14032]. The Yvo protein displayed the ability to cleave, by a nucleophilic mechanism, the amide bonds of a variety of serine protease substrates and the gp120 coat protein of HIV. An atypical serine, arginine and glutamate motif is located in the middle of the Yvo antigen-binding site and displays an overall geometry that mimics the classical serine, histidine and aspartate catalytic triad of serine proteases. Our present findings indicate that pre-existing or natural antibodies can utilize at least one novel strategy for the cleavage of peptide bonds. PMID:16422668
Shaker, Ghada H.; Melake, Nahla A.
2011-01-01
The large molecular size of antibodies is considered one major factor preventing them from becoming more efficient therapeutically. It is well established that all camelids have unique antibodies circulating in their blood called heavy-chain antibodies (HcAbs). Unlike antibodies from other species, these HcAbs contain a single variable domain and two constant domains (CH2 and CH3). HcAbs are a novel type of immunoglobulin-like, antigen binding protein with beneficial pharmacokinetic properties that are ideally suited to targeting cellular antigens for molecular imaging or therapeutic purposes. Since the antigen-binding site of dromedary HcAb is comprised in one single domain, it was referred to as nanobody. In the present work, the different IgG subclasses from immunized camel (Camelus dromedairus) were purified employing their different affinity for protein A column (PA) and protein G column (PG). Characterization of IgG subclasses was done by using 12% SDS–PAGE under reducing conditions. Protein bands were visualized after staining with Coomassie Brilliant Blue, showing two bands at 50 kDa and 30 kDa in case of IgG1 while IgG2 and IgG3 produce only one band at 46 kDa and 43 kDa respectively. The induction of apoptosis by either conventional or nanobodies was evaluated on two different cell lines, Colon and Hepatic cancer cell (HCT116 and HepG2), using the comet assay. Induced apoptosis were confirmed by visualizing DNA fragmentation bands on 2% agarose gel, and the gel was photographed under UV light. This study demonstrates the successful targeting of human cancer colon cell lines by nanobodies in vitro. It may open perspectives for their future use as tumor target vehicle, due to their small size, soluble behavior and they interact with epitopes that are less antigenic for conventional antibodies. PMID:23960797
Biochemical nature of Russell Bodies
Francesca Mossuto, Maria; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Maria Doglia, Silvia; Sitia, Roberto
2015-01-01
Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB. PMID:26223695
Biochemical nature of Russell Bodies.
Mossuto, Maria Francesca; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Doglia, Silvia Maria; Sitia, Roberto
2015-07-30
Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB.
Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers.
Martel, Cyril Jean-Marie; Aasted, Bent
2009-12-15
Ferret IgG and IgM were purified from normal serum, while ferret IgA was purified from bile. The estimated molecular weights of the immunoglobulin gamma, alpha and mu heavy chains were found to be 54kDa, 69kDa and 83kDa, respectively. For immunological (ELISA) quantification of ferret immunoglobulins, we identified and characterized polyclonal antibodies towards ferret IgG, IgM and IgA. We also identified 22 monoclonal antibodies (mAbs) raised mostly against human CD markers which cross-reacted with ferret leukocytes. These antibodies were originally specific against human CD8, CD9, CD14, CD18, CD25, CD29, CD32, CD44, CD61, CD71, CD79b, CD88, CD104, CD172a and mink CD3. Finally, we identified 4 cross-reacting mAbs with specificities against ferret interferon-gamma, TNF-alpha, interleukin-4 and interleukin-8.
Ayliffe, Michael John; Behrens, Judith; Stern, Simon; Sumar, Nazira
2012-08-01
This study investigated bone marrow plasma cell subsets and monoclonal free light chain concentrations in blood of monoclonal gammopathy patients. 54 bone marrow samples were stained by double immunofluorescence to enumerate cellular subsets making either intact monoclonal immunoglobulin or free light chains only. Blood taken at the same time was assayed for free light chains by an automated immunoassay. Patients were assigned to three cellular population categories: single intact monoclonal immunoglobulin (59%), dual monoclonal immunoglobulin and free light chain only (31%), or single free light chain only (9%). The median affected free light chain concentration of each group was 75 mg/l, 903 mg/l and 3320 mg/l, respectively, but with substantial overlap. In myeloma patients the difference in serum free light chain concentrations between patients with free light chain only marrow cells and those without was statistically significant. Serum free light chain levels >600 mg/l result mostly from marrow cells restricted to free light chain production.
Zhang, Zheng Z; Pannunzio, Nicholas R; Lu, Zhengfei; Hsu, Ellen; Yu, Kefei; Lieber, Michael R
2015-10-01
Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anitharaj, Velmurugan; Stephen, Selvaraj; Pradeep, Jothimani; Pooja, Pratheesh; Preethi, Sridharan
2017-01-01
Background: In the recent past, scrub typhus (ST) has been reported from different parts of India, based on Weil-Felix/enzyme-linked immunosorbent assay (ELISA)/indirect immunofluorescence assay (IFA). Molecular tests are applied only by a few researchers. Aims: Evaluation of a new commercial real time polymerase chain reaction (PCR) kit for molecular diagnosis of ST by comparing it with the commonly used IgM ELISA is our aim. Settings and Design: ST has been reported all over India including Puducherry and surrounding Tamil Nadu and identified as endemic for ST. This study was designed to correlate antibody detection by IgM ELISA and Orientia tsutsugamushi DNA in real time PCR. Materials and Methods: ST IgM ELISA (InBios Inc., USA) was carried out for 170 consecutive patients who presented with the symptoms of acute ST during 11 months (November, 2015– September, 2016). All 77 of these patients with IgM ELISA positivity and 49 of 93 IgM ELISA negative patients were subjected to real time PCR (Geno-Sen's ST real time PCR, Himachal Pradesh, India). Statistical Analysis: Statistical analysis for clinical and laboratory results was performed using IBM SPSS Statistics 17 for Windows (SPSS Inc., Chicago, USA). Chi-square test with Yates correction (Fisher's test) was employed for a small number of samples. Results and Conclusion: Among 77 suspected cases of acute ST with IgM ELISA positivity and 49 IgM negative patients, 42 and 7 were positive, respectively, for O. tsutsugamushi 56-kDa type-specific gene in real time PCR kit. Until ST IFA, the gold standard diagnostic test, is properly validated in India, diagnosis of acute ST will depend on both ELISA and quantitative PCR. PMID:28878522
Anitharaj, Velmurugan; Stephen, Selvaraj; Pradeep, Jothimani; Pooja, Pratheesh; Preethi, Sridharan
2017-01-01
In the recent past, scrub typhus (ST) has been reported from different parts of India, based on Weil-Felix/enzyme-linked immunosorbent assay (ELISA)/indirect immunofluorescence assay (IFA). Molecular tests are applied only by a few researchers. Evaluation of a new commercial real time polymerase chain reaction (PCR) kit for molecular diagnosis of ST by comparing it with the commonly used IgM ELISA is our aim. ST has been reported all over India including Puducherry and surrounding Tamil Nadu and identified as endemic for ST. This study was designed to correlate antibody detection by IgM ELISA and Orientia tsutsugamushi DNA in real time PCR. ST IgM ELISA (InBios Inc., USA) was carried out for 170 consecutive patients who presented with the symptoms of acute ST during 11 months (November, 2015- September, 2016). All 77 of these patients with IgM ELISA positivity and 49 of 93 IgM ELISA negative patients were subjected to real time PCR (Geno-Sen's ST real time PCR, Himachal Pradesh, India). Statistical analysis for clinical and laboratory results was performed using IBM SPSS Statistics 17 for Windows (SPSS Inc., Chicago, USA). Chi-square test with Yates correction (Fisher's test) was employed for a small number of samples. Among 77 suspected cases of acute ST with IgM ELISA positivity and 49 IgM negative patients, 42 and 7 were positive, respectively, for O. tsutsugamushi 56-kDa type-specific gene in real time PCR kit. Until ST IFA, the gold standard diagnostic test, is properly validated in India, diagnosis of acute ST will depend on both ELISA and quantitative PCR.
Leishmania Infection: Laboratory Diagnosing in the Absence of a “Gold Standard”
Rodríguez-Cortés, Alhelí; Ojeda, Ana; Francino, Olga; López-Fuertes, Laura; Timón, Marcos; Alberola, Jordi
2010-01-01
There is no gold standard for diagnosing leishmaniases. Our aim was to assess the operative validity of tests used in detecting Leishmania infection using samples from experimental infections, a reliable equivalent to the classic definition of gold standard. Without statistical differences, the highest sensitivity was achieved by protein A (ProtA), immunoglobulin (Ig)G2, indirect fluorescenece antibody test (IFAT), lymphocyte proliferation assay, quantitative real-time polymerase chain reaction of bone marrow (qPCR-BM), qPCR-Blood, and IgG; and the highest specificity by IgG1, IgM, IgA, qPCR-Blood, IgG, IgG2, and qPCR-BM. Maximum positive predictive value was obtained simultaneously by IgG2, qPCR-Blood, and IgG; and maximum negative predictive value by qPCR-BM. Best positive and negative likelihood ratios were obtained by IgG2. The test having the greatest, statistically significant, area under the receiver operating characteristics curve was IgG2 enzyme-linked immunosorbent assay (ELISA). Thus, according to the gold standard used, IFAT and qPCR are far from fulfilling the requirements to be considered gold standards, and the test showing the highest potential to detect Leishmania infection is Leishmania-specific ELISA IgG2. PMID:20134001
Leishmania infection: laboratory diagnosing in the absence of a "gold standard".
Rodríguez-Cortés, Alhelí; Ojeda, Ana; Francino, Olga; López-Fuertes, Laura; Timón, Marcos; Alberola, Jordi
2010-02-01
There is no gold standard for diagnosing leishmaniases. Our aim was to assess the operative validity of tests used in detecting Leishmania infection using samples from experimental infections, a reliable equivalent to the classic definition of gold standard. Without statistical differences, the highest sensitivity was achieved by protein A (ProtA), immunoglobulin (Ig)G2, indirect fluorescenece antibody test (IFAT), lymphocyte proliferation assay, quantitative real-time polymerase chain reaction of bone marrow (qPCR-BM), qPCR-Blood, and IgG; and the highest specificity by IgG1, IgM, IgA, qPCR-Blood, IgG, IgG2, and qPCR-BM. Maximum positive predictive value was obtained simultaneously by IgG2, qPCR-Blood, and IgG; and maximum negative predictive value by qPCR-BM. Best positive and negative likelihood ratios were obtained by IgG2. The test having the greatest, statistically significant, area under the receiver operating characteristics curve was IgG2 enzyme-linked immunosorbent assay (ELISA). Thus, according to the gold standard used, IFAT and qPCR are far from fulfilling the requirements to be considered gold standards, and the test showing the highest potential to detect Leishmania infection is Leishmania-specific ELISA IgG2.
Klaus, Tomasz; Bzowska, Monika; Kulesza, Małgorzata; Kabat, Agnieszka Martyna; Jemioła-Rzemińska, Małgorzata; Czaplicki, Dominik; Makuch, Krzysztof; Jucha, Jarosław; Karabasz, Alicja; Bereta, Joanna
2016-01-01
Mouse immunoglobulins M (IgMs) that recognize human blood group antigens induce haemagglutination and are used worldwide for diagnostic blood typing. Contrary to the current belief that IgGs are too small to simultaneously bind antigens on two different erythrocytes, we obtained agglutinating mouse IgG3 that recognized antigen B of the human ABO blood group system. Mouse IgG3 is an intriguing isotype that has the ability to form Fc-dependent oligomers. However, F(ab′)2 fragments of the IgG3 were sufficient to agglutinate type B red blood cells; therefore, IgG3-triggered agglutination did not require oligomerization. Molecular modelling indicated that mouse IgG3 has a larger range of Fab arms than other mouse IgG subclasses and that the unique properties of mouse IgG3 are likely due to the structure of its hinge region. With a focus on applications in diagnostics, we compared the stability of IgG3 and two IgMs in formulated blood typing reagents using an accelerated storage approach and differential scanning calorimetry. IgG3 was much more stable than IgMs. Interestingly, the rapid decrease in IgM activity was caused by aggregation of the molecules and a previously unknown posttranslational proteolytic processing of the μ heavy chain. Our data point to mouse IgG3 as a potent diagnostic tool. PMID:27484487
Extreme lymphocytosis with myelomonocytic morphology in a horse with diffuse large B-cell lymphoma.
Meichner, Kristina; Kraszeski, Blaire H; Durrant, Jessica R; Grindem, Carol B; Breuhaus, Babetta A; Moore, Peter F; Neel, Jennifer A; Linder, Keith E; Borst, Luke B; Fogle, Jonathan E; Tarigo, Jaime L
2017-03-01
An 11-year-old, 443-kg Haflinger mare was presented to the North Carolina State University Veterinary Teaching Hospital with a 2-week history of lethargy and a 3-day duration of anorexia, pyrexia, tachycardia, and ventral edema. Severe pitting edema, peripheral lymphadenopathy, and a caudal abdominal mass were noted on physical examination. An extreme leukocytosis (154.3 × 10 3 /μL) and microscopic hematologic findings suggestive of myelomonocytic leukemia were observed. Serum protein electrophoresis revealed a monoclonal gammopathy and urine protein electrophoresis revealed a monoclonal light chain proteinuria. Necropsy and histopathology confirmed widespread neoplastic infiltration in many organs with a heterogenous population of cells; there was no apparent evidence of bone marrow involvement. Immunohistochemistry confirmed presence of a majority of B cells with a limited antigen expression, admixed with a lower number of T cells. Molecular clonality analysis of IgH2, IgH3, and kappa-deleting element (KDE, B cell) on whole blood and KDE on infiltrated tissues revealed clonal rearrangements, and the KDE intron clones that amplified in blood and in infiltrated tissue were identical. In contrast, the clonality analysis of T-cell receptor γ revealed no clonality on blood cells and infiltrated tissues. In conjunction with the histopathologic changes, the lesion was interpreted to be composed of neoplastic B cells with a reactive T-cell population. Polymerase chain reaction testing for equine herpes virus 5 was negative. The final diagnosis was diffuse large B-cell lymphoma with a marked hematogenous component. © 2016 American Society for Veterinary Clinical Pathology.
Chen, Zhaochun; Chumakov, Konstantin; Dragunsky, Eugenia; Kouiavskaia, Diana; Makiya, Michelle; Neverov, Alexander; Rezapkin, Gennady; Sebrell, Andrew; Purcell, Robert
2011-01-01
Six poliovirus-neutralizing Fabs were recovered from a combinatorial Fab phage display library constructed from bone marrow-derived lymphocytes of immunized chimpanzees. The chimeric chimpanzee-human full-length IgGs (hereinafter called monoclonal antibodies [MAbs]) were generated by combining a chimpanzee IgG light chain and a variable domain of heavy chain with a human constant Fc region. The six MAbs neutralized vaccine strains and virulent strains of poliovirus. Five MAbs were serotype specific, while one MAb cross-neutralized serotypes 1 and 2. Epitope mapping performed by selecting and sequencing antibody-resistant viral variants indicated that the cross-neutralizing MAb bound between antigenic sites 1 and 2, thereby covering the canyon region containing the receptor-binding site. Another serotype 1-specific MAb recognized a region located between antigenic sites 2 and 3 that included parts of capsid proteins VP1 and VP3. Both serotype 2-specific antibodies recognized antigenic site 1. No escape mutants to serotype 3-specific MAbs could be generated. The administration of a serotype 1-specific MAb to transgenic mice susceptible to poliovirus at a dose of 5 μg/mouse completely protected them from paralysis after challenge with a lethal dose of wild-type poliovirus. Moreover, MAb injection 6 or 12 h after virus infection provided significant protection. The MAbs described here could be tested in clinical trials to determine whether they might be useful for treatment of immunocompromised chronic virus excretors and for emergency protection of contacts of a paralytic poliomyelitis case. PMID:21345966
Fab-based bispecific antibody formats with robust biophysical properties and biological activity.
Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J
2015-01-01
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Fab-based bispecific antibody formats with robust biophysical properties and biological activity
Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J
2015-01-01
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity. PMID:25774965
Yamanaka, Atsushi; Pitaksajjakul, Pannamthip; Ramasoota, Pongrama; Konishi, Eiji
2015-11-09
Most candidate dengue vaccines currently under development induce neutralizing antibodies, which are considered important for immunoprotection. However, the concomitant induction of infection-enhancing antibodies is an unavoidable concern. In contrast, a neutralizing antibody developed for passive immunotherapy has been engineered to eliminate its enhancing activity. Therefore, a strategy for the long-term expression of enhancing-activity-free neutralizing antibodies may resolve this concern. A mouse monoclonal antibody, 7F4, of the IgG3 subclass and with no detectable enhancing activity, was selected as the model neutralizing antibody to evaluate the potential of this strategy. Equal amounts of commercial vector (pFUSE)-based plasmids containing 7F4 heavy (H)- or light (L)-chain variable region genes were mixed and used for the cotransfection of 293T cells and co-delivery into ICR and BALB/c mice. The recombinant plasmids were designed to express IgG2b or IgG3 subclass antibodies (p7F4G2b or p7F4G3, respectively). 293T cells transfected with 2 μg of p7F4G2b or p7F4G3 produced approximately 15,000 or 800 ng/ml IgG in the culture fluids, respectively. The dose is expressed as the total amount of H- and L-chain plasmids. Neutralizing antibody was detected dose-dependently in ICR mice inoculated with 50-200 μg of p7F4G2b. A 1:2 dilution of sera from ICR and BALB/c mice inoculated with 100 μg of p7F4G3 showed average plaque reduction levels of >70% on day 3 and >90% on days 5-9. BALB/c mice maintained detectable neutralizing antibody for at least 3 months. The neutralizing antibody expressed by p7F4G3 in mice showed no enhancing activity. Although the expression of neutralizing antibodies from immunoglobulin genes is a type of passive immunization, its durability can be utilized as a dengue vaccine strategy. This "proof-of-concept" study using a mouse model demonstrates that the enhancing-activity-free characteristic of this strategy augurs well for dengue vaccine development, although further improvement is required. Copyright © 2015 Elsevier Ltd. All rights reserved.
Salivary IgG subclasses in individuals with and without homozygous IGHG gene deletions.
Engström, P E; Norhagen, G; Osipova, L; Helal, A; Wiebe, V; Brusco, A; Carbonara, A O; Lefranc, G; Lefranc, M P
1996-01-01
In this study, the levels of salivary IgG1, IgG2, IgG3 and IgG4 from individuals with and without homozygous immunoglobulin heavy chain constant gene deletions were quantified by enzyme-linked immunosorbent assay (ELISA). To analyse the restriction of salivary IgG subclasses, we used unstimulated whole saliva and sera collected at the same time from individuals with homozygous gene deletions, two with G1 deletion, one with G4 deletion, six with both G2 and G4 deletions and from eight individuals without IGHG gene deletions and expressing all four IgG subclasses. The median values of salivary IgG from individuals with homozygous G1, or G4, or both G2 and G4 deletions, and from individuals expressing all four subclasses were 24.2 mg/l and 23.4 mg/l, respectively. The median values of serum IgG were 13.7 g/l and 15.9 g/l, respectively. Our results show that the salivary and serum IgG levels were both within the normal range in individuals with homozygous gene deletions of either G1, or G4, or both G2 and G4. PMID:8943711
A peptide extension dictates IgM assembly
Pasalic, Dzana; Weber, Benedikt; Giannone, Chiara; Anelli, Tiziana; Müller, Roger; Fagioli, Claudio; Felkl, Manuel; John, Christine; Mossuto, Maria Francesca; Sitia, Roberto; Buchner, Johannes
2017-01-01
Professional secretory cells can produce large amounts of high-quality complex molecules, including IgM antibodies. Owing to their multivalency, polymeric IgM antibodies provide an efficient first-line of defense against pathogens. To decipher the mechanisms of IgM assembly, we investigated its biosynthesis in living cells and faithfully reconstituted the underlying processes in vitro. We find that a conserved peptide extension at the C-terminal end of the IgM heavy (Ig-μ) chains, termed the tailpiece, is necessary and sufficient to establish the correct geometry. Alanine scanning revealed that hydrophobic amino acids in the first half of the tailpiece contain essential information for generating the correct topology. Assembly is triggered by the formation of a disulfide bond linking two tailpieces. This induces conformational changes in the tailpiece and the adjacent domain, which drive further polymerization. Thus, the biogenesis of large and topologically challenging IgM complexes is dictated by a local conformational switch in a peptide extension. PMID:28973899
Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system.
Cheong, Taek-Chin; Compagno, Mara; Chiarle, Roberto
2016-03-09
Applications of the CRISPR-Cas9 system to edit the genome have widely expanded to include DNA gene knock-out, deletions, chromosomal rearrangements, RNA editing and genome-wide screenings. Here we show the application of CRISPR-Cas9 technology to edit the mouse and human immunoglobulin (Ig) genes. By delivering Cas9 and guide-RNA (gRNA) with retro- or lenti-virus to IgM(+) mouse B cells and hybridomas, we induce class-switch recombination (CSR) of the IgH chain to the desired subclass. Similarly, we induce CSR in all human B cell lines tested with high efficiency to targeted IgH subclass. Finally, we engineer mouse hybridomas to secrete Fab' fragments instead of the whole Ig. Our results indicate that Ig genes in mouse and human cells can be edited to obtain any desired IgH switching helpful to study the biology of normal and lymphoma B cells. We also propose applications that could transform the technology of antibody production.
Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy.
Liu, Ting-Ting; Weng, Shao-Wen; Wang, Ming-Chung; Huang, Wan-Ting
2016-03-01
Disseminated nontuberculous mycobacteria (NTM) infection with concurrent IgG4-related lymphadenopathy has not been reported. We described a patient with neutralizing autoantibodies to interferon-gamma (IFN-γ) and elevated levels of serum IgG4 presenting with generalized lymphadenopathy and reactive dermatosis. Histologically, lymph nodes (LNs) showed effaced nodal architecture with polymorphic infiltrates, mimicking angioimmunoblastic T-cell lymphoma. Both the absolute number and the ratio of IgG4+ plasma cells to IgG+ plasma cells were increased. Mycobacterium abscessus was isolated from cultures of LNs, and demonstrated by polymerase chain reaction-restriction fragment length polymorphism. The skin biopsy showed neutrophilic dermatosis, consistent with Sweet syndrome. The patient met the criteria of both adult-onset immunodeficiency syndrome and IgG4-related lymphadenopathy. This case provides evidence of disseminated NTM infection with concurrent type III IgG4-related lymphadenopathy in the patient with anti-IFN-γ autoantibodies. © 2015 APMIS. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurzburg, Beth A; Jardetzky, Theodore S; Stanford)
The structure of immunoglobulin E (IgE)-Fc 3-4 has been solved in three new crystal forms, providing 13 snapshots of the Fc conformation and revealing a diverse range of open-closed motions among subunit chains and dimers. A more detailed analysis of the open-to-closed motion of IgE-Fc 3-4 was possible with so many structures, and the new structures allow a more thorough examination of the flexibility of IgE-Fc and its implications for receptor binding. The existence of a hydrophobic pocket at the elbow region of the Fc appears to be conformation dependent and suggests a means of regulating the IgE-Fc conformation (andmore » potentially receptor binding) with small molecules.« less
Kurohane, Kohta; Nagano, Kyoko; Nakanishi, Katsuhiro; Iwata, Koki; Miyake, Masaki; Imai, Yasuyuki
2014-01-01
Shiga toxin 1 (Stx1) is a virulence factor of enterohaemorrhagic Escherichia coli strains such as O157:H7 and Shigella dysenteriae. To prevent entry of Stx1 from the mucosal surface, an immunoglobulin A (IgA) specific for Stx1 would be useful. Due to the difficulty of producing IgA monoclonal antibodies (mAb) against the binding subunit of Stx1 (Stx1B) in mice, we took advantage of recombinant technology that combines the heavy chain variable region from Stx1B-specific IgG1 mAb and the Fc region from IgA. The resulting hybrid IgG/IgA was stably expressed in Chinese hamster ovary cells as a dimeric hybrid IgG/IgA. We separated the dimeric hybrid IgG/IgA from the monomeric one by size-exclusion chromatography. The dimer fraction, confirmed by immunoblot analyses, was used for toxin neutralization assays. The dimeric IgG/IgA was shown to neutralize Stx1 toxicity toward Vero cells by assaying their viability. To compare the relative effectiveness of the dimeric hybrid IgG/IgA and parental IgG1 mAb, Stx1-induced apoptosis was examined using 2 different cell lines, Ramos and Vero cells. The hybrid IgG/IgA inhibited apoptosis more efficiently than the parental IgG1 mAb in both cases. The results indicated that the use of high affinity binding sites as variable regions of IgA would increase the utility of IgA specific for virulence factors.
Penicillin and Beta-Lactam Hypersensitivity.
Har, Daniel; Solensky, Roland
2017-11-01
Ten percent of patients report penicillin allergy, but more than 90% of these individuals can tolerate penicillins. Skin testing remains the optimal method for evaluation of possible IgE-mediated penicillin allergy and is recommended by professional societies, as the harms for alternative antibiotics include antimicrobial resistance, prolonged hospitalizations, readmissions, and increased costs. Removal of penicillin allergy leads to decreased utilization of broad-spectrum antibiotics, such as fluoroquinolones and vancomycin. There is minimal allergic cross-reactivity between penicillins and cephalosporins. IgE-mediated allergy to cephalosporins is usually side-chain specific and may warrant graded challenge with cephalosporins containing dissimilar R1 or R2 group side chains. Copyright © 2017 Elsevier Inc. All rights reserved.
van den Akker, T W; de Glopper-van der Veer, E; Radl, J; Benner, R
1988-01-01
The role of genetic factors associated with the immunoglobulin heavy chain locus (Igh) in the development of benign monoclonal gammapathy (BMG), a benign B-cell proliferative disorder, was investigated in six Igh congenic mouse strains during ageing. The strains used had a C57BL or BALB background: C57BL/6, BALB.Igb and CB-20 carrying the C57BL Igh (Ighb allotype), BALB/c and C57BL/6.Iga carrying the BALB/c Igh (Igha allotype) and BAB-14, that is of BALB/c origin with the exception of the constant part of the Igh, which is of C57BL origin. The frequency of homogeneous immunoglobulins (H-Ig), both single and multiple, was the highest in C57BL/6 mice, followed by C57BL/6.Iga. The frequencies of H-Ig in BALB.Igb and CB-20 mice were higher than those of BALB/c and BAB-14, although somewhat lower than in C57BL/6.Iga mice. Multiple H-Ig were found especially in the sera of C57BL/6 mice. Categorization of the monoclonal gammapathies (MG) on the basis of their origin showed a single transient monoclonal B-cell proliferation in 0-8% of the mice of all strains. Persistent, non-progressive MG, presumably BMG, were detected in 64% of C57BL/6, 30% of C57BL/6.Iga, 22% of BALB.Igb, 17% of CB-20, 13% of BAB-14 and 6% of BALB/c mice. Multiple myeloma or Waldenström-like B-cell lymphoma were found to be responsible for 2-4% of the paraproteinemias in all strains. The remaining H-Ig, varying from 11% of the C57BL/6 to 70% of the BAB-14 mice, could not be evaluated in time. The most frequent isotypes of the BMG within C57BL/6 and C57BL/6.Iga were IgG2a and IgG2b, respectively; IgM was the most frequent isotype within the four BALB congenic strains. The immunoglobulin heavy chain allotypes under investigation appeared to be only partly related to the onset, occurrence, multiplicity and persistence of the BMG developing in these Igh congenic C57BL and BALB strains during ageing. The immunoglobulin heavy chain allotypes, however, were not related to the major isotype of the BMG. The results obtained in CB-20 and BALB.Igb on the one hand, and in BAB-14 on the other hand, may suggest a role for the variable part of the Igh in the development of BMG. Since no absolute influence could be ascribed to the Igh, we assume that primarily other genetic sequences regulating proliferative B-cell functions account for the pathogenesis of BMG. PMID:3141270
Li, Guangjin; Chen, Weizao; Yan, Weiyao; Zhao, Kai; Liu, Mingqiu; Zhang, Jun; Fei, Liang; Xu, Quanxing; Sheng, Zutian; Lu, Yonggan; Zheng, Zhaoxin
2004-10-25
Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of beta-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine.
Urán, Martha E.; Nosanchuk, Joshua D.; Restrepo, Angela; Hamilton, Andrew J.; Gómez, Beatriz L.; Cano, Luz E.
2011-01-01
Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice. PMID:21813659
Urán, Martha E; Nosanchuk, Joshua D; Restrepo, Angela; Hamilton, Andrew J; Gómez, Beatriz L; Cano, Luz E
2011-10-01
Several cell wall constituents, including melanins or melanin-like compounds, have been implicated in the pathogenesis of a wide variety of microbial diseases caused by diverse species of pathogenic bacteria, fungi, and helminthes. Among these microorganisms, the dimorphic fungal pathogen Paracoccidioides brasiliensis produces melanin in its conidial and yeast forms. In the present study, melanin particles from P. brasiliensis were injected into BALB/c mice in order to produce monoclonal antibodies (MAbs). We identified five immunoglobulin G1 (IgG1) κ-chain and four IgM melanin-binding MAbs. The five IgG1 κ-chain isotypes are the first melanin-binding IgG MAbs ever reported. The nine MAbs labeled P. brasiliensis conidia and yeast cells both in vitro and in pulmonary tissues. The MAbs cross-reacted with melanin-like purified particles from other fungi and also with commercial melanins, such as synthetic and Sepia officinalis melanin. Melanization during paracoccidioidomycosis (PCM) was also further supported by the detection of IgG antibodies reactive to melanin from P. brasiliensis conidia and yeast in sera and bronchoalveolar lavage fluids from P. brasiliensis-infected mice, as well as in sera from human patients with PCM. Serum specimens from patients with other mycoses were also tested for melanin-binding antibodies by enzyme-linked immunosorbent assay, and cross-reactivities were detected for melanin particles from different fungal sources. These results suggest that melanin from P. brasiliensis is an immunologically active fungal structure that activates a strong IgG humoral response in humans and mice.
Vitetta, Ellen S.; Uhr, Jonathan W.
1974-01-01
A new method for the detection of cell surface immunoglobulin labeled with isotopic precursors is described. The method consists of the aggregation of surface Ig on cells with specific antibody (heterologous) and the subsequent removal of antigen-antibody complexes by the combination of high speed centrifugation and immunoprecipitation of remaining soluble complexes using antibody to the heterologous Ig. Using this method, the kinetics of appearance of cell surface Ig and its turnover were studied in murine splenocytes. The results suggest that cell surface Ig is synthesized and transported in the same manner as secretory Ig rather than being synthesized on the plasma membrane. The turnover of intracellular and cell surface Ig in lymphocytes is slow. In contrast, intracellular Ig in plasma cells is rapidly secreted and usually without a cell surface phase. Cell surface Ig was shown to be radiolabeled with [3H]glucosamine, -galactose, and -fucose. The proportion of cell surface to intracellular (nonsurface) Ig labeled with these precursors suggests the same sequence of addition of sugars to Ig destined to be on the surface of lymphocytes as with Ig which will be secreted by plasma cells. Results with this new method also confirm earlier conclusions based on experiments using cell surface iodination: 8S IgM is the predominant Ig on the surface of murine splenocytes and the molecule appears to be attached by its µ-chains. PMID:4829935
Criscitiello, Michael F; Ohta, Yuko; Saltis, Mark; McKinney, E Churchill; Flajnik, Martin F
2010-06-15
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Harvey, David J; Crispin, Max; Moffatt, Beryl E; Smith, Sylvia L; Sim, Robert B; Rudd, Pauline M; Dwek, Raymond A
2009-11-01
MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man(6)GlcNAc(2) accompanied by small amounts of Man(5)GlcNAc(2), Man(7)GlcNAc(2) and Man(8)GlcNAc(2). Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (beta1-->4-linked to the central mannose) and with varying numbers of alpha-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.
Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.
2016-01-01
This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217
Karageorgos, Ioannis; Gallagher, Elyssia S; Galvin, Connor; Gallagher, D Travis; Hudgens, Jeffrey W
2017-11-01
Monoclonal antibody pharmaceuticals are the fastest-growing class of therapeutics, with a wide range of clinical applications. To assure their safety, these protein drugs must demonstrate highly consistent purity and stability. Key to these objectives is higher order structure measurements validated by calibration to reference materials. We describe preparation, characterization, and crystal structure of the Fab fragment prepared from the NIST Reference Antibody RM 8671 (NISTmAb). NISTmAb is a humanized IgG1κ antibody, produced in murine cell culture and purified by standard biopharmaceutical production methods, developed at the National Institute of Standards and Technology (NIST) to serve as a reference material. The Fab fragment was derived from NISTmAb through papain cleavage followed by protein A based purification. The purified Fab fragment was characterized by SDS-PAGE, capillary gel electrophoresis, multi-angle light scattering, size exclusion chromatography, mass spectrometry, and x-ray crystallography. The crystal structure at 0.2 nm resolution includes four independent Fab molecules with complete light chains and heavy chains through Cys 223, enabling assessment of conformational variability and providing a well-characterized reference structure for research and engineering applications. This nonproprietary, publically available reference material of known higher-order structure can support metrology in biopharmaceutical applications, and it is a suitable platform for validation of molecular modeling studies. Published by Elsevier Ltd.
Lee, Won Sok; Singh, Gurmukh
2018-07-01
Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized.
Piekarska, B; Roterman, I; Rybarska, J; Koniczny, L; Kaszuba, J
1994-03-01
The nature of structural changes in IgG molecules associated with the binding to antigen and/or heat aggregation was studied using bis azo dye (Congo Red) as the specific probe. It was found, that protein conformation responsible for binding the dye represents an unfolding intermediate with properties corresponding to a molten globule state. The properties of the dye-protein complex reveal the signs of an unfolding of the peptide chain with simultaneously preserved relatively compact packing. Immunoglobulins which were induced by heating, or binding to antigen in order to form the complex with dye ligands, become more susceptible for digestion. The main peptide of molecular weight 30,000 D which appears in products was suggested to originate from a heavy chain after its splitting in the region of CH1 domain. The energetic evaluation of stability of IgG domains also indicates that CH1 is the least stable fragment of the heavy chain and its conformation may be destabilized first. It was concluded that destabilized tertiary packing of antibodies bound to antigen may favour the association of closely situated immunoglobulin molecules increasing the stability of the immune complex and influencing in the result its effector activity.
Ruan, Guang-Ping; Ma, Li; Meng, Xiao-Jing; Meng, Min-Jie; Wang, Xiao-Ning; Lin, Ying; Wu, Zheng-Qiang; He, Xiao-Wei; Wang, Ju-Fang; Zhu, Yong
2007-01-01
HLA-A*0201 alpha chain and beta2m were expressed from a prokaryotic system, and after refolding and purification, the alpha chain and beta2m were used to immunize eight laying hens. The titer of egg yolk antibody against alpha chain increased from 10(2) to 10(5.3) The titer of egg yolk antibody against beta2m increased from 10(1) to 10(4.7). The extent of titer increase is similar between the two antigens. An average of 135 mg purified polyclonal antibody (IgY) can be easily obtained from one egg yolk. The use of egg collection rather than serum collection is compatible with modern animal protection regulations. An average of 28 eggs were obtained from a laying hen every month, with a total amount of 3780 mg immunoglobulin extracted from one immunized hen every month, which would be equivalent to 630 mL of serum or 1260 mL of blood per month. Chickens are an optimal host for the production of polyclonal antibodies with high titer and high yield. Purified IgY was labeled with horseradish peroxidase and reacted with PBMC on nitrocellulose membranes indicating that the antibody can bind to the native conformation of class I HLA molecule on PBMC.
Krol, Marcin; Roterman, Irena; Drozd, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Spolnik, Paweł; Stopa, Barbara
2006-02-01
The dye Congo red and related self-assembling compounds were found to stabilize immune complexes by binding to antibodies currently engaged in complexation to antigen. In our simulations, it was shown that the site that becomes accessible for binding the supramolecular dye ligand is located in the V domain, and is normally occupied by the N-terminal polypeptide chain fragment. The binding of the ligand disrupts the beta-structure in the domain, increasing the plasticity of the antigen-binding site. The higher fluctuation of CDR-bearing loops enhances antigen binding, and allows even low-affinity antibodies to be engaged in immune complexes. Experimental observations of the enhancement effect were supported by theoretical studies using L lambda chain (4BJL-PDB identification) and the L chain from the complex of IgM-rheumatoid factor bound to the CH3 domain of the Fc fragment (1ADQ-PDB identification) as the initial structures for theoretical studies of dye-induced changes. Commercial IgM-type rheumatoid factor (human) and sheep red blood cells with coupled IgG (human) were used for experimental tests aimed to reveal the dye-enhancement effect in this system. The specificity of antigen-antibody interaction enhanced by dye binding was studied using rabbit anti-sheep red cell antibodies to agglutinate red cells of different species. Red blood cells of hoofed mammals (horse, goat) showed weak enhancement of agglutination in the presence of Congo red. Neither agglutination nor enhancement were observed in the case of human red cells. The dye-enhancement capability in the SRBC-antiSRBC system was lost after pepsin-digestion of antibodies producing (Fab)2 fragments still agglutinating red cells. Monoclonal (myeloma) IgG, L lambda chain and ovoalbumin failed to agglutinate red cells, as expected, and showed no enhancement effect. This indicates that the enhancement effect is specific.
Fatal Eastern Equine Encephalitis in a Patient on Maintenance Rituximab: A Case Report.
Solomon, Isaac H; Ciarlini, Pedro D S C; Santagata, Sandro; Ahmed, Asim A; De Girolami, Umberto; Prasad, Sashank; Mukerji, Shibani S
2017-01-01
A 63-year-old woman on rituximab maintenance for follicular lymphoma presented with headaches, vomiting, and fever, and was diagnosed with eastern equine encephalomyelitis by cerebrospinal fluid polymerase chain reaction. Eastern equine encephalomyelitis immunoglobulin (Ig)G/IgM remained negative due to rituximab treatment, and magnetic resonance imaging showed minimal abnormalities, making this a diagnostically challenging case. Despite therapy with intravenous Ig, the patient rapidly declined and died on hospital day 12. Autopsy revealed perivascular and parenchymal chronic inflammation, with an absence of B lymphocytes, and virally infected neurons throughout the central nervous system.
MEMBRANE IMMUNOGLOBULINS OF B LYMPHOCYTES
Fu, S. M.; Kunkel, H. G.
1974-01-01
Hemagglutination and fluorescent antibody studies have provided strong evidence for the unavailability or absence of specific antigenic sites on membrane-bound IgM which are present in serum and intracellular IgM. Antisera specific for different parts of the molecule indicated that a portion but not all of the Fc was involved. Absorption experiments with normal and leukemic viable B lymphocytes failed to remove a population of Fc antibodies found in IgM-specific antisera. Similar findings were made for IgD, the other major membrane immunoglobulin of human peripheral blood B cells. Various interpretations of these observations are discussed. The most likely possibility appears that the C-terminal portion of the heavy chains of the immunoglobulin molecule is buried in the membrane. PMID:4139226
Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars
2006-11-01
The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.
Lee, Won Sok; Singh, Gurmukh
2018-01-01
Background Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Methods Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. Results The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. Conclusions The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized. PMID:29904440
USDA-ARS?s Scientific Manuscript database
Alternate pathways of RNA processing play an important role in the expression of the secreted (S) and membrane (Mb) forms of immunoglobulin (Ig) heavy (H) chain isotypes in all vertebrates. Interestingly, while the differential splicing mechanism and the splice sites that generate the two forms of I...
Immunoglobulin from Antarctic fish species of Rajidae family.
Coscia, Maria Rosaria; Cocca, Ennio; Giacomelli, Stefano; Cuccaro, Fausta; Oreste, Umberto
2012-03-01
Immunoglobulins (Ig) of Chondroichthyes have been extensively studied in sharks; in contrast, in skates investigations on Ig remain scarce and fragmentary despite the high occurrence of skates in all of the major oceans of the world. To focus on Rajidae Igμ, the most abundant heavy chain isotype, we have chosen the Antarctic species Bathyraja eatonii, Bathyraja albomaculata, Bathyraja brachyurops, and Amblyraja georgiana which live at high latitudes in the Southern Ocean, and at very low temperatures. We prepared mRNA from the spleen of individuals of each species and performed RT-PCR experiments using two oligonucleotides designed on the alignment of various elasmobranch Igμ heavy chain sequences available in GenBank. The PCR products, about 1400-nt long, were cloned and sequenced. Nucleotide sequence identities calculated for the constant region domains ranged from 88.5% to 97.5% between species, and from 91.1% to 99.7% within species. In a distance tree, including also Raja erinacea sequences, two major branches were obtained, one containing Arhynchobatinae sequences, the other one Rajinae sequences. Four presumptive D gene segments were identified in the region of the VH/D/JH recombination; two different D segments were often found in the same sequence. Moreover, 5-15 genomic fragments of different lengths, carrying the gene locus encoding Igμ chain were revealed by Southern blotting analysis. B. eatonii amino acid sequences were analyzed for the positional diversity by Shannon entropy analysis, showing CH4 as the most conserved domain, and CH3 as the most variable one. B. eatonii CDR3 region length varied between 11 and 15 amino acid residues; the mean length (13.4 aa) was greater than that of Leucoraja eglanteria sequences (7.7 aa). An alignment of representative sequences of Antarctic species and R. erinacea showed that more cysteine residues not involved in the intradomain disulfide bridges were present in Antarctic species. Copyright © 2011 Elsevier B.V. All rights reserved.
FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa
2009-12-01
FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.
Lundqvist, Mats L; Kohlberg, Kathleen E; Gefroh, Holly A; Arnaud, Philippe; Middleton, Darlene L; Romano, Tracy A; Warr, Gregory W
2002-07-01
Clones encoding the dolphin IgM heavy (micro) chain gene were isolated from a cDNA library of peripheral blood leukocytes. Genomic Southern blot analyses showed that the dolphin IGHM gene is most likely present in a single copy, and its sequence shows greatest similarity to those of the IGHM gene of the sheep, pig and cow, evolutionarily related artiodactyls. The transmembrane (TM) form of the IGHM chain was isolated by 3' RACE. While showing similarities to the TM regions of other mammalian IGHM chains, the highly conserved Ser residue of the CART motif is substituted with a Gly in the dolphin. In contrast to the pig and cow, which utilize only a single VH family, the dolphin expresses at least two distinct VH families, belonging to the mammalian VH clans I and III. At least two JH genes were identified in the dolphin. Some CDR3 regions of the dolphin VH are long (up to 21 amino acids), and contain multiple Cys residues, hypothesized to stabilize the CDR3 structure through disulfide bond formation.
ZAP-70 staining in chronic lymphocytic leukemia.
Villamor, Neus
2005-05-01
Chronic lymphocytic leukemia (CLL) is the most common chronic leukemia in Western countries. The disease has an extremely variable clinical course, and several prognostic features have been identified to assess individual risk. The configuration of the immunoglobulin variable heavy-chain gene (IgV(H)) is a strong predictor of the outcome. CLL patients with unmutated IgV(H) status have an aggressive clinical course and a short survival. Unfortunately, analysis of IgV(H) gene configuration is not available in most clinical laboratories. A small number of genes are differentially expressed between unmutated IgV(H) and mutated IgV(H) clinical forms of CLL. One of these genes is ZAP-70, which is detected in leukemic cells from patients with the unmutated IgV(H) form of CLL. Flow cytometry presents advantages over other methods to detect ZAP-70, and its quantification by flow cytometry has proved its predictive value. This unit focuses on protocols to quantify ZAP-70 by flow cytometry in CLL.
A transcriptional serenAID: the role of noncoding RNAs in class switch recombination
Yewdell, William T.; Chaudhuri, Jayanta
2017-01-01
Abstract During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations. PMID:28535205
Rupa, Prithy; Schmied, Julie; Wilkie, Bruce N
2009-11-15
Anaphylaxis was reported in 1963 in pigs experimentally sensitized with ovalbumin and was subsequently associated indirectly with IgE-related antibodies by functional assays to confirm heat-labile passive cutaneous anaphylaxis (PCA), reverse passive anaphylaxis (RPA) and Prausnitz-Küstner (PK) reactions to this and other allergens. The immunoglobulin mediating immediate hypersensitivity could be cross-adsorbed with anti-human IgE. Porcine IgE epsilon chain has been cloned and sequenced. Rabbit anti-pig IgE has been described by two groups, as has cross reactivity with pig IgE of various heterologous polyclonal and monoclonal anti-IgEs. Pigs develop transient post-weaning food allergy to soy allergens which can be prevented by pre-weaning feeding of soy proteins in sufficient quantity. Natural hypersensitivity also occurs to nematodes. Recently, experimental allergy has been induced in outbred pigs to peanut and to egg allergens which manifest as respiratory, cutaneous and enteric signs similar to those of human food allergy. These models are platforms for comparative allergy research as realistic alternatives to use of inbred mice or humans for investigation of pathogenesis, prophylaxis and therapy.
The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.
Sheng, Long; He, Zhenjiao; Chen, Jiahui; Liu, Yaofa; Ma, Meihu; Cai, Zhaoxia
2017-03-01
Immunoglobulin Y (IgY) is a new therapeutic antibody, and its applications in industry are very broad. To provide insight into the effects of N-glycosylation on IgY, its conformation and stability were studied. In this research, IgY was extracted from egg yolk and then digested by peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase. SDS-PAGE and infrared absorption spectrum showed that carbohydrates were distinctly reduced after enzymolysis. The circular dichroism spectrum indicated that the IgY molecule became more flexible and disordered after removal of N-glycan. The fluorescence intensity revealed that Trp residues were buried in a more hydrophobic environment after disposal of N-glycan. Storage stability decreased with the removal of oligosaccharide chains based on size-exclusion chromatography analysis. Deglycosylated IgY exhibited less resistance to guanidine hydrochloride-induced unfolding. After deglycosylation, IgY was more sensitive to pepsin. Therefore, N-glycosylation played an important role in the maintenance of the structure and stability of IgY. Copyright © 2016 Elsevier B.V. All rights reserved.
Crystal structure of a shark single-domain antibody V region in complex with lysozyme.
Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A
2004-09-17
Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.
IgY: a key isotype in antibody evolution.
Zhang, Xiaoying; Calvert, Rosaleen A; Sutton, Brian J; Doré, Katy A
2017-11-01
Immunoglobulin Y (IgY) is central to our understanding of immunoglobulin evolution. It has links to antibodies from the ancestral IgM to the mucosal IgX and IgA, as well as to mammalian serum IgG and IgE. IgY is found in amphibians, birds and reptiles, and as their most abundant serum antibody, is orthologous to mammalian IgG. However, IgY has the same domain architecture as IgM and IgE, lacking a hinge region and comprising four heavy-chain constant domains. The relationship between IgY and the mucosal antibodies IgX and IgA is discussed herein, in particular the question of how IgA could have contributed to the emergence of IgY. Although IgY does not contain a hinge region, amphibian IgF and duck-billed platypus IgY/O, which are closely related to IgY, do contain this region, as does mammalian IgG, IgA and IgD. A hinge region must therefore have evolved at least three times independently by convergent evolution. In the absence of three-dimensional structural information for the complete Fc fragment of chicken IgY (IgY-Fc), it remains to be discovered whether IgY displays the same conformational properties as IgM and IgE, which exhibit substantial flexibility in their Fc regions. IgY has three characterised Fc receptors, chicken Ig-like receptor AB1 (CHIR-AB1), the chicken yolk sac IgY receptor (FcRY) and Gallus gallus Fc receptor (ggFcR). These receptors bind to IgY at sites that are structurally homologous to mammalian counterparts; IgA/FcαRI for CHIR-AB1, IgG/FcRn for FcRY and IgE/FcϵRI and IgG/FcγR for ggFcR. These resemblances reflect the close evolutionary relationships between IgY and IgA, IgG and IgE. However, the evolutionary distance between birds and mammals allows for the ready generation of IgY antibodies to conserved mammalian proteins for medical and biotechnological applications. Furthermore, the lack of reactivity of IgY with mammalian Fc receptors, and the fact that large quantities of IgY can be made quickly and cheaply in chicken eggs, offers important advantages and considerable potential for IgY in research, diagnostics and therapeutics. © 2017 Cambridge Philosophical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.
IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of anmore » IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.« less
Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana
Bhoo, Seong Hee; Lai, Huafang; Ma, Julian; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.
2014-01-01
Summary Filoviruses (Ebola and Marburg viruses) cause severe and often fatal hemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identify Ebola and Marburg viruses as “category A” pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of Nicotiana benthamiana produced assembled immunoglobulin, which was purified by ammonium sulfate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. PMID:21281425
Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.
Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S
2011-09-01
Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Xiao, Lijuan; Chai, Yaqin; Yuan, Ruo; Cao, Yaling; Wang, Haijun; Bai, Lijuan
2013-10-15
In this work, we described a simple and highly sensitive electrochemiluminescence (ECL) strategy for IgG detection. Firstly, L-cysteine functionalized reduced graphene oxide composite (L-cys-rGO) was decorated on the glassy carbon electrode (GCE) surface. Then anti-IgG was immobilized on the modified electrode surface through the interaction between the carboxylic groups of the L-cys-rGO and the amine groups in anti-IgG. And then biotinylated anti-IgG (bio-anti-IgG) was assembled onto the electrode surface based on the sandwich-type immunoreactions. By the conjunction of biotin and streptavidin (SA), SA was immobilized, which in turn, combined with the biotin labeled initiator strand (S1). In the presence of two single DNA strands of glucose oxidase labeled S2 (GOD-S2) and complementary strand (S3), S1 could trigger the hybridization chain reaction (HCR) among S1, GOD-S2 and S3. Herein, due to HCR, numerous GOD was efficiently immobilizated on the sensing surface and exhibited excellent catalysis towards glucose to in situ generate amounts of hydrogen peroxide (H2O2), which acted as luminol's co-reactant to significantly enhance the ECL signal. The proposed ECL immunosensor presented predominate stability and high sensibility for determination of IgG in the range from 0.1 pg mL(-1) to 100 ng mL(-1) with a detection limit of 33 fg mL(-1) (S/N=3). Additionally, the designed ECL immunosensor exhibited a promising application for other protein detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Morin, Dawn E; Nelson, Stephanie V; Reid, Eric D; Nagy, Dusty W; Dahl, Geoffrey E; Constable, Peter D
2010-08-15
To identify cow and management factors associated with colostral IgG concentration in dairy cows. Prospective observational study. 81 multiparous Holstein-Friesian cows from a single herd. Serum was obtained at the start of the nonlactating period, and cows were assigned to 1 of 4 photoperiod groups: natural day length (n = 22 cows), long days (16 h of light/d [21]) or short days (8 h of light/d [20]) for the entire nonlactating period, or natural day length followed by short days for the last 21 days of the nonlactating period (18). Serum and colostrum were collected at the first milking after calving. Regression analysis was used to investigate associations between colostral IgG concentration and the interval between calving and first milking, colostral volume, photoperiod, length of the nonlactating period, and season of calving. Colostral IgG concentration decreased by 3.7% during each subsequent hour after calving because of postparturient secretion by the mammary glands. The interval between calving and first milking and the colostral volume were significantly and negatively associated with colostral IgG concentration, with the former effect predominating. Photoperiod had no effect on colostral IgG concentration or volume. Serum protein concentration at calving correlated poorly with colostral IgG concentration. Dairy producers should harvest colostrum as soon as possible after calving to optimize transfer of passive immunity in neonatal calves. Photoperiod can be manipulated without adversely affecting colostral IgG concentration.
Tohidi, Reza; Idris, Ismail Bin; Panandam, Jothi Malar; Bejo, Mohd Hair
2012-12-01
Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.
Amir, Shahzada; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Tsimikas, Sotirios; Binder, Christoph J.; Kipps, Thomas J.; Witztum, Joseph L.
2013-01-01
The immunoglobulins expressed by chronic lymphocytic leukemia (CLL) B cells are highly restricted, suggesting they are selected for binding either self or foreign antigen. Of the immunoglobulin heavy-chain variable (IGHV) genes expressed in CLL, IGHV1-69 is the most common, and often is expressed with little or no somatic mutation, and restricted IGHD and IGHJ gene usage. We found that antibodies encoded by one particular IGHV1-69 subset, designated CLL69C, with the HCDR3 encoded by the IGHD3-3 gene in reading frame 2 and IGHJ6, specifically bound to oxidation-specific epitopes (OSE), which are products of enhanced lipid peroxidation and a major target of innate natural antibodies. Specifically, CLL69C bound immunodominant OSE adducts termed MAA (malondialdehyde–acetaldehyde-adducts), which are found on apoptotic cells, inflammatory tissues, and atherosclerotic lesions. It also reacted specifically with MAA-specific peptide mimotopes. Light chain shuffling indicated that non-stochastically paired L chain of IGLV3-9 contributes to the antigen binding of CLL69C. A nearly identical CLL69C Ig heavy chain was identified from an MAA-enriched umbilical cord phage displayed Fab library, and a derived Fab with the same HCDR3 rearrangement displayed identical MAA-binding properties. These data support the concept that OSE (MAA-epitopes), which are ubiquitous products of inflammation, may play a role in clonal selection and expansion of CLL B cells. PMID:23840319
Bürckert, Jean-Philippe; Dubois, Axel R S X; Faison, William J; Farinelle, Sophie; Charpentier, Emilie; Sinner, Regina; Wienecke-Baldacchino, Anke; Muller, Claude P
2017-01-01
The identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT. We showed that these antigens impose a selective pressure causing the Ig heavy chain (IgH) repertoires of the rats to converge toward the expression of antibodies with highly similar IgH CDR3 amino acid sequences. We present a computational approach, similar to differential gene expression analysis, that selects for clusters of CDR3s with 80% similarity, significantly overrepresented within the different groups of immunized rats. These IgH clusters represent antigen-induced IgH signatures exhibiting stereotypic amino acid patterns including previously described TT- and measles-specific IgH sequences. Our data suggest that with the presented methodology, transgenic Ig rats can be utilized as a model to identify antigen-induced, human IgH signatures to a variety of different antigens.
Longet, Stéphanie; Miled, Sarah; Lötscher, Marius; Miescher, Sylvia M.; Zuercher, Adrian W.; Corthésy, Blaise
2013-01-01
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins. PMID:23250751
Duchén, K; Casas, R; Fagerås-Böttcher, M; Yu, G; Björkstén, B
2000-02-01
The possible protective effect of breast milk against atopic manifestations in infancy, i.e. atopic eczema and food allergy, has been controversial for the last decades. Besides the methodological problems, differences in the composition of human milk could explain these controversies. The aim of this study was to investigate the composition of polyunsaturated fatty acids (PUFA) and secretory immunoglobulin A (S-IgA) levels to food proteins (ovalbumin and beta-lactoglobulin) and an inhalant allergen (cat) in milk from mothers of allergic and non-allergic children. Blood samples were obtained at birth and at 3 months from 120 children. Skin prick tests were performed at 6, 12 and 18 months, and the development of atopic diseases was assessed in the children. Breast milk samples were collected from their mothers at birth and monthly during the lactation period. Milk PUFA composition was measured by gas chromatography, and enzyme-linked immunosorbent assay (ELISA) was used to measure total S-IgA, anti-cat S-IgA, anti-ovalbumin S-IgA, and anti-beta-lactoglobulin S-IgA. Allergic disease developed in 44/120 children (22/63 children of allergic mothers and 22/57 children of non-allergic mothers). Lower levels of eicosapentaenoic acid, C20:5 n-3 (EPA), docosapentaenoic acid C22:5 n-3 (DPA), and docosatetraenoic acid C22:4 n-6 (DHA) (p < 0.05 for all) were found in mature milk from mothers of allergic as compared to milk from mothers of non-allergic children. The total n-6:total n-3 and the arachidonic acid, C20:4 n-6 (AA):EPA ratios were significantly lower in transitional and mature milk from mothers of allergic children, as compared to milk from mothers of non-allergic children. The PUFA levels in serum of allergic and non-allergic children were largely similar, except for higher levels of C22:4 n-6 and C22:5 n-6 (p < 0.05 for both) and a higher AA:EPA ratio in serum phospholipids in the former group (p < 0.05). Changes in the levels of milk PUFA were reflected in changes in PUFA serum phospholipids, particularly for the n-6 PUFA. The AA: EPA ratio in maternal milk was related, however, to the AA:EPA only in serum from non-allergic children, while this was not the case in allergic children. The levels of total S-IgA, anti-cat S-IgA, anti-ovalbumin S-IgA, and anti-beta-lactoglobulin S-IgA in milk from mothers of allergic, as compared to non-allergic, children were similar through the first 3 months of lactation. Low levels of n-3 PUFA in human milk, and particularly a high AA:EPA ratio in maternal milk and serum phospholipids in the infants, were related to the development of symptoms of allergic disease at 18 months of age. The milk PUFA composition influenced the composition of PUFA in serum phospholipids of the children. We also showed that the lower levels of colostral anti-ovalbumin S-IgA and lower total S-IgA in mature milk from atopic mothers did not influence the development of allergic disease in the children up to 18 months of age. The findings indicate that low alpha-linolenic acid, C18:3 n-3 (LNA) and n-3 long-chain polyunsaturated fatty acids (LCP) 20-22 carbon chains, but not the levels of S-IgA antibodies to allergens, are related to the development of atopy in children.
Kamihira, S; Hirakata, Y; Atogami, S; Sohda, H; Tsuruda, K; Yamada, Y; Tomonaga, M
1996-06-01
To characterize CD5+ B-cell neoplasms in Japan, where chronic lymphocytic leukemia (CLL) is rare and of different subtypes in comparison with Western countries, we collected 58 cases of CD5+ B-cell lymphomas/leukemias and analyzed their clinicopathologic features. According to the French-American-British (FAB) and standard histologic classification, the cases corresponded to small lymphocytic lymphoma (SLL, group I; n = 22, consisting of CLL, n = 10, CLL/PL, n = 3, and CLLmixed, n = 7); intermediate differentiated lymphoma/mantle cell lymphoma (IDL/MCL, group II, n = 18); and others with CD5-positive lymphomas (group III, n = 18). The CD5+ B-cell lymphomas showed morphologic and prognostic variability among the three groups. The clinical and immunophenotypic features were remarkably consistent in leukemic disease being seen in 73% of all cases, splenomegaly in 63%, and intense CD19, CD20, surface membrane immunogobulin M (SmIgM) or SmIgM and SmIgD, light-chain expression, and no CD10 expression. The median survival time of groups I, II, and III was 7.8, 3.3, and 0.8 years, respectively. These findings suggest that CD5 antigens may serve as valid markers for the prognosis and clinical features of B-cell lymphomas and that CD5+ B-cell lymphomas with an overall poor prognosis occurs at a relatively high frequency in Japan. This also suggests that a combination of immunophenotypic and morphologic features is of value for characterizing CD5+ B-cell neoplasms.
Teleost Fish Mount Complex Clonal IgM and IgT Responses in Spleen upon Systemic Viral Infection
Castro, Rosario; Jouneau, Luc; Pham, Hang-Phuong; Bouchez, Olivier; Giudicelli, Véronique; Lefranc, Marie-Paule; Quillet, Edwige; Benmansour, Abdenour; Cazals, Frédéric; Six, Adrien; Fillatreau, Simon; Sunyer, Oriol; Boudinot, Pierre
2013-01-01
Upon infection, B-lymphocytes expressing antibodies specific for the intruding pathogen develop clonal responses triggered by pathogen recognition via the B-cell receptor. The constant region of antibodies produced by such responding clones dictates their functional properties. In teleost fish, the clonal structure of B-cell responses and the respective contribution of the three isotypes IgM, IgD and IgT remain unknown. The expression of IgM and IgT are mutually exclusive, leading to the existence of two B-cell subsets expressing either both IgM and IgD or only IgT. Here, we undertook a comprehensive analysis of the variable heavy chain (VH) domain repertoires of the IgM, IgD and IgT in spleen of homozygous isogenic rainbow trout (Onchorhynchus mykiss) before, and after challenge with a rhabdovirus, the Viral Hemorrhagic Septicemia Virus (VHSV), using CDR3-length spectratyping and pyrosequencing of immunoglobulin (Ig) transcripts. In healthy fish, we observed distinct repertoires for IgM, IgD and IgT, respectively, with a few amplified μ and τ junctions, suggesting the presence of IgM- and IgT-secreting cells in the spleen. In infected animals, we detected complex and highly diverse IgM responses involving all VH subgroups, and dominated by a few large public and private clones. A lower number of robust clonal responses involving only a few VH were detected for the mucosal IgT, indicating that both IgM+ and IgT+ spleen B cells responded to systemic infection but at different degrees. In contrast, the IgD response to the infection was faint. Although fish IgD and IgT present different structural features and evolutionary origin compared to mammalian IgD and IgA, respectively, their implication in the B-cell response evokes these mouse and human counterparts. Thus, it appears that the general properties of antibody responses were already in place in common ancestors of fish and mammals, and were globally conserved during evolution with possible functional convergences. PMID:23326228
Obwaller, A; Duchêne, M; Bruhn, H; Steipe, B; Tripp, C; Kraft, D; Wiedermann, G; Auer, H; Aspöck, H
2001-05-01
Myosins from nematode parasites elicit strong humoral and cellular immune responses and have been investigated as vaccine candidates. In this study we cloned and sequenced a cDNA coding for myosin heavy chain from Toxocara canis, a nematode parasite of canids which may also infect humans and cause various unspecific symptoms. To determine the major antigenic regions the myosin heavy chain was systematically dissected into ten overlapping recombinant fusion polypeptides which were purified by metal chelate chromatography. Single fragments were then tested for their IgG reactivity in sera from toxocarosis patients and healthy probands. Two regions, one region at the mid to carboxy-terminal end of the head domain and one region in the rod domain, were identified as major antigens, which in combination were positive with 86% of the sera. The other domains were less reactive. This shows that the patients' IgG reactivity was not directed evenly against all parts of the molecule, but was rather clustered in few regions.
Marina-Zárate, Ester; Pérez-García, Arantxa; Ramiro, Almudena R.
2017-01-01
In response to antigenic stimulation B cells undergo class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) to replace the primary IgM/IgD isotypes by IgG, IgE, or IgA. CSR is initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues at the switch (S) regions of IgH. B cell stimulation promotes germline transcription (GLT) of specific S regions, a necessary event prior to CSR because it facilitates AID access to S regions. Here, we show that CCCTC-binding factor (CTCF)-deficient mice are severely impaired in the generation of germinal center B cells and plasma cells after immunization in vivo, most likely due to impaired cell survival. Importantly, we find that CTCF-deficient B cells have an increased rate of CSR under various stimulation conditions in vitro. This effect is not secondary to altered cell proliferation or AID expression in CTCF-deficient cells. Instead, we find that CTCF-deficient B cells harbor an increased mutation frequency at switch regions, probably reflecting an increased accessibility of AID to IgH in the absence of CTCF. Moreover, CTCF deficiency triggers premature GLT of S regions in naïve B cells. Our results indicate that CTCF restricts CSR by enforcing GLT silencing and limiting AID access to IgH. PMID:28928744
Breaux, Breanna; Deiss, Thaddeus C.; Chen, Patricia L.; Cruz-Schneider, Maria Paula; Sena, Leonardo; Hunter, Margaret E.; Bonde, Robert K.; Criscitiello, Michael F.
2017-01-01
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity.
Shim, Sun-Yup; Seo, Young-Kook; Park, Jeong-Ro
2009-04-01
Human basophilic KU812F cells express a high-affinity immunoglobulin (Ig) E receptor, FcepsilonRI, which plays an important role in IgE-mediated allergic reactions. Houttuynia cordata Thunb (Family Saururaceae), which is rich in polyphenols, has been shown to have various physiological properties, including antiviral, antioxidative, anticancer, and anti-inflammatory activities. The effect of H. cordata extract on the expression of FcepsilonRI in human KU812F cells was examined. Flow cytometric analysis showed that the FcepsilonRI expression and the IgE binding activity were suppressed when the cells were cultured with H. cordata extract. Reverse transcription-polymerase chain reaction analysis showed that levels of the mRNAs for FcepsilonRI alpha- and gamma-chains were decreased by the treatment of H. cordata extract. Addition of H. cordata extract to culture medium was also observed to result in a reduction in the release of histamine from the cells. These results suggest that H. cordata extract may exert its anti-allergic activity through down-regulation of FcepsilonRI expression and a subsequent decrease in histamine release.
Breaux, Breanna; Deiss, Thaddeus C; Chen, Patricia L; Cruz-Schneider, Maria Paula; Sena, Leonardo; Hunter, Margaret E; Bonde, Robert K; Criscitiello, Michael F
2017-07-01
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sajadi, Mohammad M.; Farshidpour, Maham; Brown, Eric P.; Ouyang, Xin; Seaman, Michael S.; Pazgier, Marzena; Ackerman, Margaret E.; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S.; Charurat, Manhattan; DeVico, Anthony L.; Redfield, Robert R.; Lewis, George K.
2016-01-01
The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. PMID:26347575
Antibody class capture assays for varicella-zoster virus.
Forghani, B; Myoraku, C K; Dupuis, K W; Schmidt, N J
1984-01-01
Pooled monoclonal antibodies to varicella-zoster virus (VZV) were used as "detector" antibodies in a four-phase enzyme immunofluorescence assay for determination of immunoglobulin M (IgM), IgA, and IgG antibodies to VZV. Polyclonal antisera specific for heavy chains of human IgM, IgA, and IgG were employed as "capture" antibodies on the solid phase. The antibody class capture assay (ACCA) for VZV IgM antibody detected high titers of virus-specific IgM in all patients with varicella and in 5 of 10 zoster patients. VZV IgM antibody was not detected in patients with primary herpes simplex virus infections or in other individuals without active VZV infection, with one exception, a patient with encephalitis who had other serological findings compatible with a reactivated VZV infection. VZV-specific IgA and IgG antibody titers demonstrable by ACCA were compared with those measured by solid-phase indirect enzyme immunofluorescence assay (EIFA). VZV IgA antibody titers detected in patients with varicella and zoster were variable and could not be considered to be reliable markers of active VZV infection. IgA antibody titers detected by ACCA tended to be higher than those demonstrated by solid-phase indirect EIFA in varicella and zoster patients. VZV IgG antibody titers detected by ACCA in patients with varicella, and to a lesser extent in zoster patients, were as high as or higher than those demonstrated by solid-phase indirect EIFA. However, ACCA was totally insensitive in detecting VZV IgG antibody in individuals with past infections with VZV and would not be a suitable approach for determination of immunity status to VZV. PMID:6330163
Anam, Khairul; Afrin, Farhat; Banerjee, Dwijadas; Pramanik, Netai; Guha, Subhasis K.; Goswami, Rama P.; Saha, Shiben K.; Ali, Nahid
1999-01-01
Pathogenesis in kala-azar is associated with depressed cellular immunity and significant elevation of antileishmanial antibodies. Since these antibodies are present even after cure, analysis of the parasite-specific isotypes and immunoglobulin G (IgG) subclasses in kala-azar patients may shed new light on the immune responses during progression and resolution of infection. Using leishmanial membrane antigenic extracts, we investigated the relative levels of specific IgG, IgM, IgA, IgE, and IgG subclasses in Indian kala-azar patient sera during disease, drug resistance, and cure. Acute-phase sera showed strong stimulation of IgG, followed by IgE and IgM and lastly by IgA antibodies. IgG subclass analysis revealed expression of all of the subclasses, with a predominance of IgG1 during disease. Following sodium stibogluconate (SAG) resistance, the levels of IgG, IgM, IgE, and IgG4 remained constant, while there was a decrease in the titers of IgG2 and IgG3. In contrast, a significant (2.2-fold) increase in IgG1 was observed in these individuals. Cure, in both SAG-responsive and unresponsive patients, correlated with a decline in the levels of IgG, IgM, IgE, and all of the IgG subclasses. The stimulation of IgG1 and the persistence, most importantly, of IgE and IgG4 following drug resistance, along with a decline in IgE, IgG4, and IgG1 with cure, demonstrate the potential of these isotypes as possible markers for monitoring effective treatment in kala-azar. PMID:10569788
Banerjee, Rajanya; Patel, Bhakti; Basu, Madhubanti; Lenka, Saswati S; Paicha, Mahismita; Samanta, Mrinal; Das, Surajit
2017-10-01
The primordial immunoglobulin class, IgD, was the first non-IgM isotype discovered in teleosts. The crucial roles of IgM and IgZ in imparting systemic and mucosal immunity, respectively, in various fish species have been widely established. However, the putative function of a unique IgD isotype during pathogenic invasions has not been well explored. The present study reports the existence of an IgD ortholog in freshwater carp, Catla catla, and further evaluates its differential expression profile in response to bacterial, parasitic and viral antigenic exposure and pathogen associated molecular patterns (PAMPs) stimulation. The IgD of C. catla (CcIgD) cDNA sequence was found to encode 226 amino acids and confirmed homology with heavy chain delta region of Cyprinidae family members. Phylogenetic analysis of CcIgD exhibited greatest similarity with Ctenopharyngodon idella. qRT-PCR analysis revealed significant upregulation (P < 0.001) of IgD gene expression in kidney with respect to other tissues at 24 hr post-Aeromonas hydrophila challenge. CcIgD gene expression in skin was enhanced following Streptococcus uberis infection and in blood following Argulus infection and inactivated rhabdoviral antigen stimulation. Further, the treatment of bacterial and viral products (PAMPs) also triggered significant (P < 0.05) increases in CcIgD mRNA expression in kidney. These findings indicate the functional importance of teleost IgD in orchestrating tissue specific neutralization of antigens on stimulation with different pathogens and PAMPs. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Avril, Arnaud; Miethe, Sebastian; Derman, Yagmur; Selby, Katja; Thullier, Philippe; Pelat, Thibaut; Urbain, Remi; Korkeala, Hannu; Sesardic, Dorothea; Popoff, Michel R.
2017-01-01
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans. PMID:28974033
NASA Astrophysics Data System (ADS)
Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris
2009-12-01
Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.
Self-accelerating Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian light bullets in free space.
Peng, Yulian; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei
2016-08-22
The evolution of the three-dimensional (3D) self-accelerating Airy-Ince-Gaussian (AiIG) and Airy-Helical-Ince-Gaussian (AiHIG) light bullets is investigated by solving the (3+1)D linear spatiotemporal evolution equation of an optical field analytically. As far as we know, the numerical experimental demonstrations of the Ince-Gaussian (IG) and Helical-Ince-Gaussian (HIG) beams in various modes are first developed to study the evolution characteristics of the different 3D spatiotemporal light bullets. A conclusion can be drawn that the different photoelastics, pulse stacked, boundary, elliptical ring and physically separated in-line vortices can be achieved by adjusting the ellipticity, the evolution distance and the mode-number of light bullets.
Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.
Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain
2007-01-01
B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.
A flow cytometry-based strategy to identify and express IgM from VH1-69+ clonal peripheral B cells.
Charles, Edgar D; Orloff, Michael I M; Dustin, Lynn B
2011-01-05
Pathologic rheumatoid factor (RF) levels are hallmarks of several human diseases. Production of monoclonal RF in vitro is essential for studies of the antigenic specificities of RF, as well as for a dissection of the mechanisms of aberrant RF+ B cell activation. We have expanded upon previous methods to develop a flow cytometry-based method to efficiently clone monoclonal antibodies (mAbs) from humans with expansions of RF-like, immunoglobulin heavy chain variable region (IgVH) 1-69 gene segment-containing B cells. The cloned variable regions are expressed as IgM and produced during culture at concentrations between 5 and 20 μg/ml. Using this system, we show that clonal Igs from patients with HCV-related mixed cryoglobulinemia, when expressed as IgM, have RF activity. We anticipate that this system will be useful for the cloning and expression of mAbs partially encoded by VH1-69 and for determination of the reactivity patterns of polyspecific, low-affinity IgMs of human pathogenic importance. Copyright © 2010 Elsevier B.V. All rights reserved.
Wines, Bruce D; Ramsland, Paul A; Trist, Halina M; Gardam, Sandra; Brink, Robert; Fraser, John D; Hogarth, P Mark
2011-09-23
Host survival depends on an effective immune system and pathogen survival on the effectiveness of immune evasion mechanisms. Staphylococcus aureus utilizes a number of molecules to modulate host immunity, including the SSL family of which SSL7 binds IgA and inhibits Fcα receptor I (FcαRI)-mediated function. Other Gram-positive bacterial pathogens produce IgA binding proteins, which, similar to SSL7, also bind the Fc at the CH2/CH3 interface (the junction between constant domains 2 and 3 of the heavy chain). The opposing activities of the host FcαRI-IgA receptor ligand pair and the pathogen decoy proteins select for host and pathogen variants, which exert stronger protection or evasion, respectively. Curiously, mouse but not rat IgA contains a putative N-linked glycosylation site in the center of this host receptor and pathogen-binding site. Here, we demonstrate that this site is glycosylated and that the effect of amino acid changes and glycosylation of the CH2/CH3 interface inhibits interaction with the pathogen IgA binding protein SSL7, while maintaining binding of pIgR, essential to the biosynthesis and transport of SIgA.
Yao, Ying; Wang, Su-Xia; Zhang, You-Kang; Wang, Yan; Liu, Li; Liu, Gang
2014-01-01
Light chain proximal tubulopathy is a rarely reported entity associated with plasma cell dyscrasia that classically manifests as acquired Fanconi syndrome and is characterized by the presence of κ-restricted crystals in the proximal tubular cytoplasm. We herein present a case of multiple myeloma with Fanconi syndrome and acute kidney injury due to light chain proximal tubulopathy with light chain cast nephropathy. Prominent phagolysosomes and numerous irregularly shaped inclusions with a fibrillary matrix in the cytoplasm of the proximal tubules were identified on electron microscopy. A monotypic light chain of the λ type was detected in the distal tubular casts, proximal tubular cytoplasmic lysosomes and fibrillary inclusions on immunofluorescence and immune electron microscopy. This case underscores the importance of conducting careful ultrastructural investigations and immunocytologic examinations of light chains for detecting and diagnosing light chain proximal tubulopathy.
A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture.
Dionne, Benjamin; Mishra, Neha; Butler, Michael
2017-03-20
Glycosylation and intracellular assembly of monoclonal antibodies (MAbs) is important for glycan profile consistency. To better understand how these factors may be influenced by a lower redox potential, an IgG1-producing NS0 cell line was grown in the presence of varying concentrations of dithiothreitol (DTT). Cultures were monitored for growth and culture redox potential (CRP) with glycan heterogeneity determined using a HILIC-HPLC method. Macroheterogeneity was unchanged in all conditions whereas the Galactosylation Index (GI) decreased by as much as 50% in cultures with lower CRP or higher dithiothreitol levels. This shift in GI is reflected in more agalactosylated and asialylated species being produced. The MAb assembly pathway was determined using radioactive isotope 35 S incorporated into nascent IgG1 molecules. The assembly pathway for this IgG1 was shown to progress via HC→HC 2 →HC 2 LC→HC 2 LC 2 in all conditions tested and autoradiographs highlighted that the ratio of heavy chain dimer to heavy chain monomer increased over time with increasing DTT concentrations. This increase and correspondingly lower GI values may be due to disruption of the disulfide bonds at higher levels of assembly. A change in the assembly pathway may alter the final IgG glycan pattern and lead to control mechanisms that influence glycan profiles of MAbs. Copyright © 2017. Published by Elsevier B.V.
IL-21: an executor of B cell fate.
Konforte, Danijela; Simard, Nathalie; Paige, Christopher J
2009-02-15
IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.
Herrera, Guillermo A
2014-10-01
Lesions associated with monoclonal light and heavy chains display a variety of glomerular, tubular interstitial, and vascular manifestations. While some of the entities are well recognized, including light and heavy chain deposition diseases, AL (light chain) and AH (heavy chain) amyloidosis, and light chain ("myeloma") cast nephropathy, other lesions centered on proximal tubules are much less accurately identified, properly diagnosed, and adequately understood in terms of pathogenesis and molecular mechanisms involved. These proximal tubule-centered lesions are typically associated with monoclonal light chains and have not been reported in patients with circulating monoclonal heavy chains. To determine the incidence of proximal tubulopathies in a series of patients with monoclonal light chain-related renal lesions and characterize them with an emphasis on clinical correlations and elucidation of molecular mechanisms involved in their pathogenesis. A study of 5410 renal biopsies with careful evaluation of light microscopic, immunofluorescence, and electron microscopic findings was conducted to identify these monoclonal light/heavy chain-related lesions. In selected cases, ultrastructural immunolabeling was performed to better illustrate and understand molecular mechanisms involved or to resolve specific diagnostic difficulties. In all, 2.5% of the biopsies were diagnosed as demonstrating renal pathology associated with monoclonal light or heavy chains. Of these, approximately 46% were classified as proximal tubule-centered lesions, also referred to as monoclonal light chain-associated proximal tubulopathies. These proximal tubulopathies were divided into 4 groups defined by characteristic immunomorphologic manifestations associated with specific clinical settings. These are important lesions whose recognition in the different clinical settings is extremely important for patients' clinical management, therapeutic purposes, and prognosis. These entities have been segregated into 4 distinct variants, conceptualized morphologically and clinically. Specific mechanisms involved in their pathogenesis are proposed.
Amino terminal sequence of heavy and light chains from ratfish immunoglobulin.
De Ioannes, A E; Aguila, H L
1989-01-01
The ratfish, Callorhinchus callorhinchus, a representative of the Holocephali, has a natural serum hemagglutinin (Mr 960,000), composed of heavy (Mr 71,000), light (Mr 22,500), and J (Mr 16,000) chains. To approach the mechanisms that generate diversity at this level of evolution, the amino terminal sequence of the heavy and light chains was determined by automated microsequencing. The chains are unblocked and have modest internal sequence heterogeneity. The heavy chains show sequence similarity with the terminal region of the heavy chain from the horned shark, Heterodontus francisci, and other species. In contrast to the heavy chain, the ratfish light chains display low sequence similarity with their shark kappa counterparts. However, their similarity with the variable region of the chicken lambda light chains is about 75%.
1984-01-01
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin. PMID:6420419
Hickman, S; Theodorakis, J L; Greco, J M; Brown, P H
1984-02-01
The processing of asparagine-linked oligosaccharides on the alpha-chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N-acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.
Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias).
Smith, Lauren E; Crouch, Kathryn; Cao, Wei; Müller, Mischa R; Wu, Leeying; Steven, John; Lee, Michael; Liang, Musen; Flajnik, Martin F; Shih, Heather H; Barelle, Caroline J; Paulsen, Janet; Gill, Davinder S; Dooley, Helen
2012-04-01
The cartilaginous fish (chimeras, sharks, skates and rays) are the oldest group relative to mammals in which an adaptive immune system founded upon immunoglobulins has been found. In this manuscript we characterize the immunoglobulins of the spiny dogfish (Squalus acanthias) at both the molecular and expressed protein levels. Despite the presence of hundreds of IgM clusters in this species the serum levels of this isotype are comparatively low. However, analysis of cDNA sequences and serum protein suggests microheterogeneity in the IgM heavy chains and supports the proposal that different clusters are preferentially used in the two forms (monomer or pentamer) of this isotype. We also found that the IgNAR isotype in this species exists in a previously unknown multimeric format in serum. Finally, we identified a new form of the IgW isotype (the shark IgD orthologue), in which the leader is spliced directly to the first constant domain, resulting in a molecule lacking an antigen-binding domain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Role of immunoflourescence in the diagnosis of glomerulonephritis.
Nasir, Humaira; Chaudhry, Sarah; Raza, Wajiha; Moatasim, Ambreen; Mamoon, Nadira; Akhtar, Noreen
2012-03-01
To correlate the findings of immunoflorescence (IF) with morphology in renal biopsies of patients with glomerulonephritis (GN) of both primary and secondary nature. The cross-sectional analytical study was conducted at the Shifa International Hospital's Department of Pathology form March 2007 to August 2008, during which a total of 207 renal biopsies were done. Of them, the study included 92 cases which were diagnosed as primary or secondary glomerulonephritis under light microscope. Those cases were selected in which both light microscopy (LM) and immunoflorescence were done. Of the 92 patients, 79 (85.8%) were adults (> or = 19 years) and 13 (14%) were children (< 19 years). The mean age of adults was 36.44 +/- 11.55 (range 19-69 years) and that of the children was 10.54 +/- 3.85 years (range 4-18 years). immunoflorescence changed the morphologic diagnosis in 20 (21.73%) cases. The pattern of disease was: membranous glomerulonephritis in 24%, focal segmental glomerulosclerosis (FSGS) in 18.4%, mesangiocapillary glomerulonephritis in 2%, and minimal change disease (MCD) in 16% of the cases. Light microscopy alone can misdiagnose renal disease. This is especially important in cases of early stage membranous, IgA nephropathy (IgAN), Lupus nephritis and IgM nephropathy (IgMN), as these entities can only be diagnosed by correlating the microscopic, immunoflorescence findings and clinical details.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-06-01
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.
Yang, Shun; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin
2018-07-01
B cells in some fish were recently found to have potent phagocytic activities. Sea bass (Lateolabrax japonicus) as an important economical marine fish species, it could be used as an appropriate model to study the functions of B cells in phagocytosis. In the paper, three positive hybridomas designated as 1E11, 2H4 and 3F3 secreting monoclonal antibodies (MAbs) against sea bass immunoglobulin M (IgM) were produced and used as research tools. Indirect enzyme-linked immunosorbent assay showed that all the three MAbs had a high binding capacity with sea bass serum IgM. Western blotting analysis showed that all the three MAbs were specific for the heavy chain of sea bass IgM. Indirect immunofluorescence assay (IFA) analysis suggested that both MAbs 1E11 and 2H4 could recognize membrane-bound IgM (mIgM) molecule of sea bass. Specificity analysis showed that three MAbs had no cross-reactions with other six teleosts IgMs. Flow cytometric analysis exhibited that the percentages of sea bass mIgM + lymphocytes in peripheral blood, spleen and pronephros were 25.6%, 21.1%, and 17.5%, respectively. Moreover, we found that the mIgM + lymphocytes of sea bass could phagocytose fluorescence microspheres and Lactococcus lactis, but lower phagocytosis rates of L. lactis was observed. These results demonstrated that the MAbs produced in this paper could be used as tools to study secretory IgM and mIgM + lymphocytes of sea bass, and mIgM + lymphocytes might also play an important role in innate immunity of sea bass. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study on camel IgG purification
Khamehchian, Sedigheh; Zolfagharian, Hossein; Dounighi, Naser Mohammadpour; Tebianian, Majid; Madani, Rasool
2014-01-01
A combined process of ammonium sulfate precipitation (salting out) and ion-exchange chromatography on DEAE-Sepharose CL-6B was used to prepare camel antivenom (IgG) against Naja Naja Oxiana for therapy. In the ammonium sulfate precipitation, the best condition for fractionation of IgG from the other proteins in camel serum was 55% precipitate. The camel IgG presented as 2 bands with molecular masses of 250 and 100 kDa, the latter corresponding to heavy chain IgG, on 10% gel electrophoresis. A trace amount of non-IgG proteins was not isolated and remained in this precipitate. Therefore in order to effectively separate albumin and the other nonspecific proteins from the IgG, the 25% precipitate of ammonium sulfate precipitation of serum was subjected to DEAE-Sepharose CL-6B column chromatography. A peak of antibody (IgG) could be obtained by elution with sodium phosphate buffer. In this stage, 2 bands of molecular masses of 150 and 75 kDa were observed on 7% gel electrophoresis. A comparative study was performed between camel IgG and conventional horse F(ab)2 antivenoms in term of potency (serum neutralization test and ELISA). Our results showed that the potency of camel antivenom was 4-fold higher than that of horse. It is suggested the combined ammonium sulfate precipitation and ion-exchange chromatography process effectively removed residual proteins in the final camel IgG preparation and can be a suitable method for large-scale refinement of therapeutic camel antivenoms. PMID:24642472
[Identification and production of monoclonal antibody of Siberian tiger's immunoglobulin].
Zhang, Yaonglong; Zhang, Duanling; Zhou, Ming; Xue, Yuan; Hua, Yuping; Ma, Jianzhang
2010-03-01
To purify immunoglobulin (Ig) of Siberian Tiger and prepare monoclonal antibody (mAb) against the Ig,which can be used to develop immunological diagnostic kits for diagnosing infectious disease in Siberian Tiger. The Ig of Siberian tigers was purified with saturated ammonium sulfate combined with recombinant Protein G. The C57BL/6 mice were immunized with the purified Ig. Spleno-cytes of the mice immunized were collected and fused with the mouse myeloma cell line (Sp2/0-Ag14). The positive hybridoma clones were selected by ELISA and were identified by western blot. The sandwich ELISA was used to detect immunocompetence of the purified Ig and the mAb. We obtained three mouse hybridoma clones that produced mAbs against Ig of Siberian Tiger. The derived McAbs could recognize Ig heavy chain of Siberian Tiger specifically. The biological activity of the Ig and obtained McAbs also could be identified by detecting the antibody induced by panleukopenia virus (FPV-HLJ) vaccine in Siberian Tiger. The antibody also would be useful for assess the vaccine efficacy against the infectious disease on the Siberian Tiger. Protein G can be used in Ig purification of Siberian Tiger. The obtained McAbs from the hybridoma ADT11 in this study owned strong ability to bind Ig of Siberian Tiger and have a stable immunocompetence. They can be used to develop diagnostic methods for detecting infectious disease in Siberian Tiger and vaccine research.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-11-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-01-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192
Involvement of myosin light-chain kinase in endothelial cell retraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysolmerski, R.B.; Lagunoff, D.
Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylationmore » of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.« less
NASA Astrophysics Data System (ADS)
Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John
1986-07-01
The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.
Chen, Chih-Ying; Brodsky, Frances M
2005-02-18
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.
Jouvin, M H; Adamczewski, M; Numerof, R; Letourneur, O; Vallé, A; Kinet, J P
1994-02-25
Nonreceptor tyrosine kinases such as the newly described 70-kDa (ZAP-70/Syk) and Src-related tyrosine kinases are coupled to a variety of receptors, including the antigen receptors on B- and T-cells and the Fc receptors for IgE (Fc epsilon RI) and IgG (Fc gamma RI, Fc gamma RIII/CD16). Various subunits of these receptors contain homologous activation motifs which appear capable of autonomously triggering cell activation. Two forms of this motif are present in the Fc epsilon RI multimeric complex: one in the beta chain and one in the gamma chain. Here we show that each of the two tyrosine kinases known to be involved in Fc epsilon RI signaling is controlled by a distinct motif-containing chain. Lyn associates with the nonactivated beta chain, whereas gamma promotes the activation of Syk. We also show that neither the beta nor the gamma motif alone can account for the full signaling capacity of the entire receptor. We propose that, upon triggering of the tetrameric receptor, Lyn already bound to beta becomes activated and phosphorylates beta and gamma; the phosphorylation of gamma induces the association of Syk with gamma and also the activation of Syk, resulting in the phosphorylation and activation of phospholipase C gamma 1. Cooperative recruitment of specific kinases by the various signaling chains found in this family of antigen receptors could represent a way to achieve the full signaling capacity of the multimeric complexes.
Washabau, Robert J; Holt, David E; Brockman, Daniel J
2002-05-01
To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zezza, D.J.; Stewart, S.E.; Steiner, L.A.
1992-12-15
Xenopus laevis Ig contain two distinct types of L chains, designated [rho] or L1 and [sigma] or L2. The authors have analyzed Xenopus genomic DNA by Southern blotting with cDNA probes specific for L1 V and C regions. Many fragments hybridized to the V probe, but only one or two fragments hybridized to the C probe. Corresponding C, J, and V gene segments were identified on clones isolated from a genomic library prepared from the same DNA. One clone contains a C gene segment separated from a J gene segment by an intron of 3.4 kb. The J and Cmore » gene segments are nearly identical in sequence to cDNA clones analyzed previously. The C segment is somewhat more similar and the J segment considerably more similar in sequence to the corresponding segments of mammalian [kappa] chains than to those of mammalian [lambda] chains. Upstream of the J segment is a typical recombination signal sequence with a spacer of 23 bp, as in J[kappa]. A second clone from the library contains four V gene segments, separated by 2.1 to 3.6 kb. Two of these, V1 and V3, have the expected structural and regulatory features of V genes, and are very similar in sequence to each other and to mammalian V[kappa]. A third gene segment, V2, resembles V1 and V3 in its coding region and nearby 5[prime]-flanking region, but diverges in sequence 5[prime] to position [minus]95 with loss of the octamer promoter element. The fourth V-like segment is similar to the others at the 3[prime]-end, but upstream of codon 64 bears no resemblance in sequence to any Ig V region. All four V segments have typical recombination signal sequences with 12-bp spacers at their 3[prime]-ends, as in V[kappa]. Taken together, the data suggest that Xenopus L1 L chain genes are members of the [kappa] gene family. 80 refs., 9 figs.« less
Sequencing the Unrearranged Human Immunoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Rene
2010-06-03
Rene Warren from Canada's Michael Smith Genome Sciences Centre discusses sequencing and finishing the IgH heavy chain locus on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Low Prevalence of Parvovirus 4 in HIV-infected Children in Denmark.
Rosenfeldt, Vibeke; Norja, Päivi; Lindberg, Ellinor; Jensen, Lise; Hedman, Lea; Väisänen, Elina; Li, Xuemeng; Hedman, Klaus; von Linstow, Marie-Louise
2015-07-01
Parvovirus 4 (PARV4) has been associated with HIV infection in adults. We examined plasma samples from 46 HIV-infected 0-year-old to 16-year-old children for the presence of PARV4. Four children (8.7%) had detectable PARV4 IgG and 1 had IgM. The result of PARV4 polymerase chain reaction was found to be negative in all patients. PARV4 seropositivity was associated with low CD4 count but not with HIV viral load.
Jeannin, P; Delneste, Y; Lecoanet-Henchoz, S; Gretener, D; Bonnefoy, J Y
1998-02-15
Interleukin-7 (IL-7) is a B-cell growth factor produced by both bone marrow stroma cells and follicular dendritic cells (FDCs) located in primary lymphoid follicles and germinal centers. In this study, we have evaluated the role of IL-7 on human Ig class switching. IL-7 was added to peripheral blood mononuclear cells (PBMCs) or tonsillar B cells in the absence or presence of IL-4 and/or anti-CD40 monoclonal antibody (MoAb). Alone, IL-7 did not affect Ig production by PBMCs or by anti-CD40 MoAb-stimulated B cells. Rather, IL-7 potentiated IL-4-induced IgE and IgG4 production by PBMCs. In parallel, IgG3 production was also enhanced but to a lesser extent, whereas the production of the other isotypes was unaltered. The activity of IL-2, IL-9, or IL-15, which share usage of the common gamma chain for signaling, was also assessed. IL-9, like IL-7, potentiated mainly IgE and IgG4 production by IL-4-stimulated PBMCs. IL-15, in contrast, was ineffective, whereas IL-2 enhanced the production of all isotypes. More precisely, IL-7 potentiation of IgE and IgG4 production required the presence of T cells and was accompanied by an increase of the expression of two soluble molecules favoring preferentially IgE and IgG4 synthesis: CD23 (sCD23) and IL-9. Moreover, neutralizing anti-CD23 and anti-IL-9 antibodies partly inhibited the increase of IgE synthesis induced by IL-7. Thus, IL-7 produced locally in the germinal centers by FDCs may interact with T cells and potentiate human IgE and IgG4 switching by favoring IL-9 and sCD23 production.
Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae
2015-02-01
Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.
Sabban, Sari; Ye, Hongtu; Helm, Birgit
2014-11-01
The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml(-1) of antigen. This assay was modified from previous assays used to study human and canine allergic responses. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease.
Sabban, Sari; Ye, Hongtu; Helm, Birgit
2014-01-01
The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains 1. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout 2, 3. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml-1 of antigen. This assay was modified from previous assays used to study human and canine allergic responses 4, 5. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease 6, 2, 3. PMID:25406512
The P9 peptide sidechain specificity of I-Ad.
Bartnes, K; Li, X; Briand, J P; Travers, P J; Hannestad, K
1999-12-01
The murine MHC class II variant I-Ad confers susceptibility to herpes simplex virus (HSV)-induced keratitis and relative protection against type 1 diabetes mellitus. The association to these autoimmune diseases appears to be largely determined by the peptide sidechain specificity of the P9 pocket, which we therefore have analyzed in detail. Assessment of T-cell responses and I-Ad binding capacity of position 446-substituted analogs of an IgG2a allotype b (IgG2a(b)) heavy chain peptide demonstrates that engagement of the P9 pocket is crucial for effective peptide presentation. Sidechain size rather than charge decides the capacity to engage the P9 pocket. Thus, small, uncharged sidechains are accepted, whereas acidic and aromatic amino acids as well as lysine and arginine are disfavored. The specificity of the P9 pocket of I-Ad (serine beta57) is distinct from that of the diabetes-associated I-Ag7 (aspartic acid beta57), supporting the contention that the polymorphism at residue beta57 influences diabetes susceptibility via P9-specific effects on the repertoires of self peptides presented to T cells. Furthermore, the data rationalize the susceptibility to HSV-induced keratitis conferred by the a and the protection conferred by the b allotypes of the IgG2a heavy chain. Keratitogenic T cells, which cross-react with the viral UL6 protein and a corneal antigen, are silenced in IgG2a(b) mice because of antigenic mimicry with gamma2a(b) 435-451. Our finding that the lysine P9 residue of the corresponding gamma2a(a) allopeptide precludes high-affinity binding to I-Ad indicates that the susceptibility of IgG2a(a) mice reflects inefficient thymic presentation of autologous IgG2a and thus failure to purge the T-cell repertoire of the pathogenic clones.
Barre, Annick; Sordet, Camille; Culerrier, Raphaël; Rancé, Fabienne; Didier, Alain; Rougé, Pierre
2008-03-01
Surface-exposed IgE-binding epitopes of close overall conformation were characterized on the molecular surface of three-dimensional models built for the vicilin allergens of peanut (Ara h 1), walnut (Jug r 2), hazelnut (Cor a 11) and cashew nut (Ana o 1). They correspond to linear stretches of conserved amino acid sequences mainly located along the C-terminus of the polypeptide chains. A glyco-epitope corresponding to an exposed N-glycosylation site could also interfere with the IgE-binding epitopes. All these epitopic regions should participate in the IgE-binding cross-reactivity commonly reported between tree nuts or between peanut and some tree nuts in sensitized individuals. Owing to this epitopic community which constitutes a risk of cross-sensitization, the avoidance or a restricted consumption of other tree nuts should be recommended to peanut-sensitized individuals.
Detection of isotype switch rearrangement in bulk culture by PCR.
Max, E E; Mills, F C; Chu, C
2001-05-01
When a B lymphocyte changes from synthesizing IgM to synthesizing IgG, IgA, or IgE, this isotype switch is generally accompanied by a unique DNA rearrangement. The protocols in this unit describe two polymerase chain reaction (PCR)-based strategies for detecting switch rearrangements in bulk culture. The first involves direct PCR across the switch junctions, providing the opportunity for characterizing the recombination products by nucleotide sequence analysis; however, because of characteristics inherent to the PCR methodology this strategy cannot easily be used as a quantitative assay for recombination. A support protocol details the preparation of the 5' Su PCR probe for this protocol. The second basic protocol describes a method known as digestion-circularization PCR (DCPCR) that is more amenable to quantitation but yields no information on structure of the recombination products. Both techniques should be capable of detecting reciprocal deletion circles as well as functional recombination products remaining on the expressed chromosome.
Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R.; Cheng, Tian-Lu
2016-01-01
Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15–120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis. PMID:27494183
Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu
2016-01-01
Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.
IgE antibody to fish gelatin (type I collagen) in patients with fish allergy.
Sakaguchi, M; Toda, M; Ebihara, T; Irie, S; Hori, H; Imai, A; Yanagida, M; Miyazawa, H; Ohsuna, H; Ikezawa, Z; Inouye, S
2000-09-01
Most children with anaphylaxis to measles, mumps, and rubella vaccines had shown sensitivity to bovine gelatin that was included in the vaccines. Recently, it was found that bovine type I collagen, which is the main content in the gelatin, is a major allergen in bovine gelatin allergy. Fish meat and skin also contain type I collagen. The present study was designed to investigate IgE antibody to fish gelatin in children with fish allergy. Serum samples were taken from patients in 3 groups: (1) 10 patients with fish allergy and specific IgE to fish meat; (2) two patients with allergies to both fish meat and bovine gelatin and specific IgE to fish meat and bovine gelatin; and (3) 15 patients with atopic dermatitis and specific IgE to fish meat. Various fish gelatins (type I collagen) were prepared from fish skin. IgE antibody to fish gelatin was analyzed by using ELISA and immunoblotting. Of 10 patients with fish allergy, 3 had specific IgE to fish gelatin. Of two patients with fish allergy and bovine gelatin allergy, all had specific IgE to fish gelatin. Of 15 patients with atopic dermatitis and specific IgE to fish meat, 5 had specific IgE to fish gelatin. Furthermore, IgE from pooled serum of the patients reacted with both the alpha1 and alpha2 chains of fish type I collagen in immunoblots. There is cross-reactivity among gelatins from various fishes, but there is little cross-reactivity between fish and bovine gelatins. Some fish-sensitive patients possessed IgE antibody to fish gelatin. Fish gelatin (type I collagen) might be an allergen in subjects with fish allergy.
Olariu, Tudor Rares; Remington, Jack S; McLeod, Rima; Alam, Ambereen; Montoya, Jose G
2011-12-01
Congenital toxoplasmosis can cause significant neurologic manifestations and other untoward sequelae. The Palo Alto Medical Foundation Toxoplasma Serology Laboratory database was searched for data on infants 0 to 180 days old, in whom congenital toxoplasmosis had been confirmed and who had been tested for Toxoplasma gondii-specific immunoglobulin G (IgG), IgM, and IgA antibodies, between 1991 and 2005. Their clinical findings were confirmed at the National Collaborative Chicago-based Congenital Toxoplasmosis Study center. We reviewed available clinical data and laboratory profiles of 164 infants with congenital toxoplasmosis whose mothers had not been treated for the parasite during gestation. One or more severe clinical manifestations of congenital toxoplasmosis were reported in 84% of the infants and included eye disease (92.2%), brain calcifications (79.6%), and hydrocephalus (67.7%). In 61.6% of the infants, eye disease, brain calcifications, and hydrocephalus were present concurrently. T. gondii-specific IgM, IgA, and IgE antibodies were demonstrable in 86.6%, 77.4%, and 40.2% of the infants, respectively. Testing for IgM and IgA antibodies increased the sensitivity of making the diagnosis of congenital toxoplasmosis to 93% compared with testing for IgM or IgA individually. IgM and IgA antibodies were still present in 43.9% of infants diagnosed between 1 and 6 months of life. Our study reveals that severe clinical signs of congenital toxoplasmosis including hydrocephalus, eye disease, or intracranial calcifications occurred in 85% infants whose sera were referred to our reference Toxoplasma Serology Laboratory during a period of 15 years. Laboratory tests, including serologic and polymerase chain reaction tests, were critical for diagnosis in the infants. Our results contrast remarkably with those of European investigators who rarely observe severe clinical signs in infants with congenital toxoplasmosis.
Rondaan, C; van Leer, C C; van Assen, S; Bootsma, H; de Leeuw, K; Arends, S; Bos, N A; Westra, J
2018-07-01
Systemic lupus erythematosus (SLE) patients are at high risk of herpes zoster. Previously, we found increased immunoglobulin (Ig)G levels against varicella-zoster virus (VZV) in SLE patients compared to controls, while antibody levels against diphtheria and cellular immunity to VZV were decreased. We aimed to test our hypothesis that increased VZV-IgG levels in SLE result from subclinical VZV reactivations, caused by stress because of lupus disease activity or immunosuppressive drug use. Methods Antibody levels to VZV (IgG, IgA, IgM), total IgG and VZV-DNA were longitudinally determined in the serum of 34 SLE patients, using enzyme-linked immunosorbent assay and polymerase chain reaction. Clinical data were retrieved from medical records. Reactivation of VZV was defined as an at least fivefold rise in VZV-IgG or presence of VZV-IgM or VZV-DNA. Generalized estimating equations (GEE) were used to longitudinally analyse associations between antibody levels, lupus disease activity and medication use. Systemic Lupus Erythematosus Disease Activity Index, anti-double-stranded DNA and complement levels were used as indicators of lupus disease activity. Results A VZV reactivation was determined in 11 patients (33%). In at least five of them, herpes zoster was clinically overt. No association between SLE disease activity or medication use and VZV-specific antibody levels was found. There was a weak association between total IgG and VZV-IgG. Conclusions Our results indicate that increased VZV-IgG levels in SLE do not result from frequent subclinical VZV reactivations, and are not associated with lupus disease activity. Increased VZV-IgG can only partially be explained by hypergammaglobulinaemia.
Horynová, Milada; Takahashi, Kazuo; Hall, Stacy; Renfrow, Matthew B; Novak, Jan; Raška, Milan
2012-02-01
The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system. Copyright © 2011 Elsevier Inc. All rights reserved.
Medraño-Fernandez, Iria; Fagioli, Claudio; Mezghrani, Alexandre; Otsu, Mieko; Sitia, Roberto
2014-04-01
To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation. PDI oxidation by Ero1 favours substrate release and transport across the ER membrane. Here we addressed the redox dependency of ERAD and found that DTT stimulates the dislocation of proteins with DTT-resistant disulphide bonds (i.e., orphan Ig-μ chains) but stabilizes a ribophorin mutant (Ri332) devoid of them. DTT promotes the association of Ri332, but not of Ig-µ, with PDI. This discrepancy may suggest that disulphide bonds in cargo proteins can be utilized to oxidize PDI, hence facilitating substrate detachment and degradation also in the absence of Ero1. Accordingly, Ero1 silencing retards Ri332 degradation, but has little if any effect on Ig-µ. Thus, some disulphides can increase the stability and simultaneously favour quality control of secretory proteins.
Shang, Yonglei; Tesar, Devin; Hötzel, Isidro
2015-10-01
A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Heads, James T; Adams, Ralph; D'Hooghe, Lena E; Page, Matt J T; Humphreys, David P; Popplewell, Andrew G; Lawson, Alastair D; Henry, Alistair J
2012-01-01
The stability of therapeutic antibodies is a prime pharmaceutical concern. In this work we examined thermal stability differences between human IgG1 and IgG4 Fab domains containing the same variable regions using the thermofluor assay. It was found that the IgG1 Fab domain is up to 11°C more stable than the IgG4 Fab domain containing the same variable region. We investigated the cause of this difference with the aim of developing a molecule with the enhanced stability of the IgG1 Fab and the biological properties of an IgG4 Fc. We found that replacing the seven residues, which differ between IgG1 CH1 and IgG4 CH1 domains, while retaining the native IgG1 light-heavy interchain disulfide (L–H) bond, did not affect thermal stability. Introducing the IgG1 type L–H interchain disulfide bond (DSB) into the IgG4 Fab resulted in an increase in thermal stability to levels observed in the IgG1 Fab with the same variable region. Conversely, replacement of the IgG1 L–H interchain DSB with the IgG4 type L–H interchain DSB reduced the thermal stability. We utilized the increased stability of the IgG1 Fab and designed a hybrid antibody with an IgG1 CH1 linked to an IgG4 Fc via an IgG1 hinge. This construct has the expected biophysical properties of both the IgG4 Fc and IgG1 Fab domains and may therefore be a pharmaceutically relevant format. PMID:22761163