ASPEN simulation of a fixed-bed integrated gasification combined-cycle power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, K.R.
1986-03-01
A fixed-bed integrated gasification combined-cycle (IGCC) power plant has been modeled using the Advanced System for Process ENgineering (ASPEN). The ASPEN simulation is based on a conceptual design of a 509-MW IGCC power plant that uses British Gas Corporation (BGC)/Lurgi slagging gasifiers and the Lurgi acid gas removal process. The 39.3-percent thermal efficiency of the plant that was calculated by the simulation compares very favorably with the 39.4 percent that was reported by EPRI. The simulation addresses only thermal performance and does not calculate capital cost or process economics. Portions of the BGC-IGCC simulation flowsheet are based on the SLAGGERmore » fixed-bed gasifier model (Stefano May 1985), and the Kellogg-Rust-Westinghouse (KRW) iGCC, and the Texaco-IGCC simulations (Stone July 1985) that were developed at the Department of Energy (DOE), Morgantown Energy Technology Center (METC). The simulation runs in 32 minutes of Central Processing Unit (CPU) time on the VAX-11/780. The BGC-IGCC simulation was developed to give accurate mass and energy balances and to track coal tars and environmental species such as SO/sub x/ and NO/sub x/ for a fixed-bed, coal-to-electricity system. This simulation is the third in a series of three IGCC simulations that represent fluidized-bed, entrained-flow, and fixed-bed gasification processes. Alternate process configurations can be considered by adding, deleting, or rearranging unit operation blocks. The gasifier model is semipredictive; it can properly respond to a limited range of coal types and gasifier operating conditions. However, some models in the flowsheet are based on correlations that were derived from the EPRI study, and are therefore limited to coal types and operating conditions that are reasonably close to those given in the EPRI design. 4 refs., 7 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provost, G.; Zitney, S.; Turton, R.
2009-01-01
To meet increasing demand for education and experience with commercial-scale, coal-fired, integrated gasification combined cycle (IGCC) plants with CO2 capture, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a project to deploy a generic, full-scope, real-time IGCC dynamic plant simulator for use in establishing a world-class research and training center, and to promote and demonstrate IGCC technology to power industry personnel. The simulator, being built by Invensys Process Systems (IPS), will be installed at two separate sites, at NETL and West Virginia University (WVU), and will combine a process/gasification simulator with a power/combined-cycle simulator together inmore » a single dynamic simulation framework for use in engineering research studies and training applications. The simulator, scheduled to be launched in mid-year 2010, will have the following capabilities: High-fidelity, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke. Highly flexible configuration that allows concurrent training on separate gasification and combined cycle simulators, or up to two IGCC simulators. Ability to enhance and modify the plant model to facilitate studies of changes in plant configuration, equipment, and control strategies to support future R&D efforts. Training capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, etc. To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which is serving as the basis of the simulator development. In this paper, we highlight the contents of the detailed functional specification for the simulator. We also describe the engineering, design, and expert testing process that the simulator will undergo in order to ensure that maximum fidelity is built into the generic simulator. Future applications and training programs associated with gasification, combined cycle, and IGCC simulations are discussed, including plant operation and control demonstrations, as well as education and training services.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provost, G.; Stone, H.; McClintock, M.
2008-01-01
To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first timemore » a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas Cooling, Medium Pressure (MP) and Low Pressure (LP) Steam Generation, and Knockout Sour Water Stripper Mercury Removal Selexol™ Acid Gas Removal System CO2 Compression Syngas Reheat and Expansion Claus Plant Hydrogenation Reactor and Gas Cooler Combustion Turbine (CT)-Generator Assemblies Heat Recovery Steam Generators (HRSGs) and Steam Turbine (ST)-Generator In this paper, process descriptions, control strategies, and Process & Instrumentation Diagram (P&ID) drawings for key sections of the generic IGCC plant are presented, along with discussions of some of the operating procedures and representative faults that the simulator will cover. Some of the intended future applications for the simulator are discussed, including plant operation and control demonstrations as well as education and training services such as IGCC familiarization courses.« less
Improved system integration for integrated gasification combined cycle (IGCC) systems.
Frey, H Christopher; Zhu, Yunhua
2006-03-01
Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.
Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen
NASA Technical Reports Server (NTRS)
Burns, R. K.; Staiger, P. J.; Donovan, R. M.
1982-01-01
An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOLmore » acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.« less
NASA Astrophysics Data System (ADS)
Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba
2017-07-01
Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.
Pinon Pine power project nears start-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatar, G.A.; Gonzalez, M.; Mathur, G.K.
1997-12-31
The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less
A regenerative process for carbon dioxide removal and hydrogen production in IGCC
NASA Astrophysics Data System (ADS)
Hassanzadeh Khayyat, Armin
Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
Technical and economic assessments commercial success for IGCC technology in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, T.
1998-07-01
The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, andmore » other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China.« less
Using an operator training simulator in the undergraduate chemical engineering curriculim
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
2012-01-01
An operator training simulator (OTS) is to the chemical engineer what a flight simulator is to the aerospace engineer. The basis of an OTS is a high-fidelity dynamic model of a chemical process that allows an engineer to simulate start-up, shut-down, and normal operation. It can also be used to test the skill and ability of an engineer or operator to respond and control some unforeseen situation(s) through the use of programmed malfunctions. West Virginia University (WVU) is a member of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA). Working through the NETL-RUA, the authors have spent the lastmore » four years collaborating on the development of a high-fidelity OTS for an Integrated Gasification Combined Cycle (IGCC) power plant with CO{sub 2} capture that is the cornerstone of the AVESTARTM (Advanced Virtual Energy Simulation Training And Research) Center with sister facilities at NETL and WVU in Morgantown, WV. This OTS is capable of real-time dynamic simulation of IGCC plant operation, including start-up, shut-down, and power demand load following. The dynamic simulator and its human machine interfaces (HMIs) are based on the DYNSIM and InTouch software, respectively, from Invensys Operations Management. The purpose of this presentation is to discuss the authors’ experiences in using this sophisticated dynamic simulation-based OTS as a hands-on teaching tool in the undergraduate chemical engineering curriculum. At present, the OTS has been used in two separate courses: a new process simulation course and a traditional process control course. In the process simulation course, concepts of steady-state and dynamic simulations were covered prior to exposing the students to the OTS. Moreover, digital logic and the concept of equipment requiring one or more permissive states to be enabled prior to successful operation were also covered. Students were briefed about start-up procedures and the importance of following a predetermined sequence of actions in order to start-up the plant successfully. Student experience with the dynamic simulator consisted of a six-hour training session in which the Claus sulfur capture unit of the IGCC plant was started up. The students were able to operate the simulator through the InTouch-based HMI displays and study and understand the underlying dynamic modeling approach used in the DYNSIM-based simulator. The concepts learned during the training sessions were further reinforced when students developed their own DYNSIM models for a chemical process and wrote a detailed start-up procedure. In the process control course, students learned how the plant responds dynamically to changes in the manipulated inputs, as well as how the control system impacts plant performance, stability, robustness and disturbance rejection characteristics. The OTS provided the opportunity to study the dynamics of complicated, “real-life” process plants consisting of hundreds of pieces of equipment. Students implemented ideal forcing functions, tracked the time-delay through the entire plant, studied the response of open-loop unstable systems, and learned “good practices” in control system design by taking into account the real-world events where significant deviations from the “ideal” or “expected” response can occur. The theory of closed-loop stability was reinforced by implementing limiting proportional gain for stability limits of real plants. Finally, students were divided into several groups where each group was tasked to control a section of the plant within a set of operating limits in the face of disturbances and simulated process faults. At the end of this test, they suggested ways to improve the control system performance based on the theory they learned in class and the hands-on experience they earned while working on the OTS.« less
Producing fired bricks using coal slag from a gasification plant in indiana
Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.
2009-01-01
Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
Recycling of residual IGCC slags and their benefits as degreasers in ceramics.
Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E
2013-11-15
This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China,more » China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.« less
Analysis of potential benefits of integrated-gasifier combined cycles for a utility system
NASA Technical Reports Server (NTRS)
Choo, Y. K.
1983-01-01
Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less
NASA Astrophysics Data System (ADS)
Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.
2017-11-01
Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.
CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-01-15
To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drown, D.P.; Brown, W.R.; Heydorn, E.C.
1997-12-31
The Liquid Phase Methanol (LPMEOH{trademark}) process uses a slurry bubble column reactor to convert syngas (primarily a mixture of carbon monoxide and hydrogen) to methanol. Because of its superior heat management, the process is able to be designed to directly handle the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or of other hydrocarbon feedstocks. When added to an integrated gasification combined cycle (IGCC) power plant, the LPMEOH{trademark} process converts a portion of the CO-rich syngas produced by the gasifier to methanol, and the remainder of the unconverted gas is used to fuelmore » the gas turbine combined-cycle power plant. The LPMEOH{trademark} process has the flexibility to operate in a daily electricity demand load-following manner. Coproduction of power and methanol via IGCC and the LPMEOH{trademark} process provides opportunities for energy storage for electrical demand peak shaving, clean fuel for export, and/or chemical methanol sales.« less
Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune
2016-10-20
Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).
NASA Astrophysics Data System (ADS)
Luo, Kevin
Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to evaluate the microstructure of the layers within the TBC system, and the SEM micrographs showed that the TBC/fly ash deposition interaction zone made the YSZ coating more susceptible to delamination and promoted a dissolution-reprecipitation mechanism that changes the YSZ morphology and composition. EDS examination provided elemental maps which showed a shallow infiltration depth of the fly ash deposits and an elemental distribution spectrum analysis showed yttria migration from the YSZ top coating into the molten deposition. This preliminary work should lead to future studies in gas turbine material coating systems and their interaction with simulated fly ash and potentially CMAS or volcanic ash deposition.
Kobayashi, Makoto; Akiho, Hiroyuki
2017-12-01
Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, Jeff; Aguilar, Kelly; Aldred, Derek
2012-03-30
The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... DEPARTMENT OF AGRICULTURE Rural Utilities Service South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Combined-Cycle (IGCC) Project currently under construction in Kemper County, Mississippi (hereinafter ``the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kevin; Anasti, William; Fang, Yichuan
The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6more » – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.« less
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Ratcliffe, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Plant Ratcliffe, an Integrated Gasification Combined-Cycle Facility located in Kemper County... Company (MPCo), and will demonstrate the feasibility of the Integrated Gasification Combined-Cycle (IGCC...
TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION
The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...
AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucero, Andrew; Goyal, Amit; McCabe, Kevin
2015-06-30
An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H 2S with one almost not affected at all. Higher concentrations of H 2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed formore » IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.« less
NASA Astrophysics Data System (ADS)
Liu, M.; Bi, J.; Huang, Y.; Kinney, P. L.
2016-12-01
Jiangsu, which has three national low-carbon pilot cities, is set to be a model province in China for achieving peak carbon targets before 2030. However, according to local planning of responding to climate change, carbon emissions are projected to keep going up before 2020 even the strictest measures are implemented. In other words, innovative measures must be in action after 2020. This work aimed at assessing the air quality and health co-benefits of alternative post-2020 measures to help remove barriers of policy implementation through tying it to local incentives for air quality improvement. To achieve the aim, we select 2010 as baseline year and develop Bussiness As Usual (BAU) and Traditional Carbon Reduction (TCR) scenarios before 2020. Under BAU, only existing climate and air pollution control policies are considered; under TCR, potential climate policies in local planning and existing air pollution control policies are considered. After 2020, integrated gasification combined cycle (IGCC) plant with carbon capture and storage (CCS) technology and large-scale substitution of renewable energy seem to be two promising pathways for achieving peak carbon targets. Therefore, two additional scenarios (TCR-IGCC and TCR-SRE) are set after 2020. Based on the projections of future energy balances and industrial productions, we estimate the pollutant emissions and simulate PM2.5 and ozone concentrations by 2017, 2020, 2030 and 2050 using CMAQ. Then using health impact assessment approach, the premature deaths are estimated and monetized. Results show that the carbon peak in Jiangsu will be achieved before 2030 only under TCR-IGCC and TCR-SRE scenarios. Under three policy scenarios, Jiangsu's carbon emission control targets would have substantial effects on primary air pollutant emissions far beyond those we estimate would be needed to meet the PM2.5 concentration targets in 2017. Compared with IGCC with CCS, large-scale substitutions of renewable energy bring comparable pollutant emission reductions but more health benefits because it reduces more emissions from traffic sources which are more harmful to health. However, large-scale substitution of renewable energy posed challenges on energy supply capacity, which need to be seriously considered in future policy decision.
Advanced IGCC/Hydrogen Gas Turbine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, William; Hughes, Michael; Berry, Jonathan
2015-07-30
The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.« less
Prospects for the use of SMR and IGCC technologies for power generation in Poland
NASA Astrophysics Data System (ADS)
Wyrwa, Artur; Suwała, Wojciech
2017-11-01
This study is a preliminary assessment of prospects for new power generation technologies that are of particular interest in Poland. We analysed the economic competitiveness of small size integrated gasification combined cycle units (IGCC) and small modular reactors (SMR). For comparison we used one of the most widely applied and universal metric i.e. Levelized Cost of Electricity (LCOE). The LCOE results were complemented with the results of energy-economic model TIMES-PL in order to analyse the economic viability of these technologies under operation regime of the entire power system. The results show that with techno-economic assumptions presented in the paper SMRs are more competitive option as compared to small IGCC units.
NASA Technical Reports Server (NTRS)
Nainiger, J. J.; Burns, R. K.; Easley, A. J.
1982-01-01
A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
Capture-ready power plants - options, technologies and economics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohm, M.C.
2006-06-15
A plant can be considered to be capture-ready if at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The first part of the thesis outlines the two major designs that are being considered for construction in the near-term - pulverized coal (PC) and integrated gasification/combined cycle (IGCC). It details the steps that are necessary to retrofit each of these plants for CO{sub 2} capture and sequestration and assesses the steps that can be taken to reduce the costs and output de-rating of the plant after a retrofit. The second part of the thesis evaluates the lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO{sub 2} capture. Three scenarios are evaluated - a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. The results of this thesis show that a baseline PC plant is the most economical choice under low CO{sub 2} tax rates, and IGCC plants are preferable at higher tax rates. The third part of this thesis evaluates the concept of CO{sub 2} 'lock-in'. CO{sub 2} lock-in occurs when a newly built plant is so prohibitively expensive to retrofit for CO{sub 2} capture that it will never be retrofitted for capture, and offers no economic opportunity to reduce the CO{sub 2} emissions from the plant, besides shutting down or rebuilding. The results show that IGCC plants are expected to have lower lifetime CO{sub 2} emissions than a PC plant, given moderate (10-35more » $$/ton CO{sub 2}) initial tax rates. Higher 4 (above $$40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO{sub 2} emissions from these plants. Little difference is seen in the lifetime CO{sub 2} emissions between the IGCC plants with and without pre-investment for CO{sub 2} capture. 32 refs., 22 figs., 20 tabs., 1 app.« less
Baseload coal investment decisions under uncertain carbon legislation.
Bergerson, Joule A; Lave, Lester B
2007-05-15
More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO2 from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be Pulverized Coal (PC) or IGCC. Do stricter emissions standards (PM, SO2, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO2, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A C02 tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO2. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC w/CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society.
Tampa Electric Company Polk Power Station IGCC project: Project status
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, J.E.; Carlson, M.R.; Hurd, R.
1997-12-31
The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less
Membrane-based systems for carbon capture and hydrogen purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berchtold, Kathryn A
2010-11-24
This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services.more » Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.« less
NASA Technical Reports Server (NTRS)
Nainiger, J. J.; Abbott, J. M.; Burns, R. K.
1981-01-01
In the cogeneration technology alternatives study (CTAS) a number of advanced coal fired systems were examined and systems using a integrated coal gasifier IGCC or a fluid bed combustor AFB were found to yield attractive cogeneration results in industrial cogeneration applications. A range of site requirements and cogeneration sizing strategies using ground rules based on CTAS were used in comparing an IGCC and an AFB. The effect of time variations in site requirements and the sensitivity to fuel and electricity price assumptions are examined. The economic alternatives of industrial or utility ownership are also considered. The results indicate that the IGCC system has potentially higher fuel and emission savings and could be an attractive option for utility ownership. The AFB steam turbine system has a potentially higher return on investment and could be attractive assuming industrial ownership.
2001-01-01
standards can retrofit with flue - gas - desulfurization systems, use low sulfur coal, purchase emissions credits, or close. If a power plant’s emissions...a flue gas scrubbing device. IGCC technology is even more environmentally friendly. In an IGCC plant, coal is converted into a gaseous fuel, purified...and natural gas have rocketed this industry into the public’s spotlight and discussion. Secretary Abraham in a recent speech to the U.S. Chamber of
Durán, A; Monteagudo, J M; San Martín, I
2012-05-15
The aim of this work was to study the operation costs of treating a real effluent from an integrated gasification combined cycle (IGCC) power station located in Spain. The study compares different homogeneous photocatalytic processes on a pilot plant scale using different types of radiation (artificial UV or solar UV with a compound parabolic collector). The efficiency of the processes was evaluated by an analysis of the total organic carbon (TOC) removed. The following processes were considered in the study: (i) a photo-Fenton process at an artificial UV pilot plant (with the initial addition of H(2)O(2)), (ii) a modified photo-Fenton process with continuous addition of H(2)O(2) and O(2) to the system and (iii) a ferrioxalate-assisted solar photo-Fenton process at a compound parabolic collector (CPC) pilot plant. The efficiency of these processes in degrading pollutants has been studied previously, and the results obtained in each of those studies have been published elsewhere. The operational costs due to the consumption of electrical energy, reagents and catalysts were calculated from the optimal conditions of each process. The results showed that the solar photo-Fenton system was economically feasible, being able to achieve up to 75% mineralization with a total cost of 6 €/m(3), which can be reduced to 3.6 €/m(3) by subtracting the electrical costs because the IGCC plant is self-sufficient in terms of energy. Copyright © 2011 Elsevier Ltd. All rights reserved.
ADVANCED SULFUR CONTROL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael
Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less
Ethanol and other oxygenateds from low grade carbonaceous resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, O.S.; Jung, K.D.; Han, S.H.
1995-12-31
Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grademore » carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.« less
NASA Astrophysics Data System (ADS)
Robinson, Patrick J.
Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide control structure and interaction among units are also shown. The methanol plant was sized to handle a reductions of the power generation from an IGCC by 50%, producing a high purity methanol stream of 99.5 mol%. Advanced regulatory control structures were designed and play a significant role for the successful turndown of the methanol plant to 20% capacity. The cooled methanol reactor is controlled by the exit temperature instead of a peak temperature within the reactor. During times of low capacity and minimum vapor rate within the column, tray temperature is controlled by recycling some of the distillate and bottoms flow. The gasifier feed is held constant. The product hydrogen from the IGCC is fed to the combustion turbine as required by electric power demand. Synthesis gas fed into the methanol plant maintains pressure of the hydrogen stream. Make-up hydrogen is also fed to the methanol plant to maintain stoichiometry via a flow ratio. This ratio is adjusted to hold carbon monoxide composition of the recycle gas in the methanol plant. This dissertation also explores various methods on how to turn down distillation columns to very low capacity. Recycling flow back to the column was determined to be the best method. Inserting Langmuir-Hinshelwood-Hougen-Watson kinetics into Aspen was also demonstrated with an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard
2010-11-30
This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schobeiri, Meinhard; Han, Je-Chin
2014-09-30
This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness lessmore » sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.« less
Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar
2009-08-15
In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
Novel concepts for the compression of large volumes of carbon dioxide-phase III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J. Jeffrey; Allison, Timothy C.; Evans, Neal D.
In the effort to reduce the release of CO 2 greenhouse gases to the atmosphere, sequestration of CO 2 from Integrated Gasification Combined Cycle (IGCC) and Oxy-Fuel power plants is being pursued. This approach, however, requires significant compression power to boost the pressure to typical pipeline levels. The penalty can be as high as 8-12% on a typical IGCC plant. The goal of this research is to reduce this penalty through novel compression concepts and integration with existing IGCC processes. The primary objective of the study of novel CO 2 compression concepts is to reliably boost the pressure of COmore » 2 to pipeline pressures with the minimal amount of energy required. Fundamental thermodynamics were studied to explore pressure rise in both liquid and gaseous states. For gaseous compression, the project investigated novel methods to compress CO 2 while removing the heat of compression internal to the compressor. The highpressure ratio, due to the delivery pressure of the CO 2 for enhanced oil recovery, results in significant heat of compression. Since less energy is required to boost the pressure of a cooler gas stream, both upstream and inter-stage cooling is desirable. While isothermal compression has been utilized in some services, it has not been optimized for the IGCC environment. Phase I of this project determined the optimum compressor configuration and developed technology concepts for internal heat removal. Other compression options using liquefied CO 2 and cryogenic pumping were explored as well. Preliminary analysis indicated up to a 35% reduction in power is possible with the new concepts being considered. In the Phase II program, two experimental test rigs were developed to investigate the two concepts further. A new pump loop facility was constructed to qualify a cryogenic turbopump for use on liquid CO 2 . Also, an internally cooled compressor diaphragm was developed and tested in a closed loop compressor facility using CO 2 . Both test programs successfully demonstrated good performance and mechanical behavior. In Phase III, a pilot compression plant consisting of a multi-stage centrifugal compressor with cooled diaphragm technology has been designed, constructed, and tested. Comparative testing of adiabatic and cooled tests at equivalent inlet conditions shows that the cooled diaphragms reduce power consumption by 3-8% when the compressor is operated as a back-to-back unit and by up to 9% when operated as a straight-though compressor with no intercooler. The power savings, heat exchanger effectiveness, and temperature drops for the cooled diaphragm were all slightly higher than predicted values but showed the same trends.« less
Development of ITM oxygen technology for integration in IGCC and other advanced power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Phillip A.
2015-03-31
Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under thismore » five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, R.A.
1997-05-01
The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less
Novel findings about management of gastric cancer: a summary from 10th IGCC.
Penon, Danila; Cito, Letizia; Giordano, Antonio
2014-07-21
The Tenth International Gastric Cancer Congress (IGCC) was held in Verona, Italy, from June 19 to 22, 2013. The meeting enclosed various aspects of stomach tumor management, including both tightly clinical approaches, and topics more related to basic research. Moreover, an overview on gastrointestinal stromal tumors was provided too, although here not discussed. Here we will discuss some topics related to molecular biology of gastric cancer (GC), inherent to prognostic, diagnostic and therapeutic tools shown at the conference. Results about well known subjects, such as E-cadherin loss of expression/function, were presented. They revealed that other mutations of the gene were identified, showing a continuous research to improve diagnosis and prognosis of stomach tumor. Simultaneously, new possible molecular markers with an established role for other neoplasms, were discussed, such as mesothelin, stomatin-like protein 2 and Notch-1. Hence, a wide overview including both old and new diagnostic/prognostic tools was offered. Great attention was also dedicated to possible drugs to be used against GC. They included monoclonal antibodies, such as MS57-2.1, drugs used in other pathologies, such as maraviroc, and natural extracts from plants such as biflorin. We would like to contribute to summarize the most impressive studies presented at the IGCC, concerning novel findings about molecular biology of gastric cancer. Although further investigations will be necessary, it can be inferred that more and more tools were developed, so as to better face stomach neoplasms.
Novel findings about management of gastric cancer: A summary from 10th IGCC
Penon, Danila; Cito, Letizia; Giordano, Antonio
2014-01-01
The Tenth International Gastric Cancer Congress (IGCC) was held in Verona, Italy, from June 19 to 22, 2013. The meeting enclosed various aspects of stomach tumor management, including both tightly clinical approaches, and topics more related to basic research. Moreover, an overview on gastrointestinal stromal tumors was provided too, although here not discussed. Here we will discuss some topics related to molecular biology of gastric cancer (GC), inherent to prognostic, diagnostic and therapeutic tools shown at the conference. Results about well known subjects, such as E-cadherin loss of expression/function, were presented. They revealed that other mutations of the gene were identified, showing a continuous research to improve diagnosis and prognosis of stomach tumor. Simultaneously, new possible molecular markers with an established role for other neoplasms, were discussed, such as mesothelin, stomatin-like protein 2 and Notch-1. Hence, a wide overview including both old and new diagnostic/prognostic tools was offered. Great attention was also dedicated to possible drugs to be used against GC. They included monoclonal antibodies, such as MS57-2.1, drugs used in other pathologies, such as maraviroc, and natural extracts from plants such as biflorin. We would like to contribute to summarize the most impressive studies presented at the IGCC, concerning novel findings about molecular biology of gastric cancer. Although further investigations will be necessary, it can be inferred that more and more tools were developed, so as to better face stomach neoplasms. PMID:25083072
Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amy, Fabrice; Hufton, Jeffrey; Bhadra, Shubhra
2015-06-30
Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined withmore » simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.« less
75 FR 28612 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... Counties, OR and Adams and Nez Perce Counties, ID, Wait Period Ends: 06/21/2010, Contact: Robert W. Rock.... EIS No. 20100181, Final EIS, DOE, MS, Kemper County Integrated Gasification Combined-Cycle (IGCC...
Coal Integrated Gasification Fuel Cell System Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chellappa Balan; Debashis Dey; Sukru-Alper Eker
2004-01-31
This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable withmore » the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.; Andersson, L.
1992-12-01
A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage & Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.; Andersson, L.
1992-12-01
A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCCmore » plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.« less
A new way to experience the International Gastric Cancer Association Congress: the Web Round Tables.
Morgagni, Paolo; Verlato, Giuseppe; Marrelli, Daniele; Roviello, Franco; de Manzoni, Giovanni
2014-10-01
In an attempt to attract a wider diversity of professionals to the 10th International Gastric Cancer Association Congress (IGCC) held in June 2013, the Scientific Committee of the conference organized a number of pre-congress Web Round Tables to discuss cutting-edge topics relating to gastric cancer treatment. Twenty Web Round Tables, each coordinated by a different chairman, were proposed on the IGCC Website 1 year before the congress. Each chairman identified a number of studies related to the theme of his/her Round Table and invited corresponding authors to send an update of their conclusions in light of their subsequent experience, which would then form the basis of discussion of the Web Round Tables. The chairmen posted several questions regarding these updates on the web and opened a forum for a period of 1-2 months. The forum was free and specifically intended for congress participants. Fifty-one (9.9 %) of the 516 authors contacted took part in the initiative. Two hundred fifty participants from 21 countries joined the forum discussion and posted 671 comments. The Web Round Tables were viewed 15,810 times while the forum was open. Overall, the Web Round Tables aroused considerable interest, especially among young professionals working in the area of gastric cancer who had the opportunity to contact and interact with experts in what often turned out to be an interesting and lively exchange of views. All the discussions are now freely available for consultation on the IGCC website. The Web Round Table experience was presented, with great success, during the conference at special afternoon sessions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Ronald; Whitty, Kevin
2014-12-01
The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiplemore » species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
Liquid CO 2/Coal Slurry for Feeding Low Rank Coal to Gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marasigan, Jose; Goldstein, Harvey; Dooher, John
2013-09-30
This study investigates the practicality of using a liquid CO 2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO 2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO 2 is much lower than water. This means it should take less energy to pump liquid CO 2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, whichmore » should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO 2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO 2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO 2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO 2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO 2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO 2/coal slurry properties.« less
Frontal lobe morphometry with MRI in a normal age group of 6-17 year-olds.
Ilkay Koşar, M; Otağ, Ilhan; Sabancıoğulları, Vedat; Atalar, Mehmet; Tetiker, Hasan; Otağ, Aynur; Cimen, Mehmet
2012-12-01
Morphometric data of the frontal lobe are important for surgical planning of lesions in the frontal lobe and its surroundings. Magnetic resonance imaging (MRI) techniques provide suitable data for this purpose. In our study, the morphometric data of mid-sagittal MRI of the frontal lobe in certain age and gender groups of children have been presented. In a normal age group of 6-17-year-old participants, the length of the line passing through predetermined different points, including the frontal pole (FP), commissura anterior (AC), commissura posterior (PC), the outermost point of corpus callosum genu (AGCC), the innermost point of corpus callosum genu (IGCC), tuberculum sella (TS), AGCC and IGCC points parallel to AC-PC line and the point such line crosses at the frontal lobe surface (FCS) were measured in three age groups (6-9, 10-13 and 14-17 years) for each gender. The frontal lobe morphometric data were higher in males than females. Frontal lobe measurements peak at the age group of 10-13 in the male and at the age group of 6-13 in the female. In boys, the length of FP-AC increases 4.1% in the 10-13 age group compared with the 6-9-year-old group, while this increase is 2.3% in girls. Differences in age and gender groups were determined. While the length of AGCC-IGCC increases 10.4% in adults, in children aged 6-17, the length of AC-PC is 11.5% greater than adults. These data will contribute to the preliminary assessment for developing a surgical plan in fine interventions in the frontal lobe and its surroundings in children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, D.A.; Shoemaker, S.A.
1996-12-31
The Morgantown Energy Technology Center (METC) is currently evaluating hot gas desulfurization (HGD)in its on-site transport reactor facility (TRF). This facility was originally constructed in the early 1980s to explore advanced gasification processes with an entrained reactor, and has recently been modified to incorporate a transport riser reactor. The TRF supports Integrated Gasification Combined Cycle (IGCC) power systems, one of METC`s advanced power generation systems. The HGD subsystem is a key developmental item in reducing the cost and increasing the efficiency of the IGCC concept. The TRF is a unique facility with high-temperature, high-pressure, and multiple reactant gas composition capability.more » The TRF can be configured for reacting a single flow pass of gas and solids using a variety of gases. The gas input system allows six different gas inputs to be mixed and heated before entering the reaction zones. Current configurations allow the use of air, carbon dioxide, carbon monoxide, hydrogen, hydrogen sulfide, methane, nitrogen, oxygen, steam, or any mixture of these gases. Construction plans include the addition of a coal gas input line. This line will bring hot coal gas from the existing Fluidized-Bed Gasifier (FBG) via the Modular Gas Cleanup Rig (MGCR) after filtering out particulates with ceramic candle filters. Solids can be fed either by a rotary pocket feeder or a screw feeder. Particle sizes may range from 70 to 150 micrometers. Both feeders have a hopper that can hold enough solid for fairly lengthy tests at the higher feed rates, thus eliminating the need for lockhopper transfers during operation.« less
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleeson, Brian
2014-09-30
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO 2, SO 2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potentialmore » to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K 2SO 4, and FeS) and environmental oxidants (i.e., O 2, H 2O and CO 2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.« less
NANOMATERIAL SOLUTIONS FOR HOT COAL GAS CLEANUP - PHASE I
Integrated gasification combined cycle (IGCC) is a new coal gasification technique that efficiently uses the hot (900-1500°C) generated syngas to power both steam and gas turbines. Due to regulations, this syngas must be free of sulfur and purification is normally carried ...
[Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].
Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa
2005-07-01
Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.
NASA Astrophysics Data System (ADS)
Bellerive, Nathalie
The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database (Version 1.2). This database was selected due to its European source. Finally, technical calculations and literature were used to complete the data inventory. This was validated by electrical experts in order to increase data and modeling precision. Results were similar for IGCC and NGCC power plants using Impact 2002+, an impacts analysis method. Global warming potential decreased by 67% with the implementation of CO2 capture and sequestration compared to systems without CSC. Results for all others impacts categories, demonstrated an increase from 16% to 116% in relative proportions compared to systems without CSC. The main contributor was the additional quantity of energy required to operate CO2 capture and compression facilities. This additional energy negatively affected the power plant's global efficiency because of the increase in the quantity of fossil fuel that needed to be extracted and consumed. The increase in other impacts was mainly due to additional electricity, fossil fuel (for extracting, treatment and transportation) and additional emissions generated during power plant operations. A scenario analysis was done to study the sensitivity and variability of uncertain data during the software modeling process of a power plant. Data on power plant efficiency is the most variable and sensitive during modeling, followed by the length of the transportation pipe and the leaking rate during CO2 sequestration. This result analysis is interesting because it led to the maximum efficiency scenario with capture (with a short CO 2 transportation distance and a low leaking rate) obtaining better results on all impact category indicators, compared to the minimum efficiency scenario without capture. In fact, positive results on all category indicators were possible during the system comparison between the two cases (with and without capture). (Abstract shortened by UMI.)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... supply (i.e., reclaimed effluent from municipal wastewater treatment) pipeline, a natural gas pipeline... the reclaimed effluent, natural gas, and CO 2 pipelines may cause temporary direct impacts to the... target today's most pressing environmental challenges, including reducing mercury and greenhouse gas (GHG...
Integrated gasification combined cycle (IGCC), which uses a gasilier to convert coal to fuel gas, and then uses a combined cycle power block to generate electricity. is one of the most promising technologies for generating electricity from coal in an environmentally sustainabl...
40 CFR 60.45Da - Standard for mercury (Hg).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...
Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeeva; Kumar, Aditya; Dai, Dan
2012-12-31
This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developedmore » will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the “size” of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulink© in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulink© which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobed, Parham; Pednekar, Pratik; Bhattacharyya, Debangsu
Design and operation of energy producing, near “zero-emission” coal plants has become a national imperative. This report on model-based sensor placement describes a transformative two-tier approach to identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, and the level of resolution desiredmore » for any specific failure. Because of the presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. This work could have a major impact on the design and operation of future fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV; Stevens, Robert W [Morgantown, WV
2012-03-06
A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.
Recovery of gallium and vanadium from gasification fly ash.
Font, Oriol; Querol, Xavier; Juan, Roberto; Casado, Raquel; Ruiz, Carmen R; López-Soler, Angel; Coca, Pilar; García Peña, Francisco
2007-01-31
The Puertollano Integrated Coal Gasification Combined Cycle (IGCC) Power Plant (Spain) fly ash is characterized by a relatively high content of Ga and V, which occurs mainly as Ga2O3 and as Ga3+ and V3+ substituting for Al3+ in the Al-Si fly ash glass matrix. Investigations focused on evaluating the potential recovery of Ga and V from these fly ashes. Several NaOH based extraction tests were performed on the IGCC fly ash, at different temperatures, NaOH/fly ash (NaOH/FA) ratios, NaOH concentrations and extraction times. The optimal Ga extraction conditions was determined as 25 degrees C, NaOH 0.7-1 M, NaOH/FA ratio of 5 L/kg and 6 h, attaining Ga extraction yields of 60-86%, equivalent to 197-275 mg of Ga/kg of fly ash. Re-circulation of leachates increased initial Ga concentrations (25-38 mg/L) to 188-215 mg/L, while reducing both content of impurities and NaOH consumption. Carbonation of concentrated Ga leachate demonstrated that 99% of the bulk Ga content in the leachate precipitates at pH 7.4. At pH 10.5 significant proportions of impurities, mainly Al (91%), co-precipitate while >98% of the bulk Ga remains in solution. A second carbonation of the remaining solution (at pH 7.5) recovers the 98.8% of the bulk Ga. Re-dissolution (at pH 0) of the precipitate increases Ga purity from 7 to 30%, this being a suitable Ga end product for further purification by electrolysis. This method produces higher recovery efficiency than currently applied for Ga on an industrial scale. In contrast, low V extraction yields (<64%) were obtained even when using extreme alkaline extraction conditions, which given the current marked price of this element, limits considerably the feasibility of V recovery from IGCC fly ash.
Innovative energy technologies and climate policy in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2006-12-01
Due to the size and structure of its economy, Germany is one of the largest carbon emitters in the European Union. However, Germany is facing a major renewal and restructuring process in electricity generation. Within the next two decades, up to 50% of current electricity generation capacity may retire because of end-of-plant lifetime and the nuclear phase-out pact of 1998. Substantial opportunities therefore exist for deployment of advanced electricity generating technologies in both a projected baseline and in alternative carbon policy scenarios. We simulate the potential role of coal integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), carbonmore » dioxide capture and storage (CCS), and wind power within a computable general equilibrium of Germany from the present through 2050. These advanced technologies and their role within a future German electricity system are the focus of this paper. We model the response of greenhouse gas emissions in Germany to various technology and carbon policy assumptions over the next few decades. In our baseline scenario, all of the advanced technologies except CCS provide substantial contributions to electricity generation. We also calculate the carbon price where each fossil technology, combined with CCS, becomes competitive. Constant carbon price experiments are used to characterize the model response to a carbon policy. This provides an estimate of the cost of meeting an emissions target, and the share of emissions reductions available from the electricity generation sector.« less
Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon
2013-07-02
In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.
Report on all ARRA Funded Technical Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-10-05
The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipients membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. Thismore » project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.« less
Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.K.; Lee, J.B.; Ahn, D.H.
2002-09-19
Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
.... The IgCC is intended to provide a green model building code provisions for new and existing commercial... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2011-BT-BC-0009] Building Energy Codes Program: Presenting and Receiving Comments to DOE Proposed Changes to the International Green Construction...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen
2017-05-22
This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.
40 CFR 60.50Da - Compliance determination procedures and methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... effluent is saturated or laden with water droplets. (2) The Fc factor (CO2) procedures in Method 19 of... operator of an electric utility combined cycle gas turbine that does not meet the definition of an IGCC... of this part. The SO2 and NOX emission rates calculations from the gas turbine used in Method 19 of...
40 CFR 60.50Da - Compliance determination procedures and methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... effluent is saturated or laden with water droplets. (2) The Fc factor (CO2) procedures in Method 19 of... operator of an electric utility combined cycle gas turbine that does not meet the definition of an IGCC... of this part. The SO2 and NOX emission rates calculations from the gas turbine used in Method 19 of...
NASA Astrophysics Data System (ADS)
Musulin, Mike, II
The continued failure of synthetic fuels development in the United States to achieve commercialization has been documented through the sporadic periods of mounting corporate and government enthusiasm and high levels of research and development efforts. Four periods of enthusiasm at the national level were followed by waning intervals of shrinking financial support and sagging R&D work. The continuing cycle of mobilization and stagnation has had a corresponding history in Kentucky. To better understand the potential and the pitfalls of this type of technological development the history of synthetic fuels development in the United States is presented as background, with a more detailed analysis of synfuels development in Kentucky. The first two periods of interest in synthetic fuels immediately after the Second World War and in the 1950s did not result in any proposed plants for Kentucky, but the third and fourth periods of interest created a great deal of activity. A theoretically grounded case study is utilized in this research project to create four different scenarios for the future of synthetic fuels development. The Kentucky experience is utilized in this case study because a fifth incarnation of synthetic fuels development has been proposed for the state in the form of an integrated gasification combined cycle power plant (IGCC) to utilize coal and refuse derived fuel (RDF). The project has been awarded a grant from the U.S. Department of Energy Clean Coal Technology program. From an examination and analysis of these periods of interest and the subsequent dwindling of interest and participation, four alternative scenarios are constructed. A synfuels breakthrough scenario is described whereby IGCC becomes a viable part of the country's energy future. A multiplex scenario describes how IGCC becomes a particular niche in energy production. The status quo scenario describes how the old patterns of project failure repeat themselves. The fourth scenario describes how synfuels and other conventional energy sources are rejected in favor of conservation, use of nuclear facilities, and use of alternative fuels.
CO2 Capture and Storage in Coal Gasification Projects
NASA Astrophysics Data System (ADS)
Rao, Anand B.; Phadke, Pranav C.
2017-07-01
In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Development and Testing of PRD-66 Hot Gas Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, J.A.; Garnier, J.E.; McMahon, T. J.
1996-12-31
The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less
Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture.
Zhai, Haibo; Rubin, Edward S
2018-04-17
This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO 2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO 2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO 2 . Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO 2 capture. Improving the CO 2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri; ...
2016-08-04
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziemkiewicz, Paul; Stauffer, Philip H.; Sullivan-Graham, Jeri
Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO 2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO 2, while simultaneously treating the produced water for beneficial use. Furthermore, the process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO 2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO 2 as an efficient means of managing reservoir pressure. Because themore » pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO 2 injection, it can be proactively used to estimate CO 2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO 2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO 2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m 3 (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m 3 (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. Our study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed.« less
Coal-Gen attendees hear there's no magic bullet
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-09-15
Those attending COAL-GEN 2007 in August heard that there is no magic bullet for meeting the energy and infrastructure needs facing the USA. The article reports on the conference which addressed topics including development of supercritical circulating fluidized bed coal unit; IGCC projects, the importance of including carbon capture and sequestration, and the need to attract and train personnel to work in the power industry. 3 photos.
Follow-up after gastrectomy for cancer: the Charter Scaligero Consensus Conference.
Baiocchi, Gian Luca; D'Ugo, Domenico; Coit, Daniel; Hardwick, Richard; Kassab, Paulo; Nashimoto, Atsushi; Marrelli, Daniele; Allum, William; Berruti, Alfredo; Chandramohan, Servarayan Murugesan; Coburn, Natalie; Gonzàlez-Moreno, Santiago; Hoelscher, Arnulf; Jansen, Edwin; Leja, Marcis; Mariette, Christophe; Meyer, Hans-Joachim; Mönig, Stefan; Morgagni, Paolo; Ott, Katia; Preston, Shaun; Rha, Sun Young; Roviello, Franco; Sano, Takeshi; Sasako, Mitsuru; Shimada, Hideaki; Schuhmacher, Cristoph; So Bok-Yan, Jimmy; Strong, Vivian; Yoshikawa, Takaki; Terashima, Masanori; Ter-Ovanesov, Michail; Van der Velde, Cornelis; Memo, Maurizio; Castelli, Francesco; Pecorelli, Sergio; Detogni, Claudio; Kodera, Yasuhiro; de Manzoni, Giovanni
2016-01-01
Presently, there is no scientific evidence supporting a definite role for follow-up after gastrectomy for cancer, and clinical practices are quite different around the globe. The aim of this consensus conference was to present an ideal prototype of follow-up after gastrectomy for cancer, based on shared experiences and taking into account the need to rationalize the diagnostic course without losing the possibility of detecting local recurrence at a potentially curable stage. On June 19-22, 2013 in Verona (Italy), during the 10th International Gastric Cancer Congress (IGCC) of the International Gastric Cancer Association, a consensus meeting was held, concluding a 6-month, Web-based, consensus conference entitled "Rationale of oncological follow-up after gastrectomy for cancer." Forty-eight experts, with a geographical distribution reflecting different health cultures worldwide, participated in the consensus conference, and 39 attended the consensus meeting. Six statements were finally approved, displayed in a plenary session and signed by the vast majority of the 10th IGCC participants. These statements are attached as an annex to the Charter Scaligero on Gastric Cancer. After gastrectomy for cancer, oncological follow-up should be offered to patients; it should be tailored to the stage of the disease, mainly based on cross-sectional imaging, and should be discontinued after 5 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
Co-gasification of solid waste and lignite - a case study for Western Macedonia.
Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E
2008-01-01
Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant.
[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a highmore » temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
2013-02-15
Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investingmore » in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H 2S, NH 3, HCN, AsH 3, PH 3, HCl, NaCl, KCl, AS 3, NH 4NO 3, NH 4OH, KNO 3, HBr, HF, and HNO 3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.« less
IGCC as BACT for Proposed Coal-fired Power Plant Projects
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...
2014-12-31
Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less
Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2009-01-05
In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Bravo, R.; Pinacci, P.; Trifilo, R.
1998-07-01
This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plantmore » fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.« less
NASA Astrophysics Data System (ADS)
Abaimov, N. A.; Osipov, P. V.; Ryzhkov, A. F.
2016-10-01
In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air.
Mitigation of Syngas Cooler Plugging and Fouling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockelie, Michael J.
This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Parag Kulkarni; Wei Wei
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less
Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Paul
2012-05-01
IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of themore » capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered 90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promising process scheme has been developed for power generation and/or hydrogen coproduction with CCS based upon our proposed "one-box" process. Our preliminary economic analysis indicates about 10% reduction in the required electricity selling price and ~40% cost reduction in CCS on per ton CO{sub 2} can be achieved in comparison with the base case involving conventional WGS with a two-stage Selexsol® for CCS. Long term field tests (e.g., >1,000 hrs) with the incorporation of the catalyst for the WGS membrane reactor and more in-depth analysis of the process scheme are recommended for the future study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, John; Stanislowski, Joshua; Tolbert, Scott
Utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to maintain operations and address carbon reduction. Subtask 2.1 – Pathway to Low-Carbon Lignite Utilization focused on several research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two postcombustion capture solvents were tested, one from CO 2 Solutions Inc. and one from ARCTECH, Inc. The CO 2 Solutions solvent had been evaluated previously, and the company had incorporated the concept of a rotating packed bed (RPB) to replacemore » the traditional packed columns typically used. In the limited testing performed at the Energy & Environmental Research Center (EERC), no CO 2 reduction benefit was seen from the RPB; however, if the technology could be scaled up, it may introduce some savings in capital expense and overall system footprint. Rudimentary tests were conducted with the ARCTECH solvent to evaluate if it could be utilized in a spray tower configuration contactor and capture CO 2, SO 2, and NO x. This solvent after loading can be processed to make an additional product to filter wastewater, providing a second-tier usable product. Modeling of the RPB process for scaling to a 550-MW power system was also conducted. The reduced cost of RPB systems combined with a smaller footprint highlight the potential for reducing the cost of capturing CO 2; however, more extensive testing is needed to truly evaluate their potential for use at full scale. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation (CSIRO) were evaluated through precombustion testing. These had also been previously tested and were improved by CSIRO for this test campaign. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are typically used. Their performance was good, and they may be good candidates for medium-pressure gasifiers, but much more scale-up work is needed. Next-generation power cycles are currently being developed and show promise for high efficiency, and the utilization of supercritical CO 2 to drive a turbine could significantly increase cycle efficiency over traditional steam cycles. The EERC evaluated pressurized oxy-combustion technology from the standpoint of CO 2 purification. If impurities can be removed, the costs for CO 2 capture can be lowered significantly over postcombustion capture systems. Impurity removal consisted of a simple water scrubber referred to as the DeSNO x process. The process worked well, but corrosion management is crucial to its success. A model of this process was constructed. Finally, an integrated gasification combined-cycle (IGCC) system model, developed by the Massachusetts Institute of Technology (MIT), was modified to allow for the modeling of membrane systems in the IGCC process. This modified model was used to provide an assessment of the costs of membrane use at full scale. An economic estimation indicated a 14% reduction in cost for CO 2 separation over the SELEXOL™ process. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FE0024233. Nonfederal sponsors for this project were the North Dakota Industrial Commission, Basin Electric Power Cooperative, and Allete, Inc. (including BNI Coal and Minnesota Power).« less
Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil
NASA Astrophysics Data System (ADS)
Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.
2009-04-01
Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate electricity with efficiency as high as 55% and overall UCG-IGCC process efficiency reaching 43%. Regarding to environmental problems the UCG minimize environmental impacts (waste piles/acid mine drainage) and reduce CO2 emissions because syngas contains CO2 that can be captured with relatively low-energy penalty. The Clean Coal Technologies (CCT), especially UCG and ECBM projects, will be a key factor to maintain the annual state's economy expansion associated with energy efficiency improvement programs.
Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.
Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P
2008-03-01
The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.
CRADA opportunities with METC`s gasification and hot gas cleanup facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, E N; Rockey, J M; Tucker, M S
1995-06-01
Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}Fmore » and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.« less
Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue
NASA Astrophysics Data System (ADS)
Schaffers, William Clemens
Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.
Capturing the emerging market for climate-friendly technologies: opportunities for Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-11-15
This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less
Collins, John P.; Way, J. Douglas
1995-09-19
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.
Collins, J.P.; Way, J.D.
1995-09-19
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.
Collins, J.P.; Way, J.D.
1997-07-29
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.
Collins, John P.; Way, J. Douglas
1997-01-01
A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.
Decontamination of industrial cyanide-containing water in a solar CPC pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, A.; Monteagudo, J.M.; San Martin, I.
2010-07-15
The aim of this work was to improve the quality of wastewater effluent coming from an Integrated Gasification Combined-Cycle (IGCC) power station to meet with future environmental legislation. This study examined a homogeneous photocatalytic oxidation process using concentrated solar UV energy (UV/Fe(II)/H{sub 2}O{sub 2}) in a Solar Compound Parabolic Collector (CPC) pilot plant. The efficiency of the process was evaluated by analysis of the oxidation of cyanides and Total Organic Carbon (TOC). A factorial experimental design allowed the determination of the influences of operating variables (initial concentration of H{sub 2}O{sub 2}, oxalic acid and Fe(II) and pH) on the degradationmore » kinetics. Temperature and UV-A solar power were also included in the Neural Network fittings. The pH was maintained at a value >9.5 during cyanide oxidation to avoid the formation of gaseous HCN and later lowered to enhance mineralization. Under the optimum conditions ([H{sub 2}O{sub 2}] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and [(COOH){sub 2}] = 60 ppm), it was possible to degrade 100% of the cyanides and up to 92% of Total Organic Carbon. (author)« less
Gas cleaning system and method
Newby, Richard Allen
2006-06-06
A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.
CO 2 capture from IGCC gas streams using the AC-ABC process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagar, Anoop; McLaughlin, Elisabeth; Hornbostel, Marc
The objective of this project was to develop a novel, low-cost CO 2 capture process from pre-combustion gas streams. The bench-scale work was conducted at the SRI International. A 0.15-MWe integrated pilot plant was constructed and operated for over 700 hours at the National Carbon Capture Center, Wilsonville, AL. The AC-ABC (ammonium carbonate-ammonium bicarbonate) process for capture of CO 2 and H 2S from the pre-combustion gas stream offers many advantages over Selexol-based technology. The process relies on the simple chemistry of the NH 3-CO 2-H 2O-H 2S system and on the ability of the aqueous ammoniated solution to absorbmore » CO 2 at near ambient temperatures and to release it as a high-purity, high-pressure gas at a moderately elevated regeneration temperature. It is estimated the increase in cost of electricity (COE) with the AC-ABC process will be ~ 30%, and the cost of CO 2 captured is projected to be less than $27/metric ton of CO 2 while meeting 90% CO 2 capture goal. The Bechtel Pressure Swing Claus (BPSC) is a complementary technology offered by Bechtel Hydrocarbon Technology Solutions, Inc. BPSC is a high-pressure, sub-dew-point Claus process that allows for nearly complete removal of H 2S from a gas stream. It operates at gasifier pressures and moderate temperatures and does not affect CO 2 content. When coupled with AC-ABC, the combined technologies allow a nearly pure CO 2 stream to be captured at high pressure, something which Selexol and other solvent-based technologies cannot achieve.« less
Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks
NASA Astrophysics Data System (ADS)
Murrell, G. R.; Thyne, G. D.
2007-12-01
Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.
1997-01-01
Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
NASA Astrophysics Data System (ADS)
Bohna, Nathaniel Allan
Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on superalloy (Rene' N5 and PWA 1484) substrates that had been coated with NiCoCrAlY bond coats. Two different top coats are studied: conventional low-density 7YSZ, and also dense vertically cracked coatings. The specific mechanisms of liquid infiltration resulting from CaO and SiO2 are studied by conducting isothermal exposures followed by detailed characterizations. The resulting consequences on cyclic lifetimes are also determined. Further, the cyclic lifetimes are studied in several gas atmospheres to examine the combined effect of deposit and gas atmosphere on TBC lifetime. This work identifies a TBC degradation mechanism which had previously not been considered. It will be clearly shown that deposit-induced attack of TBCs can be highly detrimental at an intermediate temperature like 1100°C.
Methodology for the assessment of oxygen as an energy carrier
NASA Astrophysics Data System (ADS)
Yang, Ming Wei
Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.
2009-04-15
In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organicmore » extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.« less
Comparative analyses for selected clean coal technologies in the international marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szpunar, C.B.; Gillette, J.L.
1990-07-01
Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less
Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, Tim
2011-09-14
This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term tomore » capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field conditions (feed pressures: 150-175 psig and feed temperatures: 120-135°C) for over 600 hours. The field performance of both Proteus membrane stamps and Proteus membrane modules is consistent with the results obtained in the lab, suggesting that the presence of sulfur-containing compounds (up to 780 ppm hydrogen sulfide), saturated water vapor, carbon monoxide and heavy hydrocarbons in the syngas feed stream has no adverse effect on the Proteus membrane or module performance. We also performed an economic analysis for a number of membrane process designs developed in this project (using hydrogen-selective membranes, alone or in the combination with CO{sub 2}- selective membranes). The current field performance for Proteus membranes was used in the design analysis. The study showed the current best design has the potential to reduce the increase in Levelized Cost of Electricity (LCOE) caused by 90% CO{sub 2} capture to about 15% if co-sequestration of H{sub 2}S is viable. This value is still higher than the DOE target for increase in LCOE (10%); however, compared to the base-case Selexol process that gives a 30% increase in LCOE at 90% CO2 capture, the membrane-based process appears promising. We believe future improvements in membrane performance have the potential to reach the DOE target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arastoopour, Hamid; Abbasian, Javad
2014-07-31
This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mgmore » ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.« less
Low Carbon Technology Options for the Natural Gas ...
The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
Advanced Hydrogen Turbine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joesph Fadok
2008-01-01
Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plantmore » efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Larson; Robert Williams; Thomas Kreutz
2012-03-11
The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan
The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for overmore » 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.« less
Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep
2011-06-30
Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Rabovitser
The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half ofmore » the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.« less
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parag Kulkarni; Jie Guan; Raul Subia
In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less
Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieter Leckel
2007-06-15
Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integratedmore » gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.« less
Dual-track CCS stakeholder engagement: Lessons learned from FutureGen in Illinois
Hund, G.; Greenberg, S.E.
2011-01-01
FutureGen, as originally planned, was to be the world's first coal-fueled, near-zero emissions power plant with fully integrated, 90% carbon capture and storage (CCS). From conception through siting and design, it enjoyed strong support from multiple stakeholder groups, which benefited the overall project. Understanding the stakeholder engagement process for this project provides valuable insights into the design of stakeholder programs for future CCS projects. FutureGen is one of few projects worldwide that used open competition for siting both the power plant and storage reservoir. Most site proposals were coordinated by State governments. It was unique in this and other respects relative to the site selection method used on other DOE-supported projects. At the time of site selection, FutureGen was the largest proposed facility designed to combine an integrated gasification combined cycle (IGCC) coal-fueled power plant with a CCS system. Stakeholder engagement by states and the industry consortium responsible for siting, designing, building, and operating the facility took place simultaneously and on parallel tracks. On one track were states spearheading state-wide site assessments to identify candidate sites that they wanted to propose for consideration. On the other track was a public-private partnership between an industry consortium of thirteen coal companies and electric utilities that comprised the FutureGen Alliance (Alliance) and the U.S. Department of Energy (DOE). The partnership was based on a cooperative agreement signed by both parties, which assigned the lead for siting to the Alliance. This paper describes the stakeholder engagement strategies used on both of these tracks and provides examples from the engagement process using the Illinois semi-finalist sites. ?? 2011 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Fahie, Monique
With most of the energy produced in the state of Indiana coming from coal, the implementation of policy instruments such as cap-and-trade, which is included in the most recent climate bill, will have significant effects. This thesis provides an analysis of the effects that a cap-and-trade policy might have on the investment decisions for alternative technologies in the power plant sector in Indiana. Two economic models of representative coal-fired power plants, Gallagher (600MW) and Rockport (2600MW), are selected and used to evaluate the repowering decision of a plant for several technologies: integrated gasification combined cycle (IGCC), wind farm combined with natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC). The firm will make its decisions based on the net present value (NPV) of cost estimates for these CO2 reducing technologies, the cost of purchasing offsets and CO 2 allowances. This model is applied to a base case and three American Clean Energy and Security Act of 2009 cases derived from the Energy Information Administration (EIA, 2009b). A sensitivity analysis is done on the discount rate and capital costs. The results of the study indicate that a SCPC plant without carbon capture and storage (CCS) is the least costly compliance option for both plants under all of the cases while retrofitting the existing plant with CCS is the most expensive. Gallagher's three least expensive options across most scenarios were SCPC without CCS, the operation of the existing plant as is and investment in wind plus NGCC. Rockport's three least expensive compliance options across most scenarios were SCPC without CCS, the operation of the existing plant as is and IGCC without CCS. For both plants, when a 12% discount rate is utilized, NPV of costs are generally lower and the operation of the existing plant technology with the aid of allowances and offsets to be in compliance is the cheapest option. If capital costs were to decrease by 30%, a SCPC without CCS would remain the least costly option to invest in for both plants, but if costs were to increase by 30% operating the existing plant as is becomes the least pricey option.
Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard; Zhou, S James; Ding, Yong
2012-03-31
This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTI's Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).« less
Gasification Product Improvement Facility (GPIF). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less
MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cara, C.; Rombi, E.; Musinu, A.
In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less
MCM-41 support for ultrasmall γ-Fe 2O 3 nanoparticles for H 2S removal
Cara, C.; Rombi, E.; Musinu, A.; ...
2017-07-08
In this paper, MCM-41 is proposed to build mesostructured Fe 2O 3-based sorbents as an alternative to other silica or alumina supports for mid-temperature H 2S removal. MCM-41 was synthesized as micrometric (MCM41_M) and nanometric (MCM41_N) particles and impregnated through an efficient two-solvent (hexane–water) procedure to obtain the corresponding γ-Fe 2O 3@MCM-41 composites. The active phase is homogeneously dispersed within the 2 nm channels in the form of ultrasmall maghemite nanoparticles assuring a high active phase reactivity. The final micrometric (Fe_MCM41_M) and nanometric (Fe_MCM41_N) composites were tested as sorbents for hydrogen sulphide removal at 300 °C and the results weremore » compared with a reference sorbent (commercial unsupported ZnO) and an analogous silica-based sorbent (Fe_SBA15). MCM-41 based sorbents, having the highest surface areas, showed superior performances that were retained after the first sulphidation cycle. Specifically, the micrometric sorbent (Fe_MCM41_M) showed a higher SRC value than the nanometric one (Fe_MCM41_N), due to the low stability of the nanosized particles over time caused by their high reactivity. Finally and furthermore, the low regeneration temperature (300–350 °C), besides the high removal capacity, renders MCM41-based systems an alternative class of regenerable sorbents for thermally efficient cleaning up processes in Integrated Gasification Combined Cycles (IGCC) systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Vijay; Denton, David; SHarma, Pradeep
The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu; ...
2017-11-03
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-07-01
A variety of papers/posters were presented on topics concerning power generation, including solid oxide fuel cells, hydrogen production, mercury as a combustion product, carbon dioxide separation from flue gas. A total of 31 presentations in slide/overview/viewgraph form and with a separate abstract are available online (one in abstract form only) and 24 poster papers (text). In addition 41 abstracts only are available. Papers of particular interest include: Hydrogen production from hydrogen sulfide in IGCC power plants; Oxidation of mercury in products of coal combustion; Computer aided design of advanced turbine aerofoil alloys for industrial gas turbines in coal fired environments;more » Developing engineered fuel using flyash and biomass; Conversion of hydrogen sulfide in coal gases to elemental sulfur with monolithic catalysts; Intelligent control via wireless sensor networks for advanced coal combustion systems; and Investment of fly ash and activated carbon obtained from pulverized coal boilers (poster).« less
Tyurin, Michael; Kiriukhin, Michael
2013-09-01
Methanol-resistant mutant acetogen Clostridium sp. MT1424 originally producing only 365 mM acetate from CO₂/CO was engineered to eliminate acetate production and spore formation using Cre-lox66/lox71-system to power subsequent methanol production via expressing synthetic methanol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase, three copies of each, assembled in cluster and integrated to chromosome using Tn7-based approach. Production of 2.2 M methanol was steady (p < 0.005) in single step fermentations of 20 % CO₂ + 80 % H₂ blend (v/v) 25 day runs each in five independent repeats. If the integrated cluster comprised only three copies of formate dehydrogenase the respective recombinants produced 95 mM formate (p < 0.005) under the same conditions. For commercialization, the suggested source of inorganic carbon would be CO₂ waste of IGCC power plant. Hydrogen may be produced in situ via powered by solar panels electrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankole, Temitayo; Jones, Dustin; Bhattacharyya, Debangsu
In this study, a two-level control methodology consisting of an upper-level scheduler and a lower-level supervisory controller is proposed for an advanced load-following energy plant with CO 2 capture. With the use of an economic objective function that considers fluctuation in electricity demand and price at the upper level, optimal scheduling of energy plant electricity production and carbon capture with respect to several carbon tax scenarios is implemented. The optimal operational profiles are then passed down to corresponding lower-level supervisory controllers designed using a methodological approach that balances control complexity with performance. Finally, it is shown how optimal carbon capturemore » and electricity production rate profiles for an energy plant such as the integrated gasification combined cycle (IGCC) plant are affected by electricity demand and price fluctuations under different carbon tax scenarios. As a result, the paper also presents a Lyapunov stability analysis of the proposed scheme.« less
Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin
2014-12-31
This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less
CO{sub 2}-philic oligomers as novel solvents for CO{sub 2} absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Matthew B; Luebke, David R; Enick, Robert M
2010-01-01
Desirable properties for an oligomeric CO{sub 2}-capture solvent in an integrated gasification combined cycle (IGCC) plant include high selectivity for CO{sub 2} over H{sub 2} and water, low viscosity, low vapor pressure, low cost, and minimal environmental, health, and safety impacts. The neat solvent viscosity and solubility of CO{sub 2}, measured via bubble-point loci and presented on a pressure−composition diagram (weight basis), and water miscibility in CO{sub 2}-philic solvents have been determined and compared to results obtained with Selexol, a commercial oligomeric CO{sub 2} solvent. The solvents tested include polyethyleneglycol dimethylether (PEGDME), polypropyleneglycol dimethylether (PPGDME), polypropyleneglycol diacetate (PPGDAc), polybutyleneglycol diacetatemore » (PBGDAc), polytetramethyleneetherglycol diacetate (PTMEGDAc), glyceryl triacetate (GTA), polydimethyl siloxane (PDMS), and perfluorpolyether (PFPE) that has a perfluorinated propyleneglycol monomer unit. Overall, PDMS and PPGDME are the best oligomeric solvents tested and exhibit properties that make them very promising alternatives for the selective absorption of CO{sub 2} from a mixed gas stream, especially if the absorption of water is undesirable.« less
Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen
2013-06-01
Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kato, Moritoshi; Zhou, Yicheng
This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.
Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, Jeff; Aguilar, Kelly; Aldred, Derek
2012-11-30
This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grindingmore » and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.« less
Are renewables portfolio standards cost-effective emission abatement policy?
Dobesova, Katerina; Apt, Jay; Lave, Lester B
2005-11-15
Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. We examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO2, NOx, mercury, and CO2. We focus on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO2. We estimate the private and social costs of wind generation in an RPS compared with the current cost of fossil generation, accounting for the pollution and CO2 emissions. We find that society paid about 5.7 cent/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cent/kWh in reduced SO2, NOx, and Hg emissions. These pollution reductions and lower CO2 emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS.
Environmental performance of green building code and certification systems.
Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua
2014-01-01
We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).
Should a coal-fired power plant be replaced or retrofitted?
Patiño-Echeverri, Dalia; Morel, Benoit; Apt, Jay; Chen, Chao
2007-12-01
In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO2, NOx, Hg, and CO2 using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO2 and NOx, controls on the existing unit. An expectation that the CO2 price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power.
NASA Astrophysics Data System (ADS)
Montalbano, Timothy
Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced destabilization and coarsening in the humid aging environment is explained mechanistically by water-derived species being incorporated into the YSZ structure and altering the anion sublattice. The characterization of the metal alloy and ceramic coatings exposed in these alternative environments allows for a deeper understanding of the mechanisms behind the material evolution in these environments.
CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Nehrozoglu
2004-12-01
Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438more » $/kW vs. 1111 $$/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $$/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.« less
Launch Site Computer Simulation and its Application to Processes
NASA Technical Reports Server (NTRS)
Sham, Michael D.
1995-01-01
This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.
An intelligent processing environment for real-time simulation
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Wells, Buren Earl, Jr.
1988-01-01
The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.
Virtual Collaborative Simulation Environment for Integrated Product and Process Development
NASA Technical Reports Server (NTRS)
Gulli, Michael A.
1997-01-01
Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.
LISP based simulation generators for modeling complex space processes
NASA Technical Reports Server (NTRS)
Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing
1987-01-01
The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Day, John H. (Technical Monitor)
2000-01-01
Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Day, John H. (Technical Monitor)
2000-01-01
Post-processing of data, related to a GPS receiver test in a GPS simulator and test facility, is an important step towards qualifying a receiver for space flight. Although the GPS simulator provides all the parameters needed to analyze a simulation, as well as excellent analysis tools on the simulator workstation, post-processing is not a GPS simulator or receiver function alone, and it must be planned as a separate pre-flight test program requirement. A GPS simulator is a critical resource, and it is desirable to move off the pertinent test data from the simulator as soon as a test is completed. The receiver and simulator databases are used to extract the test data files for postprocessing. These files are then usually moved from the simulator and receiver systems to a personal computer (PC) platform, where post-processing is done typically using PC-based commercial software languages and tools. Because of commercial software systems generality their functions are notoriously slow and more than often are the bottleneck even for short duration simulator-based tests. There is a need to do post-processing faster and within an hour after test completion, including all required operations on the simulator and receiver to prepare and move off the post-processing files. This is especially significant in order to use the previous test feedback for the next simulation setup or to run near back-to-back simulation scenarios. Solving the post-processing timing problem is critical for a pre-flight test program success. Towards this goal an approach was developed that allows to speed-up post-processing by an order of a magnitude. It is based on improving the post-processing bottleneck function algorithm using a priory information that is specific to a GPS simulation application and using only the necessary volume of truth data. The presented postprocessing scheme was used in support of a few successful space flight missions carrying GPS receivers.
Practical Unitary Simulator for Non-Markovian Complex Processes
NASA Astrophysics Data System (ADS)
Binder, Felix C.; Thompson, Jayne; Gu, Mile
2018-06-01
Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.
Process Modeling and Dynamic Simulation for EAST Helium Refrigerator
NASA Astrophysics Data System (ADS)
Lu, Xiaofei; Fu, Peng; Zhuang, Ming; Qiu, Lilong; Hu, Liangbing
2016-06-01
In this paper, the process modeling and dynamic simulation for the EAST helium refrigerator has been completed. The cryogenic process model is described and the main components are customized in detail. The process model is controlled by the PLC simulator, and the realtime communication between the process model and the controllers is achieved by a customized interface. Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K. Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge. The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future. supported by National Natural Science Foundation of China (No. 51306195) and Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS (No. CRYO201408)
Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes
NASA Astrophysics Data System (ADS)
Liu, Weiguo; Shen, Ping; Jin, Na
In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.
A Low Cost Microcomputer System for Process Dynamics and Control Simulations.
ERIC Educational Resources Information Center
Crowl, D. A.; Durisin, M. J.
1983-01-01
Discusses a video simulator microcomputer system used to provide real-time demonstrations to strengthen students' understanding of process dynamics and control. Also discusses hardware/software and simulations developed using the system. The four simulations model various configurations of a process liquid level tank system. (JN)
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Traversari, Roberto; Goedhart, Rien; Schraagen, Jan Maarten
2013-01-01
The objective is evaluation of a traditionally designed operating room using simulation of various surgical workflows. A literature search showed that there is no evidence for an optimal operating room layout regarding the position and size of an ultraclean ventilation (UCV) canopy with a separate preparation room for laying out instruments and in which patients are induced in the operating room itself. Neither was literature found reporting on process simulation being used for this application. Many technical guidelines and designs have mainly evolved over time, and there is no evidence on whether the proposed measures are also effective for the optimization of the layout for workflows. The study was conducted by applying observational techniques to simulated typical surgical procedures. Process simulations which included complete surgical teams and equipment required for the intervention were carried out for four typical interventions. Four observers used a form to record conflicts with the clean area boundaries and the height of the supply bridge. Preferences for particular layouts were discussed with the surgical team after each simulated procedure. We established that a clean area measuring 3 × 3 m and a supply bridge height of 2.05 m was satisfactory for most situations, provided a movable operation table is used. The only cases in which conflicts with the supply bridge were observed were during the use of a surgical robot (Da Vinci) and a surgical microscope. During multiple trauma interventions, bottlenecks regarding the dimensions of the clean area will probably arise. The process simulation of four typical interventions has led to significantly different operating room layouts than were arrived at through the traditional design process. Evidence-based design, human factors, work environment, operating room, traditional design, process simulation, surgical workflowsPreferred Citation: Traversari, R., Goedhart, R., & Schraagen, J. M. (2013). Process simulation during the design process makes the difference: Process simulations applied to a traditional design. Health Environments Research & Design Journal 6(2), pp 58-76.
Design of penicillin fermentation process simulation system
NASA Astrophysics Data System (ADS)
Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi
2011-10-01
Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.
Virtual milk for modelling and simulation of dairy processes.
Munir, M T; Zhang, Y; Yu, W; Wilson, D I; Young, B R
2016-05-01
The modeling of dairy processing using a generic process simulator suffers from shortcomings, given that many simulators do not contain milk components in their component libraries. Recently, pseudo-milk components for a commercial process simulator were proposed for simulation and the current work extends this pseudo-milk concept by studying the effect of both total milk solids and temperature on key physical properties such as thermal conductivity, density, viscosity, and heat capacity. This paper also uses expanded fluid and power law models to predict milk viscosity over the temperature range from 4 to 75°C and develops a succinct regressed model for heat capacity as a function of temperature and fat composition. The pseudo-milk was validated by comparing the simulated and actual values of the physical properties of milk. The milk thermal conductivity, density, viscosity, and heat capacity showed differences of less than 2, 4, 3, and 1.5%, respectively, between the simulated results and actual values. This work extends the capabilities of the previously proposed pseudo-milk and of a process simulator to model dairy processes, processing different types of milk (e.g., whole milk, skim milk, and concentrated milk) with different intrinsic compositions, and to predict correct material and energy balances for dairy processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Jayesh; Hess, Fernando; Horzen, Wessel van
This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam in the existing combined cycle power plant provides sufficient power for all plant loads. The lifecycle GHG profile of the produced jet fuel is 95% of conventional jet fuel. Without converting the fuel gas to a low carbon fuel gas, the emissions would be 108% of conventional jet fuel and without any GHG mitigation, the profile would be 206%. Oil prices greater than $120 per barrel are required to reach a targeted internal rate of return on equity (IRROE) of 12%. Although capital expenditure is much less than if a greenfield facility was built, the relatively small size of the plant, assumed coal price, and the CTL risk profile used in the economic assumptions lead to a high cost of production. Assuming more favorable factors, the economic oil price could be reduced to $78 per barrel with GHG mitigation and $55 per barrel with no GHG mitigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.; McCorkle, D.; Yang, C.
Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
ISPE: A knowledge-based system for fluidization studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, S.
1991-01-01
Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all specified goals'' are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that canmore » enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.« less
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
NASA Astrophysics Data System (ADS)
Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.
2012-12-01
The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.
An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process
NASA Technical Reports Server (NTRS)
Carter, M. C.; Madison, M. W.
1973-01-01
The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.
Simulation Methods for Poisson Processes in Nonstationary Systems.
1978-08-01
for simulation of nonhomogeneous Poisson processes is stated with log-linear rate function. The method is based on an identity relating the...and relatively efficient new method for simulation of one-dimensional and two-dimensional nonhomogeneous Poisson processes is described. The method is
40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification of a parametric, empirical, or process simulation method or model for calculating substitute data... available process simulation methods and models. 1.2Petition Requirements Continuously monitor, determine... desulfurization, a corresponding empirical correlation or process simulation parametric method using appropriate...
Simulation in Metallurgical Processing: Recent Developments and Future Perspectives
NASA Astrophysics Data System (ADS)
Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah
2016-08-01
This article briefly addresses the most important topics concerning numerical simulation of metallurgical processes, namely, multiphase issues (particle and bubble motion and flotation/sedimentation of equiaxed crystals during solidification), multiphysics issues (electromagnetic stirring, electro-slag remelting, Cu-electro-refining, fluid-structure interaction, and mushy zone deformation), process simulations on graphical processing units, integrated computational materials engineering, and automatic optimization via simulation. The present state-of-the-art as well as requirements for future developments are presented and briefly discussed.
NASA Technical Reports Server (NTRS)
Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.
2005-01-01
Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.
Simulation of salt production process
NASA Astrophysics Data System (ADS)
Muraveva, E. A.
2017-10-01
In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.
Why a simulation system doesn`t match the plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, R.
1998-03-01
Process simulations, or mathematical models, are widely used by plant engineers and planners to obtain a better understanding of a particular process. These simulations are used to answer questions such as how can feed rate be increased, how can yields be improved, how can energy consumption be decreased, or how should the available independent variables be set to maximize profit? Although current process simulations are greatly improved over those of the `70s and `80s, there are many reasons why a process simulation doesn`t match the plant. Understanding these reasons can assist in using simulations to maximum advantage. The reasons simulationsmore » do not match the plant may be placed in three main categories: simulation effects or inherent error, sampling and analysis effects of measurement error, and misapplication effects or set-up error.« less
Wieland, Birgit; Ropte, Sven
2017-01-01
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results. PMID:28981458
Wieland, Birgit; Ropte, Sven
2017-10-05
The production of rotor blades for wind turbines is still a predominantly manual process. Process simulation is an adequate way of improving blade quality without a significant increase in production costs. This paper introduces a module for tolerance simulation for rotor-blade production processes. The investigation focuses on the simulation of temperature distribution for one-sided, self-heated tooling and thick laminates. Experimental data from rotor-blade production and down-scaled laboratory tests are presented. Based on influencing factors that are identified, a physical model is created and implemented as a simulation. This provides an opportunity to simulate temperature and cure-degree distribution for two-dimensional cross sections. The aim of this simulation is to support production processes. Hence, it is modelled as an in situ simulation with direct input of temperature data and real-time capability. A monolithic part of the rotor blade, the main girder, is used as an example for presenting the results.
Effects of Thinking Style on Design Strategies: Using Bridge Construction Simulation Programs
ERIC Educational Resources Information Center
Sun, Chuen-Tsai; Wang, Dai-Yi; Chang, Yu-Yeh
2013-01-01
Computer simulation users can freely control operational factors and simulation results, repeat processes, make changes, and learn from simulation environment feedback. The focus of this paper is on simulation-based design tools and their effects on student learning processes in a group of 101 Taiwanese senior high school students. Participants…
Parkinson, William J.
1987-01-01
A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.
Exact simulation of max-stable processes.
Dombry, Clément; Engelke, Sebastian; Oesting, Marco
2016-06-01
Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.
Towards Automatic Processing of Virtual City Models for Simulations
NASA Astrophysics Data System (ADS)
Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2016-10-01
Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.
Progress in Unsteady Turbopump Flow Simulations
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Chan, William; Kwak, Dochan; Williams, Robert
2002-01-01
This viewgraph presentation discusses unsteady flow simulations for a turbopump intended for a reusable launch vehicle (RLV). The simulation process makes use of computational grids and parallel processing. The architecture of the parallel computers used is discussed, as is the scripting of turbopump simulations.
ISPE: A knowledge-based system for fluidization studies. 1990 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, S.
1991-01-01
Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all ``specified goals`` are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that canmore » enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.« less
Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu
2015-09-15
UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rooney, Deborah M; Hananel, David M; Covington, Benjamin J; Dionise, Patrick L; Nykamp, Michael T; Pederson, Melvin; Sahloul, Jamal M; Vasquez, Rachael; Seagull, F Jacob; Pinsky, Harold M; Sweier, Domenica G; Cooke, James M
2018-04-01
Currently there is no reliable, standardized mechanism to support health care professionals during the evaluation of and procurement processes for simulators. A tool founded on best practices could facilitate simulator purchase processes. In a 3-phase process, we identified top factors considered during the simulator purchase process through expert consensus (n = 127), created the Simulator Value Index (SVI) tool, evaluated targeted validity evidence, and evaluated the practical value of this SVI. A web-based survey was sent to simulation professionals. Participants (n = 79) used the SVI and provided feedback. We evaluated the practical value of 4 tool variations by calculating their sensitivity to predict a preferred simulator. Seventeen top factors were identified and ranked. The top 2 were technical stability/reliability of the simulator and customer service, with no practical differences in rank across institution or stakeholder role. Full SVI variations predicted successfully the preferred simulator with good (87%) sensitivity, whereas the sensitivity of variations in cost and customer service and cost and technical stability decreased (≤54%). The majority (73%) of participants agreed that the SVI was helpful at guiding simulator purchase decisions, and 88% agreed the SVI tool would help facilitate discussion with peers and leadership. Our findings indicate the SVI supports the process of simulator purchase using a standardized framework. Sensitivity of the tool improved when factors extend beyond traditionally targeted factors. We propose the tool will facilitate discussion amongst simulation professionals dealing with simulation, provide essential information for finance and procurement professionals, and improve the long-term value of simulation solutions. Limitations and application of the tool are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Power Systems Life Cycle Analysis Tool (Power L-CAT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andruski, Joel; Drennen, Thomas E.
2011-01-01
The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation;more » and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Ben; Turk, Brian; Denton, David
Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilotmore » scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H 2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit was designed and constructed on schedule and under budget and was operated for approximately 1,500 total hours utilizing ~20% of the IGCC’s total syngas as feed (~1.5 MM scfh of dry syngas). The WDP system reduced total sulfur levels to ~10 ppmv (~99.9% removal) from raw syngas that contained as high as 14,000 ppmv of total sulfur. The integration of WDP with the activated amine process enabled further reduction of total sulfur in the final treated syngas to the anticipated sub-ppmv concentrations (>99.99% removal), suitable for stringent syngas applications such as chemicals, fertilizers, and fuels. Techno-economic assessments by RTI and by third parties indicate potential for significant (up to 50%) capital and operating cost reductions for the entire syngas cleanup block when WDP technology is integrated with a broad spectrum of conventional and emerging carbon capture or acid gas removal technologies. This final scientific/technical report covers the pre-FEED, FEED, EPC, commissioning, and operation phases of this project, as well as system performance results. In addition, the report addresses other parallel-funded R&D efforts focused on development and testing of trace contaminant removal process (TCRP) sorbents, a direct sulfur recovery process (DSRP), and a novel sorbent for warm carbon dioxide capture, as well as pre-FEED, FEED, and techno-economic studies to consider the potential benefit for use of WDP for polygeneration of electric power and ammonia/urea fertilizers.« less
Simulation Framework for Teaching in Modeling and Simulation Areas
ERIC Educational Resources Information Center
De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan
2008-01-01
Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…
Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control
ERIC Educational Resources Information Center
Ali, Emad; Idriss, Arimiyawo
2009-01-01
Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…
Hydrological and water quality processes simulation by the integrated MOHID model
NASA Astrophysics Data System (ADS)
Epelde, Ane; Antiguedad, Iñaki; Brito, David; Eduardo, Jauch; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-04-01
Different modelling approaches have been used in recent decades to study the water quality degradation caused by non-point source pollution. In this study, the MOHID fully distributed and physics-based model has been employed to simulate hydrological processes and nitrogen dynamics in a nitrate vulnerable zone: the Alegria River watershed (Basque Country, Northern Spain). The results of this study indicate that the MOHID code is suitable for hydrological processes simulation at the watershed scale, as the model shows satisfactory performance at simulating the discharge (with NSE: 0.74 and 0.76 during calibration and validation periods, respectively). The agronomical component of the code, allowed the simulation of agricultural practices, which lead to adequate crop yield simulation in the model. Furthermore, the nitrogen exportation also shows satisfactory performance (with NSE: 0.64 and 0.69 during calibration and validation periods, respectively). While the lack of field measurements do not allow to evaluate the nutrient cycling processes in depth, it has been observed that the MOHID model simulates the annual denitrification according to general ranges established for agricultural watersheds (in this study, 9 kg N ha-1 year-1). In addition, the model has simulated coherently the spatial distribution of the denitrification process, which is directly linked to the simulated hydrological conditions. Thus, the model has localized the highest rates nearby the discharge zone of the aquifer and also where the aquifer thickness is low. These results evidence the strength of this model to simulate watershed scale hydrological processes as well as the crop production and the agricultural activity derived water quality degradation (considering both nutrient exportation and nutrient cycling processes).
Plasma Processing of Lunar Regolith Simulant for Diverse Applications
NASA Technical Reports Server (NTRS)
Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott
2008-01-01
Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.
Grace: A cross-platform micromagnetic simulator on graphics processing units
NASA Astrophysics Data System (ADS)
Zhu, Ru
2015-12-01
A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.
A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube
NASA Astrophysics Data System (ADS)
Zhang, Ziqian; Yang, Huilin
2017-12-01
The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.
PLYMAP : a computer simulation model of the rotary peeled softwood plywood manufacturing process
Henry Spelter
1990-01-01
This report documents a simulation model of the plywood manufacturing process. Its purpose is to enable a user to make quick estimates of the economic impact of a particular process change within a mill. The program was designed to simulate the processing of plywood within a relatively simplified mill design. Within that limitation, however, it allows a wide range of...
NASA Astrophysics Data System (ADS)
Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong
2016-11-01
In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.
A Process for Comparing Dynamics of Distributed Space Systems Simulations
NASA Technical Reports Server (NTRS)
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
Using a simulation assistant in modeling manufacturing systems
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.
1988-01-01
Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.
Synchronization Of Parallel Discrete Event Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S.
1992-01-01
Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.
Designing a SCADA system simulator for fast breeder reactor
NASA Astrophysics Data System (ADS)
Nugraha, E.; Abdullah, A. G.; Hakim, D. L.
2016-04-01
SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.
Process simulations for manufacturing of thick composites
NASA Astrophysics Data System (ADS)
Kempner, Evan A.
The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.
NASA Technical Reports Server (NTRS)
Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga
2005-01-01
Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.
NASA Astrophysics Data System (ADS)
Abustan, M. S.; Rahman, N. A.; Gotoh, H.; Harada, E.; Talib, S. H. A.
2016-07-01
In Malaysia, not many researches on crowd evacuation simulation had been reported. Hence, the development of numerical crowd evacuation process by taking into account people behavioral patterns and psychological characteristics is crucial in Malaysia. On the other hand, tsunami disaster began to gain attention of Malaysian citizens after the 2004 Indian Ocean Tsunami that need quick evacuation process. In relation to the above circumstances, we have conducted simulations of tsunami evacuation process at the Miami Beach of Penang Island by using Distinct Element Method (DEM)-based crowd behavior simulator. The main objectives are to investigate and reproduce current conditions of evacuation process at the said locations under different hypothetical scenarios for the efficiency study of the evacuation. The sim-1 is initial condition of evacuation planning while sim-2 as improvement of evacuation planning by adding new evacuation area. From the simulation result, sim-2 have a shorter time of evacuation process compared to the sim-1. The evacuation time recuded 53 second. The effect of the additional evacuation place is confirmed from decreasing of the evacuation completion time. Simultaneously, the numerical simulation may be promoted as an effective tool in studying crowd evacuation process.
The use of discrete-event simulation modelling to improve radiation therapy planning processes.
Werker, Greg; Sauré, Antoine; French, John; Shechter, Steven
2009-07-01
The planning portion of the radiation therapy treatment process at the British Columbia Cancer Agency is efficient but nevertheless contains room for improvement. The purpose of this study is to show how a discrete-event simulation (DES) model can be used to represent this complex process and to suggest improvements that may reduce the planning time and ultimately reduce overall waiting times. A simulation model of the radiation therapy (RT) planning process was constructed using the Arena simulation software, representing the complexities of the system. Several types of inputs feed into the model; these inputs come from historical data, a staff survey, and interviews with planners. The simulation model was validated against historical data and then used to test various scenarios to identify and quantify potential improvements to the RT planning process. Simulation modelling is an attractive tool for describing complex systems, and can be used to identify improvements to the processes involved. It is possible to use this technique in the area of radiation therapy planning with the intent of reducing process times and subsequent delays for patient treatment. In this particular system, reducing the variability and length of oncologist-related delays contributes most to improving the planning time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattes, Karl
Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the Project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) power plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into amore » synthetic gas (syngas) that will be cleaned and further treated so that at least 90 percent of the overall carbon entering the IGCC facility will be captured. The clean syngas will then be divided into two highhydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the Project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work required to complete the financing of the Project. In general, STCE completed project definition, a front-end, engineering and design study (FEED), applied for and received its Record of Decision (ROD) associated with the NEPA requirements summarized in a detailed Environmental Impact Statement. A topical report covering the results of the FEED is the subject of a separate report submitted to the DOE on January 26, 2012. References to the FEED report are contained herein. In August 2013, STCE executed fixed-price turnkey EPC contracts and previously, in December 2011 a long-term O&M agreement, with industry-leading contractors. Other work completed during Phase 1 includes execution of all commercial input and offtake agreements required for project financing. STCE negotiated long-term agreements for power, CO 2 and urea offtake. A contract for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine was executed, as well as necessary agreements (supplementing the tariff) with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site. STCE executed firm agreements for natural gas transportation with ONEOK for long-term water supply with a private landowner. In addition, STCE secured options for critical easements and rights-of-way, completed and updated a transmission study, executed an interconnection agreement and has agreed a target October 31, 2013 financial closing date with debt and conventional and tax equity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan
Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less
Dynamic Simulation of a Helium Liquefier
NASA Astrophysics Data System (ADS)
Maekawa, R.; Ooba, K.; Nobutoki, M.; Mito, T.
2004-06-01
Dynamic behavior of a helium liquefier has been studied in detail with a Cryogenic Process REal-time SimulaTor (C-PREST) at the National Institute for Fusion Science (NIFS). The C-PREST is being developed to integrate large-scale helium cryogenic plant design, operation and maintenance for optimum process establishment. As a first step of simulations of cooldown to 4.5 K with the helium liquefier model is conducted, which provides a plant-process validation platform. The helium liquefier consists of seven heat exchangers, a liquid-nitrogen (LN2) precooler, two expansion turbines and a liquid-helium (LHe) reservoir. Process simulations are fulfilled with sequence programs, which were implemented with C-PREST based on an existing liquefier operation. The interactions of a JT valve, a JT-bypass valve and a reservoir-return valve have been dynamically simulated. The paper discusses various aspects of refrigeration process simulation, including its difficulties such as a balance between complexity of the adopted models and CPU time.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
A Computer Simulation of Bacterial Growth During Food-Processing
1974-11-01
1 AD A TECHNICAL REPORT A COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD PROCESSING =r= by Edward W. Ross, Jr. Approved for public...COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD - PROCESSING Edward W. Ross, Jr. Army Natick Laboratories Natick, Massachusetts Novembe...CATALOG NUMBER 4. TITLE fand SubtKUJ "A Computer Sinulatlon of Bacterial Growth During Food - Processing " 5. TYPE OF REPORT A PERIOD COVERED 6
Software-Engineering Process Simulation (SEPS) model
NASA Technical Reports Server (NTRS)
Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.
1992-01-01
The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.
A Software Development Simulation Model of a Spiral Process
NASA Technical Reports Server (NTRS)
Mizell, Carolyn; Malone, Linda
2007-01-01
There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.
Architectural Improvements and New Processing Tools for the Open XAL Online Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K; Pelaia II, Tom; Freed, Jonathan M
The online model is the component of Open XAL providing accelerator modeling, simulation, and dynamic synchronization to live hardware. Significant architectural changes and feature additions have been recently made in two separate areas: 1) the managing and processing of simulation data, and 2) the modeling of RF cavities. Simulation data and data processing have been completely decoupled. A single class manages all simulation data while standard tools were developed for processing the simulation results. RF accelerating cavities are now modeled as composite structures where parameter and dynamics computations are distributed. The beam and hardware models both maintain their relative phasemore » information, which allows for dynamic phase slip and elapsed time computation.« less
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
A simulation framework for mapping risks in clinical processes: the case of in-patient transfers.
Dunn, Adam G; Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne
2011-05-01
To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols.
Llorens, Esther; Saaltink, Maarten W; Poch, Manel; García, Joan
2011-01-01
The performance and reliability of the CWM1-RETRASO model for simulating processes in horizontal subsurface flow constructed wetlands (HSSF CWs) and the relative contribution of different microbial reactions to organic matter (COD) removal in a HSSF CW treating urban wastewater were evaluated. Various different approaches with diverse influent configurations were simulated. According to the simulations, anaerobic processes were more widespread in the simulated wetland and contributed to a higher COD removal rate [72-79%] than anoxic [0-1%] and aerobic reactions [20-27%] did. In all the cases tested, the reaction that most contributed to COD removal was methanogenesis [58-73%]. All results provided by the model were in consonance with literature and experimental field observations, suggesting a good performance and reliability of CWM1-RETRASO. According to the good simulation predictions, CWM1-RETRASO is the first mechanistic model able to successfully simulate the processes described by the CWM1 model in HSSF CWs. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Clarke, Matthew A.; Giraldo, Carlos
2009-01-01
Chemical process simulation is one of the most fundamental skills that is expected from chemical engineers, yet relatively few graduates have the opportunity to learn, in depth, how a process simulator works, from programming the unit operations to the sequencing. The University of Calgary offers a "hands-on" postgraduate course in…
ERIC Educational Resources Information Center
Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin
2015-01-01
This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…
Modeling and Simulation of Quenching and Tempering Process in steels
NASA Astrophysics Data System (ADS)
Deng, Xiaohu; Ju, Dongying
Quenching and tempering (Q&T) is a combined heat treatment process to achieve maximum toughness and ductility at a specified hardness and strength. It is important to develop a mathematical model for quenching and tempering process for satisfy requirement of mechanical properties with low cost. This paper presents a modified model to predict structural evolution and hardness distribution during quenching and tempering process of steels. The model takes into account tempering parameters, carbon content, isothermal and non-isothermal transformations. Moreover, precipitation of transition carbides, decomposition of retained austenite and precipitation of cementite can be simulated respectively. Hardness distributions of quenched and tempered workpiece are predicted by experimental regression equation. In order to validate the model, it is employed to predict the tempering of 80MnCr5 steel. The predicted precipitation dynamics of transition carbides and cementite is consistent with the previous experimental and simulated results from literature. Then the model is implemented within the framework of the developed simulation code COSMAP to simulate microstructure, stress and distortion in the heat treated component. It is applied to simulate Q&T process of J55 steel. The calculated results show a good agreement with the experimental ones. This agreement indicates that the model is effective for simulation of Q&T process of steels.
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.
Roh, S D; Kim, S W; Cho, W S
2001-10-01
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.
A framework of knowledge creation processes in participatory simulation of hospital work systems.
Andersen, Simone Nyholm; Broberg, Ole
2017-04-01
Participatory simulation (PS) is a method to involve workers in simulating and designing their own future work system. Existing PS studies have focused on analysing the outcome, and minimal attention has been devoted to the process of creating this outcome. In order to study this process, we suggest applying a knowledge creation perspective. The aim of this study was to develop a framework describing the process of how ergonomics knowledge is created in PS. Video recordings from three projects applying PS of hospital work systems constituted the foundation of process mining analysis. The analysis resulted in a framework revealing the sources of ergonomics knowledge creation as sequential relationships between the activities of simulation participants sharing work experiences; experimenting with scenarios; and reflecting on ergonomics consequences. We argue that this framework reveals the hidden steps of PS that are essential when planning and facilitating PS that aims at designing work systems. Practitioner Summary: When facilitating participatory simulation (PS) in work system design, achieving an understanding of the PS process is essential. By applying a knowledge creation perspective and process mining, we investigated the knowledge-creating activities constituting the PS process. The analysis resulted in a framework of the knowledge-creating process in PS.
Discrete-Event Simulation in Chemical Engineering.
ERIC Educational Resources Information Center
Schultheisz, Daniel; Sommerfeld, Jude T.
1988-01-01
Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
Simulation of SiO2 etching in an inductively coupled CF4 plasma
NASA Astrophysics Data System (ADS)
Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling
2017-02-01
Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.
Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.
2017-09-01
Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.
Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)
2012-08-01
methods for the use of simulation for teaching clinical skills to military and civilian clinicians . High fidelity simulation is an expensive method of...without the knowledge and approval of the IRB. Changes include, but not limited to, modifications in study design, recruitment process and number of...Person C-Collar simulation algorithm Pathway A Scenario A - Spinal stabilization: Sub processes Legend: Pathway Points Complex task to be performed by
Use of high performance networks and supercomputers for real-time flight simulation
NASA Technical Reports Server (NTRS)
Cleveland, Jeff I., II
1993-01-01
In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.
Simulation methods supporting homologation of Electronic Stability Control in vehicle variants
NASA Astrophysics Data System (ADS)
Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido
2017-10-01
Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.
Knowledge-based simulation for aerospace systems
NASA Technical Reports Server (NTRS)
Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.
1988-01-01
Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.
JIMM: the next step for mission-level models
NASA Astrophysics Data System (ADS)
Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.
2001-09-01
The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.
Rausch, Alexander M; Küng, Vera E; Pobel, Christoph; Markl, Matthias; Körner, Carolin
2017-09-22
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Rausch, Alexander M.; Küng, Vera E.; Pobel, Christoph; Körner, Carolin
2017-01-01
The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts. PMID:28937633
When teams shift among processes: insights from simulation and optimization.
Kennedy, Deanna M; McComb, Sara A
2014-09-01
This article introduces process shifts to study the temporal interplay among transition and action processes espoused in the recurring phase model proposed by Marks, Mathieu, and Zacarro (2001). Process shifts are those points in time when teams complete a focal process and change to another process. By using team communication patterns to measure process shifts, this research explores (a) when teams shift among different transition processes and initiate action processes and (b) the potential of different interventions, such as communication directives, to manipulate process shift timing and order and, ultimately, team performance. Virtual experiments are employed to compare data from observed laboratory teams not receiving interventions, simulated teams receiving interventions, and optimal simulated teams generated using genetic algorithm procedures. Our results offer insights about the potential for different interventions to affect team performance. Moreover, certain interventions may promote discussions about key issues (e.g., tactical strategies) and facilitate shifting among transition processes in a manner that emulates optimal simulated teams' communication patterns. Thus, we contribute to theory regarding team processes in 2 important ways. First, we present process shifts as a way to explore the timing of when teams shift from transition to action processes. Second, we use virtual experimentation to identify those interventions with the greatest potential to affect performance by changing when teams shift among processes. Additionally, we employ computational methods including neural networks, simulation, and optimization, thereby demonstrating their applicability in conducting team research. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire
2016-06-25
Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.
Sjöström, Hans-Erik; Englund, Claire
2016-01-01
Objective. To develop and implement a virtual tablet machine simulation to aid distance students’ understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students’ perceptions, the use of the tablet simulation contributed to their understanding of the compaction process. PMID:27402990
Probabilistic simulation of concurrent engineering of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Technology readiness and the available infrastructure is assessed for timely computational simulation of concurrent engineering for propulsion systems. Results for initial coupled multidisciplinary, fabrication-process, and system simulators are presented including uncertainties inherent in various facets of engineering processes. An approach is outlined for computationally formalizing the concurrent engineering process from cradle-to-grave via discipline dedicated workstations linked with a common database.
ERIC Educational Resources Information Center
Cohen, Edward Charles
2013-01-01
Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known…
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)
2000-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Improving the Aircraft Design Process Using Web-based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.
2003-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Dubrovskaya, A. S.; Dongauser, K. A.; Trufanov, N. A.
2015-06-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation.
Modeling and simulation of offshore wind farm O&M processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joschko, Philip, E-mail: joschko@informatik.uni-hamburg.de; Widok, Andi H., E-mail: a.widok@htw-berlin.de; Appel, Susanne, E-mail: susanne.appel@hs-bremen.de
2015-04-15
This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new processmore » interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.« less
Macro Level Simulation Model Of Space Shuttle Processing
NASA Technical Reports Server (NTRS)
2000-01-01
The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.
A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer
Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie
2014-01-01
Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727
Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net
NASA Astrophysics Data System (ADS)
Ren, Yujuan; Bao, Hong
2016-11-01
In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.
Simulating the decentralized processes of the human immune system in a virtual anatomy model.
Sarpe, Vladimir; Jacob, Christian
2013-01-01
Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.
NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Paxson, Daniel E.
2014-01-01
The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.
NASA Astrophysics Data System (ADS)
Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji
Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.
Numerical Simulation of Sintering Process in Ceramic Powder Injection Moulded Components
NASA Astrophysics Data System (ADS)
Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.
2007-05-01
A phenomenological model based on viscoplastic constitutive law is presented to describe the sintering process of ceramic components obtained by powder injection moulding. The parameters entering in the model are identified through sintering experiments in dilatometer with the proposed optimization method. The finite element simulations are carried out to predict the density variations and dimensional changes of the components during sintering. A simulation example on the sintering process of hip implant in alumina has been conducted. The simulation results have been compared with the experimental ones. A good agreement is obtained.
Guillermo A. Mendoza; Roger J. Meimban; Philip A. Araman; William G. Luppold
1991-01-01
A log inventory model and a real-time hardwood process simulation model were developed and combined into an integrated production planning and control system for hardwood sawmills. The log inventory model was designed to monitor and periodically update the status of the logs in the log yard. The process simulation model was designed to estimate various sawmill...
2014-10-01
offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity
Tools for 3D scientific visualization in computational aerodynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.
Shim, Sung J; Kumar, Arun; Jiao, Roger
2016-01-01
A hospital is considering deploying a radiofrequency identification (RFID) system and setting up a new "discharge lounge" to improve the patient discharge process. This study uses computer simulation to model and compare the current process and the new process, and it assesses the impact of the RFID system and the discharge lounge on the process in terms of resource utilization and time taken in the process. The simulation results regarding resource utilization suggest that the RFID system can slightly relieve the burden on all resources, whereas the RFID system and the discharge lounge together can significantly mitigate the nurses' tasks. The simulation results in terms of the time taken demonstrate that the RFID system can shorten patient wait times, staff busy times, and bed occupation times. The results of the study could prove helpful to others who are considering the use of an RFID system in the patient discharge process in hospitals or similar processes.
Simulation of beam-induced plasma in gas-filled rf cavities
Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; ...
2017-03-07
Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion andmore » ion-ion recombination and electron attachment to dopant molecules, have been studied. Here, through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. Lastly, the experimentally validated code space is capable of predictive simulations of muon cooling devices.« less
Comparative Implementation of High Performance Computing for Power System Dynamic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng
Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less
SiMon: Simulation Monitor for Computational Astrophysics
NASA Astrophysics Data System (ADS)
Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming
2017-09-01
Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.
Finite-element simulation of ceramic drying processes
NASA Astrophysics Data System (ADS)
Keum, Y. T.; Jeong, J. H.; Auh, K. H.
2000-07-01
A finite-element simulation for the drying process of ceramics is performed. The heat and moisture movements in green ceramics caused by the temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite-element formulation for solving the temperature and moisture distributions, which not only change the volume but also induce the hygro-thermal stress, is carried out. Employing the internally discontinuous interface elements, the numerical divergence problem arising from sudden changes in heat capacity in the phase zone is solved. In order to verify the reliability of the formulation, the drying process of a coal and the wetting process of a graphite epoxy are simulated and the results are compared with the analytical solution and another investigator's result. Finally, the drying process of a ceramic electric insulator is simulated.
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
NASA Astrophysics Data System (ADS)
Martin, Ffion A.; Warrior, Nicholas A.; Simacek, Pavel; Advani, Suresh; Hughes, Adrian; Darlington, Roger; Senan, Eissa
2018-03-01
Very short manufacture cycle times are required if continuous carbon fibre and epoxy composite components are to be economically viable solutions for high volume composite production for the automotive industry. Here, a manufacturing process variant of resin transfer moulding (RTM), targets a reduction of in-mould manufacture time by reducing the time to inject and cure components. The process involves two stages; resin injection followed by compression. A flow simulation methodology using an RTM solver for the process has been developed. This paper compares the simulation prediction to experiments performed using industrial equipment. The issues encountered during the manufacturing are included in the simulation and their sensitivity to the process is explored.
Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L
2018-05-22
Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.
Representing the work of medical protocols for organizational simulation.
Fridsma, D. B.
1998-01-01
Developing and implementing patient care protocols within a specific organizational setting requires knowledge of the protocol, the organization, and the way in which the organization does its work. Computer-based simulation tools have been used in many industries to provide managers with prospective insight into problems of work process and organization design mismatch. Many of these simulation tools are designed for well-understood routine work processes in which there are few contingent tasks. In this paper, we describe theoretic that make it possible to simulate medical protocols using an information-processing theory framework. These simulations will allow medical administrators to test different protocol and organizational designs before actually using them within a particular clinical setting. PMID:9929231
NASA Astrophysics Data System (ADS)
Wu, Longtao; Wong, Sun; Wang, Tao; Huffman, George J.
2018-01-01
Simulation of moist convective processes is critical for accurately representing the interaction among tropical wave activities, atmospheric water vapor transport, and clouds associated with the Indian monsoon Intraseasonal Oscillation (ISO). In this study, we apply the Weather Research and Forecasting (WRF) model to simulate Indian monsoon ISO with three different treatments of moist convective processes: (1) the Betts-Miller-Janjić (BMJ) adjustment cumulus scheme without explicit simulation of moist convective processes; (2) the New Simplified Arakawa-Schubert (NSAS) mass-flux scheme with simplified moist convective processes; and (3) explicit simulation of moist convective processes at convection permitting scale (Nest). Results show that the BMJ experiment is unable to properly reproduce the equatorial Rossby wave activities and the corresponding phase relationship between moisture advection and dynamical convergence during the ISO. These features associated with the ISO are approximately captured in the NSAS experiment. The simulation with resolved moist convective processes significantly improves the representation of the ISO evolution, and has good agreements with the observations. This study features the first attempt to investigate the Indian monsoon at convection permitting scale.
Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh
2010-02-01
Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Kondo, Yutaka
Organic aerosol (OA) simulations using the volatility basis-set approach were made for East Asia and its outflow region. Model simulations were evaluated through comparisons with OA measured by aerosol mass spectrometers in and around Tokyo (at Komaba and Kisai in summer 2003 and 2004) and over the outflow region in East Asia (at Fukue and Hedo in spring 2009). The simulations with aging processes of organic vapors reasonably well reproduced mass concentrations, temporal variations, and formation efficiency of observed OA at all sites. As OA mass was severely underestimated in the simulations without the aging processes, the oxidations of organicmore » vapors are essential for reasonable OA simulations over East Asia. By considering the aging processes, simulated OA concentrations considerably increased from 0.24 to 1.28 µg m-3 in the boundary layer over the whole of East Asia. OA formed from the interaction of anthropogenic and biogenic sources was also enhanced by the aging processes. The fraction of controllable OA was estimated to be 87 % of total OA over the whole of East Asia, showing that most of the OA in our simulations formed anthropogenically (controllable). A large portion of biogenic secondary OA (78 % of biogenic secondary OA) formed through the influence of anthropogenic sources. The high fraction of controllable OA in our simulations is likely because anthropogenic emissions are dominant over East Asia and OA formation is enhanced by anthropogenic sources and their aging processes. Both the amounts (from 0.18 to 1.12 µg m-3) and the fraction (from 75 % to 87 %) of controllable OA were increased by aging processes of organic vapors over East Asia.« less
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
General simulation algorithm for autocorrelated binary processes.
Serinaldi, Francesco; Lombardo, Federico
2017-02-01
The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.
Ontological simulation for educational process organisation in a higher educational institution
NASA Astrophysics Data System (ADS)
Berestneva, O. G.; Marukhina, O. V.; Bahvalov, S. V.; Fisochenko, O. N.; Berestneva, E. V.
2017-01-01
Following the new-generation standards is needed to form a task list connected with planning and organizing of an academic process, structure and content formation of degree programmes. Even when planning the structure and content of an academic process, one meets some problems concerning the necessity to assess the correlation between degree programmes and demands of educational and professional standards and to consider today’s job-market and students demands. The paper presents examples of ontological simulations for solutions of organizing educational process problems in a higher educational institution and gives descriptions of model development. The article presents two examples: ontological simulation when planning an educational process in a higher educational institution and ontological simulation for describing competences of an IT-specialist. The paper sets a conclusion about ontology application perceptiveness for formalization of educational process organization in a higher educational institution.
Neural Processing of Musical and Vocal Emotions Through Cochlear Implants Simulation.
Ahmed, Duha G; Paquette, Sebastian; Zeitouni, Anthony; Lehmann, Alexandre
2018-05-01
Cochlear implants (CIs) partially restore the sense of hearing in the deaf. However, the ability to recognize emotions in speech and music is reduced due to the implant's electrical signal limitations and the patient's altered neural pathways. Electrophysiological correlations of these limitations are not yet well established. Here we aimed to characterize the effect of CIs on auditory emotion processing and, for the first time, directly compare vocal and musical emotion processing through a CI-simulator. We recorded 16 normal hearing participants' electroencephalographic activity while listening to vocal and musical emotional bursts in their original form and in a degraded (CI-simulated) condition. We found prolonged P50 latency and reduced N100-P200 complex amplitude in the CI-simulated condition. This points to a limitation in encoding sound signals processed through CI simulation. When comparing the processing of vocal and musical bursts, we found a delay in latency with the musical bursts compared to the vocal bursts in both conditions (original and CI-simulated). This suggests that despite the cochlear implants' limitations, the auditory cortex can distinguish between vocal and musical stimuli. In addition, it adds to the literature supporting the complexity of musical emotion. Replicating this study with actual CI users might lead to characterizing emotional processing in CI users and could ultimately help develop optimal rehabilitation programs or device processing strategies to improve CI users' quality of life.
Kim, Sunghee; Shin, Gisoo
2016-02-01
Since previous studies on simulation-based education have been focused on fundamental nursing skills for nursing students in South Korea, there is little research available that focuses on clinical nurses in simulation-based training. Further, there is a paucity of research literature related to the integration of the nursing process into simulation training particularly in the emergency nursing care of high-risk maternal and neonatal patients. The purpose of this study was to identify the effects of nursing process-based simulation on knowledge, attitudes, and skills for maternal and child emergency nursing care in clinical nurses in South Korea. Data were collected from 49 nurses, 25 in the experimental group and 24 in the control group, from August 13 to 14, 2013. This study was an equivalent control group pre- and post-test experimental design to compare the differences in knowledge, attitudes, and skills for maternal and child emergency nursing care between the experimental group and the control group. The experimental group was trained by the nursing process-based simulation training program, while the control group received traditional methods of training for maternal and child emergency nursing care. The experimental group was more likely to improve knowledge, attitudes, and skills required for clinical judgment about maternal and child emergency nursing care than the control group. Among five stages of nursing process in simulation, the experimental group was more likely to improve clinical skills required for nursing diagnosis and nursing evaluation than the control group. These results will provide valuable information on developing nursing process-based simulation training to improve clinical competency in nurses. Further research should be conducted to verify the effectiveness of nursing process-based simulation with more diverse nurse groups on more diverse subjects in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Numerical simulation of the SAGD process coupled with geomechanical behavior
NASA Astrophysics Data System (ADS)
Li, Pingke
Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.
Thermo-mechanical simulation of liquid-supported stretch blow molding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmer, J.; Stommel, M.
2015-05-22
Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less
Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki
2014-01-01
The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.
Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables
2008-12-01
into a process simulation to determine the effects of key design parameters on the overall performance of the system. Integrating process simulation...High Decay [Asian Pears High High Decay [ Avocados High High Decay lBananas Moderate ~igh Decay Cantaloupe High Moderate Decay Cherimoya Very High High...ozonolysis. Process simulation was subsequently used to understand the effect of key system parameters on EEU performance. Using this modeling work
NASA Astrophysics Data System (ADS)
Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.
2011-08-01
The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
ROMI-3: Rough-Mill Simulator Version 3.0: User's Guide
Joel M. Weiss; R. Edward Thomas; R. Edward Thomas
2005-01-01
ROMI-3 Rough-Mill Simulator is a software package that simulates current industrial practices for rip-first and chop-first lumber processing. This guide shows the user how to set up and examine the results of simulations of current or proposed mill practices. ROMI-3 accepts cutting bills with as many as 600 combined solid and/or panel part sizes. Plots of processed...
Janice K. Wiedenbeck; Philip A. Araman
1995-01-01
We've been telling the wood industry about our process simulation modeling research and development work for several years. We've demonstrated our crosscut-first and rip-first rough mill simulation and animation models. Weâve advised companies on how they could use simulation modeling to help make critically important, pending decisions related to mill layout...
ERIC Educational Resources Information Center
Neely, Pat; Tucker, Jan
2013-01-01
Purpose: Simulations are designed as activities which imitate real world scenarios and are often used to teach and enhance skill building. The purpose of this case study is to examine the decision making process and outcomes of a faculty committee tasked with examining simulations in the marketplace to determine if the simulations could be used as…
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
Visualization Methods for Viability Studies of Inspection Modules for the Space Shuttle
NASA Technical Reports Server (NTRS)
Mobasher, Amir A.
2005-01-01
An effective simulation of an object, process, or task must be similar to that object, process, or task. A simulation could consist of a physical device, a set of mathematical equations, a computer program, a person, or some combination of these. There are many reasons for the use of simulators. Although some of the reasons are unique to a specific situation, there are many general reasons and purposes for using simulators. Some are listed but not limited to (1) Safety, (2) Scarce resources, (3) Teaching/education, (4) Additional capabilities, (5) Flexibility and (6) Cost. Robot simulators are in use for all of these reasons. Virtual environments such as simulators will eliminate physical contact with humans and hence will increase the safety of work environment. Corporations with limited funding and resources may utilize simulators to accomplish their goals while saving manpower and money. A computer simulation is safer than working with a real robot. Robots are typically a scarce resource. Schools typically don t have a large number of robots, if any. Factories don t want the robots not performing useful work unless absolutely necessary. Robot simulators are useful in teaching robotics. A simulator gives a student hands-on experience, if only with a simulator. The simulator is more flexible. A user can quickly change the robot configuration, workcell, or even replace the robot with a different one altogether. In order to be useful, a robot simulator must create a model that accurately performs like the real robot. A powerful simulator is usually thought of as a combination of a CAD package with simulation capabilities. Computer Aided Design (CAD) techniques are used extensively by engineers in virtually all areas of engineering. Parts are designed interactively aided by the graphical display of both wireframe and more realistic shaded renderings. Once a part s dimensions have been specified to the CAD package, designers can view the part from any direction to examine how it will look and perform in relation to other parts. If changes are deemed necessary, the designer can easily make the changes and view the results graphically. However, a complex process of moving parts intended for operation in a complex environment can only be fully understood through the process of animated graphical simulation. A CAD package with simulation capabilities allows the designer to develop geometrical models of the process being designed, as well as the environment in which the process will be used, and then test the process in graphical animation much as the actual physical system would be run . By being able to operate the system of moving and stationary parts, the designer is able to see in simulation how the system will perform under a wide variety of conditions. If, for example, undesired collisions occur between parts of the system, design changes can be easily made without the expense or potential danger of testing the physical system.
Simulation modeling for the health care manager.
Kennedy, Michael H
2009-01-01
This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
Simulation of a master-slave event set processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comfort, J.C.
1984-03-01
Event set manipulation may consume a considerable amount of the computation time spent in performing a discrete-event simulation. One way of minimizing this time is to allow event set processing to proceed in parallel with the remainder of the simulation computation. The paper describes a multiprocessor simulation computer, in which all non-event set processing is performed by the principal processor (called the host). Event set processing is coordinated by a front end processor (the master) and actually performed by several other functionally identical processors (the slaves). A trace-driven simulation program modeling this system was constructed, and was run with tracemore » output taken from two different simulation programs. Output from this simulation suggests that a significant reduction in run time may be realized by this approach. Sensitivity analysis was performed on the significant parameters to the system (number of slave processors, relative processor speeds, and interprocessor communication times). A comparison between actual and simulation run times for a one-processor system was used to assist in the validation of the simulation. 7 references.« less
NASA Astrophysics Data System (ADS)
Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred
2018-01-01
Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.
IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
William M. Bond; Salih Ersayin
2007-03-30
This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency ofmore » individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern Minnesota, and future proposals are pending with non-taconite mineral processing applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to complymore » with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.« less
Simulation of Triple Oxidation Ditch Wastewater Treatment Process
NASA Astrophysics Data System (ADS)
Yang, Yue; Zhang, Jinsong; Liu, Lixiang; Hu, Yongfeng; Xu, Ziming
2010-11-01
This paper presented the modeling mechanism and method of a sewage treatment system. A triple oxidation ditch process of a WWTP was simulated based on activated sludge model ASM2D with GPS-X software. In order to identify the adequate model structure to be implemented into the GPS-X environment, the oxidation ditch was divided into several completely stirred tank reactors depended on the distribution of aeration devices and dissolved oxygen concentration. The removal efficiency of COD, ammonia nitrogen, total nitrogen, total phosphorus and SS were simulated by GPS-X software with influent quality data of this WWTP from June to August 2009, to investigate the differences between the simulated results and the actual results. The results showed that, the simulated values could well reflect the actual condition of the triple oxidation ditch process. Mathematical modeling method was appropriate in effluent quality predicting and process optimizing.
Optimal segmentation and packaging process
Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.
1999-01-01
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.
Ludwig, T; Kern, P; Bongards, M; Wolf, C
2011-01-01
The optimization of relaxation and filtration times of submerged microfiltration flat modules in membrane bioreactors used for municipal wastewater treatment is essential for efficient plant operation. However, the optimization and control of such plants and their filtration processes is a challenging problem due to the underlying highly nonlinear and complex processes. This paper presents the use of genetic algorithms for this optimization problem in conjunction with a fully calibrated simulation model, as computational intelligence methods are perfectly suited to the nonconvex multi-objective nature of the optimization problems posed by these complex systems. The simulation model is developed and calibrated using membrane modules from the wastewater simulation software GPS-X based on the Activated Sludge Model No.1 (ASM1). Simulation results have been validated at a technical reference plant. They clearly show that filtration process costs for cleaning and energy can be reduced significantly by intelligent process optimization.
Teaching Workflow Analysis and Lean Thinking via Simulation: A Formative Evaluation
Campbell, Robert James; Gantt, Laura; Congdon, Tamara
2009-01-01
This article presents the rationale for the design and development of a video simulation used to teach lean thinking and workflow analysis to health services and health information management students enrolled in a course on the management of health information. The discussion includes a description of the design process, a brief history of the use of simulation in healthcare, and an explanation of how video simulation can be used to generate experiential learning environments. Based on the results of a survey given to 75 students as part of a formative evaluation, the video simulation was judged effective because it allowed students to visualize a real-world process (concrete experience), contemplate the scenes depicted in the video along with the concepts presented in class in a risk-free environment (reflection), develop hypotheses about why problems occurred in the workflow process (abstract conceptualization), and develop solutions to redesign a selected process (active experimentation). PMID:19412533
A framework for service enterprise workflow simulation with multi-agents cooperation
NASA Astrophysics Data System (ADS)
Tan, Wenan; Xu, Wei; Yang, Fujun; Xu, Lida; Jiang, Chuanqun
2013-11-01
Process dynamic modelling for service business is the key technique for Service-Oriented information systems and service business management, and the workflow model of business processes is the core part of service systems. Service business workflow simulation is the prevalent approach to be used for analysis of service business process dynamically. Generic method for service business workflow simulation is based on the discrete event queuing theory, which is lack of flexibility and scalability. In this paper, we propose a service workflow-oriented framework for the process simulation of service businesses using multi-agent cooperation to address the above issues. Social rationality of agent is introduced into the proposed framework. Adopting rationality as one social factor for decision-making strategies, a flexible scheduling for activity instances has been implemented. A system prototype has been developed to validate the proposed simulation framework through a business case study.
NASA Astrophysics Data System (ADS)
Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.
2016-10-01
An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.
Modeling and simulation: A key to future defense technology
NASA Technical Reports Server (NTRS)
Muccio, Anthony B.
1993-01-01
The purpose of this paper is to express the rationale for continued technological and scientific development of the modeling and simulation process for the defense industry. The defense industry, along with a variety of other industries, is currently being forced into making sacrifices in response to the current economic hardships. These sacrifices, which may not compromise the safety of our nation, nor jeopardize our current standing as the world peace officer, must be concentrated in areas which will withstand the needs of the changing world. Therefore, the need for cost effective alternatives of defense issues must be examined. This paper provides support that the modeling and simulation process is an economically feasible process which will ensure our nation's safety as well as provide and keep up with the future technological developments and demands required by the defense industry. The outline of this paper is as follows: introduction, which defines and describes the modeling and simulation process; discussion, which details the purpose and benefits of modeling and simulation and provides specific examples of how the process has been successful; and conclusion, which summarizes the specifics of modeling and simulation of defense issues and lends the support for its continued use in the defense arena.
Integration of High-resolution Data for Temporal Bone Surgical Simulations
Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas
2016-01-01
Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105
Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.
Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less
Stochastic simulation of spatially correlated geo-processes
Christakos, G.
1987-01-01
In this study, developments in the theory of stochastic simulation are discussed. The unifying element is the notion of Radon projection in Euclidean spaces. This notion provides a natural way of reconstructing the real process from a corresponding process observable on a reduced dimensionality space, where analysis is theoretically easier and computationally tractable. Within this framework, the concept of space transformation is defined and several of its properties, which are of significant importance within the context of spatially correlated processes, are explored. The turning bands operator is shown to follow from this. This strengthens considerably the theoretical background of the geostatistical method of simulation, and some new results are obtained in both the space and frequency domains. The inverse problem is solved generally and the applicability of the method is extended to anisotropic as well as integrated processes. Some ill-posed problems of the inverse operator are discussed. Effects of the measurement error and impulses at origin are examined. Important features of the simulated process as described by geomechanical laws, the morphology of the deposit, etc., may be incorporated in the analysis. The simulation may become a model-dependent procedure and this, in turn, may provide numerical solutions to spatial-temporal geologic models. Because the spatial simu??lation may be technically reduced to unidimensional simulations, various techniques of generating one-dimensional realizations are reviewed. To link theory and practice, an example is computed in detail. ?? 1987 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.
2016-11-01
In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.
Quantitative computer simulations of extraterrestrial processing operations
NASA Technical Reports Server (NTRS)
Vincent, T. L.; Nikravesh, P. E.
1989-01-01
The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.
NASA Astrophysics Data System (ADS)
Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao
2017-01-01
Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.
NASA Astrophysics Data System (ADS)
Singh, Swadesh Kumar; Kumar, D. Ravi
2005-08-01
Hydro-mechanical deep drawing is a process for producing cup shaped parts with the assistance of a pressurized fluid. In the present work, numerical simulation of the conventional and counter pressure deep drawing processes has been done with the help of a finite element method based software. Simulation results were analyzed to study the improvement in drawability by using hydro-mechanical processes. The thickness variations in the drawn cups were analyzed and also the effect of counter pressure and oil gap on the thickness distribution was studied. Numerical simulations were also used for the die design, which combines both drawing and ironing processes in a single operation. This modification in the die provides high drawability, facilitates smooth material flow, gives more uniform thickness distribution and corrects the shape distortion.
Simulation of a Start-Up Manufacturing Facility for Nanopore Arrays
ERIC Educational Resources Information Center
Field, Dennis W.
2009-01-01
Simulation is a powerful tool in developing and troubleshooting manufacturing processes, particularly when considering process flows for manufacturing systems that do not yet exist. Simulation can bridge the gap in terms of setting up full-scale manufacturing for nanotechnology products if limited production experience is an issue. An effective…
Modelling and Simulation as a Recognizing Method in Education
ERIC Educational Resources Information Center
Stoffa, Veronika
2004-01-01
Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... qualification process as an important tool for the assessment of vehicle performance. These simulations are... qualification process, simulations would be conducted using both a measured track geometry segment... on the results of simulation studies designed to identify track geometry irregularities associated...
Software quality and process improvement in scientific simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosiano, J.; Webster, R.
1997-11-01
This report contains viewgraphs on the quest to develope better simulation code quality through process modeling and improvement. This study is based on the experience of the authors and interviews with ten subjects chosen from simulation code development teams at LANL. This study is descriptive rather than scientific.
VARTM Process Modeling of Aerospace Composite Structures
NASA Technical Reports Server (NTRS)
Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.
2003-01-01
A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.
Simulation based analysis of laser beam brazing
NASA Astrophysics Data System (ADS)
Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael
2016-03-01
Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.
Business process study simulation for resource management in an emergency department.
Poomkothammal, Velusamy
2006-01-01
Alexandra Hospital conducted a business process reengineering exercise for all its main processes in order to further improve on their efficiencies with the ultimate aim to provide a higher level of services to patients. The goal of the DEM is to manage an anticipated increase in the volume of patients without much increase in resources. As a start, the Department of Emergency (DEM) medicine studied its AS-IS process and has designed and implemented the new TO-BE process. As part of this continuous improvement effort, staff from Nanyang Polytechnic (NYP) has been assigned the task of applying engineering and analytical techniques to simulate the new process. The simulations were conducted to show on process management and resource planning.
Chen, P P; Tsui, N Tk; Fung, A Sw; Chiu, A Hf; Wong, W Cw; Leong, H T; Lee, P Sf; Lau, J Yw
2017-08-01
The implementation of a new clinical service is associated with anxiety and challenges that may prevent smooth and safe execution of the service. Unexpected issues may not be apparent until the actual clinical service commences. We present a novel approach to test the new clinical setting before actual implementation of our endovascular aortic repair service. In-situ simulation at the new clinical location would enable identification of potential process and system issues prior to implementation of the service. After preliminary planning, a simulation test utilising a case scenario with actual simulation of the entire care process was carried out to identify any logistic, equipment, settings or clinical workflow issues, and to trial a contingency plan for a surgical complication. All patient care including anaesthetic, surgical, and nursing procedures and processes were simulated and tested. Overall, 17 vital process and system issues were identified during the simulation as potential clinical concerns. They included difficult patient positioning, draping pattern, unsatisfactory equipment setup, inadequate critical surgical instruments, blood products logistics, and inadequate nursing support during crisis. In-situ simulation provides an innovative method to identify critical deficiencies and unexpected issues before implementation of a new clinical service. Life-threatening and serious practical issues can be identified and corrected before formal service commences. This article describes our experience with the use of simulation in pre-implementation testing of a clinical process or service. We found the method useful and would recommend it to others.
Simulation Assessment Validation Environment (SAVE). Software User’s Manual
2000-09-01
requirements and decisions are made. The integration is leveraging work from other DoD organizations so that high -end results are attainable much faster than...planning through the modeling and simulation data capture and visualization process. The planners can complete the manufacturing process plan with a high ...technologies. This tool is also used to perform “ high level” factory process simulation prior to full CAD model development and help define feasible
Logistics of Trainsets Creation with the Use of Simulation Models
NASA Astrophysics Data System (ADS)
Sedláček, Michal; Pavelka, Hynek
2016-12-01
This paper focuses on rail transport in following the train formation operational processes problem using computer simulations. The problem has been solved using SIMUL8 and applied to specific train formation station in the Czech Republic. The paper describes a proposal simulation model of the train formation work. Experimental modeling with an assessment of achievements and design solution for optimizing of the train formation operational process is also presented.
USING SIMULATION FOR POLLUTION PREVENTION
The ability to design or modify chemical processes in a way that minimizes the formation of unwanted by-products is an ongoing goal for process engineers. Two simulation and design methods are discussed here: Process Integration (PI) developed by El-Halwagi and Manousiouthakis a...
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; ...
2017-06-09
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order tomore » achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.« less
Characterizing the role of the hippocampus during episodic simulation and encoding.
Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L
2017-12-01
The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Savara, Aditya
2017-10-01
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of "KMC stiffness" (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events-allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.
NASA Astrophysics Data System (ADS)
Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.
2000-11-01
A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.
Three Dimensional Transient Turbulent Simulations of Scramjet Fuel Injection and Combustion
NASA Astrophysics Data System (ADS)
Bahbaz, Marwane
2011-11-01
Scramjet is a propulsion system that is more effective for hypersonic flights (M >5). The main objective of the simulation is to understand both the mixing and combustion process of air flow using hydrogen fuel in high speed environment s. The understanding of this phenomenon is used to determine the number of fuel injectors required to increase combustion efficiency and energy transfer. Due to the complexity of this simulation, multiple software tools are used to achieve this objective. First, Solid works is used to draw a scramjet combustor with accurate measurements. Second software tool used is Gambit; It is used to make several types of meshes for the scramjet combustor. Finally, Open Foam and CFD++ are software used to process and post process the scramjet combustor. At this stage, the simulation is divided into two categories. The cold flow category is a series of simulations that include subsonic and supersonic turbulent air flow across the combustor channel with fuel interaction from one or more injectors'. The second category is the combustion simulations which involve fluid flow and fuel mixing with ignition. The simulation and modeling of scramjet combustor will assist to investigate and understand the combustion process and energy transfer in hypersonic environment.
NASA Astrophysics Data System (ADS)
Hur, Min Young; Verboncoeur, John; Lee, Hae June
2014-10-01
Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.
Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.
Louwerse, Max; Hutchinson, Sterling
2012-01-01
There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.
Neurological Evidence Linguistic Processes Precede Perceptual Simulation in Conceptual Processing
Louwerse, Max; Hutchinson, Sterling
2012-01-01
There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky – ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes. PMID:23133427
Hafnium transistor process design for neural interfacing.
Parent, David W; Basham, Eric J
2009-01-01
A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.
A chemical EOR benchmark study of different reservoir simulators
NASA Astrophysics Data System (ADS)
Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy
2016-09-01
Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.
Multi-scale Modeling of Arctic Clouds
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Roesler, E. L.; Dexheimer, D.
2017-12-01
The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2003-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data fiom the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo- China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the lowlevel temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation.
The development of an industrial-scale fed-batch fermentation simulation.
Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry
2015-01-10
This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Johansson, Gerd
2014-01-01
To demonstrate the use of visualization and simulation tools in order to involve stakeholders and inform the process in hospital change processes, illustrated by an empirical study from a children's emergency clinic. Reorganization and redevelopment of a hospital is a complex activity that involves many stakeholders and demands. Visualization and simulation tools have proven useful for involving practitioners and eliciting relevant knowledge. More knowledge is desired about how these tools can be implemented in practice for hospital planning processes. A participatory planning process including practitioners and researchers was executed over a 3-year period to evaluate a combination of visualization and simulation tools to involve stakeholders in the planning process and to elicit knowledge about needs and requirements. The initial clinic proposal from the architect was discarded as a result of the empirical study. Much general knowledge about the needs of the organization was extracted by means of the adopted tools. Some of the tools proved to be more accessible than others for the practitioners participating in the study. The combination of tools added value to the process by presenting information in alternative ways and eliciting questions from different angles. Visualization and simulation tools inform a planning process (or other types of change processes) by providing the means to see beyond present demands and current work structures. Long-term involvement in combination with accessible tools is central for creating a participatory setting where the practitioners' knowledge guides the process. © 2014 Vendome Group, LLC.
Chen, Weiliang; De Schutter, Erik
2017-01-01
Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346
Chen, Weiliang; De Schutter, Erik
2017-01-01
Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Gary; Albritton, John; Denton, David
In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO 2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngasmore » flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H 2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO 2 to enable 90% capture of the CO 2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO 2 and H 2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO 2 capture target of 90% CO 2 can be achieved with the added benefit that total sulfur concentration in the CO 2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.« less
NASA Astrophysics Data System (ADS)
Rock, Gilles; Fischer, Kim; Schlerf, Martin; Gerhards, Max; Udelhoven, Thomas
2017-04-01
The development and optimization of image processing algorithms requires the availability of datasets depicting every step from earth surface to the sensor's detector. The lack of ground truth data obliges to develop algorithms on simulated data. The simulation of hyperspectral remote sensing data is a useful tool for a variety of tasks such as the design of systems, the understanding of the image formation process, and the development and validation of data processing algorithms. An end-to-end simulator has been set up consisting of a forward simulator, a backward simulator and a validation module. The forward simulator derives radiance datasets based on laboratory sample spectra, applies atmospheric contributions using radiative transfer equations, and simulates the instrument response using configurable sensor models. This is followed by the backward simulation branch, consisting of an atmospheric correction (AC), a temperature and emissivity separation (TES) or a hybrid AC and TES algorithm. An independent validation module allows the comparison between input and output dataset and the benchmarking of different processing algorithms. In this study, hyperspectral thermal infrared scenes of a variety of surfaces have been simulated to analyze existing AC and TES algorithms. The ARTEMISS algorithm was optimized and benchmarked against the original implementations. The errors in TES were found to be related to incorrect water vapor retrieval. The atmospheric characterization could be optimized resulting in increasing accuracies in temperature and emissivity retrieval. Airborne datasets of different spectral resolutions were simulated from terrestrial HyperCam-LW measurements. The simulated airborne radiance spectra were subjected to atmospheric correction and TES and further used for a plant species classification study analyzing effects related to noise and mixed pixels.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Learning-Testing Process in Classroom: An Empirical Simulation Model
ERIC Educational Resources Information Center
Buda, Rodolphe
2009-01-01
This paper presents an empirical micro-simulation model of the teaching and the testing process in the classroom (Programs and sample data are available--the actual names of pupils have been hidden). It is a non-econometric micro-simulation model describing informational behaviors of the pupils, based on the observation of the pupils'…
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
Furniture rough mill costs evaluated by computer simulation
R. Bruce Anderson
1983-01-01
A crosscut-first furniture rough mill was simulated to evaluate processing and raw material costs on an individual part basis. Distributions representing the real-world characteristics of lumber, equipment feed speeds, and processing requirements are programed into the simulation. Costs of parts from a specific cutting bill are given, and effects of lumber input costs...
Simulation-Based Learning: The Learning-Forgetting-Relearning Process and Impact of Learning History
ERIC Educational Resources Information Center
Davidovitch, Lior; Parush, Avi; Shtub, Avy
2008-01-01
The results of empirical experiments evaluating the effectiveness and efficiency of the learning-forgetting-relearning process in a dynamic project management simulation environment are reported. Sixty-six graduate engineering students performed repetitive simulation-runs with a break period of several weeks between the runs. The students used a…
10 CFR 434.517 - HVAC systems and equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... simulation, except that excess capacity provided to meet process loads need not be modeled unless the process... Reference Buildings. The zones in the simulation shall correspond to the zones provided by the controls in... simulation. Table 517.4.1—HVAC System Description for Prototype and Reference Buildings 1,2 HVAC component...
ERIC Educational Resources Information Center
Weiss, Charles J.
2017-01-01
An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…
USDA-ARS?s Scientific Manuscript database
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...
FEA Simulation of Free-Bending - a Preforming Step in the Hydroforming Process Chain
NASA Astrophysics Data System (ADS)
Beulich, N.; Craighero, P.; Volk, W.
2017-09-01
High-strength steel and aluminum alloys are essential for developing innovative, lightly-weighted space frame concepts. The intended design is built from car body parts with high geometrical complexity and reduced material-thickness. Over the past few years, many complex car body parts have been produced using hydroforming. To increase the accuracy of hydroforming in relation to prospective car concepts, the virtual manufacturing of forming becomes more important. As a part of process digitalization, it is necessary to develop a simulation model for the hydroforming process chain. The preforming of longitudinal welded tubes is therefore implemented by the use of three-dimensional free-bending. This technique is able to reproduce complex deflection curves in combination with innovative low-thickness material design for hydroforming processes. As a first step to the complete process simulation, the content of this paper deals with the development of a finite element simulation model for the free-bending process with 6 degrees of freedom. A mandrel built from spherical segments connected by a steel rope is located inside of the tube to prevent geometrical instability. Critical parameters for the result of the bending process are therefore evaluated and optimized. The simulation model is verified by surface measurements of a two-dimensional bending test.
COMPUTERIZED TRAINING OF CRYOSURGERY – A SYSTEM APPROACH
Keelan, Robert; Yamakawa, Soji; Shimada, Kenji; Rabin, Yoed
2014-01-01
The objective of the current study is to provide the foundation for a computerized training platform for cryosurgery. Consistent with clinical practice, the training process targets the correlation of the frozen region contour with the target region shape, using medical imaging and accepted criteria for clinical success. The current study focuses on system design considerations, including a bioheat transfer model, simulation techniques, optimal cryoprobe layout strategy, and a simulation core framework. Two fundamentally different approaches were considered for the development of a cryosurgery simulator, based on a finite-elements (FE) commercial code (ANSYS) and a proprietary finite-difference (FD) code. Results of this study demonstrate that the FE simulator is superior in terms of geometric modeling, while the FD simulator is superior in terms of runtime. Benchmarking results further indicate that the FD simulator is superior in terms of usage of memory resources, pre-processing, parallel processing, and post-processing. It is envisioned that future integration of a human-interface module and clinical data into the proposed computer framework will make computerized training of cryosurgery a practical reality. PMID:23995400
Automated Simulation For Analysis And Design
NASA Technical Reports Server (NTRS)
Cantwell, E.; Shenk, Tim; Robinson, Peter; Upadhye, R.
1992-01-01
Design Assistant Workstation (DAWN) software being developed to facilitate simulation of qualitative and quantitative aspects of behavior of life-support system in spacecraft, chemical-processing plant, heating and cooling system of large building, or any of variety of systems including interacting process streams and processes. Used to analyze alternative design scenarios or specific designs of such systems. Expert system will automate part of design analysis: reason independently by simulating design scenarios and return to designer with overall evaluations and recommendations.
NASA Astrophysics Data System (ADS)
Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari
2016-11-01
The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.
Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model
NASA Technical Reports Server (NTRS)
Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.
1975-01-01
Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.
Simulation of transient flow in a shock tunnel and a high Mach number nozzle
NASA Technical Reports Server (NTRS)
Jacobs, P. A.
1991-01-01
A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.
Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel
NASA Astrophysics Data System (ADS)
Fu, Liang; Wu, Changli; Tang, Weiping
2018-02-01
The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.
King, Gillian; Shepherd, Tracy A; Servais, Michelle; Willoughby, Colleen; Bolack, Linda; Strachan, Deborah; Moodie, Sheila; Baldwin, Patricia; Knickle, Kerry; Parker, Kathryn; Savage, Diane; McNaughton, Nancy
2016-10-01
To describe the creation and validation of six simulations concerned with effective listening and interpersonal communication in pediatric rehabilitation. The simulations involved clinicians from various disciplines, were based on clinical scenarios related to client issues, and reflected core aspects of listening/communication. Each simulation had a key learning objective, thus focusing clinicians on specific listening skills. The article outlines the process used to turn written scenarios into digital video simulations, including steps taken to establish content validity and authenticity, and to establish a series of videos based on the complexity of their learning objectives, given contextual factors and associated macrocognitive processes that influence the ability to listen. A complexity rating scale was developed and used to establish a gradient of easy/simple, intermediate, and hard/complex simulations. The development process exemplifies an evidence-based, integrated knowledge translation approach to the teaching and learning of listening and communication skills.
Understanding Islamist political violence through computational social simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G
Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates themore » computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.« less
Managing complexity in simulations of land surface and near-surface processes
Coon, Ethan T.; Moulton, J. David; Painter, Scott L.
2016-01-12
Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less
Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.
Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A
2015-10-01
The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elliott, Thomas J.; Gu, Mile
2018-03-01
Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.
More Than One Way to Debrief: A Critical Review of Healthcare Simulation Debriefing Methods.
Sawyer, Taylor; Eppich, Walter; Brett-Fleegler, Marisa; Grant, Vincent; Cheng, Adam
2016-06-01
Debriefing is a critical component in the process of learning through healthcare simulation. This critical review examines the timing, facilitation, conversational structures, and process elements used in healthcare simulation debriefing. Debriefing occurs either after (postevent) or during (within-event) the simulation. The debriefing conversation can be guided by either a facilitator (facilitator-guided) or the simulation participants themselves (self-guided). Postevent facilitator-guided debriefing may incorporate several conversational structures. These conversational structures break the debriefing discussion into a series of 3 or more phases to help organize the debriefing and ensure the conversation proceeds in an orderly manner. Debriefing process elements are an array of techniques to optimize reflective experience and maximize the impact of debriefing. These are divided here into the following 3 categories: essential elements, conversational techniques/educational strategies, and debriefing adjuncts. This review provides both novice and advanced simulation educators with an overview of various methods of conducting healthcare simulation debriefing. Future research will investigate which debriefing methods are best for which contexts and for whom, and also explore how lessons from simulation debriefing translate to debriefing in clinical practice.
Simulation software: engineer processes before reengineering.
Lepley, C J
2001-01-01
People make decisions all the time using intuition. But what happens when you are asked: "Are you sure your predictions are accurate? How much will a mistake cost? What are the risks associated with this change?" Once a new process is engineered, it is difficult to analyze what would have been different if other options had been chosen. Simulating a process can help senior clinical officers solve complex patient flow problems and avoid wasted efforts. Simulation software can give you the data you need to make decisions. The author introduces concepts, methodologies, and applications of computer aided simulation to illustrate their use in making decisions to improve workflow design.
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS
Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...
Semi-Automated Processing of Trajectory Simulator Output Files for Model Evaluation
2018-01-01
ARL-TR-8284 ● JAN 2018 US Army Research Laboratory Semi-Automated Processing of Trajectory Simulator Output Files for Model......Do not return it to the originator. ARL-TR-8284 ● JAN 2018 US Army Research Laboratory Semi-Automated Processing of Trajectory
Virtual tryout planning in automotive industry based on simulation metamodels
NASA Astrophysics Data System (ADS)
Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.
2016-11-01
Deep drawn sheet metal parts are increasingly designed to the feasibility limit, thus achieving a robust manufacturing is often challenging. The fluctuation of process and material properties often lead to robustness problems. Therefore, numerical simulations are used to detect the critical regions. To enhance the agreement with the real process conditions, the material data are acquired through a variety of experiments. Furthermore, the force distribution is taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, virtual process windows can be displayed for different configurations. This helps to improve the operating point as well as to adjust process settings in case the process becomes unstable. Furthermore, the time of tool tryout can be shortened due to transfer of the virtual knowledge contained in the metamodels on the optimisation of the drawbeads. This allows the tool manufacturer to focus on the essential, to save time and to recognize complex relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, D.; Yang, C.; Jordan, T.
2007-06-01
Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Although wafer-level camera lenses are a very promising technology, problems such as warpage with time and non-uniform thickness of products still exist. In this study, finite element simulation was performed to simulate the compression molding process for acquiring the pressure distribution on the product on completion of the process and predicting the deformation with respect to the pressure distribution. Results show that the single-gate compression molding process significantly increases the pressure at the center of the product, whereas the multi-gate compressing molding process can effectively distribute the pressure. This study evaluated the non-uniform thickness of product and changes in the process parameters through computer simulations, which could help to improve the compression molding process. PMID:28617315
Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tara E.; Newell, J. David; Woodham, Wesley H.
The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing wasmore » prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.« less
Numerical simulation and optimization of casting process for complex pump
NASA Astrophysics Data System (ADS)
Liu, Xueqin; Dong, Anping; Wang, Donghong; Lu, Yanling; Zhu, Guoliang
2017-09-01
The complex shape of the casting pump body has large complicated structure and uniform wall thickness, which easy give rise to casting defects. The numerical simulation software ProCAST is used to simulate the initial top gating process, after analysis of the material and structure characteristics of the high-pressure pump. The filling process was overall smooth, not there the water shortage phenomenon. But the circular shrinkage defects appear at the bottom of casting during solidification process. Then, the casting parameters were optimized and adding cold iron in the bottom. The shrinkage weight was reduced from 0.00167g to 0.0005g. The porosity volume was reduced from 1.39cm3 to 0.41cm3. The optimization scheme is simulated and actual experimented. The defect has been significantly improved.
Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2012-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Systems Engineering Simulator (SES) Simulator Planning Guide
NASA Technical Reports Server (NTRS)
McFarlane, Michael
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.
Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas
NASA Astrophysics Data System (ADS)
Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.
2015-11-01
Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.
Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results
NASA Astrophysics Data System (ADS)
Silverstein, Daniel W.; Jensen, Lasse
2012-02-01
A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.
NASA Technical Reports Server (NTRS)
Parrish, R. S.; Carter, M. C.
1974-01-01
This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
Compound simulator IR radiation characteristics test and calibration
NASA Astrophysics Data System (ADS)
Li, Yanhong; Zhang, Li; Li, Fan; Tian, Yi; Yang, Yang; Li, Zhuo; Shi, Rui
2015-10-01
The Hardware-in-the-loop simulation can establish the target/interference physical radiation and interception of product flight process in the testing room. In particular, the simulation of environment is more difficult for high radiation energy and complicated interference model. Here the development in IR scene generation produced by a fiber array imaging transducer with circumferential lamp spot sources is introduced. The IR simulation capability includes effective simulation of aircraft signatures and point-source IR countermeasures. Two point-sources as interference can move in two-dimension random directions. For simulation the process of interference release, the radiation and motion characteristic is tested. Through the zero calibration for optical axis of simulator, the radiation can be well projected to the product detector. The test and calibration results show the new type compound simulator can be used in the hardware-in-the-loop simulation trial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.; Mowrey, J.
1995-12-01
This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less
NASA Astrophysics Data System (ADS)
Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang
2010-11-01
This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lau, W.; Baker, R.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Wang, Y.; Lau, W.; Baker, R. D.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated with a coupled mesoscale atmospheric model (MM5) and a detailed land surface model. The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The simulation with the land surface model captured basic signatures of the monsoon onset processes and associated rainfall statistics. The sensitivity tests indicated that land surface processes had a greater impact on the simulated rainfall results than that of a small sea surface temperature change during the onset period. In both the 1997 and 1998 cases, the simulations were significantly improved by including the land surface processes. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation; the southwest low-level flow over the Indo-China peninsula and the northern cold front intrusion from southern China. The surface sensible and latent heat exchange between the land and atmosphere modified the low-level temperature distribution and gradient, and therefore the low-level. The more realistic forcing of the sensible and latent heat from the detailed land surface model improved the monsoon rainfall and associated wind simulation. The model results will be compared to the simulation of the 6-7 May 2000 Missouri flash flood event. In addition, the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation will be examined.
Development and training of a learning expert system in an autonomous mobile robot via simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; Lyness, E.; DeSaussure, G.
1989-11-01
The Center for Engineering Systems Advanced Research (CESAR) conducts basic research in the area of intelligent machines. Recently at CESAR a learning expert system was created to operate on board an autonomous robot working at a process control panel. The authors discuss two-computer simulation system used to create, evaluate and train this learning system. The simulation system has a graphics display of the current status of the process being simulated, and the same program which does the simulating also drives the actual control panel. Simulation results were validated on the actual robot. The speed and safety values of using amore » computerized simulator to train a learning computer, and future uses of the simulation system, are discussed.« less
Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.
Woźniak, Marcin; Połap, Dawid
2017-09-01
Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1994-09-01
The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less
A finite element simulation of biological conversion processes in landfills.
Robeck, M; Ricken, T; Widmann, R
2011-04-01
Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.
Visualizing human communication in business process simulations
NASA Astrophysics Data System (ADS)
Groehn, Matti; Jalkanen, Janne; Haho, Paeivi; Nieminen, Marko; Smeds, Riitta
1999-03-01
In this paper a description of business process simulation is given. Crucial part in the simulation of business processes is the analysis of social contacts between the participants. We will introduce a tool to collect log data and how this log data can be effectively analyzed using two different kind of methods: discussion flow charts and self-organizing maps. Discussion flow charts revealed the communication patterns and self-organizing maps are a very effective way of clustering the participants into development groups.
DEVELOPMENT AND USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOLS FOR POLLUTION PREVENTION
The use of Computer-Aided Process Engineering (CAPE) and process simulation tools has become established industry practice to predict simulation software, new opportunities are available for the creation of a wide range of ancillary tools that can be used from within multiple sim...
ERIC Educational Resources Information Center
Peng, Jacob; Abdullah, Ira
2018-01-01
The emphases of student involvement and meaningful engagement in the learner-centered education model have created a new paradigm in an effort to generate a more engaging learning environment. This study examines the success of using different simulation platforms in creating a market simulation to teach business processes in the accounting…
Artistic understanding as embodied simulation.
Gibbs, Raymond W
2013-04-01
Bullot & Reber (B&R) correctly include historical perspectives into the scientific study of art appreciation. But artistic understanding always emerges from embodied simulation processes that incorporate the ongoing dynamics of brains, bodies, and world interactions. There may not be separate modes of artistic understanding, but a continuum of processes that provide imaginative simulations of the artworks we see or hear.
Optimal segmentation and packaging process
Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.
1999-08-10
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.
Zuckerman, Daniel M; Chong, Lillian T
2017-05-22
The weighted ensemble (WE) methodology orchestrates quasi-independent parallel simulations run with intermittent communication that can enhance sampling of rare events such as protein conformational changes, folding, and binding. The WE strategy can achieve superlinear scaling-the unbiased estimation of key observables such as rate constants and equilibrium state populations to greater precision than would be possible with ordinary parallel simulation. WE software can be used to control any dynamics engine, such as standard molecular dynamics and cell-modeling packages. This article reviews the theoretical basis of WE and goes on to describe successful applications to a number of complex biological processes-protein conformational transitions, (un)binding, and assembly processes, as well as cell-scale processes in systems biology. We furthermore discuss the challenges that need to be overcome in the next phase of WE methodological development. Overall, the combined advances in WE methodology and software have enabled the simulation of long-timescale processes that would otherwise not be practical on typical computing resources using standard simulation.
Kumar, Sameer
2011-01-01
It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.
Manufacturing Process Simulation of Large-Scale Cryotanks
NASA Technical Reports Server (NTRS)
Babai, Majid; Phillips, Steven; Griffin, Brian
2003-01-01
NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing simulation support. This paper highlights the accomplishments of this task agreement, while also introducing the capabilities of simulation software.
Payload crew training complex simulation engineer's handbook
NASA Technical Reports Server (NTRS)
Shipman, D. L.
1984-01-01
The Simulation Engineer's Handbook is a guide for new engineers assigned to Experiment Simulation and a reference for engineers previously assigned. The experiment simulation process, development of experiment simulator requirements, development of experiment simulator hardware and software, and the verification of experiment simulators are discussed. The training required for experiment simulation is extensive and is only referenced in the handbook.
Simulant Basis for the Standard High Solids Vessel Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Reid A.; Fiskum, Sandra K.; Suffield, Sarah R.
The Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant and a non-Newtonian simulant be developed that would represent the Most Adverse Design Conditions (in development) with respect to mixing performance as specified by WTP. The majority of the simulant requirements are specified in 24590-PTF-RPT-PE-16-001, Rev. 0. The first step in this process is to develop the basis for these simulants. This document describes the basis for the properties of these two simulant types. Themore » simulant recipes that meet this basis will be provided in a subsequent document.« less
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
NASA Astrophysics Data System (ADS)
Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.
2017-01-01
The article describes the method for simulation of transient combustion processes in the rocket engine. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. Reactions mechanisms have been taken from several sources and verified. The method for converting ozone properties from the Shomate equation to the NASA-polynomial format was described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. Modeling difficulties with combustion model Finite Rate Chemistry, associated with a large scatter of reference data were identified and described. The way to generate the Flamelet library with CFX-RIF is described. Formulated adequate reaction mechanisms verified at a steady state have also been tested for transient simulation. The Flamelet combustion model was recognized as adequate for the transient mode. Integral parameters variation relates to the values obtained during stationary simulation. A cyclic irregularity of the temperature field, caused by precession of the vortex core, was detected in the chamber with the proposed simulation technique. Investigations of unsteady processes of rocket engines including the processes of ignition were proposed as the area for application of the described simulation technique.
A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2005-07-01
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
A Framework to Design and Optimize Chemical Flooding Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2006-08-31
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2004-11-01
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process
NASA Astrophysics Data System (ADS)
Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi
2011-08-01
High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.
Improving surgeon utilization in an orthopedic department using simulation modeling
Simwita, Yusta W; Helgheim, Berit I
2016-01-01
Purpose Worldwide more than two billion people lack appropriate access to surgical services due to mismatch between existing human resource and patient demands. Improving utilization of existing workforce capacity can reduce the existing gap between surgical demand and available workforce capacity. In this paper, the authors use discrete event simulation to explore the care process at an orthopedic department. Our main focus is improving utilization of surgeons while minimizing patient wait time. Methods The authors collaborated with orthopedic department personnel to map the current operations of orthopedic care process in order to identify factors that influence poor surgeons utilization and high patient waiting time. The authors used an observational approach to collect data. The developed model was validated by comparing the simulation output with the actual patient data that were collected from the studied orthopedic care process. The authors developed a proposal scenario to show how to improve surgeon utilization. Results The simulation results showed that if ancillary services could be performed before the start of clinic examination services, the orthopedic care process could be highly improved. That is, improved surgeon utilization and reduced patient waiting time. Simulation results demonstrate that with improved surgeon utilizations, up to 55% increase of future demand can be accommodated without patients reaching current waiting time at this clinic, thus, improving patient access to health care services. Conclusion This study shows how simulation modeling can be used to improve health care processes. This study was limited to a single care process; however the findings can be applied to improve other orthopedic care process with similar operational characteristics. PMID:29355193
Analysis of large-scale tablet coating: Modeling, simulation and experiments.
Boehling, P; Toschkoff, G; Knop, K; Kleinebudde, P; Just, S; Funke, A; Rehbaum, H; Khinast, J G
2016-07-30
This work concerns a tablet coating process in an industrial-scale drum coater. We set up a full-scale Design of Simulation Experiment (DoSE) using the Discrete Element Method (DEM) to investigate the influence of various process parameters (the spray rate, the number of nozzles, the rotation rate and the drum load) on the coefficient of inter-tablet coating variation (cv,inter). The coater was filled with up to 290kg of material, which is equivalent to 1,028,369 tablets. To mimic the tablet shape, the glued sphere approach was followed, and each modeled tablet consisted of eight spheres. We simulated the process via the eXtended Particle System (XPS), proving that it is possible to accurately simulate the tablet coating process on the industrial scale. The process time required to reach a uniform tablet coating was extrapolated based on the simulated data and was in good agreement with experimental results. The results are provided at various levels of details, from thorough investigation of the influence that the process parameters have on the cv,inter and the amount of tablets that visit the spray zone during the simulated 90s to the velocity in the spray zone and the spray and bed cycle time. It was found that increasing the number of nozzles and decreasing the spray rate had the highest influence on the cv,inter. Although increasing the drum load and the rotation rate increased the tablet velocity, it did not have a relevant influence on the cv,inter and the process time. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry
NASA Astrophysics Data System (ADS)
Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.
2018-04-01
The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.
Katsuo, Shigeharu; Langel, Christian; Sandré, Anne-Laure; Mazzotti, Marco
2011-12-30
One of the modified simulated moving bed (SMB) processes, the intermittent SMB (I-SMB) process, has been recently analyzed theoretically [1] and its superior performance compared to the conventional SMB process has been demonstrated at a rather low total feed concentration through experiments and simulations [2]. This work shows that the I-SMB process outperforms the conventional SMB process also at high feed concentration where the species are clearly subject to a nonlinear adsorption isotherm. In the case of the separation of the Tröger's base's enantiomers in ethanol on ChiralPak AD, the two processes operated in a six-column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration (one column in each section) are compared at high feed concentration through both experiments and simulations. Even under nonlinear conditions the four column I-SMB process can successfully separate the two enantiomers achieving purity levels as high as the two six column processes and exhibiting better productivity. Copyright © 2011 Elsevier B.V. All rights reserved.
The Kepler End-to-End Model: Creating High-Fidelity Simulations to Test Kepler Ground Processing
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.; Jenkins, Jon M.; Peters, Dan J.; Tenenbaum, Peter P.; Klaus, Todd C.; Gunter, Jay P.; Cote, Miles T.; Caldwell, Douglas A.
2010-01-01
The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing 100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include the rapid production of large amounts of simulated data, extensibility and maintainability.
Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R
2008-08-01
Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.
Sub-half-micron contact window design with 3D photolithography simulator
NASA Astrophysics Data System (ADS)
Brainerd, Steve K.; Bernard, Douglas A.; Rey, Juan C.; Li, Jiangwei; Granik, Yuri; Boksha, Victor V.
1997-07-01
In state of the art IC design and manufacturing certain lithography layers have unique requirements. Latitudes and tolerances that apply to contacts and polysilicon gates are tight for such critical layers. Industry experts are discussing the most cost effective ways to use feature- oriented equipment and materials already developed for these layers. Such requirements introduce new dimensions into the traditionally challenging task for the photolithography engineer when considering various combinations of multiple factors to optimize and control the process. In addition, he/she faces a rapidly increasing cost of experiments, limited time and scarce access to equipment to conduct them. All the reasons presented above support simulation as an ideal method to satisfy these demands. However lithography engineers may be easily dissatisfied with a simulation tool when discovering disagreement between the simulation and experimental data. The problem is that several parameters used in photolithography simulation are very process specific. Calibration, i.e. matching experimental and simulation data using a specific set of procedures allows one to effectively use the simulation tool. We present results of a simulation based approach to optimize photolithography processes for sub-0.5 micron contact windows. Our approach consists of: (1) 3D simulation to explore different lithographic options, (2) calibration to a range of process conditions with extensive use of specifically developed optimization techniques. The choice of a 3D simulator is essential because of 3D nature of the problem of contact window design. We use DEPICT 4.1. This program performs fast aerial image simulation as presented before. For 3D exposure the program uses an extension to three-dimensions of the high numerical aperture model combined with Fast Fourier Transforms for maximum performance and accuracy. We use Kim (U.C. Berkeley) model and the fast marching Level Set method respectively for the calculation of resist development rates and resist surface movement during development process. Calibration efforts were aimed at matching experimental results on contact windows obtained after exposure of a binary mask. Additionally, simulation was applied to conduct quantitative analysis of PSM design capabilities, optical proximity correction, and stepper parameter optimization. Extensive experiments covered exposure (ASML 5500/100D stepper), pre- and post-exposure bake and development (2.38% TMAH, puddle process) of JSR IX725D2G and TOK iP3500 photoresists films on 200 mm test wafers. `Aquatar' was used as top antireflective coating, SEM pictures of developed patterns were analyzed and compared with simulation results for different values of defocus, exposure energies, numerical aperture and partial coherence.
Development of Partial Discharging Simulation Test Equipment
NASA Astrophysics Data System (ADS)
Kai, Xue; Genghua, Liu; Yan, Jia; Ziqi, Chai; Jian, Lu
2017-12-01
In the case of partial discharge training for recruits who lack of on-site work experience, the risk of physical shock and damage of the test equipment may be due to the limited skill level and improper operation by new recruits. Partial discharge simulation tester is the use of simulation technology to achieve partial discharge test process simulation, relatively true reproduction of the local discharge process and results, so that the operator in the classroom will be able to get familiar with and understand the use of the test process and equipment.The teacher sets up the instrument to display different partial discharge waveforms so that the trainees can analyze the test results of different partial discharge types.
Physics-based interactive volume manipulation for sharing surgical process.
Nakao, Megumi; Minato, Kotaro
2010-05-01
This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.
Process Simulation of Gas Metal Arc Welding Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul E.
2005-09-06
ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios
NASA Astrophysics Data System (ADS)
Rao, Parthib; Schaefer, Laura
2017-11-01
Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.
Rapid Automated Aircraft Simulation Model Updating from Flight Data
NASA Technical Reports Server (NTRS)
Brian, Geoff; Morelli, Eugene A.
2011-01-01
Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.
Statistical error in simulations of Poisson processes: Example of diffusion in solids
NASA Astrophysics Data System (ADS)
Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.
2016-08-01
Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.
Real-Time Visualization of an HPF-based CFD Simulation
NASA Technical Reports Server (NTRS)
Kremenetsky, Mark; Vaziri, Arsi; Haimes, Robert; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
Current time-dependent CFD simulations produce very large multi-dimensional data sets at each time step. The visual analysis of computational results are traditionally performed by post processing the static data on graphics workstations. We present results from an alternate approach in which we analyze the simulation data in situ on each processing node at the time of simulation. The locally analyzed results, usually more economical and in a reduced form, are then combined and sent back for visualization on a graphics workstation.
Automated Classification of Phonological Errors in Aphasic Language
Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.
1984-01-01
Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.
Using Simulation for Launch Team Training and Evaluation
NASA Technical Reports Server (NTRS)
Peaden, Cary J.
2005-01-01
This document describes some of the histor y and uses of simulation systems and processes for the training and evaluation of Launch Processing, Mission Control, and Mission Management teams. It documents some of the types of simulations that are used at Kennedy Space Center (KSC) today and that could be utilized (and possibly enhanced) for future launch vehicles. This article is intended to provide an initial baseline for further research into simulation for launch team training in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, M.G.; Petrie, G.M.; Baldwin, A.J.
1982-06-01
This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactionsmore » of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.« less
DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R
The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less
Study on wet scavenging of atmospheric pollutants in south Brazil
NASA Astrophysics Data System (ADS)
Wiegand, Flavio; Pereira, Felipe Norte; Teixeira, Elba Calesso
2011-09-01
The present paper presents the study of in-cloud and below-cloud SO 2 and SO 42-scavenging processes by applying numerical models in the Candiota region, located in the state of Rio Grande do Sul, South Brazil. The BRAMS (Brazilian Regional Atmospheric Modeling System) model was applied to simulate the vertical structure of the clouds, and the B.V.2 (Below-Cloud Beheng Version 2) scavenging model was applied to simulate in-cloud and below-cloud scavenging processes of the pollutants SO 2 and SO 42-. Five events in 2004 were selected for this study and were sampled at the Candiota Airport station. The concentrations of SO 2 and SO 42- sampled in the air and the simulated meteorological parameters of rainfall episodes were used as input data in the B.V.2, which simulates raindrop interactions associated with the scavenging process. Results for the Candiota region showed that in-cloud scavenging processes were more significant than below-cloud scavenging processes for two of the five events studied, with a contribution of approximately 90-100% of SO 2 and SO 42- concentrations in rainwater. A few adjustments to the original version of B.V.2 were made to allow simulation of scavenging processes in several types of clouds, not only cumulus humilis and cumulus congestus.
Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J
2008-08-01
[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects of the energy deposition rate on the ejection mechanism. When the energy is deposited rapidly, not allowing for mechanical relaxation of the sample, the formation of a pressure wave and subsequent tensile wave dominates the ejection process. This study provides insight into the influence of thermal, chemical, and mechanical processes in PMMA and facilitates greater understanding of the complex nature of polymer ablation. These simulations complement experiments that have used chemical design to harness the photochemical properties of materials to enhance laser ablation. We successfully fit the results of the simulations to established analytical models of both photothermal and photochemical ablation and demonstrate their relevance. Although the simulations are for PMMA, the mechanistic concepts are applicable to a large range of systems and provide a conceptual foundation for interpretation of experimental data.
FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D.; Zamecnik, J.; Best, D.
Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah Rivermore » National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.« less
The Development of a 3D LADAR Simulator Based on a Fast Target Impulse Response Generation Approach
NASA Astrophysics Data System (ADS)
Al-Temeemy, Ali Adnan
2017-09-01
A new laser detection and ranging (LADAR) simulator has been developed, using MATLAB and its graphical user interface, to simulate direct detection time of flight LADAR systems, and to produce 3D simulated scanning images under a wide variety of conditions. This simulator models each stage from the laser source to data generation and can be considered as an efficient simulation tool to use when developing LADAR systems and their data processing algorithms. The novel approach proposed for this simulator is to generate the actual target impulse response. This approach is fast and able to deal with high scanning requirements without losing the fidelity that accompanies increments in speed. This leads to a more efficient LADAR simulator and opens up the possibility for simulating LADAR beam propagation more accurately by using a large number of laser footprint samples. The approach is to select only the parts of the target that lie in the laser beam angular field by mathematically deriving the required equations and calculating the target angular ranges. The performance of the new simulator has been evaluated under different scanning conditions, the results showing significant increments in processing speeds in comparison to conventional approaches, which are also used in this study as a point of comparison for the results. The results also show the simulator's ability to simulate phenomena related to the scanning process, for example, type of noise, scanning resolution and laser beam width.
The VIIRS Ocean Data Simulator Enhancements and Results
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2011-01-01
The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.
The VIIRS ocean data simulator enhancements and results
NASA Astrophysics Data System (ADS)
Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2011-10-01
The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.
Computer simulation of the NASA water vapor electrolysis reactor
NASA Technical Reports Server (NTRS)
Bloom, A. M.
1974-01-01
The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.
NASA Astrophysics Data System (ADS)
Ma, K.; Thomassey, S.; Zeng, X.
2017-10-01
In this paper we proposed a central order processing system under resource sharing strategy for demand-driven garment supply chains to increase supply chain performances. We examined this system by using simulation technology. Simulation results showed that significant improvement in various performance indicators was obtained in new collaborative model with proposed system.
USDA-ARS?s Scientific Manuscript database
Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...
Mathematical modeling of high-pH chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.; Lake, L.W.; Pope, G.A.
1990-05-01
This paper describes a generalized compositional reservoir simulator for high-pH chemical flooding processes. This simulator combines the reaction chemistry associated with these processes with the extensive physical- and flow-property modeling schemes of an existing micellar/polymer flood simulator, UTCHEM. Application of the model is illustrated for cases from a simple alkaline preflush to surfactant-enhanced alkaline-polymer flooding.
Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M
2015-05-01
In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of virtual simulation experiment based on key events
NASA Astrophysics Data System (ADS)
Zhong, Zheng; Zhou, Dongbo; Song, Lingxiu
2018-06-01
Considering complex content and lacking of guidance in virtual simulation experiments, the key event technology in VR narrative theory was introduced for virtual simulation experiment to enhance fidelity and vividness process. Based on the VR narrative technology, an event transition structure was designed to meet the need of experimental operation process, and an interactive event processing model was used to generate key events in interactive scene. The experiment of" margin value of bees foraging" based on Biologic morphology was taken as an example, many objects, behaviors and other contents were reorganized. The result shows that this method can enhance the user's experience and ensure experimental process complete and effectively.
NASA Astrophysics Data System (ADS)
Forouzan, Mehdi M.; Chao, Chien-Wei; Bustamante, Danilo; Mazzeo, Brian A.; Wheeler, Dean R.
2016-04-01
The fabrication process of Li-ion battery electrodes plays a prominent role in the microstructure and corresponding cell performance. Here, a mesoscale particle dynamics simulation is developed to relate the manufacturing process of a cathode containing Toda NCM-523 active material to physical and structural properties of the dried film. Particle interactions are simulated with shifted-force Lennard-Jones and granular Hertzian functions. LAMMPS, a freely available particle simulator, is used to generate particle trajectories and resulting predicted properties. To make simulations of the full film thickness feasible, the carbon binder domain (CBD) is approximated with μm-scale particles, each representing about 1000 carbon black particles and associated binder. Metrics for model parameterization and validation are measured experimentally and include the following: slurry viscosity, elasticity of the dried film, shrinkage ratio during drying, volume fraction of phases, slurry and dried film densities, and microstructure cross sections. Simulation results are in substantial agreement with experiment, showing that the simulations reasonably reproduce the relevant physics of particle arrangement during fabrication.
NASA Astrophysics Data System (ADS)
Lindstrom, Erik Vilhelm Mathias
Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit operations, utilizing high sulfidity green liquor pretreatment, PSAQ with auto-causticization, or converting the process to mini-sulfide sulfite-AQ.
A Process for the Creation of T-MATS Propulsion System Models from NPSS data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo
2016-12-13
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo
2016-01-01
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298
Experimental Simulations to Understand the Lunar and Martian Surficial Processes
NASA Astrophysics Data System (ADS)
Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.
2016-12-01
In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.
State of the evidence on simulation-based training for laparoscopic surgery: a systematic review.
Zendejas, Benjamin; Brydges, Ryan; Hamstra, Stanley J; Cook, David A
2013-04-01
Summarize the outcomes and best practices of simulation training for laparoscopic surgery. Simulation-based training for laparoscopic surgery has become a mainstay of surgical training. Much new evidence has accrued since previous reviews were published. We systematically searched the literature through May 2011 for studies evaluating simulation, in comparison with no intervention or an alternate training activity, for training health professionals in laparoscopic surgery. Outcomes were classified as satisfaction, skills (in a test setting) of time (to perform the task), process (eg, performance rating), product (eg, knot strength), and behaviors when caring for patients. We used random effects to pool effect sizes. From 10,903 articles screened, we identified 219 eligible studies enrolling 7138 trainees, including 91 (42%) randomized trials. For comparisons with no intervention (n = 151 studies), pooled effect size (ES) favored simulation for outcomes of knowledge (1.18; N = 9 studies), skills time (1.13; N = 89), skills process (1.23; N = 114), skills product (1.09; N = 7), behavior time (1.15; N = 7), behavior process (1.22; N = 15), and patient effects (1.28; N = 1), all P < 0.05. When compared with nonsimulation instruction (n = 3 studies), results significantly favored simulation for outcomes of skills time (ES, 0.75) and skills process (ES, 0.54). Comparisons between different simulation interventions (n = 79 studies) clarified best practices. For example, in comparison with virtual reality, box trainers have similar effects for process skills outcomes and seem to be superior for outcomes of satisfaction and skills time. Simulation-based laparoscopic surgery training of health professionals has large benefits when compared with no intervention and is moderately more effective than nonsimulation instruction.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigley, H.M.
1982-01-01
An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less
Watershed Simulation of Nutrient Processes
In this presentation, nitrogen processes simulated in watershed models were reviewed and compared. Furthermore, current researches on nitrogen losses from agricultural fields were also reviewed. Finally, applications with those models were reviewed and selected successful and u...
Simulative design and process optimization of the two-stage stretch-blow molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-22
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less
Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory
NASA Technical Reports Server (NTRS)
Rice, Brian P.; Lee, C. William; Curliss, David B.
2003-01-01
Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.
Simulative design and process optimization of the two-stage stretch-blow molding process
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-01
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.
Development of an alkaline/surfactant/polymer compositional reservoir simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.
1989-01-01
The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less
A Multiagent Modeling Environment for Simulating Work Practice in Organizations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron
2004-01-01
In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to represent the relations of people, locations, systems, artifacts, communication and information content.
Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading
NASA Astrophysics Data System (ADS)
Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun
2017-06-01
Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.
Flight Dynamic Simulation of Fighter In the Asymmetric External Store Release Process
NASA Astrophysics Data System (ADS)
Safi’i, Imam; Arifianto, Ony; Nurohman, Chandra
2018-04-01
In the fighter design, it is important to evaluate and analyze the flight dynamic of the aircraft earlier in the development process. One of the case is the dynamics of external store release process. A simulation tool can be used to analyze the fighter/external store system’s dynamics in the preliminary design stage. This paper reports the flight dynamics of Jet Fighter Experiment (JF-1 E) in asymmetric Advance Medium Range Air to Air Missile (AMRAAM) release process through simulations. The JF-1 E and AIM 120 AMRAAAM models are built by using Advanced Aircraft Analysis (AAA) and Missile Datcom software. By using these softwares, the aerodynamic stability and control derivatives can be obtained and used to model the dynamic characteristic of the fighter and the external store. The dynamic system is modeled by using MATLAB/Simulink software. By using this software, both the fighter/external store integration and the external store release process is simulated, and the dynamic of the system can be analyzed.
Software Framework for Advanced Power Plant Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Widmann; Sorin Munteanu; Aseem Jain
2010-08-01
This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. Thesemore » include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.« less
An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.
2003-01-01
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.
In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway
NASA Astrophysics Data System (ADS)
Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun
2016-12-01
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.
Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo
2015-02-01
This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
FACE-IT. A Science Gateway for Food Security Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montella, Raffaele; Kelly, David; Xiong, Wei
Progress in sustainability science is hindered by challenges in creating and managing complex data acquisition, processing, simulation, post-processing, and intercomparison pipelines. To address these challenges, we developed the Framework to Advance Climate, Economic, and Impact Investigations with Information Technology (FACE-IT) for crop and climate impact assessments. This integrated data processing and simulation framework enables data ingest from geospatial archives; data regridding, aggregation, and other processing prior to simulation; large-scale climate impact simulations with agricultural and other models, leveraging high-performance and cloud computing; and post-processing to produce aggregated yields and ensemble variables needed for statistics, for model intercomparison, and to connectmore » biophysical models to global and regional economic models. FACE-IT leverages the capabilities of the Globus Galaxies platform to enable the capture of workflows and outputs in well-defined, reusable, and comparable forms. We describe FACE-IT and applications within the Agricultural Model Intercomparison and Improvement Project and the Center for Robust Decision-making on Climate and Energy Policy.« less
ERIC Educational Resources Information Center
Kaup, Barbara; Ludtke, Jana; Maienborn, Claudia
2010-01-01
In two experiments using the action-sentence-compatibility paradigm we investigated the simulation processes that readers undertake when processing state descriptions with adjectives (e.g., "Die Schublade ist offen/zu". ["The drawer is open/shut"]) or adjectival passives (e.g., "Die Schublade ist…
Taplay, Karyn; Jack, Susan M; Baxter, Pamela; Eva, Kevin; Martin, Lynn
2015-01-01
The aim of this study is to explain the process of adopting and incorporating simulation as a teaching strategy in undergraduate nursing programs, define uptake, and discuss potential outcomes. In many countries, simulation is increasingly adopted as a common teaching strategy. However, there is a dearth of knowledge related to the process of adoption and incorporation. We used an interpretive, constructivist approach to grounded theory to guide this research study. We conducted the study was in Ontario, Canada, during 2011-2012. Using multiple data sources, we informed the development of this theory including in-depth interviews (n = 43) and a review of key organizational documents, such as mission and vision statements (n = 67) from multiple nursing programs (n = 13). The adoption and uptake of mid- to high-fidelity simulation equipment is a multistep iterative process involving various organizational levels within the institution that entails a seven-phase process: (a) securing resources, (b) nursing leaders working in tandem, (c) getting it out of the box, (d) learning about simulation and its potential for teaching, (e) finding a fit, (f) trialing the equipment, and (g) integrating into the curriculum. These findings could assist nursing programs in Canada and internationally that wish to adopt or further incorporate simulation into their curricula and highlight potential organizational and program level outcomes. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-03-01
Coating of solid dosage forms is an important unit operation in the pharmaceutical industry. In recent years, numerical simulations of drug manufacturing processes have been gaining interest as process analytical technology tools. The discrete element method (DEM) in particular is suitable to model tablet-coating processes. For the development of accurate simulations, information on the material properties of the tablets is required. In this study, the mechanical parameters Young's modulus, coefficient of restitution (CoR), and coefficients of friction (CoF) of gastrointestinal therapeutic systems (GITS) and of active-coated GITS were measured experimentally. The dynamic angle of repose of these tablets in a drum coater was investigated to revise the CoF. The resulting values were used as input data in DEM simulations to compare simulation and experiment. A mean value of Young's modulus of 31.9 MPa was determined by the uniaxial compression test. The CoR was found to be 0.78. For both tablet-steel and tablet-tablet friction, active-coated GITS showed a higher CoF compared with GITS. According to the values of the dynamic angle of repose, the CoF was adjusted to obtain consistent tablet motion in the simulation and in the experiment. On the basis of this experimental characterization, mechanical parameters are integrated into DEM simulation programs to perform numerical analysis of coating processes.
Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site
Essaid, Hedeff I.; Bekins, Barbara A.; Godsy, E. Michael; Warren, Ean; Baedecker, Mary Jo; Cozzarelli, Isabelle M.
1995-01-01
A two-dimensional, multispecies reactive solute transport model with sequential aerobic and anaerobic degradation processes was developed and tested. The model was used to study the field-scale solute transport and degradation processes at the Bemidji, Minnesota, crude oil spill site. The simulations included the biodegradation of volatile and nonvolatile fractions of dissolved organic carbon by aerobic processes, manganese and iron reduction, and methanogenesis. Model parameter estimates were constrained by published Monod kinetic parameters, theoretical yield estimates, and field biomass measurements. Despite the considerable uncertainty in the model parameter estimates, results of simulations reproduced the general features of the observed groundwater plume and the measured bacterial concentrations. In the simulation, 46% of the total dissolved organic carbon (TDOC) introduced into the aquifer was degraded. Aerobic degradation accounted for 40% of the TDOC degraded. Anaerobic processes accounted for the remaining 60% of degradation of TDOC: 5% by Mn reduction, 19% by Fe reduction, and 36% by methanogenesis. Thus anaerobic processes account for more than half of the removal of DOC at this site.
Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material
NASA Astrophysics Data System (ADS)
Seo, Hee; Lee, Chaehun; Oh, Jong-Myeong; An, Su Jung; Ahn, Seong-Kyu; Park, Se-Hwan; Ku, Jeong-Hoe
2016-10-01
One of the options for spent-fuel management in Korea is pyroprocessing whose main process flow is the head-end process followed by oxide reduction, electrorefining, and electrowining. In the present study, a well-type passive neutron coincidence counter, namely, the ACP (Advanced spent fuel Conditioning Process) safeguards neutron counter (ASNC), was redesigned for safeguards of a hot-cell facility related to the oxide reduction process. To this end, first, the isotopic composition, gamma/neutron emission yield and energy spectrum of the feed material ( i.e., the UO2 porous pellet) were calculated using the OrigenARP code. Then, the proper thickness of the gammaray shield was determined, both by irradiation testing at a standard dosimetry laboratory and by MCNP6 simulations using the parameters obtained from the OrigenARP calculation. Finally, the neutron coincidence counter's calibration curve for 100- to 1000-g porous pellets, in consideration of the process batch size, was determined through simulations. Based on these simulation results, the neutron counter currently is under construction. In the near future, it will be installed in a hot cell and tested with spent fuel materials.
GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.
Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu
2010-12-01
In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators. Copyright © 2010 John Wiley & Sons, Ltd.
Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes
NASA Astrophysics Data System (ADS)
Cropper, A. E.; Wang, Z.
1995-08-01
Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.
A general software reliability process simulation technique
NASA Technical Reports Server (NTRS)
Tausworthe, Robert C.
1991-01-01
The structure and rationale of the generalized software reliability process, together with the design and implementation of a computer program that simulates this process are described. Given assumed parameters of a particular project, the users of this program are able to generate simulated status timelines of work products, numbers of injected anomalies, and the progress of testing, fault isolation, repair, validation, and retest. Such timelines are useful in comparison with actual timeline data, for validating the project input parameters, and for providing data for researchers in reliability prediction modeling.
Model-Based Verification and Validation of the SMAP Uplink Processes
NASA Technical Reports Server (NTRS)
Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun
2013-01-01
This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
Computer Based Simulation of Laboratory Experiments.
ERIC Educational Resources Information Center
Edward, Norrie S.
1997-01-01
Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…
Teaching Process Simulation in Eleven Easy Lessons Using Excel and Its Tools
NASA Astrophysics Data System (ADS)
Morris, Arthur E.
The primary market driver for improving process technology is innovation, which requires a skilled and educated workforce. However, many Materials Science and Engineering departments have eliminated extractive metallurgy and chemical thermodynamics from their curricula, yet these topics contain the necessary fundamentals for process innovation. As a result, most MS&E students are ill-prepared for careers in processing. The dearth of process-oriented MS&E curricula has prompted some Universities to develop a "shared" effort to offer distance education between multiple institutions [1]. A target audience for a shared process simulation course would not only benefit students, but also be a basis for an on-line course for practicing engineers faced with new or changing career choices. To fill the gap, the basics of a process simulation course was developed in an abbreviated form as series of eleven articles and Excel workbooks published in Industrial Heating magazine between July 2012 and July 2013.
Modeling the Gas Nitriding Process of Low Alloy Steels
NASA Astrophysics Data System (ADS)
Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.
2013-07-01
The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.
Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations
NASA Astrophysics Data System (ADS)
Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.
2014-01-01
The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.
Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model
NASA Astrophysics Data System (ADS)
Wen, Y.; Chen, Z. H.; Zang, Y.
2013-11-01
In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Profumieri, A.; Bonell, C.; Catalfamo, P.; Cherniz, A.
2016-04-01
Virtual reality has been proposed for different applications, including the evaluation of new control strategies and training protocols for upper limb prostheses and for the study of new rehabilitation programs. In this study, a lower limb simulation environment commanded by surface electromyography signals is evaluated. The time delays generated by the acquisition and processing stages for the signals that would command the knee joint, were measured and different acquisition windows were analysed. The subjective perception of the quality of simulation was also evaluated when extra delays were added to the process. The results showed that the acquisition window is responsible for the longest delay. Also, the basic implemented processes allowed for the acquisition of three signal channels for commanding the simulation. Finally, the communication between different applications is arguably efficient, although it depends on the amount of data to be sent.
NASA Astrophysics Data System (ADS)
Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng
2017-04-01
Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.
Design of a high-speed digital processing element for parallel simulation
NASA Technical Reports Server (NTRS)
Milner, E. J.; Cwynar, D. S.
1983-01-01
A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.
Characterization and Evaluation of Lunar Regolith and Simulants
NASA Technical Reports Server (NTRS)
Cross, William M.; Murphy, Gloria A.
2010-01-01
A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
Simulation of mass storage systems operating in a large data processing facility
NASA Technical Reports Server (NTRS)
Holmes, R.
1972-01-01
A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.
Robert M. Scheller; James B. Domingo; Brian R. Sturtevant; Jeremy S. Williams; Arnold Rudy; Eric J. Gustafson; David J. Mladenoff
2007-01-01
We introduce LANDIS-II, a landscape model designed to simulate forest succession and disturbances. LANDIS-II builds upon and preserves the functionality of previous LANDIS forest landscape simulation models. LANDIS-II is distinguished by the inclusion of variable time steps for different ecological processes; our use of a rigorous development and testing process used...
Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd
2016-03-01
The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.
NASA Astrophysics Data System (ADS)
Xie, Z.; Zou, J.; Qin, P.; Sun, Q.
2014-12-01
In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing.
A cascading failure analysis tool for post processing TRANSCARE simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is a MATLAB-based tool to post process simulation results in the EPRI software TRANSCARE, for massive cascading failure analysis following severe disturbances. There are a few key modules available in this tool, including: 1. automatically creating a contingency list to run TRANSCARE simulations, including substation outages above a certain kV threshold, N-k (1, 2 or 3) generator outages and branche outages; 2. read in and analyze a CKO file of PCG definition, an initiating event list, and a CDN file; 3. post process all the simulation results saved in a CDN file and perform critical event corridor analysis; 4.more » provide a summary of TRANSCARE simulations; 5. Identify the most frequently occurring event corridors in the system; and 6. Rank the contingencies using a user defined security index to quantify consequences in terms of total load loss, total number of cascades, etc.« less
CPAS Preflight Drop Test Analysis Process
NASA Technical Reports Server (NTRS)
Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.
2015-01-01
Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques; Collins, Timothy
2014-10-01
A design process is presented for the nonlocal thermal transport iSNB (implicit Schurtz, Nicolai, and Busquet) model to provide reliable nonlocal thermal transport in polar-drive ICF simulations. Results from the iSNB model are known to be sensitive to changes in the SNB ``mean free path'' formula, and the latter's original form required modification to obtain realistic preheat levels. In the presented design process, SNB mean free paths are first modified until the model can match temperatures from Goncharov's thermal transport model in 1D temperature relaxation simulations. Afterwards the same mean free paths are tested in a 1D polar-drive surrogate simulation to match adiabats from Goncharov's model. After passing the two previous steps, the model can then be run in a full 2D polar-drive simulation. This research is supported by the University of Rochester Laboratory for Laser Energetics.
NASA Astrophysics Data System (ADS)
Yang, Yuansheng; Zhao, Fuze; Feng, Xiaohui
2017-10-01
The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.
Simulation of Mechanical Behavior of Agglutinates
NASA Technical Reports Server (NTRS)
Nakagawa, Masami; Moon, Tae-Hyun
2005-01-01
Due to lack of "real" lunar soil or even lunar simulant, it is difficult to characterize the interaction between lunar soil (or simulant) with different surfaces that are involved in excavation and processing machinery. One unique feature possessed by lunar soil is the agglutinates produced by repeated high-speed micrometeoroid impacts and subsequent pulverization[l and 2]. The large particles are impacted by micrometeoroids [Fig.l] and pulverized to produce finer particles. This process continues until there are no more "large" particles left on the surface of the moon. Due to high impact speed, the impact melting process fuses fines to make agglutinates such as shown in Fig. 2. We will present a series of simulation results and movies will be shown to indicate brittle behavior of each individual agglutinate and also similar compressibility charts shown by Carrier et al. [3]. Fig. 3 shows our preliminary result of the simulated oedometer tests.
Keane, R E; Ryan, K C; Running, S W
1996-03-01
A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.
NASA Astrophysics Data System (ADS)
Hieu, Nguyen Huu
2017-09-01
Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.
Simulating complex intracellular processes using object-oriented computational modelling.
Johnson, Colin G; Goldman, Jacki P; Gullick, William J
2004-11-01
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.
Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide
NASA Technical Reports Server (NTRS)
Khayat, Michael A.
2011-01-01
The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.