Science.gov

Sample records for igf-1 induced human

  1. IGF1 induces cell proliferation in human pituitary tumors - functional blockade of IGF1 receptor as a novel therapeutic approach in non-functioning tumors.

    PubMed

    Rubinfeld, Hadara; Kammer, Adi; Cohen, Ortal; Gorshtein, Alexander; Cohen, Zvi R; Hadani, Moshe; Werner, Haim; Shimon, Ilan

    2014-06-01

    Insulin-like growth factor (IGF1) and its receptor display potent proliferative and antiapoptotic activities and are considered key players in malignancy. The objective of the study was to explore the role of IGF1 and its downstream pathways in the proliferation of non-functioning pituitary tumor cells and to develop a targeted therapeutic approach for the treatment of these tumors. Cultures of human non-functioning pituitary adenomas and the non-secreting immortalized rat pituitary tumor cell line MtT/E were incubated with IGF1, IGF1 receptor inhibitor or both, and cell viability, proliferation and signaling were examined. Our results show that IGF1 elevated cell proliferation and enhanced cell cycle progression as well as the expression of cyclins D1 and D3. IGF1 also induced the phosphorylation of ERK, Akt and p70S6K. On the other hand, the selective IGF1R inhibitor NVP-AEW541 abrogated IGF1-induced cell proliferation as well as IGF1 receptor phosphorylation and downstream signaling.

  2. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways

    SciTech Connect

    Mu, Shumin; Tian, Xingsong; Ruan, Yongwei; Liu, Yuantao; Bian, Dezhi; Ma, Chunyan; Yu, Chunxiao; Feng, Mei; Wang, Furong; Gao, Ling; Zhao, Jia-jun

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. Black-Right-Pointing-Pointer Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. Black-Right-Pointing-Pointer Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.

  3. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide.

    PubMed

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J; Margison, Geoffrey P; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R; Macaulay, Valentine M

    2015-11-24

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  4. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  5. Expression and regulation of INTELECTIN1 in human granulosa-lutein cells: role in IGF-1-induced steroidogenesis through NAMPT.

    PubMed

    Cloix, Lucie; Reverchon, Maxime; Cornuau, Marion; Froment, Pascal; Ramé, Christelle; Costa, Caroline; Froment, Gisèle; Lecomte, Pierre; Chen, Wenyong; Royère, Dominique; Guerif, Fabrice; Dupont, Joëlle

    2014-08-01

    INTELECTIN (ITLN) is an adipokine involved in the regulation of insulin sensitivity and inflammatory and immunity responses. Serum ITLN levels are lower in obese, diabetic, and polycystic ovary syndrome (PCOS) women than in control subjects. ITLN has never been studied in ovarian cells. Here, we identified ITLN1 in human ovarian follicles and investigated the molecular mechanisms involved in the regulation of its expression in response to the insulin sensitizers metformin and rosiglitazone, in human granulosa-lutein cells (hGLCs) and in a human ovarian granulosa-like tumor cell line (KGN). We also studied the effects of human recombinant ITLN1 (hRom1) on steroid production and on the activation of various signaling pathways. Using RT-PCR, immunoblotting, and immunohistochemistry, we found that INTL1 is present in human follicular cells. Using ELISA, we showed that INTL levels are similar in plasma and follicular fluid (FF) in control patients, whereas they are higher in FF than in plasma in PCOS patients. In KGN cells and hGLCs, insulin (10(-8) M), insulin-like growth factor-1 (IGF-1; 10(-8) M), and metformin (10(-2) M or 10(-3) M) increased INTL1 expression (mRNA and protein) after 12 and 24 h of stimulation. For metformin, this effect was mediated by adenosine monophosphate-activated kinase (PRKA). Furthermore, hRom1 increased nicotinamide phosphoribosyltransferase (NAMPT) expression in KGN and hGLCs. We also showed that hRom1 increased IGF-1-induced progesterone and estradiol secretion and this was associated with an increase in the STAR and CYP19A1 protein levels and an increase in IGF-1R signaling. Furthermore, all these data were abolished when NAMPT was knocked down in KGN cells, suggesting that INTL1 improves IGF-1-induced steroidogenesis through induction of NAMPT in hGLCs. PMID:24943040

  6. IGF1-induced AKT phosphorylation and cell proliferation are suppressed with the increase in PTEN during luteinization in human granulosa cells.

    PubMed

    Goto, Maki; Iwase, Akira; Harata, Toko; Takigawa, Sachiko; Suzuki, Kyosuke; Manabe, Shuichi; Kikkawa, Fumitaka

    2009-05-01

    Granulosa cells proliferate and then undergo differentiation; an inverse relationship between these processes is observed during terminal follicular growth. During terminal follicular growth and initial luteinization, there is a necessary transition of granulosa cells to a less proliferative and highly steroidogenic form in response to LH. Although the expression of several molecules has been reported to be up-regulated by LH, proliferation/differentiation transition is not fully understood. Here, we show that the expression of a tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was induced with human chorionic gonadotropin (hCG) treatment in human luteinized granulosa cells. Pretreatment with hCG attenuated insulin-like growth factor (IGF)-1-induced phosphorylation of AKT and cell proliferation, not phosphorylation of ERK1/2. Moreover, suppression of hCG-induced PTEN expression with siRNA increased AKT phosphorylation and cell proliferation in response to IGF1. We also demonstrate that a PI3K inhibitor, LY294002, not a MEK inhibitor, PD98059, inhibited IGF1-induced cell proliferation. In conclusion, PTEN induced to express by hCG in luteinized granulosa cells that inactivates AKT, not ERK, and attenuates IGF1-induced cell proliferation. PTEN expression may be a trigger for proliferation/differentiation transition in human granulosa cells.

  7. Intranasal Human Growth Hormone (hGH) Induces IGF-1 Levels Comparable With Subcutaneous Injection With Lower Systemic Exposure to hGH in Healthy Volunteers

    PubMed Central

    Lewis, Andrew L.; Patel, Tina; Jeffery, Kirk; King, Gareth; Savage, Martin; Shalet, Stephen; Illum, Lisbeth

    2015-01-01

    Context: The development of an improved, efficacious human GH (hGH) product administered by a noninjectable route of delivery such as the nasal route is highly desirable. We have developed a novel nasal hGH product (CP024) that showed excellent nasal absorption in animal models; however, the translation of these results into the clinical setting is essential because past attempts to develop such formulations by other groups have been unable to induce IGF-1 in man. Objective: The objective of the study was to assess the pharmacokinetics, pharmacodynamics, and tolerability of CP024 compared with a sc hGH injection. Design: This was a single-center, nonrandomized placebo-controlled, open-label, five-way crossover study in eight healthy volunteers. Setting: The study was carried out at a contract research organization, Quotient Bioresearch. Volunteers: Eight healthy male volunteers, given an iv infusion of octreotide to suppress the endogenous GH secretion during the study period, participated in the study. No volunteers were withdrawn due to side effects. Main Outcome Measures: Measurement of hGH and IGF-1 levels and tolerability of the drug product was performed. Results: No serious adverse events were reported and no subjects withdrawn from study due to the treatment. After the nasal administration of CP024, 3-fold higher hGH blood levels were obtained as compared with hGH nasal control. The relative bioavailability was about 3%. CP024 (given twice daily) induced a significant increase in IGF-1 levels up to 19 hours after administration, with no significant difference to those obtained after the sc injection of hGH. Conclusions: The study indicates that CP024 is a promising candidate for an efficacious nasal product for the treatment of GH deficiency due to induction of IGF-1 similar to that after a sc injection, despite the lower plasma hGH concentration obtained. A dose-response study is needed to evaluate the optimal nasal dose. PMID:26425883

  8. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway

    PubMed Central

    Kong, Ya-li; Shen, Yang; Ni, Jun; Shao, De-cui; Miao, Nai-jun; Xu, Jin-lan; Zhou, Li; Xue, Hong; Zhang, Wei; Wang, Xiao-xia; Lu, Li-min

    2016-01-01

    Aim: Diabetic nephropathy is one of the major complications of diabetes and the major cause of end-stage renal disease. In this study we investigated the insulin deficiency (ID) induced changes in renal mesangial cells (MCs) and in the kidney of STZ-induced diabetic rats. Methods: Cultured rat renal MCs were incubated in ID media. Cell proliferation was analyzed using BrdU incorporation assay. The expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), phosphorylated IGF-1R, fibronectin, and collagen IV was determined with Western blot analysis. STZ-induced diabetic rats were treated with an IGF-1R antagonist picropodophyllin (PPP, 20 mg·kg−1·d−1, po) for 8 weeks. After the rats were euthanized, plasma and kidneys were collected. IGF-1 levels in renal cortex were measured with RT-PCR or ELISA. The morphological changes in the kidneys were also examined. Results: Incubation in ID media significantly increased cell proliferation, the synthesis of fibronectin and collagen IV, and the expression of IGF-1 and IGF-1R and phosphorylated IGF-1R in renal MCs. Pretreatment of the cells with PPP (50 nmol/L) blocked ID-induced increases in cell proliferation and the synthesis of fibronectin and collagen IV; knockdown of IGF-1R showed a similar effect as PPP did. In contrast, treatment of the cells with IGF-1 (50 ng/mL) exacerbated ID-induced increases in cell proliferation. In the kidneys of diabetic rats, the expression of IGF-1, IGF-1R and phosphorylated IGF-1R were significantly elevated. Treatment of diabetic rats with PPP did not lower the blood glucose levels, but significantly suppressed the expression of TGF-β, fibronectin and collagen IV in the kidneys, the plasma levels of urinary nitrogen and creatinine, and the urinary protein excretion. Conclusion: Insulin deficiency increases the expression of IGF-1 and IGF-1R in renal MCs and the kidney of diabetic rats, which contributes to the development of diabetic nephropathy. PMID

  9. Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and Plasmodium falciparum resistance in Anopheles stephensi

    PubMed Central

    Drexler, Anna L.; Pietri, Jose E.; Pakpour, Nazzy; Hauck, Eric; Wang, Bo; Glennon, Elizabeth K. K.; Georgis, Martha; Riehle, Michael A.; Luckhart, Shirley

    2014-01-01

    Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013–0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases. PMID:24968248

  10. Selective Disruption of Insulin-like Growth Factor-1 (IGF-1) Signaling via Phosphoinositide-dependent Kinase-1 Prevents the Protective Effect of IGF-1 on Human Cancer Cell Death*

    PubMed Central

    Alberobello, A. Teresa; D'Esposito, Vittoria; Marasco, Daniela; Doti, Nunzianna; Ruvo, Menotti; Bianco, Roberto; Tortora, Giampaolo; Esposito, Iolanda; Fiory, Francesca; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2010-01-01

    Insulin-like growth factor-1 (IGF-1) signaling system exerts a broad antiapoptotic function and plays a crucial role in resistance to anticancer therapies. Exposure of MCF-7 breast cancer cells to IGF-1 rapidly and transiently induced tyrosine phosphorylation and activation of phosphoinositide-dependent kinase-1 (PDK1). This was paralleled by Akt/protein kinase B and protein kinase C-ζ phosphorylation, at Thr308 and Thr410, respectively. IGF-1 treatment also enhanced PDK1 interaction with IGF-1 receptor (IGF-1R) in intact MCF-7 cells. Pulldown assays revealed that PDK1 bound IGF-1R in vitro and that the region encompassing amino acids 51–359 of PDK1 was necessary for the interaction. Synthetic peptides corresponding to IGF-1R C terminus amino acids 1295–1337 (C43) and to PDK1 amino acids 114–141 reduced in vitro IGF-1R/PDK1 interaction in a concentration-dependent manner. Loading of fluoresceinated-C43 (fluorescein isothiocyanate (FITC)-C43) into MCF-7 cells significantly reduced IGF-1R/PDK1 interaction and phosphorylation of PDK1 substrates. Moreover, FITC-C43 intracellular loading reverted the protective effect of IGF-1 on growth factor deprivation-induced cell death. Finally, the inhibition of IGF-1R/PDK1 interaction and signaling by FITC-C43 was accompanied by 2-fold enhanced killing capacity of cetuximab in human GEO colon adenocarcinoma cells and was sufficient to restore cell death in cetuximab-resistant cell clones. Thus, disruption of PDK1 interaction with IGF-1R reduces IGF-1 survival effects in cancer cells and may enhance cell death by anticancer agents. PMID:20044479

  11. Differential organ phenotypes after postnatal Igf1r gene conditional deletion induced by tamoxifen in UBC-CreERT2; Igf1r fl/fl double transgenic mice.

    PubMed

    López, Icíar Paula; Rodriguez-de la Rosa, Lourdes; Pais, Rosete Sofia; Piñeiro-Hermida, Sergio; Torrens, Raquel; Contreras, Julio; Varela-Nieto, Isabel; Pichel, José García

    2015-04-01

    Insulin-like growth factor type 1 receptor (IGF1R) is a ubiquitously expressed tyrosine kinase that regulates cell proliferation, differentiation and survival. It controls body growth and organ homeostasis, but with specific functions depending on developmental time and cell type. Human deficiency in IGF1R is involved in growth failure, microcephaly, mental retardation and deafness, and its overactivation is implicated in oncogenesis. Igf1r-deficient mice die at birth due to growth retardation and respiratory failure. Although multiple Igf1r tissue-specific mutant lines have been analyzed postnatally, using Igf1r-floxed (Igf1r (fl/fl) ) mice mated with diverse cell-type recombinase Cre-expressing transgenics, no mouse models for the study of generalized Igf1r deficiency in adults have been reported. To this end we generated UBC-CreERT2; Igf1r (fl/fl) transgenic mice with an inducible deletion of Igf1r activated by tamoxifen. Tamoxifen administration to 4 week-old prepuberal male mice delayed their growth, producing a distinct impact on organ size 4 weeks later. Whereas testes were smaller, spleen and heart showed an increased organ to body weight ratio. Mosaic Igf1r genomic deletions caused a significant reduction in Igf1r mRNA in all organs analyzed, resulting in diverse phenotypes. While kidneys, spleen and cochlea had unaltered gross morphology, testes revealed halted spermatogenesis, and liver and alveolar lung parenchyma showed increased cell proliferation rates without affecting apoptosis. We demonstrate that UBC-CreERT2 transgenic mice efficiently delete Igf1r upon postnatal tamoxifen treatment in multiple mouse organs, and corroborate that IGF1R function is highly dependent on cell, tissue and organ type.

  12. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells.

    PubMed

    Reverchon, Maxime; Rame, Christelle; Bunel, Audrey; Chen, Wenyong; Froment, Pascal; Dupont, Joëlle

    2016-03-01

    VISFATIN is a novel adipokine, also known as a nicotinamide phosphorybosyltransferase (NAMPT), that is able to modulate different processes, including lipid and glucose metabolism, oxidative stress, inflammation, and insulin resistance. Recent data suggest that it also plays a role in reproductive function in rats, humans, and chickens. Here we identified VISFATIN in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and proliferation and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found VISFATIN in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, we showed that IGF1 (10(-8) M) and VISFATIN (10 and 100 ng/ml) but not FSH (10(-8) M) increased mRNA expression levels of NAMPT after 48 h of stimulation. Moreover, we observed that human recombinant VISFATIN (hVisf, 10 ng/ml, 48 h) increased the release of progesterone and estradiol secretion, and this was associated with an increase in the protein level of STAR, the HSD3B activity, and the phosphorylation levels of IGF1R and MAPK ERK1/2 in the presence or absence of IGF1 (10(-8) M). All these effects were abolished when NAMPT was knocked down and when the sirtuin pharmacological inhibitors CHIC-35 (60 nM) and EX-527 (0.5 μM) were preincubated in bovine granulosa cells. Thus, in cultured bovine granulosa cells, VISFATIN improves basal and IGF1-induced steroidogenesis and IGF1 receptor signaling through SIRT1. PMID:26792944

  13. Chondrocyte IGF-1 receptor expression and responsiveness to IGF-1 stimulation in mouse articular cartilage during various phases of experimentally induced arthritis.

    PubMed Central

    Verschure, P J; van Marle, J; Joosten, L A; van den Berg, W B

    1995-01-01

    OBJECTIVE--To examine the distribution of insulin like growth factor-1 (IGF-1) receptors and the biological response to IGF-1 stimulation in articular cartilage of normal mouse knee joints and arthritic joints taken at various stages of experimentally induced arthritis. METHODS--In situ IGF-1 receptor expression and responsiveness to IGF-1 stimulation were examined in murine articular cartilage at different phases in two models of experimentally induced arthritis. IGF-1 receptor expression was visualised in joint sections with the use of anti-IGF-1 receptor antibodies and quantified by confocal laser scanning microscopy. Chondrocyte proteoglycan (PG) synthesis was measured by incorporation of 35S-sulphate. RESULTS--In control cartilage, the majority of IGF-1 receptors were found on chondrocytes localised in the middle and deeper zones of the cartilage, whereas receptor expression in surface zone chondrocytes was very low. During culture of normal articular cartilage, IGF-1 was able to maintain chondrocyte PG synthesis at the in vivo level. Concurrently with the development of arthritis, cartilage lost its capacity to react to IGF-1, but IGF-1 stimulation recovered when the inflammatory response waned. Shortly after induction of arthritis, IGF-1 receptor expression initially declined, but it had returned to normal levels by day 1 and remained increased thereafter. CONCLUSION--The distribution of IGF-1 receptor expression in the different zones of normal articular cartilage reflects IGF-1 stimulation and metabolic activity of chondrocytes in these layers. This correlation is disturbed in arthritic cartilage, suggesting inadequate or overruled signalling. Images PMID:7677441

  14. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy

    PubMed Central

    Troncoso, Rodrigo; Vicencio, Jose Miguel; Parra, Valentina; Nemchenko, Andriy; Kawashima, Yuki; del Campo, Andrea; Toro, Barbra; Battiprolu, Pavan K.; Aranguiz, Pablo; Chiong, Mario; Yakar, Shoshana; Gillette, Thomas G.; Hill, Joseph A.; Abel, Evan Dale; LeRoith, Derek; Lavandero, Sergio

    2012-01-01

    Aims Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection. Methods and results We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca2+ uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70S6K phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo. Conclusion Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues. PMID:22135164

  15. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    SciTech Connect

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  16. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling.

    PubMed

    Muñoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Díaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal alpha-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression. PMID:19654000

  17. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    PubMed

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.

  18. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation.

    PubMed

    Yang, Qiwei; Sun, Miranda; Ramchandran, Ramaswamy; Raj, J Usha

    2015-10-01

    Pulmonary hypertension is a fatal disease characterized by a progressive increase in pulmonary artery pressure accompanied by pulmonary vascular remodeling and increased vasomotor tone. Although some biological pathways have been identified in neonatal hypoxia-induced pulmonary hypertension (PH), little is known regarding the role of growth factors in the pathogenesis of PH in neonates. In this study, using a model of hypoxia-induced PH in neonatal mice, we demonstrate that the growth factor insulin-like growth factor-1 (IGF-1), a potent activator of the AKT signaling pathway, is involved in neonatal PH. After exposure to hypoxia, IGF-1 signaling is activated in pulmonary endothelial and smooth muscle cells in vitro, and the IGF-1 downstream signal pAKT(S473) is upregulated in lungs of neonatal mice. We found that IGF-1 regulates ET-1 expression in pulmonary endothelial cells and that IGF-1 expression is regulated by histone deacetylases (HDACs). In addition, there is a differential cytosine methylation site in the IGF-1 promoter region in response to neonatal hypoxia. Moreover, inhibition of HDACs with apicidin decreases neonatal hypoxia-induced global DNA methylation levels in lungs and specific cytosine methylation levels around the pulmonary IGF-1 promoter region. Finally, HDAC inhibition with apicidin reduces chronic hypoxia-induced activation of IGF-1/pAKT signaling in lungs and attenuates right ventricular hypertrophy and pulmonary vascular remodeling. Taken together, we conclude that IGF-1, which is epigenetically regulated, is involved in the pathogenesis of pulmonary hypertension in neonatal mice. This study implicates a novel HDAC/IGF-1 epigenetic pathway in the regulation of hypoxia-induced PH and warrants further study of the role of IGF-1 in neonatal pulmonary hypertensive disease. PMID:25921925

  19. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    PubMed

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. PMID:24243530

  20. Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells.

    PubMed

    Dhar, Kakali; Banerjee, Snigdha; Dhar, Gopal; Sengupta, Krishanu; Banerjee, Sushanta K

    2007-02-15

    Previously, we have shown that the expression of Wnt-1-induced signaling protein-2 (WISP-2), also known as CCN5, can be regulated by multiple stimulants in estrogen receptor (ER)-positive breast tumor cells to exert their mitogenic action in these cells. Here, we show that insulin-like growth factor-1 (IGF-1), a strong mitogen, enhanced the expression of the WISP-2/CCN5 gene parallel with the induction of proliferation of ER-positive breast tumor cells. An additive effect was also seen in combination with estrogen. Perturbation of IGF-1-induced WISP-2/CCN5 expression by WISP-2-specific RNA interference impaired the mitogenic action of IGF-1 on ER-positive breast tumor cells. Furthermore, the studies have shown that the multiple molecular cross-talks and side-talks among IGF-1R, ER-alpha, and phosphatidylinositol 3-kinase (PI3K)/Akt signaling molecules are required to induce WISP-2/CCN5 mRNA by IGF-1 in ER-positive, noninvasive breast tumor cells. Because a pure anti-ER ICI 182,780 is not only able to suppress the up-regulation of WISP-2/CCN5 mRNA expression by IGF-1, it also suppresses the PI3K/Akt activity induced by IGF-1 in MCF-7 cells; we anticipate that the membrane ER receptor may participate in this event. Collectively, these studies propose for the first time that WISP-2/CCN5 is an integral signaling molecule in mitogenic action of IGF-1 axis in ER-positive human breast tumor cells.

  1. Thyroid hormone receptor and IGF1/IGFR systems: possible relations in the human heart.

    PubMed

    Sabatino, Laura; Gliozheni, Enri; Molinaro, Sabrina; Bonotti, Alessandra; Azzolina, Sienne; Popoff, Georges; Carpi, Angelo; Iervasi, Giorgio

    2007-09-01

    Thyroid hormone (TH) and insulin growth factor 1 (IGF1) systems both play crucial roles in the regulation of cardiac remodeling and hypertrophy processes. The mediation of this regulation is attributed to specific thyroid hormone receptors (TRs) and to the IGF1 receptor (IGF1R). In humans, two TR genes are expressed in the heart, TRalpha and TRbeta. Each gene generates two isoforms: TRalpha1, TRalpha2 and TRbeta1, TRbeta2. The aim of the present work was to study the local thyroid hormone and IGF1 signaling in human myocardium through the evaluation of the gene expression of TRalpha1, TRalpha2, TRbeta1 and IGF1R among atrial and ventricular biopsies obtained from patients undergoing cardiac surgery. Moreover, we evaluated possible correlations between TR and IGF1/IGF1R systems. Eighteen clinically and biochemically euthyroid patients (aged 68.3+/-3.2years, mean+/-SEM) without overt heart failure (Ejection Fraction (EF), 46.4+/-2.8%; Left Ventricular End Diastolic Diameter (LVEDD), 54.3+/-1.2mm, mean+/-SEM; NYHA I-II) were enrolled in the study: 13 undergoing aorto-coronary bypass and 5 undergoing valve replacement (aortic/mitral valve). The examination of total RNA, using real time PCR (LightCycler Technology) confirmed the expression of specific mRNAs encoding TRalpha1, TRalpha2, TRbeta1 and both IGF1 and IGF1R. We found that the three TR genes are co-expressed in the human atrium and ventricle. The finding of a strong correlation among IGF1R and the three TR genes expressed in the atrium (p<0.001) and among the three TRs in the atrium (p<0.001) suggests the interesting possibility that the two systems, TRs and IGF1R could also be functionally associated. PMID:17560756

  2. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN.

    PubMed

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions (O2∙-) in mitochondria, either by chemical inhibition of complex I or by genetic silencing of O2∙--dismutating mitochondrial Sod2. The O2∙--dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced O2∙- led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated O2∙--induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with O2∙-, PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  3. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops.

    PubMed

    Ma, Yang; Han, Chen-Chen; Li, Yifan; Wang, Yang; Wei, Wei

    2016-09-16

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. PMID:27521890

  4. IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor cyclolignan PPP inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines

    PubMed Central

    Duan, Zhenfeng; Choy, Edwin; Harmon, David; Yang, Cao; Ryu, Keinosuke; Schwab, Joseph; Mankin, Henry; Hornicek, Francis J.

    2009-01-01

    Insulin-like growth factor-1 receptor (IGF-1R) is an important mediator of tumor-cell survival and demonstrates prognostic significance in sarcoma. To explore potential therapeutic strategies for interrupting signaling through this pathway, we assessed the ability of cyclolignan picropodophyllin (PPP), a member of the cyclolignan family, to selectively inhibit the receptor tyrosine kinase (RTK) activity of IGF-1R in several sarcoma cell line model systems. Of the diverse sarcoma subtypes studied, osteosarcoma cell lines were found to be particularly sensitive to IGF-1R inhibition, including several multidrug resistant osteosarcoma cell lines with documented resistance to various conventional anticancer drugs. PPP shows relatively little toxicity in human osteoblast cell lines when compared to osteosarcoma cell lines. These studies demonstrate that PPP significantly inhibits IGF-1R expression and activation in both chemotherapy sensitive and resistant osteosarcoma cell lines. This inhibition of the IGF1-R pathway correlates with suppression of proliferation of osteosarcoma cell lines and with apoptosis induction as measured by monitoring PARP and its cleavage product and by quantitative measurement of apoptosis-associated CK18Asp396. Importantly, PPP increases the cytotoxic effects of doxorubicin in doxorubicin-resistant osteosarcoma cell lines U-2OSMR and KHOSMR. Furthermore, siRNA down-regulation of IGF-1R expression in drug resistant cell lines also caused re-sensitization to doxorubicin. Our data suggests that inhibition of IGF-1R with PPP offers a novel and selective therapeutic strategy for ostosarcoma, and at the same time, PPP is effective at reversing the drug-resistance phenotype in osteosarcoma cell lines. PMID:19638450

  5. Single-cell analysis reveals IGF-1 potentiation of inhibition of the TGF-β/Smad pathway of fibrosis in human keratocytes in vitro

    PubMed Central

    Sarenac, Tomislav; Trapecar, Martin; Gradisnik, Lidija; Rupnik, Marjan Slak; Pahor, Dusica

    2016-01-01

    Corneal wound healing is often affected by TGF-β–mediated fibrosis and scar formation. Guided fibrosis with IGF-1 and antifibrotic substances might maintain corneal transparency. Primary human corneal keratocytes under serum-free conditions were used as a model of corneal stromal wounding, with markers of corneal fibrosis and opacity studied under TGF-β2 stimulation. Single-cell imaging flow cytometry was used to determine nuclearization of Smad3, and intracellular fluorescence intensity of Smad7 and the corneal crystallin aldehyde dehydrogenase 3A1. Extracellular matrix proteoglycans keratocan and biglycan were quantified using ELISAs. On the TGF-β2 background, the keratocytes were treated with IGF-1, and suberoylanilidehydroxamic acid (SAHA) or halofuginone ± IGF-1. IGF-1 alone decreased Smad3 nuclearization and increased aldehyde dehydrogenase 3A1 expression, with favorable extracellular matrix proteoglycan composition. SAHA induced higher Smad7 levels and inhibited translocation of Smad3 to the nucleus, also when combined with IGF-1. Immunofluorescence showed that myofibroblast transdifferentiation is attenuated and appearance of fibroblasts is favored by IGF-1 alone and in combination with the antifibrotic substances. The TGF-β/Smad pathway of fibrosis and opacity was inhibited by IGF-1, and further with SAHA in particular, and with halofuginone. IGF-1 is thus a valid aid to antifibrotic treatment, with potential for effective and transparent corneal wound healing. PMID:27687492

  6. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.

    PubMed

    Mardinly, A R; Spiegel, I; Patrizi, A; Centofante, E; Bazinet, J E; Tzeng, C P; Mandel-Brehm, C; Harmin, D A; Adesnik, H; Fagiolini, M; Greenberg, M E

    2016-03-17

    Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons.

  7. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis

    PubMed Central

    Mahran, Yasmen F.; El-Demerdash, Ebtehal; Nada, Ahmed S.; El-Naga, Reem N.; Ali, Azza A.; Abdel-Naim, Ashraf B.

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis. PMID:26465611

  8. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis.

    PubMed

    Mahran, Yasmen F; El-Demerdash, Ebtehal; Nada, Ahmed S; El-Naga, Reem N; Ali, Azza A; Abdel-Naim, Ashraf B

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.

  9. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  10. IGF-1R contributes to stress-induced hepatocellular damage in experimental cholestasis.

    PubMed

    Cadoret, Axelle; Rey, Colette; Wendum, Dominique; Elriz, Khaldoun; Tronche, François; Holzenberger, Martin; Housset, Chantal

    2009-08-01

    The insulin-like growth factor type 1 receptor (IGF-1R) controls aging and cellular stress, both of which play major roles in liver disease. Stimulation of insulin-like growth factor signaling can generate cell death in vitro. Here, we tested whether IGF-1R contributes to stress insult in the liver. Cholestatic liver injury was induced by bile duct ligation in control and liver-specific IGF-1R knockout (LIGFREKO) mice. LIGFREKO mice displayed less bile duct ligation-induced hepatocyte damage than controls, while no differences in bile acid serum levels or better adaptation to cholestasis by efflux transporters were found. We therefore tested whether stress pathways contributed to this phenomenon; oxidative stress, ascertained by both malondialdehyde content and heme oxygenase-1 expression, was similar in knockout and control animals. However, together with a lower level of eukaryotic initiation factor-2 alpha phosphorylation, the endoplasmic reticulum stress protein CHOP and its downstream pro-apoptotic target Bax were induced to lesser extents in LIGFREKO mice than in controls. Expression levels of cytokeratin 19, transforming growth factor-beta1, alpha-smooth muscle actin, and collagen alpha1(I) in LIGFREKO mice were all lower than in controls, indicating reduced ductular and fibrogenic responses and increased cholestasis tolerance in these mutants. This stress resistance phenotype was also evidenced by longer post-bile duct ligation survival in mutants than controls. These results indicate that IGF-1R contributes to cholestatic liver injury, and suggests the involvement of both CHOP and Bax in this process. PMID:19628767

  11. Human insulin/IGF-1 and familial longevity at middle age

    PubMed Central

    Rozing, Maarten P.; Westendorp, Rudi G.J.; Frölich, Marijke; de Craen, Anton J.M.; Beekman, Marian; Heijmans, Bastiaan T.; Mooijaart, Simon P.; Blauw, Gerard-Jan; Slagboom, P. Eline; van Heemst, Diana; Group, on behalf of the Leiden Longevity Study (LLS)

    2009-01-01

    Recently, we have shown that compared to controls, long-lived familial nonagenarians (mean age: 93.4 years) from the Leiden Longevity Study displayed a lower mortality rate, and their middle-aged offspring displayed a lower prevalence of cardio-metabolic diseases, including diabetes mellitus. The evolutionarily conserved insulin/IGF-1 signaling (IIS) pathway has been implicated in longevity in model organisms, but its relevance for human longevity has generated much controversy. Here, we show that compared to their partners, the offspring of familial nonagenarians displayed similar non-fasted serum levels of IGF-1, IGFBP3 and insulin but lower non-fasted serum levels of glucose, indicating that familial longevity is associated with differences in insulin sensitivity. PMID:20157552

  12. ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents.

    PubMed

    Mancarella, Caterina; Casanova-Salas, Irene; Calatrava, Ana; Ventura, Selena; Garofalo, Cecilia; Rubio-Briones, José; Magistroni, Vera; Manara, Maria Cristina; López-Guerrero, José Antonio; Scotlandi, Katia

    2015-06-30

    Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors.IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation.IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells.Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E.

  13. ERG deregulation induces IGF-1R expression in prostate cancer cells and affects sensitivity to anti-IGF-1R agents

    PubMed Central

    Mancarella, Caterina; Casanova-Salas, Irene; Calatrava, Ana; Ventura, Selena; Garofalo, Cecilia; Rubio-Briones, José; Magistroni, Vera; Manara, Maria Cristina; López-Guerrero, José Antonio; Scotlandi, Katia

    2015-01-01

    Identifying patients who may benefit from targeted therapy is an urgent clinical issue in prostate cancer (PCa). We investigated the molecular relationship between TMPRSS2-ERG (T2E) fusion gene and insulin-like growth factor receptor (IGF-1R) to optimize the use of IGF-1R inhibitors. IGF-1R was analyzed in cell lines and in radical prostatectomy specimens in relation to T2E status. ERG binding to IGF-1R promoter was evaluated by chromatin immunoprecipitation (ChIP). Sensitivity to anti-IGF-1R agents was evaluated alone or in combination with anti-androgen abiraterone acetate in vitro at basal levels or upon ERG modulation. IGF-1R analysis performed in PCa cells or clinical samples showed that T2E expression correlated with higher IGF-1R expression at mRNA and protein levels. Genetic modulation of ERG directly affected IGF-1R protein levels in vitro. ChIP analysis showed that ERG binds IGF-1R promoter and that promoter occupancy is higher in T2E-positive cells. IGF-1R inhibition was more effective in cell lines expressing the fusion gene and combination of IGF-1R inhibitors with abiraterone acetate produced synergistic effects in T2E-expressing cells. Here, we provide the rationale for use of T2E fusion gene to select PCa patients for anti-IGF-1R treatments. The combination of anti-IGF-1R-HAbs with an anti-androgen therapy is strongly advocated for patients expressing T2E. PMID:25906745

  14. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

    NASA Technical Reports Server (NTRS)

    Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.

    1999-01-01

    Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

  15. Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: A new potential therapy for the treatment of melanoma

    SciTech Connect

    Karasic, Thomas B.; Hei, Tom K.; Ivanov, Vladimir N.

    2010-07-15

    Resistance of cancer cells to apoptosis is dependent on a balance of multiple genetic and epigenetic mechanisms, which up-regulate efficacy of the surviving growth factor-receptor signaling pathways and suppress death-receptor signaling pathways. The Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling pathway is highly active in metastatic melanoma cells by mediating downstream activation of PI3K-AKT and MAPK pathways and controlling general cell survival and proliferation. In the present study, we used human melanoma lines with established genotypes that represented different phases of cancer development: radial-growth-phase WM35, vertical-growth-phase WM793, metastatic LU1205 and WM9 [1]. All these lines have normal NRAS. WM35, WM793, LU1205 and WM9 cells have mutated BRAF (V600E). WM35 and WM9 cells express normal PTEN, while in WM793 cells PTEN expression is down-regulated; finally, in LU1205 cells PTEN is inactivated by mutation. Cyclolignan picropodophyllin (PPP), a specific inhibitor of IGF-1R kinase activity, strongly down-regulated the basal levels of AKT activity in WM9 and in WM793 cells, modestly does so in LU1205, but has no effect on AKT activity in the early stage WM35 cells that are deficient in IGF-1R. In addition, PPP partially down-regulated the basal levels of active ERK1/2 in all lines used, highlighting the role of an alternative, non-BRAF pathway in MAPK activation. The final result of PPP treatment was an induction of apoptosis in WM793, WM9 and LU1205 melanoma cells. On the other hand, dose-dependent inhibition of IGF-1R kinase activity by PPP at a relatively narrow dose range (near 500 nM) has different effects on melanoma cells versus normal cells, inducing apoptosis in cancer cells and G2/M arrest of fibroblasts. To further enhance the pro-apoptotic effects of PPP on melanoma cells, we used a combined treatment of TNF-Related Apoptosis-Inducing Ligand (TRAIL) and PPP. This combination substantially increased death by apoptosis for

  16. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation.

    PubMed

    Kido, Kohei; Ato, Satoru; Yokokawa, Takumi; Makanae, Yuhei; Sato, Koji; Fujita, Satoshi

    2016-08-01

    Acute aerobic exercise (AE) is a major physiological stimulus for skeletal muscle glucose uptake through activation of 5' AMP-activated protein kinase (AMPK). However, the regulation of glucose uptake by acute resistance exercise (RE) remains unclear. To investigate the intracellular regulation of glucose uptake after acute RE versus acute AE, male Sprague-Dawley rats were divided into three groups: RE, AE, or nonexercise control. After fasting for 12 h overnight, the right gastrocnemius muscle in the RE group was exercised at maximum isometric contraction via percutaneous electrical stimulation (3 × 10 sec, 5 sets). The AE group ran on a treadmill (25 m/min, 60 min). Muscle samples were taken 0, 1, and 3 h after completion of the exercises. AMPK, Ca(2+)/calmodulin-dependent protein kinase II, and TBC1D1 phosphorylation were increased immediately after both forms of exercise and returned to baseline levels by 3 h. Muscle IGF1 expression was increased by RE but not AE, and maintained until 3 h after RE Additionally, Akt and AS160 phosphorylation were sustained for 3 h after RE, whereas they returned to baseline levels by 3 h after AE Similarly, GLUT4 translocation remained elevated 3 h after RE, although it returned to the baseline level by 3 h after AE Overall, this study showed that AMPK/TBC1D1 and IGF1/Akt/AS160 signaling were enhanced by acute RE, and that GLUT4 translocation after acute RE was more prolonged than after acute AE These results suggest that acute RE-induced increases in intramuscular IGF1 expression might be a distinct regulator of GLUT4 translocation. PMID:27550988

  17. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  18. Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds

    PubMed Central

    Pasold, Juliane; Zander, Kathleen; Heskamp, Benjamin; Grüttner, Cordula; Lüthen, Frank; Tischer, Thomas; Jonitz-Heincke, Anika; Bader, Rainer

    2015-01-01

    Purpose In the present study, silica nanoparticles (sNP) coupled with insulin-like growth factor 1 (IGF-1) were loaded on a collagen-based scaffold intended for cartilage repair, and the influence on the viability, proliferation, and differentiation potential of human primary articular chondrocytes was examined. Methods Human chondrocytes were isolated from the hyaline cartilage of patients (n=4, female, mean age: 73±5.1 years) undergoing primary total knee joint replacement. Cells were dedifferentiated and then cultivated on a bioresorbable collagen matrix supplemented with fluorescent sNP coupled with IGF-1 (sNP–IGF-1). After 3, 7, and 14 days of cultivation, cell viability and integrity into the collagen scaffold as well as metabolic cell activity and synthesis rate of matrix proteins (collagen type I and II) were analyzed. Results The number of vital cells increased over 14 days of cultivation, and the cells were able to infiltrate the collagen matrix (up to 120 μm by day 7). Chondrocytes cultured on the collagen scaffold supplemented with sNP–IGF-1 showed an increase in metabolic activity (5.98-fold), and reduced collagen type I (1.58-fold), but significantly increased collagen type II expression levels (1.53-fold; P=0.02) after 7 days of cultivation compared to 3 days. In contrast, chondrocytes grown in a monolayer on plastic supplemented with sNP-IGF-1 had significantly lower metabolic activity (1.32-fold; P=0.007), a consistent amount of collagen type I, and significantly reduced collagen type II protein expression (1.86-fold; P=0.001) after 7 days compared to 3 days. Conclusion Collagen-based scaffolds enriched with growth factors, such as IGF-1 coupled to nanoparticles, represent an improved therapeutic intervention for the targeted and controlled treatment of articular cartilage lesions. PMID:25709437

  19. Metformin restores crizotinib sensitivity in crizotinib-resistant human lung cancer cells through inhibition of IGF1-R signaling pathway

    PubMed Central

    Zhang, Kejun; Lin, Caiyu; Han, Rui; Lu, Conghua; He, Yong

    2016-01-01

    Aim Despite the impressive efficacy of crizotinib for the treatment of ALK-positive non-small cell lung cancer, patients invariably develop therapeutic resistance. Suppression of the IGF-1R signaling pathway may abrogate this acquired mechanism of drug resistance to crizotinib. Metformin, a widely used antidiabetic agent, may reverse crizotinib resistance through inhibition of IGF-1R signaling. Results The present study revealed that metformin effectively increased the sensitivity of both crizotinib-sensitive and -resistant non-small cell lung cancer cells to crizotinib, as evidenced by decreased proliferation and invasion and enhanced apoptosis. Metformin reduced IGF-1R signaling activation in crizotinib-resistant cells. Furthermore, the addition of IGF-1 to crizotinib-sensitive H2228 cells induced crizotinib resistance, which was overcome by metformin. Experimental design The effects of metformin to reverse crizotinib resistance were examined in vitro by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), invasion assay, ki67 incorporation assay, flow cytometry analysis, Western blot analysis, and colony-forming assay. Conclusions Metformin may be used in combination with crizotinib in ALK+ NSCLC patients to overcome crizotinib resistance and prolong survival. PMID:27144340

  20. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.

  1. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling. PMID:25827910

  2. Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats.

    PubMed

    Johansson, Jenny; Grönbladh, Alfhild; Hallberg, Mathias

    2014-08-01

    In recent years, the abuse of the club drug gamma-hydroxybutyrate (GHB) has become increasingly popular among adolescents. The drug induces euphoria but can also result in sedation, anaesthesia as well as short-term amnesia. In addition, the abuse of GHB causes cognitive impairments and the mechanism by which GHB induces these impairments is not clarified. The present study investigates the impact of GHB treatment on spatial learning and memory using a water maze (WM) test in rats. Furthermore, the behavioural data is combined with an autoradiographic analysis of the GABAB and the IGF-1 receptor systems. The results demonstrate that the animals administered with GHB display an impaired performance in the WM test as compared to controls. In addition, significant alterations in GABAB and IGF-1 receptor density as well as GABAB receptor functionality, were observed in several brain regions associated with cognitive functions e.g. hippocampus. To conclude, our findings suggest that GHB treatment can affect spatial learning and memory, and that this outcome at least to some extent is likely to involve both GABAB and IGF-1 receptors.

  3. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-10-01

    One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.

  4. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes.

    PubMed

    Sundgren, Nathan C; Giraud, George D; Schultz, Jess M; Lasarev, Michael R; Stork, Philip J S; Thornburg, Kent L

    2003-12-01

    Growth of the fetal heart involves cardiomyocyte enlargement, division, and maturation. Insulin-like growth factor-1 (IGF-1) is implicated in many aspects of growth and is likely to be important in developmental heart growth. IGF-1 stimulates the IGF-1 receptor (IGF1R) and downstream signaling pathways, including extracellular signal-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K). We hypothesized that IGF-1 stimulates cardiomyocyte proliferation and enlargement through stimulation of the ERK cascade and stimulates cardiomyocyte differentiation through the PI3K cascade. In vivo administration of Long R3 IGF-1 (LR3 IGF-1) did not stimulate cardiomyocyte hypertrophy but led to a decreased percentage of cells that were binucleated in vivo. In culture, LR3 IGF-1 increased myocyte bromodeoxyuridine (BrdU) uptake by three- to five-fold. The blockade of either ERK or PI3K signaling (by UO-126 or LY-294002, respectively) completely abolished BrdU uptake stimulated by LR3 IGF-1. LR3 IGF-1 did not increase footprint area, but as expected, phenylephrine stimulated an increase in binucleated cardiomyocyte size. We conclude that 1) IGF-1 through IGF1R stimulates cardiomyocyte division in vivo; hyperplastic growth is the most likely explanation of IGF-1 stimulated heart growth in vivo; 2) IGF-1 through IGF1R does not stimulate binucleation in vitro or in vivo; 3) IGF-1 through IGF1R does not stimulate hypertrophy either in vivo or in vitro; and 4) IGF-1 through IGF1R requires both ERK and PI3K signaling for proliferation of near-term fetal sheep cardiomyocytes in vitro. PMID:12947030

  5. Angelica Sinensis Polysaccharides Stimulated UDP-Sugar Synthase Genes through Promoting Gene Expression of IGF-1 and IGF1R in Chondrocytes: Promoting Anti-Osteoarthritic Activity

    PubMed Central

    Wen, Yinxian; Li, Jing; Tan, Yang; Qin, Jun; Xie, Xianfei; Wang, Linlong; Mei, Qibing; Wang, Hui; Magdalou, Jacques; Chen, Liaobin

    2014-01-01

    Background Osteoarthritis (OA) is a chronic joints disease characterized by progressive degeneration of articular cartilage due to the loss of cartilage matrix. Previously, we found, for the first time, that an acidic glycan from Angelica Sinensis Polysaccharides (APSs), namely the APS-3c, could protect rat cartilage from OA due to promoting glycosaminoglycan (GAG) synthesis in chondrocytes. In the present work, we tried to further the understanding of ASP-3c’s anti-OA activity. Methodology/Principal Findings Human primary chondrocytes were treated with APS-3c or/and recombinant human interleukin 1β (IL-1β). It turned out that APS-3c promoted synthesis of UDP-xylose and GAG, as well as the gene expression of UDP-sugar synthases (USSs), insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R), and attenuated the degenerative phenotypes, suppressed biosynthesis of UDP-sugars and GAG, and inhibited the gene expression of USSs, IGF1 and IGF1R induced by IL-1β. Then, we induced a rat OA model with papain, and found that APS-3c also stimulated GAG synthesis and gene expression of USSs, IGF1 and IGF1R in vivo. Additionally, recombinant human IGF1 and IGF1R inhibitor NP-AEW541 were applied to figure out the correlation between stimulated gene expression of USSs, IGF1 and IGF1R induced by APS-3c. It tuned out that the promoted GAG synthesis and USSs gene expression induced by APS-3c was mediated by the stimulated IGF1 and IGF1R gene expression, but not through directly activation of IGF1R signaling pathway. Conclusions/Significances We demonstrated for the first time that APS-3c presented anti-OA activity through stimulating IGF-1 and IGF1R gene expression, but not directly activating the IGF1R signaling pathway, which consequently promoted UDP-sugars and GAG synthesis due to up-regulating gene expression of USSs. Our findings presented a better understanding of APS-3c’s anti-OA activity and suggested that APS-3c could potentially be a novel therapeutic agent

  6. Possible involvement of IGF-1 signaling on compensatory growth of the infraspinatus muscle induced by the supraspinatus tendon detachment of rat shoulder.

    PubMed

    Ichinose, Tsuyoshi; Lesmana, Ronny; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Takatsuru, Yusuke; Iwasaki, Toshiharu; Shimokawa, Noriaki; Takagishi, Kenji; Koibuchi, Noriyuki

    2014-01-01

    A rotator cuff tear (RCT) is a common musculoskeletal disorder among elderly people. RCT is often treated conservatively for functional compensation by the remaining muscles. However, the mode of such compensation after RCT has not yet been fully understood. Here, we used the RCT rat model to investigate the compensatory process in the remaining muscles. The involvement of insulin-like growth factor 1 (IGF-1)/Akt signaling which potentially contributes to the muscle growth was also examined. The RCT made by transecting the supraspinatus (SSP) tendon resulted in atrophy of the SSP muscle. The remaining infraspinatus (ISP) muscle weight increased rapidly after a transient decrease (3 days), which could be induced by posttraumatic immobilization. The IGF-1 mRNA levels increased transiently at 7 days followed by a gradual increase thereafter in the ISP muscle, and those of IGF-1 receptor mRNA significantly increased after 3 days. IGF-1 protein levels biphasically increased (3 and 14 days), then gradually decreased thereafter. The IGF-1 protein levels tended to show a negative correlation with IGF-1 mRNA levels. These levels also showed a negative correlation with the ISP muscle weight, indicating that the increase in IGF-1 secretion may contribute to the ISP muscle growth. The pAkt/Akt protein ratio decreased transiently by 14 days, but recovered later. The IGF-1 protein levels were negatively correlated with the pAkt/Akt ratio. These results indicate that transection of the SSP tendon activates IGF-1/Akt signaling in the remaining ISP muscle for structural compensation. Thus, the remaining muscles after RCT can be a target for rehabilitation through the activation of IGF-1/Akt signaling. PMID:24744876

  7. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Anand, Pinki; Kuang, Anxiu; Akhtar, Feroz; Scofield, Virginia L.

    2016-01-01

    Ubiquitin proteasome system (UPS) dysfunction has been implicated in the development of many neuronal disorders, including Parkinson's disease (PD). Previous studies focused on individual neuroprotective agents and their respective abilities to prevent neurotoxicity following a variety of toxic insults. However, the effects of the antioxidant N-acetylcysteine (NAC) on proteasome impairment-induced apoptosis have not been well characterized in human neuronal cells. The aim of this study was to determine whether cotreatment of NAC and insulin-like growth factor-1 (IGF-1) efficiently protected against proteasome inhibitor-induced cytotoxicity in SH-SY5Y cells. Our results demonstrate that the proteasome inhibitor, MG132, initiates poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 activation, and nuclear condensation and fragmentation. In addition, MG132 treatment leads to endoplasmic reticulum (ER) stress and autophagy-mediated cell death. All of these events can be attenuated without obvious reduction of MG132 induced protein ubiquitination by first treating the cells with NAC and IGF-1 separately or simultaneously prior to exposure to MG132. Moreover, our data demonstrated that the combination of the two proved to be significantly more effective for neuronal protection. Therefore, we conclude that the simultaneous use of growth/neurotrophic factors and a free radical scavenger may increase overall protection against UPS dysfunction-mediated cytotoxicity and neurodegeneration. PMID:27774335

  8. Northwestern profiling of potential translation-regulatory proteins in human breast epithelial cells and malignant breast tissues: evidence for pathological activation of the IGF1R IRES.

    PubMed

    Blume, Scott W; Jackson, Nateka L; Frost, Andra R; Grizzle, William E; Shcherbakov, Oleg D; Choi, Hyoungsoo; Meng, Zheng

    2010-06-01

    Genes involved in the control of cell proliferation and survival (those genes most important to cancer pathogenesis) are often specifically regulated at the translational level, through RNA-protein interactions involving the 5'-untranslated region of the mRNA. IGF1R is a proto-oncogene strongly implicated in human breast cancer, promoting survival and proliferation of tumor cells, as well as metastasis and chemoresistance. Our lab has focused on the molecular mechanisms regulating IGF1R expression at the translational level. We previously discovered an internal ribosome entry site (IRES) within the 5'-untranslated region of the human IGF1R mRNA, and identified and functionally characterized two individual RNA-binding proteins, HuR and hnRNP C, which bind the IGF1R 5'-UTR and differentially regulate IRES activity. Here we have developed and implemented a high-resolution northwestern profiling strategy to characterize, as a group, the full spectrum of sequence-specific RNA-binding proteins potentially regulating IGF1R translational efficiency through interaction with the 5'-untranslated sequence. The putative IGF1R IRES trans-activating factors (ITAFs) are a heterogeneous group of RNA-binding proteins including hnRNPs originating in the nucleus as well as factors tightly associated with ribosomes in the cytoplasm. The IGF1R ITAFs can be categorized into three distinct groups: (a) high molecular weight external ITAFs, which likely modulate the overall conformation of the 5'-untranslated region of the IGF1R mRNA and thereby the accessibility of the core functional IRES; (b) low molecular weight external ITAFs, which may function as general chaperones to unwind the RNA, and (c) internal ITAFs which may directly facilitate or inhibit the fundamental process of ribosome recruitment to the IRES. We observe dramatic changes in the northwestern profile of non-malignant breast cells downregulating IGF1R expression in association with acinar differentiation in 3-D culture

  9. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    PubMed

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  10. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias

    PubMed Central

    Gusscott, Samuel; Jenkins, Catherine E.; Lam, Sonya H.; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P.

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient’s tumor to IGF1R inhibitor therapy. PMID:27532210

  11. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias.

    PubMed

    Gusscott, Samuel; Jenkins, Catherine E; Lam, Sonya H; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient's tumor to IGF1R inhibitor therapy. PMID:27532210

  12. K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas.

    PubMed

    Wei, Feng; Liu, Yan; Bellail, Anita C; Olson, Jeffrey J; Sun, Shi-Yong; Lu, Guoyue; Ding, Lijuan; Yuan, Changji; Wang, Guangyi; Hao, Chunhai

    2012-09-01

    Mammalian target of rapamycin complex 1 (mTORC1) is frequently activated in human cancers; however, clinical trials of rapalog (the mTORC1 inhibitors) have shown that pancreatic ductal adenocarcinomas (PDACs) resist to the treatment. Rapalog treatment activated the extracellular signal-regulated kinase (ERK) pathway in K-Ras mt PDAC cells. K-Ras knockdown abolished the insulin-like growth factor-1 (IGF-1)-induced ERK pathway in the K-Ras mt PDAC cells and enhanced the therapeutic efficacy of everolimus in treating K-Ras mt PDAC cells-derived mouse xenografts. The results indicate that targeting of K-Ras mutation may lead to the development of therapies that overcome rapalog resistance in PDAC.

  13. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R.

    PubMed

    de Munnik, Sabrina M; van der Lee, Rosan; Velders, Daniëlle M; van Offenbeek, Jody; Smits-de Vries, Laura; Leurs, Rob; Smit, Martine J; Vischer, Henry F

    2016-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth factor (IGF)-1 receptor, a receptor tyrosine kinase, also plays an essential role in Kaposi's sarcoma growth and survival. In this study we examined the effect of the constitutively active viral receptor ORF74 on human IGF-1R signaling. Constitutive and CXCL1-induced ORF74 signaling did not transactivate IGF-1R. In contrast, IGF-1 stimulated phospholipase C (PLC) activation in an ORF74-dependent manner without affecting chemokine binding to ORF74. Inhibition of constitutive ORF74 activity by mutagenesis or the inverse agonist CXCL10, or neutralizing IGF-1R with an antibody or silencing IGF-1R expression using siRNA inhibited PLC activation by IGF-1. Transactivation of ORF74 in response to IGF-1 occurred independently of Src, PI3K, and secreted ORF74 ligands. Furthermore, tyrosine residues in the carboxyl-terminus and intracellular loop 2 of ORF74 are not essential for IGF-1-induced PLC activation. Interestingly, PLC activation in response to IGF-1 is specific for ORF74 as IGF-1 was unable to activate PLC in cells expressing the constitutively active human cytomegalovirus (HCMV)-encoded GPCR US28. Interestingly, IGF-1 does not induce β-arrestin recruitment to ORF74. The proximity ligation assay revealed close proximity between ORF74 and IGF-1R on the cell surface, but a physical interaction was not confirmed by co-immunoprecipitation. Unmasking IGF-1R signaling to PLC in response to IGF-1 is a previously unrecognized action of ORF74. PMID:26931381

  14. High insulin-induced down-regulation of Erk-1/IGF-1R/FGFR-1 signaling is required for oxidative stress-mediated apoptosis of adipose-derived stem cells.

    PubMed

    Scioli, Maria Giovanna; Cervelli, Valerio; Arcuri, Gaetano; Gentile, Pietro; Doldo, Elena; Bielli, Alessandra; Bonanno, Elena; Orlandi, Augusto

    2014-12-01

    Homeostasis of adipose tissue requires highly coordinated response between circulating factors and cell population. Human adult adipose-derived stem cells (ASCs) display multiple differentiation properties and are sensitive to insulin stimulation. Insulin resistance and high level of circulating insulin characterize patients with type 2 diabetes and obesity. At physiological concentration, insulin promoted proliferation and survival of ASCs in vitro, whereas high insulin level induced their dose-dependent proliferative arrest and apoptosis. Insulin-induced apoptotic commitment depended on the down-regulation of Erk-1, insulin growth factor-1 receptor (IGF-1R), and fibroblast growth factor receptor-1 (FGFR-1)-mediated signaling. Specific inhibition of Erk-1/2, IGF-1R, and FGFR activity promoted ASC apoptosis but did not increase insulin effects, whereas EGFR and ErbB2 inhibition potentiated insulin-induced apoptosis. FGFRs and EGFR inhibition reduced ASC adipogenic differentiation, whereas Erk-1/2 and IGF-1R inhibition was ineffective. Insulin-induced apoptosis associated to reactive oxygen species (ROS) accumulation and inhibition of NADPH oxidase 4 (Nox4) activity prevented ASC apoptosis. Moreover, specific inhibition of Erk-1/2, IGF-1R, and FGFR-1 activity promoted ROS generation and this effect was not cumulative with that of insulin alone. Our data indicate that insulin concentration is a critical regulatory switch between proliferation and survival of ASCs. High insulin level-induced apoptotic machinery involves Nox4-generated oxidative stress and the down-regulation of a complex receptor signaling, partially distinct from that influencing adipogenic differentiation of ASCs.

  15. Targeted DNA Methylation Screen in the Mouse Mammary Genome Reveals a Parity-Induced Hypermethylation of Igf1r That Persists Long after Parturition.

    PubMed

    Katz, Tiffany A; Liao, Serena G; Palmieri, Vincent J; Dearth, Robert K; Pathiraja, Thushangi N; Huo, Zhiguang; Shaw, Patricia; Small, Sarah; Davidson, Nancy E; Peters, David G; Tseng, George C; Oesterreich, Steffi; Lee, Adrian V

    2015-10-01

    The most effective natural prevention against breast cancer is an early first full-term pregnancy. Understanding how the protective effect is elicited will inform the development of new prevention strategies. To better understand the role of epigenetics in long-term protection, we investigated parity-induced DNA methylation in the mammary gland. FVB mice were bred or remained nulliparous and mammary glands harvested immediately after involution (early) or 6.5 months following involution (late), allowing identification of both transient and persistent changes. Targeted DNA methylation (109 Mb of Ensemble regulatory features) analysis was performed using the SureSelectXT Mouse Methyl-seq assay and massively parallel sequencing. Two hundred sixty-nine genes were hypermethylated and 128 hypomethylated persistently at both the early and late time points. Pathway analysis of the persistently differentially methylated genes revealed Igf1r to be central to one of the top identified signaling networks, and Igf1r itself was one of the most significantly hypermethylated genes. Hypermethylation of Igf1r in the parous mammary gland was associated with a reduction of Igf1r mRNA expression. These data suggest that the IGF pathway is regulated at multiple levels during pregnancy and that its modification might be critical in the protective role of pregnancy. This supports the approach of lowering IGF action for prevention of breast cancer, a concept that is currently being tested clinically.

  16. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  17. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men.

  18. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1.

    PubMed

    Mah, Amanda T; Van Landeghem, Laurianne; Gavin, Hannah E; Magness, Scott T; Lund, P Kay

    2014-09-01

    Nutrient intake regulates intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate nutrient restriction impacts intestinal stem cells (ISC). Little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, progenitors, and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed a high-fat diet for 20 weeks to induce DIO and compared with littermates fed low-fat rodent chow. Histology, fluorescence activated cell sorting, and mRNA analyses measured impact of DIO on jejunal crypt-villus morphometry, numbers, and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight, plasma glucose, insulin, and insulin-like growth factor 1 (IGF1) levels and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length and decreased numbers of Paneth and goblet cells. In vivo, DIO resulted in a selective expansion of Sox9-EGFP(Low) ISC and percentage of ISC in S-phase. ISC expansion significantly correlated with plasma insulin levels. In vitro, isolated ISC from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls, indicating impaired ISC function. This decreased enteroid formation in isolated ISC from DIO mice was rescued by exogenous insulin, IGF1, or both. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo. However, isolated ISC from DIO mice have impaired intrinsic survival and growth in vitro that can be rescued by exogenous insulin or IGF1.

  19. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  20. Illness Severity, Social and Cognitive Ability, and EEG Analysis of Ten Patients with Rett Syndrome Treated with Mecasermin (Recombinant Human IGF-1).

    PubMed

    Pini, Giorgio; Congiu, Laura; Benincasa, Alberto; DiMarco, Pietro; Bigoni, Stefania; Dyer, Adam H; Mortimer, Niall; Della-Chiesa, Andrea; O'Leary, Sean; McNamara, Rachel; Mitchell, Kevin J; Gill, Michael; Tropea, Daniela

    2016-01-01

    Rett Syndrome (RTT) is a severe neurodevelopmental disorder characterized by an apparently normal development followed by an arrest and subsequent regression of cognitive and psychomotor abilities. At present, RTT has no definitive cure and the treatment of RTT represents a largely unmet clinical need. Following partial elucidation of the underlying neurobiology of RTT, a new treatment has been proposed, Mecasermin (recombinant human Insulin-Like Growth Factor 1), which, in addition to impressive evidence from preclinical murine models of RTT, has demonstrated safety in human studies of patients with RTT. The present clinical study examines the disease severity as assessed by clinicians (International Scoring System: ISS), social and cognitive ability assessed by two blinded, independent observers (RSS: Rett Severity Score), and changes in brain activity (EEG) parameters of ten patients with classic RTT and ten untreated patients matched for age and clinical severity. Significant improvement in both the ISS (p = 0.0106) and RSS (p = 0.0274) was found in patients treated with IGF1 in comparison to untreated patients. Analysis of the novel RSS also suggests that patients treated with IGF1 have a greater endurance to social and cognitive testing. The present clinical study adds significant preliminary evidence for the use of IGF-1 in the treatment of RTT and other disorders of the autism spectrum.

  1. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin. PMID:27467217

  2. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  3. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells.

    PubMed

    Jiang, Ming-Chun; Chen, Xiao-Han; Zhao, Xia; Zhang, Xue-Jie; Chen, Wen-Fang

    2016-09-01

    Icaritin, a natural derivative of Icariin, is the major bioactive component of Epimedium Genus. The present study tested the hypothesis that the neuroprotective effects of Icaritin against 1-Methyl-4-phenylpyridinium ion (MPP(+))-induced toxicity involved activation of the insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in MES23.5 cells. Our results revealed that Icaritin pretreatment attenuated the MPP(+)-induced decrease of cell viability in a dose-dependent fashion. Co-pretreatment with phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, mitogen-activated protein kinase (MEK) inhibitor PD98059 or IGF-1 receptor antagonist JB-1 could completely block the protective effects of Icaritin. Moreover, Icaritin pretreatment down-regulated MPP(+)-induced increase of Bax/Bcl-2 ratio transcriptionally and post-transcriptionally. Further study revealed that Icaritin pretreatment could restore the decreased protein expression of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) induced by MPP(+) and these effects could be completely abolished by LY294002, PD98059 or JB-1. Additionally, Icaritin treatment alone time-dependently enhanced the phosphorylation of Akt and ERK1/2 in MES23.5 cells. The activation of Akt and ERK1/2 by Icaritin could be completely blocked by JB-1, LY294002 or PD98059. Taken together, our data demonstrate that IGF-1 receptor mediated activation of PI3K/Akt and MEK/ERK1/2 signaling pathways are involved in the protective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells.

  4. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells

    PubMed Central

    Miller, Megan Jo; Foy, Kevin C; Overholser, Jay P; Nahta, Rita; Kaumaya, Pravin TP

    2014-01-01

    The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99–122, 140–162, 237–269 and 461–479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237–269 (domain II) and 461–479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461–471) epitope with HER-2 (266–296), HER-2 (597–626), HER-1 (418–435) and insulin-like growth factor receptor type I (IGF-1R) (56–81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers. PMID:25941588

  5. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  6. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    SciTech Connect

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.; Keller, Charles

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  7. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition

    PubMed Central

    Hegazy, Rehab; Salama, Abeer; Mansour, Dina; Hassan, Azza

    2016-01-01

    Hexavalent chromium (CrVI) is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf) against potassium dichromate (PDC)-induced acute kidney injury (AKI) in rats. Beside, because previous studies suggest that interlukin-18 (IL-18) and insulin-like growth factor-1 (IGF-1) play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200mg/kg/day, p.o.) or (300mg/kg/day, p.o.); the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15mg/kg, s.c.). PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB), IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1) levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA), Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through triggering FoxO1

  8. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition.

    PubMed

    Hegazy, Rehab; Salama, Abeer; Mansour, Dina; Hassan, Azza

    2016-01-01

    Hexavalent chromium (CrVI) is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf) against potassium dichromate (PDC)-induced acute kidney injury (AKI) in rats. Beside, because previous studies suggest that interlukin-18 (IL-18) and insulin-like growth factor-1 (IGF-1) play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200 mg/kg/day, p.o.) or (300 mg/kg/day, p.o.); the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15 mg/kg, s.c.). PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB), IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1) levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA), Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through triggering Fox

  9. IGF-1 Receptor Inhibitors in Clinical Trials—Early Lessons

    PubMed Central

    Weroha, S. John

    2009-01-01

    The insulin-like growth factor pathway plays a major role in cancer cell proliferation, survival and resistance to anti-cancer therapies in many human malignancies, including breast cancer. As a key signaling component of IGF system, the IGF-1 receptor is the target of several investigational agents in clinical and pre-clinical development. This review will focus on the rationale for targeting the IGF-1 receptor and other components of the IGF-1 system. In addition, we will examine the role of IGF-1 signaling in resistance to clinically important breast cancer therapies, including cytotoxic chemotherapy, hormonal therapy and erbB targeted agents. We will also review the completed and ongoing clinical investigations with IGF-1 receptors inhibitors to date and the utility of these early data in designing future breast cancer studies with IGF-1 signaling inhibition strategies. PMID:19023648

  10. Curcumol Inhibits Growth and Induces Apoptosis of Colorectal Cancer LoVo Cell Line via IGF-1R and p38 MAPK Pathway.

    PubMed

    Wang, Juan; Huang, Fengxiang; Bai, Zhun; Chi, Bixia; Wu, Jiacai; Chen, Xu

    2015-08-20

    Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.

  11. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis

    PubMed Central

    Bogin, Barry; Hermanussen, Michael; Blum, Werner F.; Aßmann, Christian

    2015-01-01

    We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions. PMID:25946190

  12. Sex, Sport, IGF-1 and the Community Effect in Height Hypothesis.

    PubMed

    Bogin, Barry; Hermanussen, Michael; Blum, Werner F; Aßmann, Christian

    2015-05-04

    We test the hypothesis that differences in social status between groups of people within a population may induce variation in insulin-like growth factor-1(IGF-1) levels and, by extension, growth in height. This is called the community effect in height hypothesis. The relationship between IGF-1, assessed via finger-prick dried blood spot, and elite level sport competition outcomes were analysed for a sample of 116 undergraduate men and women. There was a statistically significant difference between winners and losers of a competition. Winners, as a group, had higher average pre-game and post-game IGF-1 levels than losers. We proposed this type of difference as a proxy for social dominance. We found no evidence that winners increased in IGF-1 levels over losers or that members of the same team were more similar in IGF-1 levels than they were to players from other teams. These findings provide limited support toward the community effect in height hypothesis. The findings are discussed in relation to the action of the growth hormone/IGF-1 axis as a transducer of multiple bio-social influences into a coherent signal which allows the growing human to adjust and adapt to local ecological conditions.

  13. The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels.

    PubMed

    Alsina-Sanchis, Elisenda; Figueras, Agnès; Lahiguera, Álvaro; Vidal, August; Casanovas, Oriol; Graupera, Mariona; Villanueva, Alberto; Viñals, Francesc

    2016-10-15

    In a search for new therapeutic targets for treating epithelial ovarian cancer, we analyzed the Transforming Growth Factor Beta (TGFβ) signaling pathway in these tumors. Using a TMA with patient samples we found high Smad2 phosphorylation in ovarian cancer tumoral cells, independently of tumor subtype (high-grade serous or endometrioid). To evaluate the impact of TGFβ receptor inhibition on tumoral growth, we used different models of human ovarian cancer orthotopically grown in nude mice (OVAs). Treatment with a TGFβRI&II dual inhibitor, LY2109761, caused a significant reduction in tumor size in all these models, affecting cell proliferation rate. We identified Insulin Growth Factor (IGF)1 receptor as the signal positively regulated by TGFβ implicated in ovarian tumor cell proliferation. Inhibition of IGF1R activity by treatment with a blocker antibody (IMC-A12) or with a tyrosine kinase inhibitor (linsitinib) inhibited ovarian tumoral growth in vivo. When IGF1R levels were decreased by shRNA treatment, LY2109761 lost its capacity to block tumoral ovarian cell proliferation. At the molecular level TGFβ induced mRNA IGF1R levels. Overall, our results suggest an important role for the TGFβ signaling pathway in ovarian tumor cell growth through the control of IGF1R signaling pathway. Moreover, it identifies anti-TGFβ inhibitors as being of potential use in new therapies for ovarian cancer patients as an alternative to IGF1R inhibition.

  14. Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    PubMed

    Lee, Ha Won; Cheng, Jie; Kovbasnjuk, Olga; Donowitz, Mark; Guggino, William B

    2013-01-01

    Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  15. Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-IGF1R Antibody

    PubMed Central

    Kim, Jun Gyu; Kang, Min Jueng; Yoon, Young-Kwang; Kim, Hwang-Phill; Park, Jinah; Song, Sang-Hyun; Han, Sae-Won; Park, Jong-Wan; Kang, Gyeong Hoon; Kang, Keon Wook; Oh, Do Youn; Im, Seock-Ah; Bang, Yung-Jue; Yi, Eugene C.; Kim, Tae-You

    2012-01-01

    Background Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer. Methodology/Principal Findings In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity. Conclusion and Significance The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells. PMID:22438913

  16. Metformin down-regulates endometrial carcinoma cell secretion of IGF-1 and expression of IGF-1R.

    PubMed

    Zhang, Yu; Li, Meng-Xiong; Wang, Huan; Zeng, Zheng; Li, Xiao-Mao

    2015-01-01

    As metformin can inhibit endometrial carcinoma (EC) cell growth and the insulin growth factor (IGF) system is active in EC, the question of whether t can regulate endometrial carcinoma cell secretion of IGF-1 or expression of IGF-1 receptor (IGF-1R) is of interest. In this study, serum IGF-1 levels in EC patients were found to be comparable with that in the non EC patients (p>0.05). However, the IGF-1 level in the medium of cultured cells after treatment with metformin was decreased (p<0.05). IGF-1R was highly expressed in human endometrial carcinoma paraffin sections, but IGF-1R and phosphor-protein kinase B/protein kinase B (p-Akt/ Akt) expression was down-regulated after metformin treatment (p<0.05). In summary, metformin can reduce the secretion of IGF-1 by Ishikawa and JEC EC cell lines and their expression of IGF-1R to deactivate downstream signaling involving the PI-3K/Akt pathway to inhibit endometrial carcinoma cell growth.

  17. An Open-Label Trial of Recombinant Human Insulin-Like Growth Factor-I/Recombinant Human Insulin-Like Growth Factor Binding Protein-3 (rhIGF-1/rhIGFBP-3) in Myotonic Dystrophy Type 1

    PubMed Central

    Heatwole, Chad R.; Eichinger, Katy J.; Friedman, Deborah I.; Hilbert, James E.; Jackson, Carlayne E.; Logigian, Eric L.; Martens, William B.; McDermott, Michael P.; Pandya, Shree K.; Quinn, Christine; Smirnow, Alexis M.; Thornton, Charles A.; Moxley, Richard T.

    2012-01-01

    Objective To evaluate the safety and tolerability of recombinant human insulin-like growth factor-1 (rhIGF-1) complexed with IGF binding protein-3 (rhIGF-1/rhIGFBP-3) in patients with myotonic dystrophy type 1 (DM1). Design Open-label dose-escalation clinical trial. Setting University medical center. Participants Fifteen moderately affected ambulatory participants with genetically-proven DM1. Intervention Participants received escalating dosages of subcutaneous rhIGF-1/rhIGFBP-3 over 24 weeks followed by a 16 week washout period. Outcome Measures Serial assessments of safety, muscle mass, muscle function, and metabolic state were performed. The primary outcome variable was the ability of participants to complete 24 weeks on rhIGF-1/rhIGFBP-3 treatment. Results All participants tolerated rhIGF-1/rhIGFBP-3. There were no significant changes in muscle strength or functional outcomes measures. Lean body muscle mass measured by dual energy x-ray absorptiometry increased by 1.95 kg (p=0.0007) after treatment. Participants also experienced a mean reduction in triglyceride levels of 47 mg/dL (p=0.002), a mean increase in HDL levels of 5.0 mg/dL (p=0.03), a mean reduction in HbA1c of 0.15% (p=0.03), and a mean increase in testosterone level (in men) of 203 ng/dL (p=0.002) while on rhIGF-1/rhIGFBP-3. Mild reactions at the injection site occurred (n=9 participants), as did mild transient hypoglycemia (n=3), lightheadedness (n=2), and transient papilledema (n=1). Conclusions rhIGF-1/rhIGFBP-3 treatment was generally well tolerated in DM1. rhIGF-1/rhIGFBP-3 was associated with increased lean body mass and improvements in metabolism, but not with increased muscle strength or function. Larger randomized controlled trials would be needed to further evaluate the efficacy and safety of this medication in patients with neuromuscular disease. PMID:20837825

  18. Treatment with Insulin Analog X10 and IGF-1 Increases Growth of Colon Cancer Allografts

    PubMed Central

    Hvid, Henning; Blouin, Marie-José; Birman, Elena; Damgaard, Jesper; Poulsen, Fritz; Fels, Johannes Josef; Fledelius, Christian; Hansen, Bo Falck; Pollak, Michael

    2013-01-01

    Obesity and type 2 diabetes are associated with an increased risk for development of certain forms of cancer, including colon cancer. The publication of highly controversial epidemiological studies in 2009 raised the possibility that use of the insulin analog glargine increases this risk further. However, it is not clear how mitogenic effects of insulin and insulin analogs measured in vitro correlate with tumor growth-promoting effects in vivo. The aim of this study was to examine possible growth-promoting effects of native human insulin, insulin X10 and IGF-1, which are considered positive controls in vitro, in a short-term animal model of an obesity- and diabetes-relevant cancer. We characterized insulin and IGF-1 receptor expression and the response to treatment with insulin, X10 and IGF-1 in the murine colon cancer cell line (MC38 cells) in vitro and in vivo. Furthermore, we examined pharmacokinetics and pharmacodynamics and monitored growth of MC38 cell allografts in mice with diet-induced obesity treated with human insulin, X10 and IGF-1. Treatment with X10 and IGF-1 significantly increased growth of MC38 cell allografts in mice with diet-induced obesity and we can therefore conclude that supra-pharmacological doses of the insulin analog X10, which is super-mitogenic in vitro and increased the incidence of mammary tumors in female rats in a 12-month toxicity study, also increase growth of tumor allografts in a short-term animal model. PMID:24260289

  19. Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma.

    PubMed

    Abraham, Jinu; Prajapati, Suresh I; Nishijo, Koichi; Schaffer, Beverly S; Taniguchi, Eri; Kilcoyne, Aoife; McCleish, Amanda T; Nelon, Laura D; Giles, Francis G; Efstratiadis, Argiris; LeGallo, Robin D; Nowak, Brent M; Rubin, Brian P; Malempati, Suman; Keller, Charles

    2011-04-01

    Inhibition of the insulin-like growth factor 1 receptor (Igf1r) is an approach being taken in clinical trials to overcome the dismal outcome for metastatic alveolar rhabdomyosarcoma (ARMS), an aggressive muscle cancer of children and young adults. In our study, we address the potential mechanism(s) of Igf1r inhibitor resistance that might be anticipated for patients. Using a genetically engineered mouse model of ARMS, validated for active Igf1r signaling, we show that the prototypic Igf1r inhibitor NVP-AEW541 can inhibit cell growth and induce apoptosis in vitro in association with decreased Akt and Mapk phosphorylation. However, drug resistance in vivo is more common and is accompanied by Igf1r overexpression, Mapk reactivation, and Her2 overexpression. Her2 is found to form heterodimers with Igf1r in resistant primary tumor cell cultures, and stimulation with Igf2 leads to Her2 phosphorylation. The Her2 inhibitor lapatinib cooperates with NVP-AEW541 to reduce Igf1r phosphorylation and to inhibit cell growth even though lapatinib alone has little effect on growth. These results point to the potential therapeutic importance of simultaneous targeting of Igf1r and Her2 to abrogate resistance.

  20. OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells.

    PubMed

    Rao, Wei; Li, Haowen; Song, Feifei; Zhang, Renfeng; Yin, Qinqin; Wang, Ying; Xi, Yebin; Ge, Hailiang

    2014-07-01

    Ovarian cancer-associated antigen 66 (OVA66), also known as CML66 (GenBank Accession No. AF283301), was first identified in an ovarian carcinoma complementary DNA (cDNA) expression library and was shown to play a role in tumorigenesis. Here, we find that OVA66 influences tumorigenesis by regulating the type I insulin-like growth factor receptor (IGF-1R) signaling pathway. Stable knockdown of OVA66 in cancer cells attenuated phosphorylation of IGF-1R and extracellular signal-regulated kinase 1/2 (ERK1/2)-Hsp27; similarly, a higher level of p-IGF-1R and ERK1/2-Hsp27 signaling was also detected after OVA66 overexpression in HO8910 cells. In vivo knockdown of OVA66 both reduced tumor burden in nude mice and decreased phosphorylation of IGF-1R, ERK1/2 and hsp27. We blocked IGF-1R function both by small interfering RNA (siRNA) and with the chemical inhibitor Linsitinib (OSI-906). By either method, tumorigenesis was inhibited regardless of OVA66 expression; thus, mechanistically, IGF-1R, probably, lies downstream of OVA66 in cancer cells. We also found that OVA66 regulates expression of murine double minute 2 (MDM2); this attenuates ubiquitination of IGF-1R in response to IGF-1 stimulation and promotes active ERK1/2 signaling. Thus, we propose that combined overexpression of OVA66 and MDM2 promotes oncogenesis by enhancing activation of the IGF-1R-ERK1/2 signaling pathway. PMID:24667688

  1. Hypoactivity Affects IGF-1 Level and PI3K/AKT Signaling Pathway in Cerebral Structures Implied in Motor Control

    PubMed Central

    Mysoet, Julien; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2014-01-01

    A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction. PMID:25226394

  2. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    SciTech Connect

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  3. Caffeine-induced fetal rat over-exposure to maternal glucocorticoid and histone methylation of liver IGF-1 might cause skeletal growth retardation.

    PubMed

    Tan, Yang; Liu, Jin; Deng, Yu; Cao, Hong; Xu, Dan; Cu, Fenglong; Lei, Youying; Magdalou, Jacques; Wu, Min; Chen, Liaobin; Wang, Hui

    2012-11-15

    Several epidemiological investigations, including previous work by our laboratory, indicate that maternal caffeine consumption is associated with intrauterine growth retardation and impaired fetal length growth. Skeletal development is critical for length growth. In the present study, our goals were to determine the effects of prenatal caffeine exposures on fetal skeletal growth and to investigate the mechanisms associated with such effects. Pregnant Wistar rats were injected intragastrically with 120mg/kg of caffeine intragastrically each day from gestational days 11-20. Maternal prenatal caffeine exposure was associated with decreased fetal femur lengths and inhibited of synthesis of extracellular matrices in fetal growth plates Moreover, caffeine exposure significantly increased the levels of fetal blood corticosterone and decreased IGF-1mRNA expression levels in the liver and growth plate. The expression levels of IGF-1 signaling pathway components (IGF-1R, IRS-1, AKT1/2 and Col2A1) were also reduced. In addition, the results of chromatin immunoprecipitation assays indicated that caffeine exposure down-regulated histone methylation of fetal IGF-1 in the liver. These results suggest that prenatal caffeine exposure may inhibit fetal skeletal growth through a mechanism that is associated with increased fetal exposure to maternal glucocorticoids and results in lower IGF-1 signaling pathway activity. Taken together, these results raise important concerns regarding the skeletal growth toxicity of caffeine and potentially indicate the intrauterine origins of adult osteoporosis and osteoarthritis.

  4. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.

    PubMed

    Schanzer, Juergen M; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  5. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer

    PubMed Central

    Schanzer, Juergen M.; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J.; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H.; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    ABSTRACT The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  6. IGF-1R Inhibition Activates a YES/SFK Bypass Resistance Pathway: Rational Basis for Co-Targeting IGF-1R and Yes/SFK Kinase in Rhabdomyosarcoma.

    PubMed

    Wan, Xiaolin; Yeung, Choh; Heske, Christine; Mendoza, Arnulfo; Helman, Lee J

    2015-04-01

    The insulin-like growth factor 1 receptor (IGF-1R) has surfaced as a significant target in multiple solid cancers due to its fundamental roles in pro-survival and anti-apoptotic signaling. However, development of resistance to IGF-1R blockade represents a significant hindrance and limits treatment efficacy in the clinic. In this study, we identified acquired resistance to IGF-1R blockade with R1507, an antibody against IGF-1R, and with BMS-754807, a small molecular inhibitor of IGF-1R/insulin receptor (IR). We showed that treatment with an IGF-IR antibody, R1507, or an IR/IGF-IR kinase inhibitor, BMS-754807, was associated with increased activation of YES/SRC family tyrosine kinase (SFK) in rhabdomyosarcoma (RMS). Combining anti-IGF-1R agents with SFK inhibitors resulted in blockade of IGF-1R inhibition-induced activation of YES/SFK and displayed advantageous antitumor activity in vitro and in vivo. Our data provide evidence that IGF-1R blockade results in activation of the YES/SRC family kinase bypass resistance pathway in vitro and in vivo. This may be of particular clinical relevance since both Yes and IGF components are overexpressed in RMS. Increased YES/SFK activation might serve as a clinical biomarker for predicting tumor resistance to IGF-1R inhibition. Dual inhibition of IGF-1R and SFK may have a broader and enhanced clinical benefit for patients with RMS.

  7. Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression.

    PubMed

    Price, Edwin R; Bauchinger, Ulf; Zajac, Daria M; Cerasale, David J; McFarlan, Jay T; Gerson, Alexander R; McWilliams, Scott R; Guglielmo, Christopher G

    2011-09-01

    Seasonal adjustments to muscle size in migratory birds may result from preparatory physiological changes or responses to changed workloads. The mechanisms controlling these changes in size are poorly understood. We investigated some potential mediators of flight muscle size (myostatin and insulin-like growth factor, IGF1) in pectoralis muscles of wild wintering or migrating white-throated sparrows (Zonotrichia albicollis), captive white-throated sparrows that were photoperiod manipulated to be in a `wintering' or `migratory' (Zugunruhe) state, and captive European starlings (Sturnus vulgaris) that were either exercised for 2 weeks in a wind tunnel or untrained. Flight muscle size increased in photo-stimulated `migrants' and in exercised starlings. Acute exercise but not long-term training caused increased expression of IGF1, but neither caused a change in expression of myostatin or its metalloprotease activator TLL1. Photo-stimulated `migrant' sparrows demonstrated increased expression of both myostatin and IGF1, but wild sparrows exhibited no significant seasonal changes in expression of either myostatin or IGF1. Additionally, in both study species we describe several splice variants of myostatin that are shared with distantly related bird species. We demonstrate that their expression patterns are not different from those of the typical myostatin, suggesting that they have no functional importance and may be mistakes of the splicing machinery. We conclude that IGF1 is likely to be an important mediator of muscle phenotypic flexibility during acute exercise and during endogenous, seasonal preparation for migration. The role of myostatin is less clear, but its paradoxical increase in photo-stimulated `migrants' may indicate a role in seasonal adjustments of protein turnover. PMID:21832125

  8. Aberrant Cytoplasm Localization and Protein Stability of SIRT1 is Regulated by PI3K/IGF-1R Signaling in Human Cancer Cells

    PubMed Central

    Byles, Vanessa; Chmilewski, Laura K.; Wang, Joyce; Zhu, Lijia; Forman, Lora W.; Faller, Douglas V.; Dai, Yan

    2010-01-01

    SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway. PMID:20941378

  9. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides

    PubMed Central

    Foy, Kevin Chu; Miller, Megan J; Overholser, Jay; Donnelly, Siobhan M; Nahta, Rita; Kaumaya, Pravin TP

    2014-01-01

    The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56–81 and 233–251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents. PMID:25941587

  10. MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants.

    PubMed

    Annibalini, Giosuè; Bielli, Pamela; De Santi, Mauro; Agostini, Deborah; Guescini, Michele; Sisti, Davide; Contarelli, Serena; Brandi, Giorgio; Villarini, Anna; Stocchi, Vilberto; Sette, Claudio; Barbieri, Elena

    2016-05-01

    Insulin-like growth factor (IGF) -1 is a pleiotropic hormone exerting mitogenic and anti-apoptotic effects. Inclusion or exclusion of exon 5 into the IGF-1 mRNA gives rise to three transcripts, IGF-1Ea, IGF-1Eb and IGF-1Ec, which yield three different C-terminal extensions called Ea, Eb and Ec peptides. The biological significance of the IGF-1 splice variants and how the E-peptides affect the actions of mature IGF-1 are largely unknown. In this study we investigated the origin and conservation of the IGF-1 E-peptides and we compared the pattern of expression of the IGF-1 isoforms in vivo, in nine mammalian species, and in vitro using human and mouse IGF-1 minigenes. Our analysis showed that only IGF-1Ea is conserved among all vertebrates, whereas IGF-1Eb and IGF-1Ec are an evolutionary novelty originated from the exonization of a mammalian interspersed repetitive-b (MIR-b) element. Both IGF-1Eb and IGF-1Ec mRNAs were constitutively expressed in all mammalian species analyzed but their expression ratio varies greatly among species. Using IGF-1 minigenes we demonstrated that divergence in cis-acting regulatory elements between human and mouse conferred species-specific features to the exon 5 region. Finally, the protein-coding sequences of exon 5 showed low rate of synonymous mutations and contain disorder-promoting amino acids, suggesting a regulatory role for these domains. In conclusion, exonization of a MIR-b element in the IGF-1 gene determined gain of exon 5 during mammalian evolution. Alternative splicing of this novel exon added new regulatory elements at the mRNA and protein level potentially able to regulate the mature IGF-1 across tissues and species. PMID:27048986

  11. The GH/IGF-1 axis in ageing and longevity

    PubMed Central

    List, Edward O.; Berryman, Darlene E.; Murrey, John W.

    2014-01-01

    Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the ‘somatopause’, has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans. PMID:23591370

  12. Intraplacental gene therapy with Ad-IGF-1 corrects naturally occurring rabbit model of intrauterine growth restriction.

    PubMed

    Keswani, Sundeep G; Balaji, Swathi; Katz, Anna B; King, Alice; Omar, Khaled; Habli, Mounira; Klanke, Charles; Crombleholme, Timothy M

    2015-03-01

    Intrauterine growth restriction (IUGR) due to placental insufficiency is a leading cause of perinatal complications for which there is no effective prenatal therapy. We have previously demonstrated that intraplacental injection of adenovirus-mediated insulin-like growth factor-1 (Ad-IGF-1) corrects fetal weight in a murine IUGR model induced by mesenteric uterine artery branch ligation. This study investigated the effect of intraplacental Ad-IGF-1 gene therapy in a rabbit model of naturally occurring IUGR (runt) due to placental insufficiency, which is similar to the human IUGR condition with onset in the early third trimester, brain sparing, and a reduction in liver weight. Laparotomy was performed on New Zealand White rabbits on day 21 of 30 days of gestation and litters were divided into five groups: Control (first position)+phosphate-buffered saline (PBS), control+Ad-IGF-1, runt (third position)+PBS, runt+Ad-IGF-1, and runt+Ad-LacZ. The effect of IGF-1 gene therapy on fetal, placental, liver, heart, lung, and musculoskeletal weights of the growth-restricted pups was examined. Protein expression after gene transfer was seen along the maternal-fetal placenta interface (n=12) 48 hr after gene therapy. There was minimal gene transfer detected in the pups or maternal organs. At term, compared with the normally grown first-position control, the runted third-position pups demonstrated significantly lower fetal, placental, liver, lung, and musculoskeletal weights. The fetal, liver, and musculoskeletal weights were restored to normal by intraplacental Ad-IGF-1 gene therapy (p<0.01), with no change in the placental weight. Intraplacental gene therapy is a novel strategy for the treatment of IUGR caused by placental insufficiency that takes advantage of an organ that will be discarded at birth. Development of nonviral IGF-1 gene delivery using placenta-specific promoters can potentially minimize toxicity to the mother and fetus and facilitate clinical translation of

  13. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  14. The GH/IGF-1 axis in chronic heart failure.

    PubMed

    Arcopinto, Michele; Bobbio, Emanuele; Bossone, Eduardo; Perrone-Filardi, Pasquale; Napoli, Raffaele; Sacca, Luigi; Cittadini, Antonio

    2013-03-01

    The classic model of Chronic Heart Failure (CHF) is rooted in the overexpression of neurohormonal molecules. To complement this paradigm, increasing evidence indicates that a variety of hormones may be down-regulated in CHF patients. The list includes growth hormone (GH) and its tissue effector insulin-like growth factor-1 (IGF-1). The GH/IGF-1 axis regulates cardiac growth, stimulates myocardial contractility, and influences the vascular system. The relationship between the GH/IGF-1 axis and the cardiovascular system has been extensively demonstrated in numerous studies in animals models and confirmed by the cardiac derangements secondary to both GH excess and deficiency in humans. Impaired activity of the GH/IGF-1 axis in CHF has been described by several independent groups and includes a wide array of abnormalities, including low IGF-1 levels, GH deficiency (GHD), and GH resistance that may be related to the severity of heart disease. According to several observations, these derangements are associated with poor clinical status and outcome. Since the first study of GH therapy in CHF in 1996, several placebo-controlled trials have been conducted with conflicting results. These discordant findings are likely explained by the degree of CHF-associated GH/IGF-1 impairment that may impact on individual responsiveness to GH administration. Biological actions of GH and IGF-1, cardiovascular implication of GH deficiency and GH excess, relation between somatotrophic axis and CHF are discussed. Results from trials of GH therapy, emerging therapeutic strategies, safety issues, and lack in evidence are also reported.

  15. Unbound (bioavailable) IGF1 enhances somatic growth.

    PubMed

    Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J; Frystyk, Jan; Yakar, Shoshana

    2011-09-01

    Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or 'free IGF1'. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions.

  16. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma.

    PubMed

    Cookman, Clifford J; Belcher, Scott M

    2015-07-01

    Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2(-/-) mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1(+/-) Trp53(-/-) mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis. PMID:25885794

  17. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma

    PubMed Central

    Cookman, Clifford J.

    2015-01-01

    Medulloblastoma (Med) is the most common malignant brain tumor in children. The role of ESR2 [estrogen receptor (ER)-β] in promoting Med growth was comprehensively examined in three in vivo models and human cell lines. In a novel Med ERβ-null knockout model developed by crossing Esr2−/− mice with cerebellar granule cell precursor specific Ptch1 conditional knockout mice, the tumor growth rate was significantly decreased in males and females. The absence of Esr2 resulted in increased apoptosis, decreased B-cell lymphoma 2 (BCL2), and IGF-1 receptor (IGF1R) expression, and decreased levels of active MAPKs (ERK1/2) and protein kinase B (AKT). Treatment of Med in Ptch1+/− Trp53−/− mice with the antiestrogen chemotherapeutic drug Faslodex significantly increased symptom-free survival, which was associated with increased apoptosis and decreased BCL2 and IGF1R expression and signaling. Similar effects were also observed in nude mice bearing D283Med xenografts. In vitro studies in human D283Med cells metabolically stressed by glutamine withdrawal found that 17β-estradiol and the ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile dose dependently protected Med cells from caspase-3-dependent cell death. Those effects were associated with increased phosphorylation of IGF1R, long-term increases in ERK1/2 and AKT signaling, and increased expression of IGF-1, IGF1R, and BCL2. Results of pharmacological experiments revealed that the cytoprotective actions of estradiol were dependent on ERβ and IGF1R receptor tyrosine kinase activity and independent of ERα and G protein-coupled estrogen receptor 1 (G protein coupled receptor 30). The presented results demonstrate that estrogen promotes Med growth through ERβ-mediated increases in IGF1R expression and activity, which induce cytoprotective mechanisms that decrease apoptosis. PMID:25885794

  18. IGF-1 and Survival in ESRD

    PubMed Central

    Jia, Ting; Gama Axelsson, Thiane; Heimbürger, Olof; Bárány, Peter; Stenvinkel, Peter; Qureshi, Abdul Rashid

    2014-01-01

    Summary Background and objectives IGF-1 deficiency links to malnutrition in CKD patients; however, it is not clear to what extent it associates with survival among these patients. Design, setting, participants, & measurements Serum IGF-1 and other biochemical, clinical (subjective global assessment), and densitometric (dual energy x-ray absorptiometry) markers of nutritional status and mineral and bone metabolism were measured in a cohort of 365 Swedish clinically stable CKD stage 5 patients (median age of 53 years) initiating dialysis between 1994 and 2009; in 207 patients, measurements were also taken after 1 year of dialysis. Deaths were registered during a median follow-up of 5 years. Associations of mortality with baseline IGF-1 and changes of IGF-1 after 1 year of dialysis were evaluated by Cox models. Results At baseline, IGF-1 concentrations associated negatively with age, diabetes mellitus, cardiovascular disease, poor nutritional status, IL-6, and osteoprotegerin and positively with body fat mass, bone mineral density, serum phosphate, calcium, and fibroblast growth factor-23. At 1 year, IGF-1 had increased by 33%. In multivariate regression, low age, diabetes mellitus, and high serum phosphate and calcium associated with IGF-1 at baseline, and in a mixed model, these factors, together with high fat body mass, associated with changes of IGF-1 during the first 1 year of dialysis. Adjusting for calendar year of inclusion, age, sex, diabetes mellitus, cardiovascular disease, IL-6, and poor nutritional status, a 1 SD higher level of IGF-1 at baseline associated with lower mortality risk (hazard ratio, 0.57; 95% confidence interval, 0.32 to 0.98). Persistently low or decreasing IGF-1 levels during the first 1 year on dialysis predicted worse survival (adjusted hazard ratio, 2.19; 95% confidence interval, 1.06 to 4.50). Conclusion In incident dialysis patients, low serum IGF-1 associates with body composition and markers of mineral and bone metabolism, and it

  19. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis

    PubMed Central

    Locatelli, Vittorio; Bianchi, Vittorio E.

    2014-01-01

    Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered. PMID:25147565

  20. Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration.

    PubMed

    Rabinovsky, Eric D; Gelir, Ethem; Gelir, Seda; Lui, Hui; Kattash, Maan; DeMayo, Francesco J; Shenaq, Saleh M; Schwartz, Robert J

    2003-01-01

    Currently, there is no known medical treatment that hastens the repair of damaged nerve and muscle. Using IGF-1 transgenic mice that specifically express human recombinant IGF-1 in skeletal muscle, we test the hypotheses that targeted gene expression of IGF-1 in skeletal muscle enhances motor nerve regeneration after a nerve crush injury. The IGF-1 transgene affects the initiation of the muscle repair process after nerve injury as shown by increased activation of SCA-1positive myogenic stem cells. Increased satellite cell differentiation and proliferation are observed in IGF-1 transgenic mice, shown by increased expression of Cyclin D1, MyoD, and myogenin. Expression of myogenin and nicotinic acetylcholine receptor subunits, initially increased in both wild-type and IGF-1 transgenic mice, are restored to normal levels at a faster rate in IGF-1 transgenic mice, which indicates a rescue of nerve-evoked muscle activity. Expression of the IGF-1 transgene in skeletal muscle results in accelerated recovery of saltatory nerve conduction, increased innervation as detected by neurofilament expression, and faster recovery of muscle mass. These studies demonstrate that local expression of IGF-1 augments the repair of injured nerve and muscle.

  1. Somatotrope GHRH/GH/IGF-1 axis at the crossroads between immunosenescence and frailty.

    PubMed

    Bodart, Gwennaelle; Goffinet, Lindsay; Morrhaye, Gabriel; Farhat, Khalil; de Saint-Hubert, Marie; Debacq-Chainiaux, Florence; Swine, Christian; Geenen, Vincent; Martens, Henri J

    2015-09-01

    Immunosenescence, characterized by complex modifications of immunity with age, could be related to frailty syndrome in elderly individuals, leading to an inadequate response to minimal aggression. Functional decline (i.e., the loss of ability to perform activities of daily living) is related to frailty and decreased physiological reserves and is a frequent outcome of hospitalization in older patients. Links between immunosenescence and frailty have been explored and 20 immunological parameters, including insulin-like growth factor-1 (IGF-1), thymopoeisis, and telomere length, were shown to be affected in elderly patients with functional decline. A strong relationship between IGF-1 and thymic ouput was evidenced. IGF-1, a mediator of growth hormone (GH), was subsequently shown to induce interleukin-7 secretion in cultured primary human thymic epithelial cells. We are exploring the stress hypothesis in which an acute stressor is used as the discriminator of frailty susceptibility. GH can counteract the deleterious immunosuppressive effects of stress-induced steroids. Under nonstress conditions, the immunosenescent system preserves physiological responses, while under stress conditions, the combination of immunosenescence and a defect in the somatotrope axis might lead to functional decline. PMID:26284958

  2. NOV/CCN3 induces adhesion of muscle skeletal cells and cooperates with FGF2 and IGF-1 to promote proliferation and survival.

    PubMed

    Lafont, Jerôme; Thibout, Hélène; Dubois, Catherine; Laurent, Maryvonne; Martinerie, Cécile

    2005-01-01

    During mammalian development, expression of the Nephroblastoma overexpressed gene (NOV/CCN3) is tightly regulated in skeletal muscles. Ex vivo, ectopic expression of NOV blocks myogenic differentiation. NOV also supports endothelial cell adhesion and angiogenesis through interactions with integrins. Integrins play fundamental roles during myogenesis. In this study, we show that NOV mediates adhesion and spreading of myoblasts. Myoblasts adhesion to NOV does not require proteoglycans and is dependent on integrin beta1, whereas spreading involves another RGD-sensitive integrin. The C-Terminal part of NOV as well as full-length is able to support adhesion of myoblasts; in addition, both increase focal-adhesion kinase (FAK) phosphorylation. Furthermore, NOV is an adhesive substrate that, combined with FGF2 or IGF-1, promotes cell specific proliferation and survival, respectively, in a better way than fibronectin. Taken together, these results identify NOV as an adhesion substrate for myoblasts which, in concert with growth factors, could play a role in the physiology of muscle cells.

  3. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells.

    PubMed Central

    Pietrzkowski, Z; Sell, C; Lammers, R; Ullrich, A; Baserga, R

    1992-01-01

    BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells. Images PMID:1324408

  4. Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling.

    PubMed

    Osorio, Fernando G; Soria-Valles, Clara; Santiago-Fernández, Olaya; Bernal, Teresa; Mittelbrunn, María; Colado, Enrique; Rodríguez, Francisco; Bonzon-Kulichenko, Elena; Vázquez, Jesús; Porta-de-la-Riva, Montserrat; Cerón, Julián; Fueyo, Antonio; Li, Juan; Green, Anthony R; Freije, José M P; López-Otín, Carlos

    2016-01-01

    AIRAPL (arsenite-inducible RNA-associated protein-like) is an evolutionarily conserved regulator of cellular proteostasis linked to longevity in nematodes, but its biological function in mammals is unknown. We show herein that AIRAPL-deficient mice develop a fully-penetrant myeloproliferative neoplastic process. Proteomic analysis of AIRAPL-deficient mice revealed that this protein exerts its antineoplastic function through the regulation of the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. We demonstrate that AIRAPL interacts with newly synthesized insulin-related growth factor-1 receptor (IGF1R) polypeptides, promoting their ubiquitination and proteasome-mediated degradation. Accordingly, genetic and pharmacological IGF1R inhibitory strategies prevent the hematological disease found in AIRAPL-deficient mice as well as that in mice carrying the Jak2(V617F) mutation, thereby demonstrating the causal involvement of this pathway in the pathogenesis of myeloproliferative neoplasms. Consistent with its proposed role as a tumor suppressor of myeloid transformation, AIRAPL expression is widely abrogated in human myeloproliferative disorders. Collectively, these findings support the oncogenic relevance of proteostasis deregulation in hematopoietic cells, and they unveil novel therapeutic targets for these frequent hematological neoplasias.

  5. Role of IGF1R+ MSCs in modulating neuroplasticity via CXCR4 cross-interaction

    PubMed Central

    Lee, Hsu-Tung; Chang, Hao-Teng; Lee, Sophie; Lin, Chen-Huan; Fan, Jia-Rong; Lin, Shinn-Zong; Hsu, Chung Y.; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2016-01-01

    To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways. PMID:27586516

  6. Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction.

    PubMed

    Lee, Hsu-Tung; Chang, Hao-Teng; Lee, Sophie; Lin, Chen-Huan; Fan, Jia-Rong; Lin, Shinn-Zong; Hsu, Chung Y; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2016-01-01

    To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)-expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R(+) hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R(+) hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways. PMID:27586516

  7. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases.

    PubMed

    Ayadi, Amina El; Zigmond, Michael J; Smith, Amanda D

    2016-07-01

    Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson's disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 µg) 6 h prior to infusion of 4 µg 6-OHDA into the same site and were euthanized 1 or 4 weeks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 weeks but not at 1 week, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 µg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain whether their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 were maximal 6 h after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 h, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6-24 h post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades. PMID:26894890

  8. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  9. [IGF-1 plasma levels evaluation in prolactinoma].

    PubMed

    Zylberberg, Daniela; Naliato, Erika C O; Sarmet, Alair; Sato, Eduardo; Costa, Fernando S R; Violante, Alice H D

    2006-09-01

    Prolactinomas are the most frequent pituitary tumors and may co-secrete GH (growth hormone). IGF-1 (insulin-like growth factor-1) is the main responsible for GH actions and a parameter for the diagnosis of acromegaly. With the objective of identifying through a IGF-1 levels analysis, in the initial evaluation of prolactinoma patients, the existence of mixed tumors [GH and prolactin (PRL)], we studied 7 men and 27 women, aged between 19 and 72 years, confronting them with the results of basal and glucose stimulated (glucose tolerance test--GTT) GH levels, indicated when GH >0.4 ng/mL or IGF-1 levels were elevated. The prevalence of patients with GH >0.4 ng/mL and elevated IGF-1 was higher than expected; however, after GTT, no patient fulfilled the diagnostic criteria for acromegaly. However, we suggest that, they should be submitted to IGF-1 evaluation, due to the risk of GH co-secretion in prolactinomas. Special attention should be paid to those who present a significant decrease of PRL levels without concomitant tumor size reduction.

  10. Increased IGF-1 in muscle modulates the phenotype of severe SMA mice

    PubMed Central

    Bosch-Marcé, Marta; Wee, Claribel D.; Martinez, Tara L.; Lipkes, Celeste E.; Choe, Dong W.; Kong, Lingling; Van Meerbeke, James P.; Musarò, Antonio; Sumner, Charlotte J.

    2011-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by the mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the SMN protein. Severe SMA mice have abnormal motor function and small, immature myofibers early in development suggesting that SMN protein deficiency results in retarded muscle growth. Insulin-like growth factor 1 (IGF-1) stimulates myoblast proliferation, induces myogenic differentiation and generates myocyte hypertrophy in vitro and in vivo. We hypothesized that increased expression of IGF-1 specifically in skeletal muscle would attenuate disease features of SMAΔ7 mice. SMAΔ7 mice overexpressing a local isoform of IGF-1 (mIGF-1) in muscle showed enlarged myofibers and a 40% increase in median survival compared with mIGF-1-negative SMA littermates (median survival = 14 versus 10 days, respectively, log-rank P = 0.025). Surprisingly, this was not associated with a significant improvement in motor behavior. Treatment of both mIGF-1NEG and mIGF-1POS SMA mice with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in a further extension of survival and improved motor behavior, but the combination of mIGF-1 and TSA treatment was not synergistic. These results show that increased mIGF-1 expression restricted to muscle can modulate the phenotype of SMA mice indicating that therapeutics targeted to muscle alone should not be discounted as potential disease-modifying therapies in SMA. IGF-1 may warrant further investigation in mild SMA animal models and perhaps SMA patients. PMID:21325354

  11. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations.

    PubMed

    Van Landeghem, Laurianne; Santoro, M Agostina; Mah, Amanda T; Krebs, Adrienne E; Dehmer, Jeffrey J; McNaughton, Kirk K; Helmrath, Michael A; Magness, Scott T; Lund, P Kay

    2015-07-01

    Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFP(Low)) and reserve/facultative ISCs (Sox9-EGFP(High)) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFP(Low) ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFP(High) ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFP(High) facultative ISCs but not Sox9-EGFP(Low) actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.

  12. Myeloid Cell-Restricted Insulin/IGF-1 Receptor Deficiency Protects against Skin Inflammation.

    PubMed

    Knuever, Jana; Willenborg, Sebastian; Ding, Xiaolei; Akyüz, Mehmet D; Partridge, Linda; Niessen, Carien M; Brüning, Jens C; Eming, Sabine A

    2015-12-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM. PMID:26519530

  13. Myeloid cell-restricted Insulin/IGF-1 receptor deficiency protects against skin inflammation

    PubMed Central

    Ding, Xiaolei; Akyüz, Mehmet D.; Partridge, Linda; Niessen, Carien M.; Brüning, Jens C.; Eming, Sabine A.

    2016-01-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous Insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. Here we investigated whether myeloid cell-restricted IR/IGF-1R signalling provides a pathophysiological link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the Insulin and IGF-1 receptor in myeloid cells (IR/IGF-1RMKO). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1RMKO mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UVB radiation, IR/IGF-1RMKO mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal pro-inflammatory cytokine expression was similar in control and IR/IGF-1RMKO mice, during the late stage, epidermal cytokine expression was sustained in controls, however virtually abrogated in IR/IGF-1RMKO mice. This distinct kinetic of epidermal cytokine expression was paralleled by pro-inflammatory macrophage activation in controls and a non-inflammatory phenotype in mutants. Collectively, our findings provide evidence for a pro-inflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal crosstalk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling including DM. PMID:26519530

  14. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    PubMed

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions.

  15. MiRNA-323-5p Promotes U373 Cell Apoptosis by Reducing IGF-1R

    PubMed Central

    Yang, Hong-an; Wang, Xiang; Ding, Feng; Pang, Qi

    2015-01-01

    Background MicroRNA regulates mammalian cell growth in terms of its proliferation and apoptosis by controlling the expression of target genes. MiRNA-323-5p plays an important role in regulating cell growth and death within various types of cells. The function of miRNA-323-5p and its possible molecular mechanism in human cerebral glioma U373 cells remains to be further confirmed. The aim of this study was to investigate the regulation function of miRNA-323-5p in human glioma U373 cell growth, proliferation, and apoptosis. Material/Methods We used human cerebral glioma U373 cells as the cell model; utilized liposome technology (transfected by Lipofectamine2000) in human cerebral glioma U373 cells to over-express miRNA-323-5p (microRNA used as control group); and selected MTT assay and flow cytometry to detect cell growth, proliferation, and apoptosis. We used RT-PCR and Western blotting techniques to study the expression levels of target insulin-like growth factor 1 (IGF-1) receptor protein in U373 cells transfected with miRNA-323-5p. We used liposome transfection techniques in human cerebral glioma U373 cells to over-express or processed knockdown of IGF-1R by siRNA, and then transferred with miRNA-323-5p, thereby investigating the treated human cerebral glioma U373 cells apoptosis situations. Results The over-expression of miRNA-323-5p inhibited the growth and proliferation of human cerebral glioma U373 cells and promoted its apoptosis. The over-expression of miRNA-323-5p also reduced the IGF-1R level. After processing the knockdown of IGF-1R and then transfection with miRNA-323-5p, U373 cells had enhanced apoptosis. The over-expression of IGF-1R inhibited the cells apoptosis induced by miRNA-323-5p. Conclusions MiRNA-323-5p inhibited human cerebral glioma U373 cell proliferation and promoted its apoptosis by reducing IGF-1R. PMID:26656446

  16. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  17. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis.

    PubMed

    O'Neill, Brian T; Lauritzen, Hans P M M; Hirshman, Michael F; Smyth, Graham; Goodyear, Laurie J; Kahn, C Ronald

    2015-05-26

    Insulin and insulin-like growth factor 1 (IGF-1) are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R) and insulin receptor (IR). These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis. PMID:25981038

  18. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment

    PubMed Central

    Kavurma, Mary M.; Figg, Nichola; Bennett, Martin R.; Mercer, John; Khachigian, Levon M.; Littlewood, Trevor D.

    2007-01-01

    Apoptosis of VSMCs (vascular smooth-muscle cells) leads to features of atherosclerotic plaque instability. We have demonstrated previously that plaque-derived VSMCs have reduced IGF1 (insulin-like growth factor 1) signalling, resulting from a decrease in the expression of IGF1R (IGF1 receptor) compared with normal aortic VSMCs [Patel, Zhang, Siddle, Soos, Goddard, Weissberg and Bennett (2001) Circ. Res. 88, 895–902]. In the present study, we show that apoptosis induced by oxidative stress is inhibited by ectopic expression of IGF1R. Oxidative stress repressed IGF1R expression at multiple levels, and this was also blocked by mutant p53. Oxidative stress also induced p53 phosphorylation and apoptosis in VSMCs. p53 negatively regulated IGF1R promoter activity and expression and, consistent with this, p53−/− VSMCs demonstrated increased IGF1R expression, both in vitro and in advanced atherosclerotic plaques in vivo. Oxidative-stress-induced interaction of endogenous p53 with TBP (TATA-box-binding protein) was dependent on p53 phosphorylation. Oxidative stress also increased the association of p53 with HDAC1 (histone deacetylase 1). Trichostatin A, a specific HDAC inhibitor, or p300 overexpression relieved the repression of IGF1R following oxidative stress. Furthermore, acetylated histone-4 association with the IGF1R promoter was reduced in cells subjected to oxidative stress. These results suggest that oxidative-stress-induced repression of IGF1R is mediated by the association of phosphorylated p53 with the IGF1R promoter via TBP, and by the subsequent recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF1R promoter–TBP–p53 complex. PMID:17600529

  19. Intraplacental Gene Therapy with Ad-IGF-1 Corrects Naturally Occurring Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Keswani, Sundeep G.; Balaji, Swathi; Katz, Anna B.; King, Alice; Omar, Khaled; Habli, Mounira; Klanke, Charles

    2015-01-01

    Abstract Intrauterine growth restriction (IUGR) due to placental insufficiency is a leading cause of perinatal complications for which there is no effective prenatal therapy. We have previously demonstrated that intraplacental injection of adenovirus-mediated insulin-like growth factor-1 (Ad-IGF-1) corrects fetal weight in a murine IUGR model induced by mesenteric uterine artery branch ligation. This study investigated the effect of intraplacental Ad-IGF-1 gene therapy in a rabbit model of naturally occurring IUGR (runt) due to placental insufficiency, which is similar to the human IUGR condition with onset in the early third trimester, brain sparing, and a reduction in liver weight. Laparotomy was performed on New Zealand White rabbits on day 21 of 30 days of gestation and litters were divided into five groups: Control (first position)+phosphate-buffered saline (PBS), control+Ad-IGF-1, runt (third position)+PBS, runt+Ad-IGF-1, and runt+Ad-LacZ. The effect of IGF-1 gene therapy on fetal, placental, liver, heart, lung, and musculoskeletal weights of the growth-restricted pups was examined. Protein expression after gene transfer was seen along the maternal–fetal placenta interface (n=12) 48 hr after gene therapy. There was minimal gene transfer detected in the pups or maternal organs. At term, compared with the normally grown first-position control, the runted third-position pups demonstrated significantly lower fetal, placental, liver, lung, and musculoskeletal weights. The fetal, liver, and musculoskeletal weights were restored to normal by intraplacental Ad-IGF-1 gene therapy (p<0.01), with no change in the placental weight. Intraplacental gene therapy is a novel strategy for the treatment of IUGR caused by placental insufficiency that takes advantage of an organ that will be discarded at birth. Development of nonviral IGF-1 gene delivery using placenta-specific promoters can potentially minimize toxicity to the mother and fetus and facilitate clinical

  20. The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Booth, F. W.; Spangenburg, E. E.

    2001-01-01

    Approximately 50% of humans older than 85 years have physical frailty due to weak skeletal muscles. This indicates a need for determining mechanisms to combat this problem. A critical cellular factor for postnatal muscle growth is a population of myogenic precursor cells called satellite cells. Given the complex process of sarcopenia, it has been postulated that, at some point in this process, a limited satellite cell proliferation potential could become rate-limiting to the regrowth of old muscles. It is conceivable that if satellite cell proliferative capacity can be maintained or enhanced with advanced age, sarcopenia could potentially be delayed or prevented. Therefore, the purposes of this paper are to describe whether IGF-I can prevent muscular atrophy induced by repeated cycles of hindlimb immobilization, increase the in vitro proliferation in satellite cells from these muscles and, if so, the molecular mechanisms by which IGF-I mediates this increased proliferation. Our results provide evidence that IGF-I can enhance aged muscle regrowth possibly through increased satellite cell proliferation. The results also suggest that IGF-I enhances satellite cell proliferation by decreasing the cell cycle inhibitor, p27Kip1, through the PI3'-K/Akt pathway. These data provide molecular evidence for IGF-I's rescue effect upon aging-associated skeletal muscle atrophy.

  1. Continuous subcutaneous IGF-1 therapy via insulin pump in a patient with Donohue syndrome

    PubMed Central

    Weber, David R.; Stanescu, Diana E.; Semple, Robert; Holland, Cheryl; Magge, Sheela N.

    2015-01-01

    Donohue syndrome (DS) is a severe form of congenital insulin resistance due to mutation(s) in the insulin receptor (INSR) gene. Given the similarities between insulin and insulin-like growth factor 1 (IGF-1) receptors, recombinant human IGF-1 (rhIGF-1) has been used to treat severe insulin resistance due to INSR mutation(s). Traditional subcutaneous therapy may be limited by the shortened IGF-1 half-life in these patients. We report the case of a female with molecularly confirmed DS treated with continuous rhIGF-1 therapy via an insulin pump. With treatment, the patient’s hemoglobin A1c decreased from 9.8% to 8.8%, and her weight increased by 0.8 kg. Development of an ovarian tumor complicated her course, but it was unclear whether this was related to rhIGF-1 therapy. Limited treatment options exist for patients with DS. The use of continuous rhIGF-1 via an insulin pump may be a viable option, although further experience is needed to establish safety and efficacy. PMID:25153212

  2. Can we unlock the potential of IGF-1R inhibition in cancer therapy?

    PubMed Central

    King, Helen; Aleksic, Tamara; Haluska, Paul; Macaulay, Valentine M.

    2014-01-01

    IGF-1R inhibitors arrived in the clinic accompanied by optimism based on preclinical activity of IGF-1R targeting, and recognition that low IGF bioactivity protects from cancer. This was tempered by concerns about toxicity to normal tissue IGF-1R and cross-reactivity with insulin receptor (InsR). In fact, toxicity is not a show-stopper; the key issue is efficacy. While IGF-1R inhibition induces responses as monotherapy in sarcomas and with chemotherapy or targeted agents in common cancers, negative Phase 2/3 trials in unselected patients prompted the cessation of several Pharma programs. Here, we review completed and on-going trials of IGF-1R antibodies, kinase inhibitors and ligand antibodies. We assess candidate bio-markers for patient selection, highlighting the potential predictive value of circulating IGFs/IGFBPs, the need for standardized assays for IGF-1R, and preclinical evidence that variant InsRs mediate resistance to IGF-1R antibodies. We review hypothesis-led and unbiased approaches to evaluate IGF-1R inhibitors with other agents, and stress the need to consider sequencing with chemotherapy. The last few years were a tough time for IGF-1R therapeutics, but also brought progress in understanding IGF biology. Even failed studies include patients who derived benefit; they should be investigated to identify features distinguishing the tumors and host environment of responders from non-responders. We emphasize the importance of incorporating biospecimen collection into trial design, and wording patient consents to allow post hoc analysis of trial material as new data become available. Such information represents the key to unlocking the potential of this approach, to inform the next generation of trials of IGF signalling inhibitors. PMID:25123819

  3. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression

    PubMed Central

    Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.

    2011-01-01

    Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689

  4. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats

    PubMed Central

    Lin, Shuying; Fan, Lir-Wan; Rhodes, Philip G.; Cai, Zhengwei

    2009-01-01

    To determine whether intranasal administration (iN) of recombinant human insulin-like growth factor-1 (rhIGF-1) provides neuroprotection to the neonatal rat brain following cerebral hypoxia-ischemia (HI), two doses of rhIGF-1 (50 μg at a 1 h interval) were infused into the right naris of postnatal day 7 (P7) rat pups with or without a prior HI insult (right common carotid artery ligation, followed by an exposure to 8% oxygen for 2 h). Our result showed that rhIGF-1 administered via iN was successfully delivered into the brain 30 min after the second dose. In the following studies rhIGF-1 was administered to P7 rat pups at 0, 1 or 2 h after HI at the dose described above. Pups in the control group received cerebral HI and vehicle treatment. Pups that underwent sham operation and vehicle treatment served as the sham group. Brain pathological changes were evaluated 2 and 15 d after HI. Our results showed that rhIGF-1 treatment up to 1 hr after cerebral HI effectively reduced brain injury as compared to that in the vehicle-treated rats. Moreover, rhIGF-1 treatment improved neurobehavioral performance (tested on P5-P21) in juvenile rats subjected to HI. Our results further showed that rhIGF-1 inhibited apoptotic cell death, possibly through activating the Akt signal transduction pathway. rhIGF-1 enhanced proliferation of neuronal and oligodendroglial progenitors after cerebral HI as well. These data suggest that iN administration of IGF-1 has the potential to be used for clinical treatment. PMID:19332057

  5. Analysis of the quantitative balance between insulin-like growth factor (IGF)-1 ligand, receptor, and binding protein levels to predict cell sensitivity and therapeutic efficacy

    PubMed Central

    2014-01-01

    Background The insulin-like growth factor (IGF) system impacts cell proliferation and is highly activated in ovarian cancer. While an attractive therapeutic target, the IGF system is complex with two receptors (IGF1R, IGF2R), two ligands (IGF1, IGF2), and at least six high affinity IGF-binding proteins (IGFBPs) that regulate the bioavailability of IGF ligands. We hypothesized that a quantitative balance between these different network components regulated cell response. Results OVCAR5, an immortalized ovarian cancer cell line, were found to be sensitive to IGF1, with the dose of IGF1 (i.e., the total mass of IGF1 available) a more reliable predictor of cell response than ligand concentration. The applied dose of IGF1 was depleted by both cell-secreted IGFBPs and endocytic trafficking, with IGFBPs sequestering up to 90% of the available ligand. To explore how different variables (i.e., IGF1, IGFBPs, and IGF1R levels) impacted cell response, a mass-action steady-state model was developed. Examination of the model revealed that the level of IGF1-IGF1R complexes per cell was directly proportional to the extent of proliferation induced by IGF1. Model analysis suggested, and experimental results confirmed, that IGFBPs present during IGF1 treatment significantly decreased IGF1-mediated proliferation. We utilized this model to assess the efficacy of IGF1 and IGF1R antibodies against different network compositions and determined that IGF1R antibodies were more globally effective due to the receptor-limited state of the network. Conclusions Changes that affect IGF1R occupancy have predictable effects on IGF1-induced proliferation and our model captured these effects. Analysis of this model suggests that IGF1R antibodies will be more effective than IGF1 antibodies, although the difference was minimal in conditions with low levels of IGF1 and IGFBPs. Examining how different components of the IGF system influence cell response will be critical to improve our understanding of

  6. Resveratrol inhibits collagen I synthesis by suppressing IGF-1R activation in intestinal fibroblasts

    PubMed Central

    Li, Ping; Liang, Mei-Lan; Zhu, Ying; Gong, Yao-Yao; Wang, Yun; Heng, Ding; Lin, Lin

    2014-01-01

    AIM: To investigate whether resveratrol (3,4,5-trihydroxy-trans-stilbene) inhibits collagen I synthesis induced by insulin growth factor-1 (IGF-1) in intestinal fibroblasts, and to explore the possible molecular mechanisms. METHODS: Male Sprague-Dawley rats were randomly divided into two groups: a control group and a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis group. After 21 d of TNBS administration, the degree of inflammation and fibrosis in colon was measured by HE staining and Masson’s trichrome staining. Western blotting was used to examine collagen I, IGF-1 and silent information regulator 1 (SIRT1) protein expression in colitis tissues. Western blotting and quantitative real-time polymerase chain reaction were used to characterize collagen I protein and col1a2 mRNA expression in mouse intestinal fibroblasts and CCD-18Co cells treated with IGF-1. A MEK inhibitor (U0126) was used to determine whether IGF-1-induced collagen I expression was mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-dependent mechanism. Effects of resveratrol on collagen I protein level, insulin growth factor-1 receptor (IGF-1R) and ERK1/2 phosphorylation levels were also examined after IGF-1 treatment in fibroblasts. To evaluate whether SIRT1 was necessary for the anti-fibrosis effect of resveratrol, cells were transfected with SIRT1-specific small interfering RNAs, wild-type SIRT1, and deacetylase-inactive mutant SIRT1. RESULTS: Collagen I and IGF-1 expression was increased, and SIRT1 expression was decreased (0.67 ± 0.04 vs 1.05 ± 0.07, P < 0.001) in TNBS-induced colitis compared with the control group. In vitro, IGF-1 could induce collagen I expression, mainly through the ERK 1/2 signal pathway. Resveratrol reduced basal and IGF-1-induced collagen I gene and protein expression in intestinal fibroblasts. Overexpression of wild-type SIRT1, not deacetylase-inactive mutant SIRT1, decreased expression of collagen I induced

  7. IGF-1 Antisense Strategies for Cancer Treatment.

    PubMed

    Pan, Y X; Anthony, D D

    2000-01-01

    The technical approaches to gene therapy for cancer utilize ex vivo and in vivo gene-transfer methodology. This chapter focuses on applicability and use of an ex vivo approach using an IGF-1 antisense RNA strategy of treatment. Insulin-like growth factor 1 (IGF-1) and IGF-2 have pivotal roles in cell proliferation and development (for review, see 1-6). The preponderance of peptide synthesis and activity occur during fetal development, and protein synthesis is downregulated in most mature tissues except for adult liver. Further modulating the activities of these proteins are the levels of their respective cell-surface receptors and ligand-receptor interactions (3,5,6).

  8. IGF-1 (Insulin-Like Growth Factor -1) Test

    MedlinePlus

    ... instead of, surgery to try to decrease GH production and return IGF-1 to a normal or ... regular intervals for years afterward to monitor GH production and to detect tumor recurrence. IGF-1 levels ...

  9. Up-regulation of IGF-1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small molecule inhibition of IGF-1R

    PubMed Central

    Weisberg, Ellen; Nonami, Atsushi; Chen, Zhao; Nelson, Erik; Chen, Yongfei; Liu, Feiyang; Cho, Haeyeon; Zhang, Jianming; Sattler, Martin; Mitsiades, Constantine; Wong, Kwok-Kin; Liu, Qingsong; Gray, Nathanael; Griffin, James D.

    2014-01-01

    Purpose Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than single agents. Experimental Design A chemical screen using RAS-dependent leukemia cells was developed to identify compounds with unanticipated activity in the presence of a MEK inhibitor, and led to identification of inhibitors of IGF-1R. Results were validated using cell-based proliferation assays and apoptosis, cell cycle, and gene knockdown assays, immunoprecipitation and immunoblotting, and a non-invasive in vivo bioluminescence model of acute myeloid leukemia (AML). Results Mechanistically, IGF-1R protein expression/activity was substantially increased in mutant RAS-expressing cells, and suppression of RAS led to decreases in IGF-1R. Synergy between MEK and IGF-1R inhibitors correlated with induction of apoptosis, inhibition of cell cycle progression, and decreased phospho-S6 and phospho-4E-BP1. In vivo, NSG mice tail vein-injected with OCI-AML3-luc+ cells showed significantly lower tumor burden following one week of daily oral administration of 50 mg/kg NVP-AEW541 (IGF-1R inhibitor) combined with 25 mg/kg AZD6244 (MEK inhibitor), as compared to mice treated with either agent alone. Drug combination effects observed in cell-based assays were generalized to additional mutant RAS-positive neoplasms. Conclusions The finding that downstream inhibitors of RAS signaling and IGF-1R inhibitors have synergistic activity warrants further clinical investigation of IGF-1R and RAS signaling inhibition as a potential treatment strategy for RAS-driven malignancies. PMID:25186968

  10. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    SciTech Connect

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini; Germack, Renee; Rosenthal, Nadia; Santini, Maria Paola

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  11. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    PubMed

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 < 1 μmol/L. Cell line expression of IGF-1R, IR, IGF-1, IGF-2, IGFBP3, and IGFBP6 did not correlate with sensitivity to OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. PMID:23515613

  12. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

    PubMed Central

    Wu, Zengbin; Yu, Yang; Niu, Lei; Fei, Aihua; Pan, Shuming

    2016-01-01

    Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3′-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury. PMID:27301852

  13. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease

    PubMed Central

    Ruberte, Jesús; Ayuso, Eduard; Navarro, Marc; Carretero, Ana; Nacher, Víctor; Haurigot, Virginia; George, Mónica; Llombart, Cristina; Casellas, Alba; Costa, Cristina; Bosch, Assumpció; Bosch, Fatima

    2004-01-01

    IGF-1 has been associated with the pathogenesis of diabetic retinopathy, although its role is not fully understood. Here we show that normoglycemic/normoinsulinemic transgenic mice overexpressing IGF-1 in the retina developed most alterations seen in human diabetic eye disease. A paracrine effect of IGF-1 in the retina initiated vascular alterations that progressed from nonproliferative to proliferative retinopathy and retinal detachment. Eyes from 2-month-old transgenic mice showed loss of pericytes and thickening of basement membrane of retinal capillaries. In mice 6 months and older, venule dilatation, intraretinal microvascular abnormalities, and neovascularization of the retina and vitreous cavity were observed. Neovascularization was consistent with increased IGF-1 induction of VEGF expression in retinal glial cells. In addition, IGF-1 accumulated in aqueous humor, which may have caused rubeosis iridis and subsequently adhesions between the cornea and iris that hampered aqueous humor drainage and led to neovascular glaucoma. Furthermore, all transgenic mice developed cataracts. These findings suggest a role of IGF-1 in the development of ocular complications in long-term diabetes. Thus, these transgenic mice may be used to study the mechanisms that lead to diabetes eye disease and constitute an appropriate model in which to assay new therapies. PMID:15085194

  14. Biological activation of zirconia surfaces by chemical modification with IGF-1.

    PubMed

    Ito, Daisuke; Kado, Takashi; Nagano-Takebe, Futami; Hidaka, Tatsuhiro; Endo, Kazuhiko; Furuichi, Yasushi

    2015-11-01

    The purpose of this study was to improve the adhesion and extension of human gingival epithelial cells (HGECs) to the yttria-stabilized zirconia polycrystal (Y-TZP) surfaces by immobilization of insulin-like growth factor 1 (IGF-1). Surface analyses by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) showed that IGF-1 was successfully immobilized on the Y-TZP surfaces. There was no significant difference between the number of cells attached to the IGF-1-immobilized Y-TZP surfaces and on the as-polished Y-TZP surfaces either at 3 or 72 h. However, IGF-1-immobilized Y-TZP surfaces yielded a significantly higher expression of integrin β4 mRNA and laminin-5 mRNA, and enhanced adhesion strength of HGECs after 72 h of incubation. There was no difference between the amount of adhered Streptococcus gordonii (S. gordonii) found on the IGF-1-immobilized Y-TZP surfaces and on the as-polished Y-TZP surfaces. These results suggested that the IGF-1-immobilized Y-TZP surfaces developed using the method reported herein enhanced the adhesion and extension of HGECs to the Y-TZP surfaces without enhancing S. gordonii adhesion.

  15. New insights into IGF-1 signaling in the heart.

    PubMed

    Troncoso, Rodrigo; Ibarra, Cristián; Vicencio, Jose Miguel; Jaimovich, Enrique; Lavandero, Sergio

    2014-03-01

    Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies.

  16. New insights into IGF-1 signaling in the heart.

    PubMed

    Troncoso, Rodrigo; Ibarra, Cristián; Vicencio, Jose Miguel; Jaimovich, Enrique; Lavandero, Sergio

    2014-03-01

    Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies. PMID:24380833

  17. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia

    PubMed Central

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC. PMID:27487118

  18. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1)

    PubMed Central

    Xiang, Yungai; Song, Yuxia; Li, Yan; Zhao, Dongmei; Ma, Liying; Tan, Li

    2016-01-01

    Background Polycystic ovarian syndrome (PCOS) is a common metabolic disorder in premenopausal woman, characterized by hyperandrogenism, oligoanovulation, and insulin resistance. microRNAs play pivotal roles in regulating key factors of PCOS. However, relevant research remains limited. This study aimed to reveal the role and potential mechanism of miR-483 in PCOS. Material/Methods PCOS patients (n=20) were recruited for detecting miR-483 expression in lesion and normal ovary cortex. Human granulosa-like tumor cell line KGN was used to alter miR-483 expression by cell transfection. Cell viability and proliferation were analyzed by MTT assay and colony formation assay, and cell cycle was detected by flow cytometry. Interaction between miR-483 and IGF1 was verified by luciferase reporter assay. KGN cells were further treated by insulin to investigate the relationship between miR-483 and insulin. Results miR-483 was significantly down-regulated in lesion ovary cortex from PCOS patients (P<0.001). In KGN cells, overexpression of miR-483 inhibited cell viability and proliferation, and induced cell cycle arrest. miR-483 also inhibited CCNB1, CCND1, and CDK2. miR-483 sponge induced the opposite effects. miR-483 directly targeted IGF1 3′UTR, and IGF1 promoted KGN cell proliferation and reversed miR-483-inhibited cell viability. Insulin treatment in KGN cells inhibited miR-483, and promoted IGF1 and cell proliferation. Conclusions These results suggest that miR-483 is a PCOS suppressor inhibiting cell proliferation, possibly via targeting IGF1, and that it is involved in insulin-induced cell proliferation. miR-483 is a potential alternative for diagnosing and treating PCOS. PMID:27662007

  19. Anabolic effects of IGF-1 signaling on the skeleton

    PubMed Central

    Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.

    2013-01-01

    This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729

  20. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC

    PubMed Central

    Cao, Hongxin; Dong, Wei; Qu, Xiao; Shen, Hongchang; Xu, Jun; Zhu, Linhai; Liu, Qi; Du, Jiajun

    2016-01-01

    The insulin-like growth factor (IGF) signaling system plays a critical role in tumorigenesis, highlighting the potential of targeting IGF-1R as an anti-cancer therapy. Although multiple anti-IGF-1R monoclonal antibody (mAb) drugs have been developed, challenges remain in the validation of the therapeutic effects and understanding the molecular mechanism of these mAbs. Herein, we conducted a study to validate the effect of Figitumumab (CP), an anti-IGF-1R mAb, in a panel of non-small cell lung cancer (NSCLC) cell lines. We found all tested cell lines were sensitive to CP, and CP could block IGF-1R and the downstream PI3K/AKT pathway activation. Unexpectedly, we found CP could activate ERK signaling pathway in IGF-1R kinase independent manner, which we further verified was mainly mediated by β-arrestin2. We also investigated the anti-tumor effect of metformin alone as well as its combination with CP to target NSCLC. Metformin could target IGF-1R signaling pathway by attenuating PI3K/AKT and MEK/ERK signaling pathways and down-regulating IGF-1R. Finally, we found that combining metformin with CP could further induce IGF-1R down-regulation and was more effective to target NSCLC cells. Our data suggests the combining of metformin with CP has additive therapeutic value against NSCLC. PMID:27488947

  1. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    SciTech Connect

    Dai, Guodong; Peng, Tao; Zhou, Xuhong; Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi; Yuan, Yulin

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  2. Dual treatments targeting IGF-1R, PI3K, mTORC or MEK synergize to inhibit cell growth, induce apoptosis, and arrest cell cycle at G1 phase in MDA-MB-231 cell line.

    PubMed

    Ayub, Ayunadirah; Yip, Wai Kien; Seow, Heng Fong

    2015-10-01

    Triple-negative breast cancers (TNBCs) are aggressive cancers that do not benefit from hormonal therapy or therapies that target HER2 receptors. Insulin-like growth factor 1 receptor (IGF-1R), which has been shown to be overexpressed in breast cancer, activates numerous downstream kinases that associate with cell proliferation and survival. This study compared the effects caused by dual treatments targeting IGF-1R, PI3K, mTORC, or MEK with those by single treatments in a TNBC cell line, MDA-MB-231. We used small-molecule kinase inhibitors, namely, NVP-AEW541, NVP-BKM120, KU0063794, and PD0325901 to target IGF-1R, PI3K, mTORC, and MEK, respectively. Combination treatments of PD0325901 with NVP-AEW541, NVP-BKM120 or KU0063794 and NVP-AEW541 with KU0063794 demonstrated a significant synergistic growth inhibition. These dual treatments increased apoptosis and/or cell cycle arrest at G0/G1 phase and enhanced the inhibition of phosphorylation of Akt or downstream molecules of mTORC1, as compared to the single treatments. Our study suggests that targeting multiple kinases in IGF-1R signaling may be a promising therapeutic approach.

  3. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    PubMed Central

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-01-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility. PMID:24633053

  4. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  5. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury

    PubMed Central

    Song, Yu; Pimentel, Corrin; Walters, Katherine; Boller, Lauren; Ghiasvand, Shabnam; Liu, Jing; Staley, Kevin J.; Berdichevsky, Yevgeny

    2016-01-01

    Exogenous Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective in animal models of brain injury, and has been considered as a potential therapeutic. Akt-mTOR and MAPK are downstream targets of IGF-1 signaling that are activated after brain injury. However, both brain injury and mTOR are linked to epilepsy, raising the possibility that IGF-1 may be epileptogenic. Here, we considered the role of IGF-1 in development of epilepsy after brain injury, using the organotypic hippocampal culture model of post-traumatic epileptogenesis. We found that IGF-1 was neuroprotective within a few days of injury but that long-term IGF-1 treatment was pro-epileptic. Pro-epileptic effects of IGF-1 were mediated by Akt-mTOR signaling. We also found that IGF-1 – mediated increase in epileptic activity led to neurotoxicity. The dualistic nature of effects of IGF-1 treatment demonstrates that anabolic enhancement through IGF-1 activation of mTOR cascade can be beneficial or harmful depending on the stage of the disease. Our findings suggest that epilepsy risk may need to be considered in the design of neuroprotective treatments for brain injury. PMID:27561791

  6. A Microsatellite Polymorphism in IGF1 Gene Promoter and Timing of Natural Menopause in Caucasian Women

    PubMed Central

    Kaczmarek, Maria; Pacholska-Bogalska, Joanna; Kwaśniewski, Wojciech; Kotarski, Jan; Halerz-Nowakowska, Barbara; Goździka-Józefiak, Anna

    2015-01-01

    Background: Genes involved in the IGF-1 aging pathways in the human ovary can be considered strong candidates for predictors of the natural menopause timing. This study evaluates the association between a cytosine-adenine (CA) microsatellite polymorphism in the IGF1 gene promoter P1 and age at natural menopause. Methods: Genomic DNA was extracted from the peripheral blood, PCR was performed using primers designed to amplify the polymorphic (CA)n repeat of the human IGF1 gene, an allele dose effect for the most common (CA)19 repeats allele, Cox proportional hazard regression models and the Kaplan-Meier cumulative survivorship method with the log-rank test were used to determine statistical significance of studied associations in a sample of 257 Polish women aged 40-58 years. Results: Crude Cox proportional hazard regression analysis confirmed the association between the IGF1 gene polymorphism and the menopause timing (p=0.038). This relationship remained statistically significant after controlling for other menopause confounders in multivariate modelling. Out of the input variables, the (CA)n polymorphism in the IGF1 gene promoter, age at menarche and smoking status were independent covariates of the natural menopause timing (χ2 =12.845; df=3; p=0.034). The onset of menopause at a younger age was likely associated with the IGF1 genotype variant not carrying the (CA)19 repeats allele, menarche before the age of 12 and a current cigarette smoker status (HR=1.6). Conclusion: This study provides evidence that a common cytosine-adenine (CA) microsatellite repeat polymorphism in the P1 promoter region of the IGF1 gene is an independent predictive factor for age at natural menopause in Caucasian women also after adjusting for other menopause covariates. PMID:25552916

  7. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism

    PubMed Central

    Haramoto, Yoshikazu; Takahashi, Shuji; Oshima, Tomomi; Onuma, Yasuko; Ito, Yuzuru; Asashima, Makoto

    2015-01-01

    Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism. PMID:26112133

  8. Does the GH/IGF-1 axis contribute to skeletal sexual dimorphism? Evidence from mouse studies.

    PubMed

    Liu, Zhongbo; Mohan, Subburaman; Yakar, Shoshana

    2016-04-01

    The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD. PMID:26843472

  9. Assessment of age-related changes in heritability and IGF-1 gene effect on circulating IGF-1 levels.

    PubMed

    Franco, Liran; Williams, Frances M K; Trofimov, Svetlana; Malkin, Ida; Surdulescu, Gabriela; Spector, Timothy; Livshits, Gregory

    2014-06-01

    It is well established that insulin-like growth factor 1 (IGF-1) circulating levels correlate with age and that heritability and influence of IGF-1 gene variation on IGF-1 levels also well-known. However, the influence of age on the genetic factors determining IGF-1 levels is not clear. In this study, we compared heritability estimates between younger (<52 years) and older (>52 years) twins and tested: (a) whether single nucleotide polymorphisms (SNPs) lying within 100 kbp of the IGF-1 gene are also associated with IGF-1 variation and (b) whether associated SNPs show interaction with age on IGF-1 levels. To achieve these aims, we measured plasma levels of IGF-1 and genotyped 18 SNPs with minor allele frequency >0.1 in a large sample, 4,471 UK female twins. Heritability explained 42 % of IGF-1 variation adjusted for age and in unadjusted sample was independent of age. Ten SNPs in four haploblocks showed significant association with IGF-1 levels, with p = 0.01-0.0005. The most distal SNP was located up to 90 kbp from the IGF-1 gene. When their age-dependent effects were examined, one SNP, rs855203, showed significant (p = 0.0009) age-dependent interaction effect on IGF-1 levels variation. This is the first study to test the age × genotype interaction in IGF-1 levels. The genomic region marked by rs855203 may consequently be of significance for further molecular and pharmacogenetic research, in particular in advanced age. PMID:24493200

  10. FOXO1 is Regulated by Insulin and IGF1 in Pituitary Gonadotropes

    PubMed Central

    Skarra, Danalea V.; Thackray, Varykina G.

    2015-01-01

    The FOXO1 transcription factor is important for multiple aspects of reproductive function. We previously reported that FOXO1 functions as a repressor of gonadotropin hormone synthesis, but how FOXO1 is regulated in pituitary gonadotropes is unknown. The growth factors, insulin and insulin-like growth factor I (IGF1) function as key regulators of cell proliferation, metabolism and apoptosis in multiple cell types through the PI3K/AKT signaling pathway. In this study, we found that insulin and IGF1 signaling in gonadotropes induced FOXO1 phosphorylation through the PI3K/AKT pathway in immortalized and primary cells, resulting in FOXO1 relocation from the nucleus to the cytoplasm. Furthermore, insulin administration in vivo induced phosphorylation of FOXO1 and AKT in the pituitary. Thus, insulin and IGF1 act as negative regulators of FOXO1 activity and may serve to fine-tune gonadotropin expression. PMID:25676570

  11. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro.

  12. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  13. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma

    PubMed Central

    Jeng, Yung-Ming; Lu, Meng-Yao; Yang, Yung-Li; Jou, Shiann-Tarng; Lin, Dong-Tsamn; Chang, Hsiu-Hao; Lin, Kai-Hsin; Hsu, Wen-Ming; Huang, Min-Chuan

    2014-01-01

    Aberrant expression of the simple mucin-type carbohydrate antigens such as Tn antigen is associated with malignant transformation and cancer progression. N-acetylgalactosaminyltransferase 2 (GALNT2), one of the enzymes that mediate the initial step of mucin-type O-glycosylation, is responsible for forming Tn antigen. GALNT2 is expressed differentially in nervous tissues during mouse embryogenesis; however, the role of GALNT2 in neuroblastoma (NB) remains unclear. Here we showed that increased GALNT2 expression evaluated using immunohistochemistry in NB tumor tissues correlated well with the histological grade of differentiation as well as younger age at diagnosis, early clinical stage, primary tumor originated from the extra-adrenal site, favorable INPC histology, and MYCN non-amplification. Multivariate analysis showed that GALNT2 expression is an independent prognostic factor for better survival for NB patients. GALNT2 overexpression suppressed IGF-1-induced cell growth, migration, and invasion of NB cells, whereas GALNT2 knockdown enhanced these NB phenotypes. Mechanistic investigations demonstrated that GALNT2 overexpression modified O-glycans on IGF-1R, which suppressed IGF-1-triggered IGF-1R dimerization and subsequent downstream signaling events. Conversely, these properties were reversed by GALNT2 knockdown in NB cells. Our findings suggest that GALNT2 regulates malignant phenotypes of NB cells through the IGF-1R signaling pathway, suggesting a critical role for GALNT2 in the pathogenesis of NB. PMID:25362349

  14. Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro.

    PubMed

    Shen, Zanming; Martens, Holger; Schweigel-Röntgen, Monika

    2012-04-01

    An energy-rich diet leads to enhanced ruminal Na(+) absorption, which is associated with elevated plasma insulin-like growth factor 1 (IGF-1) levels and an increased number of IGF-1 receptors in rumen papillae. This study examined the in vitro effect of IGF-1 on Na(+) transport across the rumen epithelium of hay-fed sheep, in which the IGF-1 concentration in plasma is lower than in concentrate-fed animals. At concentrations ranging from 20 to 100 μg l(-1), serosal LR3-IGF-1, a recombinant analogue of IGF-1, rapidly (within 30 min) stimulated the mucosal-to-serosal Na(+) flux (J(ms)Na) and consequently the net Na(+) flux (J(net)Na). Compared with controls, J(net)Na increased by about 60% (P < 0.05) following the serosal application of LR3-IGF-1 (20 μg l(-1)). The IGF-1-induced increment of J(ms)Na and J(net)Na was inhibited by mucosal amiloride (1 mmol l(-1)). Neither IGF-1 nor amiloride altered tissue conductance or the short-circuit current of the isolated rumen epithelium. These data support the assumption that the stimulating effect of serosally applied IGF-1 on Na(+) transport across the rumen epithelium is mediated by Na(+)-H(+) exchange (NHE). A further study was performed with cultured rumen epithelial cells and a fluorescent probe (BCECF) to estimate the rate of pH(i) recovery after acid loading. The pH(i) of isolated rumen epithelial cells was 6.43 ± 0.15 after butyrate loading and recovered by 0.26 ± 0.02 pH units (15 min)(-1). Application of LR3-IGF-1 (20 μg l(-1)) significantly increased the rate of pH(i) recovery to 0.33 ± 0.02 pH units (15 min)(-1). Amiloride administration reduced the recovery rate in both control and IGF-1-stimulated cells. These results show, for the first time, that an acute effect of IGF-1 on Na(+) absorption across rumen epithelium results from increased NHE activity. Insulin-like growth factor 1 is thus important for the fast functional adaptation of ruminal Na(+) transport via NHE.

  15. Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor

    SciTech Connect

    Wu,J.; Li, W.; Craddock, B.; Foreman, K.; Mulvihill, M.; Ji, Q.; Miller, W.; Hubbard, S.

    2008-01-01

    The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK and the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.

  16. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    PubMed

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production.

  17. Both IGF1R and INSR Knockdown Exert Antitumorigenic Effects in Prostate Cancer In Vitro and In Vivo.

    PubMed

    Ofer, Philipp; Heidegger, Isabel; Eder, Iris E; Schöpf, Bernd; Neuwirt, Hannes; Geley, Stephan; Klocker, Helmut; Massoner, Petra

    2015-12-01

    The IGF network with its main receptors IGF receptor 1 (IGF1R) and insulin receptor (INSR) is of major importance for cancer initiation and progression. To date, clinical studies targeting this network were disappointing and call for thorough analysis of the IGF network in cancer models. We highlight the oncogenic effects controlled by IGF1R and INSR in prostate cancer cells and show similarities as well as differences after receptor knockdown (KD). In PC3 prostate cancer cells stably transduced with inducible short hairpin RNAs, targeting IGF1R or INSR attenuated cell growth and proliferation ultimately driving cells into apoptosis. IGF1R KD triggered rapid and strong antiproliferative and proapoptotic responses, whereas these effects were less pronounced and delayed after INSR KD. Down-regulation of the antiapoptotic proteins myeloid cell leukemia-1 and survivin was observed in both KDs, whereas IGF1R KD also attenuated expression of prosurvival proteins B cell lymphoma-2 and B cell lymphoma-xL. Receptor KD induced cell death involved autophagy in particular upon IGF1R KD; however, no difference in mitochondrial energy metabolism was observed. In a mouse xenograft model, induction of IGF1R or INSR KD after tumor establishment eradicated most of the tumors. After 20 days of receptor KD, tumor cells were found only in 1/14 IGF1R and 3/14 INSR KD tumor remnants. Collectively, our data underline the oncogenic functions of IGF1R and INSR in prostate cancer namely growth, proliferation, and survival in vitro as well as in vivo and identify myeloid cell leukemia-1 and survivin as important mediators of inhibitory and apoptotic effects.

  18. Both IGF1R and INSR Knockdown Exert Antitumorigenic Effects in Prostate Cancer In Vitro and In Vivo

    PubMed Central

    Ofer, Philipp; Heidegger, Isabel; Eder, Iris E.; Schöpf, Bernd; Neuwirt, Hannes; Geley, Stephan; Massoner, Petra

    2015-01-01

    The IGF network with its main receptors IGF receptor 1 (IGF1R) and insulin receptor (INSR) is of major importance for cancer initiation and progression. To date, clinical studies targeting this network were disappointing and call for thorough analysis of the IGF network in cancer models. We highlight the oncogenic effects controlled by IGF1R and INSR in prostate cancer cells and show similarities as well as differences after receptor knockdown (KD). In PC3 prostate cancer cells stably transduced with inducible short hairpin RNAs, targeting IGF1R or INSR attenuated cell growth and proliferation ultimately driving cells into apoptosis. IGF1R KD triggered rapid and strong antiproliferative and proapoptotic responses, whereas these effects were less pronounced and delayed after INSR KD. Down-regulation of the antiapoptotic proteins myeloid cell leukemia-1 and survivin was observed in both KDs, whereas IGF1R KD also attenuated expression of prosurvival proteins B cell lymphoma-2 and B cell lymphoma-xL. Receptor KD induced cell death involved autophagy in particular upon IGF1R KD; however, no difference in mitochondrial energy metabolism was observed. In a mouse xenograft model, induction of IGF1R or INSR KD after tumor establishment eradicated most of the tumors. After 20 days of receptor KD, tumor cells were found only in 1/14 IGF1R and 3/14 INSR KD tumor remnants. Collectively, our data underline the oncogenic functions of IGF1R and INSR in prostate cancer namely growth, proliferation, and survival in vitro as well as in vivo and identify myeloid cell leukemia-1 and survivin as important mediators of inhibitory and apoptotic effects. PMID:26452103

  19. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine

    PubMed Central

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J.; Datta, Kamal

    2016-01-01

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as 56Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of 56Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of 56Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract. PMID:27558773

  20. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal

    2016-01-01

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract. PMID:27558773

  1. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal

    2016-08-25

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.

  2. Long-pulse gastric electrical stimulation protects interstitial cells of Cajal in diabetic rats via IGF-1 signaling pathway

    PubMed Central

    Li, Hai; Chen, Yan; Liu, Shi; Hou, Xiao-Hua

    2016-01-01

    AIM: To investigate the effects of different parameters of gastric electrical stimulation (GES) on interstitial cells of Cajal (ICCs) and changes in the insulin-like growth factor 1 (IGF-1) signal pathway in streptozotocin-induced diabetic rats. METHODS: Male rats were randomized into control, diabetic (DM), diabetic with sham GES (DM + SGES), diabetic with GES1 (5.5 cpm, 100 ms, 4 mA) (DM + GES1), diabetic with GES2 (5.5 cpm, 300 ms, 4 mA) (DM + GES2) and diabetic with GES3 (5.5 cpm, 550 ms, 2 mA) (DM + GES3) groups. The expression levels of c-kit, M-SCF and IGF-1 receptors were evaluated in the gastric antrum using Western blot analysis. The distribution of ICCs was observed using immunolabeling for c-kit, while smooth muscle cells and IGF-1 receptors were identified using α-SMA and IGF-1R antibodies. Serum level of IGF-1 was tested using enzyme-linked immunosorbent assay. RESULTS: Gastric emptying was delayed in the DM group but improved in all GES groups, especially in the GES2 group. The expression levels of c-kit, M-SCF and IGF-1R were decreased in the DM group but increased in all GES groups. More ICCs (c-kit+) and smooth muscle cells (α-SMA+/IGF-1R+) were observed in all GES groups than in the DM group. The average level of IGF-1 in the DM group was markedly decreased, but it was up-regulated in all GES groups, especially in the GES2 group. CONCLUSION: The results suggest that long-pulse GES promotes the regeneration of ICCs. The IGF-1 signaling pathway might be involved in the mechanism underlying this process, which results in improved gastric emptying. PMID:27340351

  3. TM4SF4 overexpression in radiation-resistant lung carcinoma cells activates IGF1R via elevation of IGF1.

    PubMed

    Choi, Soo-Im; Kim, Seo-Yeon; Lee, Jaeha; Cho, Eun-Wie; Kim, In-Gyu

    2014-10-30

    Transmembrane 4 L six family member 4 (TM4SF4) is a member of the tetraspanin L6 domain family. Other members of this family, TM4SF1 (also known as L6-Ag) and TM4SF5, have been shown to be upregulated in multiple tumors and involved in epithelial-to-mesenchymal transition and cell migration. However, unlike its homologs, little is known about TM4SF4. Here, we show that TM4SF4 was highly expressed in radiation-resistant lung adenocarcinoma cells, such as A549 and Calu-3 cells, and its expression activated cell growth, migration, and invasion. Overexpression of TM4SF4 in A549 cells increased the activation of PI3K, AKT, and NF-kappaB and the expression of PTEN. IGF1R was clearly activated by overexpression of TM4SF4, although EGFR was also slightly activated. TM4SF4 expression was correlated with the increased expression of IGF1, consequently resulting in IGF1R activation. Tumorigenic activity of TM4SF4 in lung adenocarcinoma cells was also demonstrated by xenograft assay; however, this activity was almost completely suppressed by treatment with anti-TM4SF4 antibody. Our results suggest that TM4SF4 overexpression in lung carcinoma cells results in resistance to radiotherapy via IGF1-induced IGF1R activation and blocking the activity of TM4SF4 using specific antibody can be a promising therapeutics against TM4SF4-overexpressing lung adenocarcinoma. PMID:25344917

  4. TM4SF4 overexpression in radiation-resistant lung carcinoma cells activates IGF1R via elevation of IGF1

    PubMed Central

    Choi, Soo-Im; Kim, Seo-Yeon; Lee, Jaeha; Cho, Eun-Wie; Kim, In-Gyu

    2014-01-01

    Transmembrane 4 L six family member 4 (TM4SF4) is a member of the tetraspanin L6 domain family. Other members of this family, TM4SF1 (also known as L6-Ag) and TM4SF5, have been shown to be upregulated in multiple tumors and involved in epithelial-to-mesenchymal transition and cell migration. However, unlike its homologs, little is known about TM4SF4. Here, we show that TM4SF4 was highly expressed in radiation-resistant lung adenocarcinoma cells, such as A549 and Calu-3 cells, and its expression activated cell growth, migration, and invasion. Overexpression of TM4SF4 in A549 cells increased the activation of PI3K, AKT, and NF-kappaB and the expression of PTEN. IGF1R was clearly activated by overexpression of TM4SF4, although EGFR was also slightly activated. TM4SF4 expression was correlated with the increased expression of IGF1, consequently resulting in IGF1R activation. Tumorigenic activity of TM4SF4 in lung adenocarcinoma cells was also demonstrated by xenograft assay; however, this activity was almost completely suppressed by treatment with anti-TM4SF4 antibody. Our results suggest that TM4SF4 overexpression in lung carcinoma cells results in resistance to radiotherapy via IGF1-induced IGF1R activation and blocking the activity of TM4SF4 using specific antibody can be a promising therapeutics against TM4SF4-overexpressing lung adenocarcinoma. PMID:25344917

  5. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    PubMed Central

    Rodríguez-de la Rosa, Lourdes; Murillo-Cuesta, Silvia; Vaquero-Villanueva, Laura; Hurlé, Juan M.; Varela-Nieto, Isabel; Valverde, Ángela M.

    2016-01-01

    ABSTRACT Insulin-like growth factor-1 (IGF-1) is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−), present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1) protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL), inner plexiform layer (IPL) and inner nuclear layer (INL), and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  6. Autophagy resolves early retinal inflammation in Igf1-deficient mice.

    PubMed

    Arroba, Ana I; Rodríguez-de la Rosa, Lourdes; Murillo-Cuesta, Silvia; Vaquero-Villanueva, Laura; Hurlé, Juan M; Varela-Nieto, Isabel; Valverde, Ángela M

    2016-09-01

    Insulin-like growth factor-1 (IGF-1) is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1(-/-)), present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1(-/-) mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1(-/-) mice compared to those in age-matched Igf1(+/+) controls. In 6-month-old Igf1(-/-) retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1) protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1(-/-) mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1(+/+) controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1(+/+) and Igf1(-/-) mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL), inner plexiform layer (IPL) and inner nuclear layer (INL), and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1(-/-) mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1(-/-) mice. In conclusion, this study provides new evidence in

  7. Insulin-like growth factor receptor-1 (IGF-1R) expression in normal breast, proliferative breast lesions, and breast carcinoma.

    PubMed

    Bhargava, Rohit; Beriwal, Sushil; McManus, Kim; Dabbs, David J

    2011-05-01

    Insulin-like growth factor receptor 1 (IGF-1R) is a receptor protein tyrosine kinase that is activated by ligand (IGF-1) binding and promotes mitogenic, metastatic, and antiapoptotic phenotypes of breast cancer. There is a dearth of studies analyzing IGF-1R expression by immunohistochemistry in breast carcinoma. This biomarker analysis will be important for pharmacologic interventions that target the IGF system. IGF-1R expression pattern was first analyzed in normal breast tissue and a variety of breast lesions (71 diagnoses from 35 patients), followed by analysis in 191 consecutive invasive breast carcinomas. Furthermore, 86 carcinomas treated with neoadjuvant chemotherapy were also analyzed. The carcinomas were classified using immunohistochemical surrogate (to molecular classes) markers-estrogen receptors (ER), progesterone receptors, and human epidermal growth factor receptor 2. IGF-1R is expressed at moderate level in normal breast tissue which was considered as normal expression. Overexpression and lower expression were defined as higher than normal or lower than normal expression, respectively. Among the benign and noninvasive breast lesions, IGF-1R expression was slightly increased in lesions that are hormonally driven (such as atypical ductal hyperplasia and columnar cells changes) whereas it was significantly reduced in ER-negative lesions (such as apocrine metaplasia). Similarly, in 191 consecutive breast carcinomas, IGF-1R overexpression was predominantly seen in ER-positive+ tumors. The tumor group that consistently showed reduced expression was the ERBB2 group (ER negative/progesterone receptors negative/human epidermal growth factor receptor 2 positive). The expression was somewhat heterogeneous in the triple-negative group. IGF-1R expression was not predictive of pathologic complete response or tumor volume reduction in ER-negative tumors, but reduced IGF-1R was associated with pathologic complete response and significant tumor volume reduction in

  8. The Association between IGF-1 Polymorphisms, IGF-1 Serum Levels, and Cognitive Functions in Healthy Adults: The Amsterdam Growth and Health Longitudinal Study

    PubMed Central

    Licht, Carmilla M. M.; van Turenhout, Lise C.; Deijen, Jan Berend; Koppes, Lando L. J.; van Mechelen, Willem; Twisk, Jos W. R.; Drent, Madeleine L.

    2014-01-01

    Several studies have demonstrated an association between polymorphisms in the insulin-like growth factor-1 (IGF-1) gene and IGF-1 serum levels. IGF-1 levels have been associated with cognitive functioning in older persons and growth hormone deficient patients. The present study investigates whether IGF-1 polymorphisms, IGF-1 levels, and cognition are interconnected in healthy adults. Data of 277 participants (mean age: 42.4 years) of the Amsterdam Growth and Health Longitudinal Study on IGF-1 promoter polymorphisms, IGF-1 serum level, spatial working memory (SWM), paired associate learning (PAL), and IQ tests were analyzed. (M)ANOVAs were applied to confirm the associations between IGF-1 polymorphisms and IGF-1 levels and between IGF-1 levels and cognition. Three groups were distinguished based on specific IGF-1 polymorphism alleles: a homozygote 192 bp/192 bp genotype, a heterozygote 192 bp/x genotype, and a noncarrier x/x genotype. Although different IGF-1 levels were found for the three genotypes, performance on all cognitive tasks and IQ measures was similar. Despite the associations between IGF-1 polymorphisms and IGF-1 levels, no association was found between cognition and IGF-1 levels. It seems that IGF-1 does not play a role in the cognitive performance of healthy middle-aged adults. Possible, IGF-1 fulfills a more developmental and protective role in cognition which becomes apparent during childhood, old-age, or disease. PMID:25114679

  9. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    SciTech Connect

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  10. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    PubMed

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts.

  11. Treatment with insulin-like growth factor 1 receptor inhibitor reverses hypoxia-induced epithelial-mesenchymal transition in non-small cell lung cancer.

    PubMed

    Nurwidya, Fariz; Takahashi, Fumiyuki; Kobayashi, Isao; Murakami, Akiko; Kato, Motoyasu; Minakata, Kunihiko; Nara, Takeshi; Hashimoto, Muneaki; Yagishita, Shigehiro; Baskoro, Hario; Hidayat, Moulid; Shimada, Naoko; Takahashi, Kazuhisa

    2014-12-12

    Insulin-like growth factor 1 receptor (IGF1R) is expressed in many types of solid tumors including non-small cell lung cancer (NSCLC), and enhanced activation of IGF1R is thought to reflect cancer progression. Epithelial-mesenchymal transition (EMT) has been established as one of the mechanisms responsible for cancer progression and metastasis, and microenvironment conditions, such as hypoxia, have been shown to induce EMT. The purposes of this study were to address the role of IGF1R activation in hypoxia-induced EMT in NSCLC and to determine whether inhibition of IGF1R might reverse hypoxia-induced EMT. Human NSCLC cell lines A549 and HCC2935 were exposed to hypoxia to investigate the expression of EMT-related genes and phenotypes. Gene expression analysis was performed by quantitative real-time PCR and cell phenotypes were studied by morphology assessment, scratch wound assay, and immunofluorescence. Hypoxia-exposed cells exhibited a spindle-shaped morphology with increased cell motility reminiscent of EMT, and demonstrated the loss of E-cadherin and increased expression of fibronectin and vimentin. Hypoxia also led to increased expression of IGF1, IGF binding protein-3 (IGFBP3), and IGF1R, but not transforming growth factor β1 (TGFβ1). Inhibition of hypoxia-inducible factor 1α (HIF1α) with YC-1 abrogated activation of IGF1R, and reduced IGF1 and IGFBP3 expression in hypoxic cells. Furthermore, inhibition of IGF1R using AEW541 in hypoxic condition restored E-cadherin expression, and reduced expression of fibronectin and vimentin. Finally, IGF1 stimulation of normoxic cells induced EMT. Our findings indicated that hypoxia induced EMT in NSCLC cells through activation of IGF1R, and that IGF1R inhibition reversed these phenomena. These results suggest a potential role for targeting IGF1R in the prevention of hypoxia-induced cancer progression and metastasis mediated by EMT.

  12. Growth hormone (GH)-transgenic insulin-like growth factor 1 (IGF1)-deficient mice allow dissociation of excess GH and IGF1 effects on glomerular and tubular growth.

    PubMed

    Blutke, Andreas; Schneider, Marlon R; Wolf, Eckhard; Wanke, Rüdiger

    2016-03-01

    Growth hormone (GH)-transgenic mice with permanently elevated systemic levels of GH and insulin-like growth factor 1 (IGF1) reproducibly develop renal and glomerular hypertrophy and subsequent progressive glomerulosclerosis, finally leading to terminal renal failure. To dissociate IGF1-dependent and -independent effects of GH excess on renal growth and lesion development in vivo, the kidneys of 75 days old IGF1-deficient (I(-/-)) and of IGF1-deficient GH-transgenic mice (I(-/-)/G), as well as of GH-transgenic (G) and nontransgenic wild-type control mice (I(+/+)) were examined by quantitative stereological and functional analyses. Both G and I(-/-)/G mice developed glomerular hypertrophy, hyperplasia of glomerular mesangial and endothelial cells, podocyte hypertrophy and foot process effacement, albuminuria, and glomerulosclerosis. However, I(-/-)/G mice exhibited less severe glomerular alterations, as compared to G mice. Compared to I(+/+) mice, G mice exhibited renal hypertrophy with a significant increase in the number without a change in the size of proximal tubular epithelial (PTE) cells. In contrast, I(-/-)/G mice did not display significant PTE cell hyperplasia, as compared to I(-/-) mice. These findings indicate that GH excess stimulates glomerular growth and induces lesions progressing to glomerulosclerosis in the absence of IGF1. In contrast, IGF1 represents an important mediator of GH-dependent proximal tubular growth in GH-transgenic mice.

  13. Epigenetic reprogramming of IGF1 and leptin genes by serum deprivation in multipotential mesenchymal stromal cells.

    PubMed

    Sanchez, Cecilia; Oskowitz, Adam; Pochampally, Radhika R

    2009-02-01

    Recent studies on the therapeutic effect of multipotential mesenchymal stem cells (MSCs) in various models of injury have shown that paracrine factors secreted by MSCs are responsible for tissue repair with very little engraftment. In this study we tested the hypothesis that MSCs under stress undergo epigenetic modifications that direct secretion of paracrine factors responsible for tissue repair. Microarray assays of MSCs that had been deprived of serum (SD-MSCs), to induce stress, demonstrated an increase in the expression of several angiogenic, prosurvival, and antiapoptotic factors, including insulin-like growth factor 1 (IGF1) and leptin. Real-time polymerase chain reaction assays demonstrated a >200-fold increase in the expression of IGF1 and leptin in SD-MSCs. Chromatin immunoprecipitation of SD-MSCs revealed histone tail modifications consistent with transcriptional activation of IGF1 and leptin promoters in a reversible manner. To identify the functional significance of the epigenetic changes in stressed MSCs, we tested the prosurvival properties of SD-MSCs and the ability of conditioned medium from SD-MSCs to enhance survival of apoptotic cancer cells. First, we showed that SD-MSCs are more resistant to oxidative damage than MSCs using alkaline comet assays. Next, we demonstrated that conditioned medium from SD-MSCs decreased staurosporin-induced cell death in the KHOS osteosarcoma cell line, and that this effect was partially reversed by immunodepletion of IGF1 or leptin from the conditioned medium. In conclusion, we demonstrate that serum deprivation induces epigenetic changes in MSCs to upregulate the expression of the proangiogenic and antiapoptotic factors IGF1 and leptin. PMID:19038795

  14. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

    PubMed

    Heidegger, Isabel; Kern, Johann; Ofer, Philipp; Klocker, Helmut; Massoner, Petra

    2014-05-15

    We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.

  15. The human IGF1R IRES likely operates through a Shine-Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop.

    PubMed

    Meng, Zheng; Jackson, Nateka L; Shcherbakov, Oleg D; Choi, Hyoungsoo; Blume, Scott W

    2010-05-15

    IGF1R is a proto-oncogene with potent mitogenic and antiapoptotic activities, and its expression must be tightly regulated to maintain normal cellular and tissue homeostasis. We previously demonstrated that translation of the human IGF1R mRNA is controlled by an internal ribosome entry site (IRES), and delimited the core functional IRES to a 90-nucleotide segment of the 5'-untranslated region positioned immediately upstream of the initiation codon. Here we have analyzed the sequence elements that contribute to the function of the core IRES. The Stem2/Loop2 sequence of the IRES exhibits near-perfect Watson-Crick complementarity to the G961 loop (helix 23b) of the 18S rRNA, which is positioned within the E-site on the platform of the 40S ribosomal subunit. Mutations that disrupt this complementarity have a negative impact on regulatory protein binding and dramatically decrease IRES activity, suggesting that the IGF1R IRES may recruit the 40S ribosome by a eukaryotic equivalent of the Shine-Dalgarno (mRNA-rRNA base-pairing) interaction. The homopolymeric Loop3 sequence of the IRES modulates accessibility and limits the rate of translation initiation mediated through the IRES. Two functionally distinct allelic forms of the Loop3 poly(U)-tract are prevalent in the human population, and it is conceivable that germ-line or somatic variations in this sequence could predispose individuals to development of malignancy, or provide a selectable growth advantage for tumor cells.

  16. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-12-06

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1-treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.

  17. Insulinlike Growth Factor (IGF)-1 Administration Ameliorates Disease Manifestations in a Mouse Model of Spinal and Bulbar Muscular Atrophy

    PubMed Central

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-01-01

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1–treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease. PMID:22952056

  18. Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure.

    PubMed

    Ising, Christina; Koehler, Sybille; Brähler, Sebastian; Merkwirth, Carsten; Höhne, Martin; Baris, Olivier R; Hagmann, Henning; Kann, Martin; Fabretti, Francesca; Dafinger, Claudia; Bloch, Wilhelm; Schermer, Bernhard; Linkermann, Andreas; Brüning, Jens C; Kurschat, Christine E; Müller, Roman-Ulrich; Wiesner, Rudolf J; Langer, Thomas; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2015-02-02

    Mitochondrial dysfunction and alterations in energy metabolism have been implicated in a variety of human diseases. Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Here, we provide a link between PHB2 deficiency and hyperactive insulin/IGF-1 signaling. Deletion of PHB2 in podocytes of mice, terminally differentiated cells at the kidney filtration barrier, caused progressive proteinuria, kidney failure, and death of the animals and resulted in hyperphosphorylation of S6 ribosomal protein (S6RP), a known mediator of the mTOR signaling pathway. Inhibition of the insulin/IGF-1 signaling system through genetic deletion of the insulin receptor alone or in combination with the IGF-1 receptor or treatment with rapamycin prevented hyperphosphorylation of S6RP without affecting the mitochondrial structural defect, alleviated renal disease, and delayed the onset of kidney failure in PHB2-deficient animals. Evidently, perturbation of insulin/IGF-1 receptor signaling contributes to tissue damage in mitochondrial disease, which may allow therapeutic intervention against a wide spectrum of diseases.

  19. IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination

    PubMed Central

    Chitnis, Meenali M.; Lodhia, Kunal A.; Aleksic, Tamara; Gao, Shan; Protheroe, Andrew S.; Macaulay, Valentine M.

    2014-01-01

    Inhibition of type 1 insulin-like growth factor receptor (IGF-1R) enhances tumor cell sensitivity to ionizing radiation. It is not clear how this effect is mediated, nor whether this approach can be applied effectively in the clinic. We previously showed that IGF-1R depletion delays repair of radiation-induced DNA double-strand breaks (DSBs), unlikely to be explained entirely by reduction in homologous recombination (HR) repair. The current study tested the hypothesis that IGF-1R inhibition induces a repair defect that involves non-homologous end-joining (NHEJ). IGF-1R inhibitor AZ12253801 blocked cell survival and radiosensitized IGF-1R over-expressing murine fibroblasts but not isogenic IGF-1R null cells, supporting specificity for IGF-1R. IGF-1R inhibition enhanced radiosensitivity in DU145, PC3 and 22Rv1 prostate cancer cells, comparable to effects of ATM inhibition. AZ12253801-treated DU145 cells showed delayed resolution of γH2AX foci, apparent within 1hr of irradiation and persisting for 24hr. In contrast, IGF-1R inhibition did not influence radiosensitivity or γH2AX focus resolution in LNCaP-LN3 cells, suggesting that radiosensitization tracks with the ability of IGF-1R to influence DSB repair. To differentiate effects on repair from growth and cell survival responses, we tested AZ12253801 in DU145 cells at sub-SF50 concentrations that had no early (≤48hr) effects on cell cycle distribution or apoptosis induction. Irradiated cultures contained abnormal mitoses, and after 5 days IGF-1R inhibited cells showed enhanced radiation-induced polyploidy and nuclear fragmentation, consistent with the consequences of entry into mitosis with incompletely repaired DNA. AZ12253801 radiosensitized DNA-PK proficient but not DNA-PK deficient glioblastoma cells, and did not radiosensitize DNA-PK-inhibited DU145 cells, suggesting that in the context of DSB repair, IGF-1R functions in the same pathway as DNA-PK. Finally, IGF-1R inhibition attenuated repair by both NHEJ and

  20. Human Axonal Survival of Motor Neuron (a-SMN) Protein Stimulates Axon Growth, Cell Motility, C-C Motif Ligand 2 (CCL2), and Insulin-like Growth Factor-1 (IGF1) Production*

    PubMed Central

    Locatelli, Denise; Terao, Mineko; Fratelli, Maddalena; Zanetti, Adriana; Kurosaki, Mami; Lupi, Monica; Barzago, Maria Monica; Uggetti, Andrea; Capra, Silvia; D'Errico, Paolo; Battaglia, Giorgio S.; Garattini, Enrico

    2012-01-01

    Spinal muscular atrophy is a fatal genetic disease of motoneurons due to loss of full-length survival of motor neuron protein, the main product of the disease gene SMN1. Axonal SMN (a-SMN) is an alternatively spliced isoform of SMN1, generated by retention of intron 3. To study a-SMN function, we generated cellular clones for the expression of the protein in mouse motoneuron-like NSC34 cells. The model was instrumental in providing evidence that a-SMN decreases cell growth and plays an important role in the processes of axon growth and cellular motility. In our conditions, low levels of a-SMN expression were sufficient to trigger the observed biological effects, which were not modified by further increasing the amounts of the expressed protein. Differential transcriptome analysis led to the identification of novel a-SMN-regulated factors, i.e. the transcripts coding for the two chemokines, C-C motif ligands 2 and 7 (CCL2 and CCL7), as well as the neuronal and myotrophic factor, insulin-like growth factor-1 (IGF1). a-SMN-dependent induction of CCL2 and IGF1 mRNAs resulted in increased intracellular levels and secretion of the respective protein products. Induction of CCL2 contributes to the a-SMN effects, mediating part of the action on axon growth and random cell motility, as indicated by chemokine knockdown and re-addition studies. Our results shed new light on a-SMN function and the underlying molecular mechanisms. The data provide a rational framework to understand the role of a-SMN deficiency in the etiopathogenesis of spinal muscular atrophy. PMID:22669976

  1. HRD1-Mediated IGF-1R Ubiquitination Contributes to Renal Protection of Resveratrol in db/db Mice.

    PubMed

    Yan, Caifeng; Xu, Weifeng; Huang, Yujie; Li, Min; Shen, Yachen; You, Hui; Liang, Xiubin

    2016-06-01

    Many studies have provided evidence to demonstrate the beneficial renal effects of resveratrol (RESV) due to its antioxidant character and its capacity for activation of surtuin 1. However, the molecular mechanisms underlying the protective role of RESV against kidney injury are still incompletely understood. The present study used Lepr db/db (db/db) and Lepr db/m (db/m) mice as models to evaluate the effect of RESV on diabetic nephropathy (DN). RESV reduced proteinuria and attenuated the progress of renal fibrosis in db/db mice. Treatment with RESV markedly attenuated the diabetes-induced changes in renal superoxide dismutase copper/zinc, superoxide dismutase manganese, catalase, and malonydialdehyde as well as the renal expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), α-smooth muscle actin (α-SMA), and E-cadherin in db/db mice. The kidney expression of the IGF-1 receptor (IGF-1R) was increased in db/db mice, but the expression of 3-hydroxy-3-methylglutaryl reductase degradation (HRD1), a ubiquitin E3 ligase, was significantly decreased in the DN model. RESV treatment dramatically decreased IGF-1R and increased HRD1 expressions, consistent with data obtained with HKC-8 cells. HRD1 physically interacted with IGF-1R in HKC-8 cells and liquid chromatography and tandem mass spectrometry (LC-MS/MS) data supported the concept that IGF-1R is one of the HRD1 substrates. HRD1 promoted the IGF-1R ubiquitination for degradation in HKC-8 cells, and the down-regulation of HRD1 reversed the protective effects of RESV in HKC-8 cells. In summary, we have demonstrated that RESV reduces proteinuria and attenuates the progression of renal fibrosis in db/db mice. These protective effects of RESV on DN were associated with the up-regulation of HRD1, induced by RESV, and the promotion of IGF-1R ubiquitination and degradation.

  2. Role and Importance of IGF-1 in Traumatic Brain Injuries

    PubMed Central

    Mangiola, Annunziato; Vigo, Vera; Anile, Carmelo; De Bonis, Pasquale; Marziali, Giammaria; Lofrese, Giorgio

    2015-01-01

    It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients. PMID:26417600

  3. Intranasal IGF-1 Reduced Rat Pup Germinal Matrix Hemorrhage.

    PubMed

    Lekic, Tim; Flores, Jerry; Klebe, Damon; Doycheva, Desislava; Rolland, William B; Tang, Jiping; Zhang, John H

    2016-01-01

    Germinal matrix hemorrhage (GMH) is the most devastating neurological problem of premature infants. Current treatment strategies are ineffective and brain injury is unpreventable. Insulin-like growth factor 1 (IGF-1) is an endogenous protein shown to have multiple neuroprotective properties. We therefore hypothesized that IGF-1 would reduce brain injury after GMH. Neonatal rats (P7 age) received stereotactic collagenase into the right ganglionic eminence. The following groups were studied: (1) sham, (2) GMH + vehicle, (3) GMH + intranasal IGF-1. Three days later, the animals were evaluated using the righting-reflex (early neurobehavior), Evans blue dye leakage (blood-brain barrier (BBB) permeability), brain water content (edema), and hemoglobin assay (extent of bleeding). Three weeks later, juvenile rats were tested using a water maze (delayed neurobehavior), and then were sacrificed on day 28 for assessment of hydrocephalus (ventricular size). Intranasal IGF-1 treated animals had improved neurological function, and amelioration of BBB permeability, edema, and re-bleeding. IGF-1 may play a part in protective brain signaling following GMH, and our observed protective effect may offer new promise for treatment targeting this vulnerable patient population. PMID:26463950

  4. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene.

    PubMed

    McKnight, Robert A; Yost, Christian C; Yu, Xing; Wiedmeier, Julia E; Callaway, Christopher W; Brown, Ashley S; Lane, Robert H; Fung, Camille M

    2015-12-01

    Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.

  5. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene.

    PubMed

    McKnight, Robert A; Yost, Christian C; Yu, Xing; Wiedmeier, Julia E; Callaway, Christopher W; Brown, Ashley S; Lane, Robert H; Fung, Camille M

    2015-12-01

    Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state. PMID:26487705

  6. Conjugated linoleic acids attenuate FSH- and IGF1-stimulated cell proliferation; IGF1, GATA4, and aromatase expression; and estradiol-17β production in buffalo granulosa cells involving PPARγ, PTEN, and PI3K/Akt.

    PubMed

    Sharma, Isha; Singh, Dheer

    2012-09-01

    Conjugated linoleic acid (CLA) has drawn much interest in last two decades in the area ranging from anticancer activity to obesity. A number of research papers have been published recently with regard to CLA's additional biological functions as reproductive benefits. However, not much is known how this mixture of isomeric compounds mediates its beneficial effects particularly on fertility. In this study, we demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis). Experiments were performed in primary serum-free buffalo granulosa cell culture, where cells were incubated with CLA in combination with FSH (25 ng/ml) and IGF1 (50  ng/ml). Results showed that 10 μM CLA inhibits FSH- and IGF1-induced granulosa cell proliferation; aromatase, GATA4, and IGF1 mRNA; and estradiol-17β production. Western blot analysis of total cell lysates revealed that CLA intervenes the IGF1 signaling by decreasing p-Akt. In addition, CLA was found to upregulate peroxisome proliferator-activated receptor-gamma (PPARG) and phosphatase and tensin homolog (PTEN) level in granulosa cells. Further study using PPARG- and PTEN-specific inhibitors supports the potential role of CLA in granulosa cell proliferation and steroidogenesis involving PPARG, PTEN, and PI3K/Akt pathway.

  7. Igf1 and Pacap rescue cerebellar granule neurons from apoptosis via a common transcriptional program

    PubMed Central

    Maino, B; D’Agata, V; Severini, C; Ciotti, MT; Calissano, P; Copani, A; Chang, Y-C; DeLisi, C; Cavallaro, S

    2015-01-01

    A shift of the delicate balance between apoptosis and survival-inducing signals determines the fate of neurons during the development of the central nervous system and its homeostasis throughout adulthood. Both pathways, promoting or protecting from apoptosis, trigger a transcriptional program. We conducted whole-genome expression profiling to decipher the transcriptional regulatory elements controlling the apoptotic/survival switch in cerebellar granule neurons following the induction of apoptosis by serum and potassium deprivation or their rescue by either insulin-like growth factor-1 (Igf1) or pituitary adenylyl cyclase-activating polypeptide (Pacap). Although depending on different upstream signaling pathways, the survival effects of Igf1 and Pacap converged into common transcriptional cascades, thus suggesting the existence of a general transcriptional program underlying neuronal survival. PMID:26941962

  8. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  9. CCAAT-enhancer binding protein (C/EBP) β regulates insulin-like growth factor (IGF) 1 expression in porcine liver during prenatal and postnatal development.

    PubMed

    Tang, Yiting; Xiong, Kai; Shen, Ming; Mu, Yulian; Li, Kui; Liu, Honglin

    2015-03-01

    IGF1 expression regulation attracts numerous interests because of its important role during mammalian growth and development. Domestic pig can be used as a valuable animal model to investigate human development since they share the high similarity in general physiology and metabolism. In this study, we examined the expression pattern of IGF1 and found it associated with liver C/EBP β expression pattern in porcine liver during embryonic and postnatal development. Both IGF1 and C/EBP β expression in liver maintained at low levels before birth and increased after birth. Correspondingly, C/EBP β demonstrated high binding activity to two sites at IGF1 promoter region in liver after birth. Additionally, IGF1 expression can be activated by C/EBP β overexpression in porcine primary hepatocytes. These results indicated that C/EBP β can activate IGF1 expression after birth by binding to IGF1 promoter. Our study may contribute to a better understanding of mammalian development and bring a novel anti-aging pathway in human.

  10. Evaluation of IGF1R and phosphorylated IGF1R as targets in HER2-positive breast cancer cell lines and tumours.

    PubMed

    Browne, Brigid C; Eustace, Alex J; Kennedy, Susan; O'Brien, Neil A; Pedersen, Kasper; McDermott, Martina S J; Larkin, Annemarie; Ballot, Jo; Mahgoub, Thamir; Sclafani, Francesco; Madden, Stephen; Kennedy, John; Duffy, Michael J; Crown, John; O'Donovan, Norma

    2012-12-01

    Insulin-like growth factor-1 receptor (IGF1R) signalling is implicated in resistance to trastuzumab. However, the benefit of co-targeting HER2 and IGF1R has not been extensively studied, and the relationship between activated IGF1R and clinical response to trastuzumab has not been reported. This study aimed to evaluate the combination of trastuzumab with IGF1R tyrosine kinase inhibitors (TKIs) in a panel of HER2-positive breast cancer cell lines, and to examine the relationship between IGF1R expression and activation and response to trastuzumab in HER2-positive breast cancer patients. The anti-proliferative effects of trastuzumab combined with IGF1R TKIs BMS-536924 or NVP-AEW541 were measured in nine HER2-positive cell lines. IGF1R and phosphorylated IGF1R/insulin receptor (pIGF1R/IR) were measured by immunohistochemistry in 160 tumour samples from trastuzumab-treated patients (ICORG 06-22). The HER2-positive cell lines displayed varying sensitivity to IGF1R TKIs alone (IC(50)s: 0.7 to >10 μM). However, when combined with trastuzumab, a significantly enhanced effect was observed in five cell lines treated with BMS-536924, and three with NVP-AEW541. While IGF1R levels correlated with reduced response to NVP-AEW541 alone, neither IGF1R nor pIGF1R were predictive of response to BMS-536924 or NVP-AEW541 in combination with trastuzumab. Low HER2 levels correlated with response to BMS-536924 in combination with trastuzumab. Akt levels correlated with improved response to trastuzumab and NVP-AEW541 (P = 0.039). Cytoplasmic IGF1R staining was observed in all tumours, membrane IGF1R was detected in 13.8 %, and pIGF1R/IR was detected in 48.8 %. Although membrane IGF1R staining was associated with larger tumour size (P = 0.041), and lower tumour grade (P = 0.024), no association between IGF1R or pIGF1R/IR and patient survival was observed. In conclusion, while neither IGF1R expression nor activation was predictive of response to trastuzumab, these pre-clinical data provide

  11. Measuring mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal muscle.

    PubMed

    Del Prete, Zaccaria; Musarò, Antonio; Rizzuto, Emanuele

    2008-07-01

    Contractile properties of fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles were measured in MLC/mIgf-1 transgenic and wild-type mice. MLC/mIgf-1 mice express the local factor mIgf-1 under the transcriptional control of MLC promoter, selectively activated in fast-twitch muscle fibers. Isolated muscles were studied in vitro in both isometric and isotonic conditions. We used a rapid "ad hoc" testing protocol that measured, in a single procedure, contraction time, tetanic force, Hill's (F-v) curve, power curve and isotonic muscle fatigue. Transgenic soleus muscles did not differ from wild-type with regard to any measured variable. In contrast, transgenic EDL muscles displayed a hypertrophic phenotype, with a mass increase of 29.2% compared to wild-type. Absolute tetanic force increased by 21.5% and absolute maximum power by 34.1%. However, when normalized to muscle cross-sectional area and mass, specific force and normalized power were the same in transgenic and wild-type EDL muscles, revealing that mIgf-1 expression induces a functional hypertrophy without altering fibrotic tissue accumulation. Isotonic fatigue behavior did not differ between transgenic and wild-type muscles, suggesting that the ability of mIgf-1 transgenic muscle to generate a considerable higher absolute power did not affect its resistance to fatigue. PMID:18415017

  12. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    SciTech Connect

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  13. Possible role of the Ec peptide of IGF-1Ec in cartilage repair

    PubMed Central

    Armakolas, Nikolaos; Dimakakos, Andreas; Armakolas, Athanasios; Antonopoulos, Athanasios; Koutsilieris, Michael

    2016-01-01

    The Ec peptide (PEc) of insulin-like growth factor 1 Ec (IGF-1Ec) induces human mesenchymal stem cell (hMSC) mobilization and activates extracellular signal-regulated kinase 1/2 (ERK 1/2) in various cells. The aim of the present study was to examine the effects of PEc on the mobilization and differentiation of hMSCs, as well as the possibility of its implementation in combination with transforming growth factor β1 (TGF-β1) for cartilage repair. The effects of the exogenous administration of PEc and TGF-β1, alone and in combination, on hMSCs were assessed using a trypan blue assay, reverse transcription-quantitative polymerase chain reaction, western blot analysis, Alcian blue staining, wound healing assays and migration/invasion assays. It was determined that PEc is involved in the differentiation process of hMSCs towards hyaline cartilage. Treatment of hMSCs with either PEc, TGF-β1 or both, demonstrated comparable cartilage matrix deposition. Furthermore, treatment with PEc in combination with TGF-β1 was associated with a significant increase in hMSC mobilization when compared with treatment with TGF-β1 or PEc alone (P<0.05). Thus, PEc appears to facilitate in vitro hMSC mobilization and differentiation towards chondrocytes, enhancing the role of TGF-β1. PMID:27571686

  14. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung

    PubMed Central

    Galvis, Laura A.; Holik, Aliaksei Z.; Short, Kieran M.; Pasquet, Julie; Lun, Aaron T. L.; Blewitt, Marnie E.; Smyth, Ian M.; Ritchie, Matthew E.; Asselin-Labat, Marie-Liesse

    2015-01-01

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  15. DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins.

    PubMed

    Tsai, Pei-Chien; Van Dongen, Jenny; Tan, Qihua; Willemsen, Gonneke; Christiansen, Lene; Boomsma, Dorret I; Spector, Tim D; Valdes, Ana M; Bell, Jordana T

    2015-12-01

    Low birth weight (LBW) can have an impact on health outcomes in later life, especially in relation to pre-disposition to metabolic disease. Several studies suggest that LBW resulting from restricted intrauterine growth leaves a footprint on DNA methylation in utero, and this influence likely persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg12562232, p = 2.62 × 10(-8)), was significantly associated with birth weight discordance at a genome-wide false-discovery rate (FDR) of 0.05. We pursued replication in three additional independent datasets of birth weight discordant MZ pairs and observed the same direction of association, but the results were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent of genetic effects.

  16. Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect.

    PubMed

    Klokov, D; Leskov, K; Araki, S; Zou, Y; Goetz, E M; Luo, X; Willson, D; Boothman, D A

    2013-01-24

    Inadvertent mammalian tissue exposures to low doses of ionizing radiation (IR) after radiation accidents, remediation of radioactive-contaminated areas, space travel or a dirty bomb represent an interesting trauma to an organism. Possible low-dose IR-induced bystander effects could impact our evaluation of human health effects, as cells within tissue are not equally damaged after doses of IR ≤10 cGy. To understand tissue responses after low IR doses, we generated a reporter system using the human clusterin promoter fused to firefly luciferase (hCLUp-Luc). Secretory clusterin (sCLU), an extracellular molecular chaperone, induced by low doses of cytotoxic agents, clears cell debris. Low-dose IR (≥2 cGy) exposure induced hCLUp-Luc activity with peak levels at 96 h, consistent with endogenous sCLU levels. As doses increased (≥1 Gy), sCLU induction amplitudes increased and time-to-peak response decreased. sCLU expression was stimulated by insulin-like growth factor-1, but suppressed by p53. Responses in transgenic hCLUp-Luc reporter mice after low IR doses showed that specific tissues (that is, colon, spleen, mammary, thymus and bone marrow) of female mice induced hCLUp-Luc activity more than male mice after whole body (≥10 cGy) irradiation. Tissue-specific, non-linear dose- and time-responses of hCLUp-Luc and endogenous sCLU levels were noted. Colon maintained homeostatic balance after 10 cGy. Bone marrow responded with delayed, but prolonged and elevated expression. Intraperitoneal administration of α-transforming growth factor (TGF)β1 (1D11), but not control (13C4) antibodies, immediately following IR exposure abrogated CLU induction responses. Induction in vivo also correlated with Smad signaling by activated TGFβ1 after IR. Mechanistically, media with elevated sCLU levels suppressed signaling, blocked apoptosis and increased survival of TGFβ1-exposed tumor or normal cells. Thus, sCLU is a pro-survival bystander factor that abrogates TGFβ1

  17. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance. PMID:26655273

  18. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance.

  19. Combination of Anti-IGF-1R Antibody A12 and Ionizing Radiation in Upper Respiratory Tract Cancers

    SciTech Connect

    Riesterer, Oliver; Yang Qiuan; Raju, Uma; Torres, Mylin; Molkentine, David; Patel, Nalini; Valdecanas, David; Milas, Luka; Ang, K. Kian

    2011-03-15

    Purpose: The IGF1/IGF-1R signaling pathway has emerged as a potential determinant of radiation resistance in human cancer cell lines. Therefore we investigated the potency of monoclonal anti-IGF-1R antibody, A12, to enhance radiation response in upper respiratory tract cancers. Methods and Materials: Cell lines were assessed for IGF-1R expression and IGF1-dependent response to A12 or radiation using viability and clonogenic cancer cell survival assays. In vivo response of tumor xenografts to 10 or 20 Gy and A12 (0.25-2 mg x 3) was assessed using growth delay assays. Combined treatment effects were also analyzed by immunohistochemical assays for tumor cell proliferation, apoptosis, necrosis, and vascular endothelial growth factor expression at Days 1 and 6 after start of treatment. Results: A12 enhanced the radiosensitivity of HN5 and FaDu head-and-neck carcinomas in vitro (p < 0.05) and amplified the radioresponse of FaDu xenografts in a dose-dependent manner, with enhancement factors ranging from 1.2 to 1.8 (p < 0.01). Immunohistochemical analysis of FaDu xenografts demonstrated that A12 inhibited tumor cell proliferation (p < 0.05) and vascular endothelial growth factor expression. When A12 was combined with radiation, this resulted in apoptosis induction that persisted until 6 days from the start of treatment and in increased necrosis at Day 1 (p < 0.01, respectively). Combined treatment with A12 and radiation resulted in additive or subadditive growth delay in H460 or A549 xenografts, respectively. Conclusions: The results of this study strengthen the evidence for investigating how anti-IGF-1R strategies can be integrated into radiation and radiation-cetuximab regimen in the treatment of cancer of the upper aerodigestive tract cancers.

  20. Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Huhtala, Tuulia; Rytkönen, Jussi; Jalanko, Anu; Kaasalainen, Martti; Salonen, Jarno; Riikonen, Raili; Närvänen, Ale

    2012-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of childhood characterized by selective death of cortical neurons. Insulin-like growth factor 1 (IGF-1) is important in embryonic development and is considered as a potential therapeutic agent for several disorders of peripheral and central nervous systems. In circulation IGF-1 is mainly bound to its carrier protein IGFBP-3. As a therapeutic agent IGF-1 has shown to be more active as free than complexed form. However, this may cause side effects during the prolonged treatment. In addition to IGFBP-3 the bioavailability of IGF-1 can be modulated by using mesoporous silicon nanoparticles (NPs) which are optimal carriers for sustained release of unstable peptide hormones like IGF-1. In this study we compared biodistribution, pharmacokinetics, and bioavailability of radiolabeled free IGF-1, IGF-1/IGFBP-3, and IGF-1/NP complexes in a Cln1-/- knockout mouse model. IGF-1/NP was mainly accumulated in liver and spleen in all studied time points, whereas minor and more constant amounts were measured in other organs compared to free IGF-1 or IGF-1/IGFBP-3. Also concentration of IGF-1/NP in blood was relatively high and stable during studied time points suggesting continuous release of IGF-1 from the particles. PMID:22778966

  1. Interaction between Angiotensin II and Insulin/IGF-1 Exerted a Synergistic Stimulatory Effect on ERK1/2 Activation in Adrenocortical Carcinoma H295R Cells

    PubMed Central

    Tong, An-li; Wang, Fen; Cui, Yun-ying; Li, Chun-yan; Li, Yu-xiu

    2016-01-01

    The cross talk between angiotensin II (Ang II) and insulin has been described mainly in cardiovascular cells, hepatocytes, adipocytes, and so forth, and to date no such cross talk was reported in adrenal. In this study, we examined the interaction between Ang II and insulin/IGF-1 in ERK and AKT signaling pathways and expression of steroidogenic enzymes in H295R cells. Compared to the control, 100 nM Ang II increased phospho-ERK1/2 approximately 3-fold. Insulin (100 nM) or IGF-1 (10 nM) alone raised phospho-ERK1/2 1.8- and 1.5-fold, respectively, while, after pretreatment with 100 nM Ang II for 30 min, insulin (100 nM) or IGF-1 (10 nM) elevated phospho-ERK1/2 level 8- and 7-fold, respectively. The synergistic effect of Ang II and insulin/IGF-1 on ERK1/2 activation was inhibited by selective AT1 receptor blocker, PKC inhibitor, and MEK1/2 inhibitor. Ang II marginally suppressed AKT activation under the basal condition, while it had no effect on phospho-AKT induced by insulin/IGF-1. Ang II significantly stimulated mRNA expression of CYP11B1 and CYP11B2, and such stimulatory effects were enhanced when cells were cotreated with insulin/IGF-1. We are led to conclude that Ang II in combination with insulin/IGF-1 had an evident synergistic stimulatory effect on ERK1/2 activation in H295R cells and the effect may be responsible for the enhanced steroid hormone production induced by Ang II plus insulin/IGF-1. PMID:27293433

  2. Insulin-like growth factor-1 delays Fas-mediated apoptosis in human neutrophils through the phosphatidylinositol-3 kinase pathway.

    PubMed

    Himpe, Eddy; Degaillier, Céline; Coppens, Astrid; Kooijman, Ron

    2008-10-01

    Apoptosis of human neutrophils is a crucial mechanism for the resolution of inflammation. We previously showed that insulin-like growth factor-1 (IGF1) delays spontaneous neutrophil apoptosis without influencing the secretion of cytokines by these cells. In the present study, we further addressed the role of IGF1 in regulating neutrophil survival in the presence of other factors present during inflammation, and the mechanism involved in delaying apoptosis. We show that IGF1 delays neutrophil apoptosis triggered by the agonistic anti-Fas antibody CH11 and that the effect of IGF1 is comparable in magnitude to that of the acknowledged anti-apoptotic cytokines interferon-gamma (IFNG) and granulocyte-macrophage colony-stimulating factor (GM-CSF; now known as CSF2). Furthermore, IGF1 exerted additional effects on cell survival in the presence of these cytokines. IGF1 did not affect Fas expression or activation by anti-Fas of caspase-8, but inhibited the depolarization of the mitochondrial membrane. Inhibitor studies indicate that the phosphatidylinositol-3 kinase (PI3K) pathway, but not the MEK-ERK pathway, mediates the effects of IGF1. However, in contrast to CSF2, IGF1 did not induce phosphorylation and translocation to the membrane of AKT, the canonical downstream target of PI3K. We therefore speculate that other downstream targets of PI3K are involved in the delay of neutrophil apoptosis by IGF1, possibly through stabilization of the mitochondrial membrane.

  3. Regulation of IGF -1 signaling by microRNAs

    PubMed Central

    Jung, Hwa Jin; Suh, Yousin

    2014-01-01

    The insulin-like growth factor 1 (IGF-1) signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ∼22 nucleotide length, microRNAs (miRNAs), have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately downregulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases. PMID:25628647

  4. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    PubMed

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression.

  5. IGF-1R/epithelial-to-mesenchymal transition (EMT) crosstalk suppresses the erlotinib-sensitizing effect of EGFR exon 19 deletion mutations

    PubMed Central

    Vazquez-Martin, Alejandro; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Torres-Garcia, Violeta Zenobia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Bonavia, Rosa; Visa, Joana; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A.

    2013-01-01

    Using non-small cell lung carcinoma (NSCLC) cells harboring the erlotinib-sensitizing Epidermal Growth Factor Receptor (EGFR) exon 19 mutation delE746-A750, we developed erlotinib-refractory derivatives in which hyperactive Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling associated with enrichment in epithelial-to-mesenchymal transition (EMT)-related morphological and transcriptional features. We then explored whether an IGF-1R/EMT crosstalk was sufficient to promote erlotinib refractoriness in the absence of second-site EGFR mutations, MET and AXL hyperactivation. Transforming Growth Factor-beta1 (TGFβ1)-induced mesenchymal trans-differentiation was sufficient to impede erlotinib functioning in the presence of drug-sensitive delE746-A750 EGFR mutation. Pharmacological blockade of IGF-1R fully prevented the TGFβ1's ability to activate an EMT protein signature [E-cadherin low/vimentin high]. The sole presence of erlotinib was capable of rapidly activate an IGF-1R-dependent, vimentin-enriched mesenchymal-like phenotype in delE746-A750-mutated epithelial cells. Even if transient, NSCLC cells' intrinsic plasticity to undergo crosstalk between IGF-1R and EMT signaling pathways can sufficiently eliminate the erlotinib-sensitizing effect of highly prevalent EGFR mutations and suggests the urgent need for dual IGF-1R/EMT-targeting strategies to circumvent erlotinib resistance. PMID:23994953

  6. Genomic and Molecular Characterization of Malignant Peripheral Nerve Sheath Tumor Identifies the IGF1R Pathway as a Primary Target for Treatment

    PubMed Central

    Yang, Jilong; Ylipää, Antti; Sun, Yan; Zheng, Hong; Chen, Kexin; Nykter, Matti; Trent, Jonathan; Ratner, Nancy; Lev, Dina C.; Zhang, Wei

    2011-01-01

    Purpose Malignant peripheral nerve sheath tumor (MPNST) is a rare sarcoma that lacks effective therapeutic strategies. We gain insight into the most recurrent genetically altered pathways with the purpose of scanning possible therapeutic targets. Experimental design We performed a microarray based-comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center and 26 patients from Tianjin Cancer Hospital. IHC and cell biology detection and validation were performed on human MPNST tissues and cell lines. Results Genomic characterization of 51 MPNST tissue samples identified several frequently amplified regions harboring 2,599 genes and regions of deletion including 4,901 genes. At the pathway level, we identified a significant enrichment of copy number–altering events in the insulin-like growth factor 1 receptor (IGF1R) pathway, including frequent amplifications of the IGF1R gene itself. To validate the IGF1R pathway as a potential target in MPNSTs, we first confirmed that high IGF1R protein correlated with worse tumor-free survival in an independent set of samples using immunohistochemistry. Two MPNST cell lines (ST88-14 and STS26T) were used to determine the effect of attenuating IGF1R. Inhibition of IGF1R in ST88-14 cells using small interfering RNAs or an IGF1R inhibitor, MK-0646, led to significant decreases in cell proliferation, invasion, and migration accompanied by attenuation of the PI3K/AKT and MAPK pathways. Conclusion These integrated genomic and molecular studies provide evidence that the IGF1R pathway is a potential therapeutic target for patients with MPNST. PMID:22042973

  7. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model. PMID:27509024

  8. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model

    PubMed Central

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model. PMID:27509024

  9. Upregulation of the E3 ligase NEDD4-1 by Oxidative Stress Degrades IGF-1 Receptor Protein in Neurodegeneration

    PubMed Central

    Kwak, Young-Don; Wang, Bin; Li, Jing Jing; Wang, Ruishan; Deng, Qiyue; Diao, Shiyong; Chen, Yaomin; Xu, Raymond; Masliah, Eliezer; Xu, Huaxi; Sung, Jung-Joon

    2012-01-01

    The importance of ubiquitin E3 ligases in neurodegeneration is being increasingly recognized. The crucial role of NEDD4-1 in neural development is well appreciated; however, its role in neurodegeneration remains unexplored. Herein, we report increased NEDD4-1 expression in the degenerated tissues of several major neurodegenerative diseases. Moreover, its expression is upregulated in cultured neurons in response to various neurotoxins, including zinc and hydrogen superoxide, via transcriptional activation likely mediated by the reactive oxygen species (ROS)-responsive FOXM1B. Reduced protein levels of the insulin-like growth factor receptor (IGF-1Rβ) were observed as a consequence of upregulated NEDD4-1 via the ubiquitin-proteasome system. Overexpression of a familial mutant form of superoxide dismutase 1 (SOD1) (G93A) in neuroblastoma cells resulted in a similar reduction of IGF-1Rβ protein. This inverse correlation between NEDD4-1 and IGF-1Rβ was also observed in the cortex and spinal cords of mutant (G93A) SOD1 transgenic mice at a presymptomatic age, which was similarly induced by in vivo-administered zinc in wild-type C57BL/6 mice. Furthermore, histochemistry reveals markedly increased NEDD4-1 immunoreactivity in the degenerating/degenerated motor neurons in the lumbar anterior horn of the spinal cord, suggesting a direct causative role for NEDD4-1 in neurodegeneration. Indeed, downregulation of NEDD4-1 by shRNA or overexpression of a catalytically inactive form rescued neurons from zinc-induced cell death. Similarly, neurons with a NEDD4-1 haplotype are more resistant to apoptosis, largely due to expression of higher levels of IGF-1Rβ.Together, our work identifies a novel molecular mechanism for ROS-upregulated NEDD4-1 and the subsequently reduced IGF-1Rβ signaling in neurodegeneration. PMID:22875931

  10. IGF-1R as an anti-cancer target—trials and tribulations

    PubMed Central

    Chen, Helen X.; Sharon, Elad

    2013-01-01

    Type I insulin-like growth factor receptor (IGF-1R) has long been recognized for its role in tumorigenesis and growth, but only recently have the tools for targeting the IGF pathway become available. More than 10 IGF/IGF-1R inhibitors have entered clinical trials, and these belong to three main classes: (1) monoclonal antibodies against IGF-1R, (2) monoclonal antibodies against IGF-1R ligands (IGF-1 and IGF-2), and (3) IGF-1R tyrosine kinase inhibitors. These IGF-1R–targeting agents share common effects on IGF-1R signaling but differ in mechanisms of action, spectrum of target inhibition, and pharmacological features. Clinical activity of IGF-1R inhibitors has been demonstrated with sustained responses in a small number of patients with select tumor types, such as Ewing sarcoma and thymoma. However, many large clinical trials involving patients with adult tumors, including non–small cell lung cancer, breast cancer, and pancreatic cancer, failed to show clinical benefit in the overall patient population. Possible reasons for failure include the complexity of the IGF-1R/insulin receptor system and parallel growth and survival pathways, as well as a lack of patient selection markers. While IGF-1R remains a valid target for selected tumor types, identification of predictive markers and rational combinations will be critical to success in future development. PMID:23601239

  11. Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer's disease.

    PubMed

    O'Neill, Cora; Kiely, Aoife P; Coakley, Meghan F; Manning, Sean; Long-Smith, Caitriona M

    2012-08-01

    The quality control of protein homoeostasis deteriorates with aging, causing the accumulation of misfolded proteins and neurodegeneration. Thus, in AD (Alzheimer's disease), soluble oligomers, protofibrils and fibrils of the Aβ (amyloid β-peptide) and tau protein accumulate in specific brain regions. This is associated with the progressive destruction of synaptic circuits controlling memory and higher mental function. The primary signalling mechanisms that (i) become defective in AD to alter the normal proteostasis of Aβ and tau, and (ii) initiate a pathophysiological response to cause cognitive decline, are unclear. The IIS [insulin/IGF-1 (insulin-like growth factor 1)-like signalling] pathway is mechanistically linked to longevity, protein homoeostasis, learning and memory, and is emerging to be central to both (i) and (ii). This pathway is aberrantly overactivated in AD brain at the level of increased activation of the serine/threonine kinase Akt and the phosphorylation of its downstream targets, including mTOR (mammalian target of rapamycin). Feedback inhibition of normal insulin/IGF activation of the pathway also occurs in AD due to inactivation of IRS-1 (insulin receptor substrate 1) and decreased IRS-1/2 levels. Pathogenic forms of Aβ may induce aberrant sustained activation of the PI3K (phosphoinositide 3-kinase)/Akt signal in AD, also causing non-responsive insulin and IGF-1 receptor, and altered tau phosphorylation, conformation and function. Reducing IIS activity in animal models by decreasing IGF-1R levels or inhibiting mTOR activity alters Aβ and tau protein homoeostasis towards less toxic protein conformations, improves cognitive function and extends healthy lifespan. Thus normalizing IIS dysfunction may be therapeutically relevant in abrogating Aβ and tau proteotoxicity, synaptic dysfunction and cognitive decline in AD.

  12. C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling.

    PubMed

    Honnen, Sebastian J; Büchter, Christian; Schröder, Verena; Hoffmann, Michael; Kohara, Yuji; Kampkötter, Andreas; Bossinger, Olaf

    2012-01-01

    The planar cell polarity (PCP) pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.

  13. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile

    PubMed Central

    Mercken, Evi M.; Crosby, Seth D.; Lamming, Dudley W.; JeBailey, Lellean; Krzysik-Walker, Susan; Villareal, Dennis; Capri, Miriam; Franceschi, Claudio; Zhang, Yongqing; Becker, Kevin; Sabatini, David M.; de Cabo, Rafael; Fontana, Luigi

    2013-01-01

    Summary Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here we report that long-term CR in humans inhibits the IGF-1/insulin pathway in skeletal muscle, a key metabolic tissue. We also demonstrate that CR-induced dramatic changes of the skeletal muscle transcriptional profile that resemble those of younger individuals. Finally, in both rats and humans CR evoked similar responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with longevity: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. Furthermore, our data identifies promising pathways for therapeutic targets to combat age-related diseases and promote health in humans. PMID:23601134

  14. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1.

    PubMed

    Krieger, Frank; Elflein, Nicole; Saenger, Stefanie; Wirthgen, Elisa; Rak, Kristen; Frantz, Stefan; Hoeflich, Andreas; Toyka, Klaus V; Metzger, Friedrich; Jablonka, Sibylle

    2014-05-01

    Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in

  15. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure.

    PubMed

    Suman, Shubhankar; Kallakury, Bhaskar V S; Fornace, Albert J; Datta, Kamal

    2015-01-01

    Ionizing radiation is a known risk factor for gastrointestinal (GI) pathologies including cancer. Hormones and related signaling crosstalk, which could contribute to radiation-induced persistent pathophysiologic changes in the small intestine and colon, remain to be explored. The current study assessed perturbation of GI homeostasis-related hormones and signaling pathways at the systemic as well as at the tissue level in small intestine and colon. Mice (6-8 week old C57BL/6J) were exposed to 2 Gy γ radiation, serum and tissue samples were collected, and insulin like growth factor 1 (IGF-1) and leptin signaling were assessed two or twelve months after radiation exposure. Serum levels of IGF-1, IGF binding protein 3 (IGFBP3), leptin, and adiponectin were altered at these times after irradiation. Radiation was associated with increased IGF1 receptor (IGF1R) and obesity (leptin) receptor (Ob-R), decreased adiponectin receptor 1 (Adipo-R1) and 2 (Adipo-R2), and increased Ki-67 levels in small intestine and colon at both time points. Immunoblot analysis further showed increased IGF1R and Ob-R, and decreased Adipo-R2. Additionally, upregulation of PI3K/Akt and JAK2 signaling, which are downstream of IGF1 and leptin, was also observed in irradiated samples at both time points. These results when considered along with increased cell proliferation in the small intestine and colon demonstrate for the first time that ionizing radiation can persistently increase IGF1 and leptin and activate downstream proliferative pathways, which may contribute to GI functional alterations and carcinogenesis.

  16. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model

    SciTech Connect

    Jia, Yanhan; Zhang, Yan; Qiao, Chunxia; Liu, Guijun; Zhao, Qing; Zhou, Tingting; Chen, Guojiang; Li, Yali; Feng, Jiannan; Li, Yan; Zhang, Qiuping; Peng, Hui

    2013-07-12

    Highlights: •We established trastuzumab-resistant cell line SKOV3/T. •SKOV3/T enhances proliferation and in vivo carcinogenesis. •IGF-1R and HER3 genes were up-regulated in SKOV3/T based on microarray analysis. •Targeting IGF-1R and/or HER3 inhibited the proliferation of SKOV3/T. •Therapies targeting IGF-1R and HER3 might be effective in ovarian cancer. -- Abstract: Trastuzumab (Herceptin®) has demonstrated clinical potential in several types of HER2-overexpressing human cancers. However, primary and acquired resistance occurs in many HER2-positive patients with regimens. To investigate the possible mechanism of acquired therapeutic resistance to trastuzumab, we have developed a preclinical model of human ovarian cancer cells, SKOV3/T, with the distinctive feature of stronger carcinogenesis. The differences in gene expression between parental and the resistant cells were explored by microarray analysis, of which IGF-1R and HER3 were detected to be key molecules in action. Their correctness was validated by follow-up experiments of RT-PCR, shRNA-mediated knockdown, downstream signal activation, cell cycle distribution and survival. These results suggest that IGF-1R and HER3 differentially regulate trastuzumab resistance and could be promising targets for trastuzumab therapy in ovarian cancer.

  17. Elevated serum insulin-like growth factor-1 (IGF-1) levels in women with postadolescent acne.

    PubMed

    Aizawa, H; Niimura, M

    1995-04-01

    The purpose of this study was to measure the serum levels of IGF-1 in women with postadolescent acne compared to normal controls, and evaluate the relationship of these levels to the levels of androgens, in order to investigate the possible role of IGF-1 in the pathogenesis of acne. Eighty-two female patients with acne between 20 and 25 years of age and thirty-one age-matched control women were studied. We measured the serum levels of total testosterone (T), free testosterone (FT), dihydrotestosterone (DHT), dehydroepiandrosterone sulfate (DHEA-S), and insulin-like growth factor-1 (IGF-1). The levels of IGF-1 in patients with acne (1.26 +/- 0.52 U/ml) were significantly (p < 0.001) increased over those of controls (0.96 +/- 0.32 U/ml). Of 82 acne patients, six (7%) had IGF-1 levels which exceeded the normal range, but there were no significant correlations between IGF-1 and T, FT, DHT or DHEA-S levels or between IGF-1 and acne severity. Since the measurement of serum IGF-1 levels is a convenient indicator of GH secretion, the increase of serum IGF-1 levels seen in some acne patients might reflect an increase of GH. PMID:7608381

  18. miR-71b regulation of insulin/IGF-1 signaling during starvation in planarians.

    PubMed

    Wu, Y Y; Zhao, J M; Liu, Q; Guo, Q; Liu, Z; Wang, X X; Wang, C Y; Li, R Y; Zhang, Y Z; Zhang, S T

    2015-10-05

    Planarians, which have a large population of stem cells called neoblasts, are molecularly tractable model systems used in the study of regeneration. However, planarians have strong resistance to hunger and have developed growth arrest strategies. For example, they can change their size and undergo growth regression during starvation periods. The results of the current study show that the microRNA, miR-71b, and the insulin/IGF-1 signaling pathway have important functions in the development of starvation-induced planarians. We demonstrate tissue-specific expression of miR-71b using in situ hybridization. By employing real-time polymerase chain reaction, we provide evidence that miR-71b is upregulated in starvation-induced planarians. Furthermore, we validate and verify the target genes of miR-71b.

  19. Fas apoptosis inhibitory molecule is upregulated by IGF-1 signaling and modulates Akt activation and IRF4 expression in multiple myeloma.

    PubMed

    Huo, J; Xu, S; Lin, B; Chng, W-J; Lam, K-P

    2013-04-01

    Multiple myeloma (MM) is an incurable malignancy of terminally differentiated B-lymphoid cells. Here, we investigate the role of Fas apoptosis inhibitory molecule (FAIM) in MM. We demonstrate that insulin-like growth factor 1 (IGF-1) treatment upregulated FAIM expression in MM cells in a dose-dependent manner. Silencing of FAIM expression attenuates Akt signaling downstream of IGF-1 and compromises the viability of MM cells. We further showed that IGF-1 stimulation of MM cells leads to enhanced expression of IRF4, a known 'addictive' factor for MM. This upregulation of IRF4 expression by IGF-1 treatment of MM cells is abrogated when FAIM expression is silenced or Akt activation is inhibited. Thus, FAIM modulates IGF-1-induced Akt activation and IRF4 expression and has a role in MM cell survival. Consistent with these findings, FAIM expression is shown to be higher in plasma cells of symptomatic MM patients compared with normal individuals or patients with premalignant conditions. Moreover, a higher level of FAIM expression is shown to correlate with poorer survival outcomes of newly diagnosed MM patients treated with stem cell transplantation or relapsed MM patients treated in clinical trials with Bortezomib. Thus taken together, our study reveals a novel, as well as clinically relevant role for FAIM in MM.

  20. The role of GHR and IGF1 genes in the genetic determination of African pygmies' short stature

    PubMed Central

    Becker, Noémie SA; Verdu, Paul; Georges, Myriam; Duquesnoy, Philippe; Froment, Alain; Amselem, Serge; Le Bouc, Yves; Heyer, Evelyne

    2013-01-01

    African pygmies are at the lower extreme of human variation in adult stature and many evolutionary hypotheses have been proposed to explain this phenotype. We showed in a recent study that the difference in average stature of about 10 cm observed between contemporary pygmies and neighboring non-pygmies has a genetic component. Nevertheless, the genetic basis of African pygmies' short stature remains unknown. Using a candidate-gene approach, we show that intronic polymorphisms in GH receptor (GHR) and insulin-like growth factor 1 (IGF1) genes present outlying values of the genetic distance between Baka pygmies and their non-pygmy Nzimé neighbors. We further show that GHR and IGF1 genes have experienced divergent natural selection pressures between pygmies and non-pygmies throughout evolution. In addition, these SNPs are associated with stature in a sample composed of 60 pygmies and 30 non-pygmies and this association remains significant when correcting for population structure for the GHR locus. We conclude that the GHR and IGF1 genes may have a role in African pygmies' short stature. The use of phenotypically contrasted populations is a promising strategy to identify new variants associated with complex traits in humans. PMID:23047741

  1. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial.

    PubMed

    Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O

    2016-02-01

    Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration. PMID:26443692

  2. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial.

    PubMed

    Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O

    2016-02-01

    Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration.

  3. Enhanced efficacy of IGF1R inhibition in pediatric glioblastoma by combinatorial targeting of PDGFRα/β.

    PubMed

    Bielen, Aleksandra; Perryman, Lara; Box, Gary M; Valenti, Melanie; de Haven Brandon, Alexis; Martins, Vanessa; Jury, Alexa; Popov, Sergey; Gowan, Sharon; Jeay, Sebastien; Raynaud, Florence I; Hofmann, Francesco; Hargrave, Darren; Eccles, Suzanne A; Jones, Chris

    2011-08-01

    Pediatric glioblastoma (pGBM), although rare, is one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. We have identified IGF1R to be a potential therapeutic target in pGBM due to gene amplification and high levels of IGF2 expression in some tumor samples, as well as constitutive receptor activation in pGBM cell lines. To evaluate the therapeutic potential of strategies targeting the receptor, we have carried out in vitro and in vivo preclinical studies using the specific IGF1R inhibitor NVP-AEW541. A modest inhibitory effect was seen in vitro, with GI(50) values of 5 to 6 μmol/L, and concurrent inhibition of receptor phosphorylation. Specific targeting of IGF1R with short interfering RNA decreased cell viability, diminished downstream signaling through phosphoinositide 3-kinase (PI3K), and induced G(1) arrest, effects mimicked by NVP-AEW541, both in the absence and presence of IGF2. Hallmarks of PI3K inhibition were observed after treatment with NVP-AEW541 by expression profiling and Western blot analysis. Phospho-receptor tyrosine kinase (RTK) arrays showed phosphorylation of platelet-derived growth factor receptor (PDGFR) α/β in pGBM cells, suggesting coactivation of an alternative RTK pathway. Treatment of KNS42 with the PDGFR inhibitor imatinib showed additional effects targeting the mitogen-activated protein kinase pathway, and cotreatment of the PDGFR inhibitor imatinib with NVP-AEW541 resulted in a highly synergistic interaction in vitro and increased efficacy after 14 days therapy in vivo compared with either agent alone. These data provide evidence that inhibition of IGF1R, in combination with other targeted agents, may be a useful and novel therapeutic strategy in pGBM.

  4. hNAG-1 increases lifespan by regulating energy metabolism and insulin/IGF-1/mTOR signaling.

    PubMed

    Wang, Xingya; Chrysovergis, Kali; Kosak, Justin; Kissling, Grace; Streicker, Mike; Moser, Glenda; Li, Ruifang; Eling, Thomas E

    2014-08-01

    Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) or GDF15 is a divergent member of the transforming growth factor beta (TGF-β) superfamily and mice expressing hNAG-1/hGDF15 have been shown to be resistant to HFD-induced obesity and inflammation. This study investigated if hNAG-1 increases lifespan in mice and its potential mechanisms. Here we report that female hNAG-1 mice had significantly increased both mean and median life spans in two transgenic lines, with a larger difference in life spans in mice on a HFD than on low fat diet. hNAG-1 mice displayed significantly reduced body and adipose tissue weight, lowered serum IGF-1, insulin and glucose levels, improved insulin sensitivity, and increased oxygen utilization, oxidative metabolism and energy expenditure. Gene expression analysis revealed significant differences in conserved gene pathways that are important regulators of longevity, including IGF-1, p70S6K, and PI3K/Akt signaling cascades. Phosphorylation of major components of IGF-1/mTOR signaling pathway was significantly lower in hNAG-1mice. Collectively, hNAG-1 is an important regulator of mammalian longevity and may act as a survival factor. Our study suggests that hNAG-1 has potential therapeutic uses in obesity-related diseases where life span is frequently shorter. PMID:25239873

  5. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats.

    PubMed

    Liu, Min; Stevens-Lapsley, Jennifer E; Jayaraman, Arun; Ye, Fan; Conover, Christine; Walter, Glenn A; Bose, Prodip; Thompson, Floyd J; Borst, Stephen E; Vandenborne, Krista

    2010-07-01

    The objective of this study was to determine the impact of treadmill locomotor training on the expression of insulin-like growth factor I (IGF1) and changes in myogenic regulatory factors (MRFs) in rat soleus muscle following spinal cord injury (SCI). Moderate, midthoracic (T(8)) contusion SCIs were produced using a NYU (New York University) impactor. Animals were randomly assigned to treadmill training or untrained groups. Rats in the training group were trained starting at 1 week after SCI, for either 3 bouts of 20 min over 1.5 days or 10 bouts over 5 days. Five days of treadmill training completely prevented the decrease in soleus fiber size resulting from SCI. In addition, treadmill training triggered increases in IGF1, MGF and IGFBP4 mRNA expression, and a concurrent reduction of IGFBP5 mRNA in skeletal muscle. Locomotor training also caused an increase in markers of muscle regeneration, including small muscle fibers expressing embryonic myosin and Pax7 positive nuclei and increased expression of the MRFs, myogenin and MyoD. We concluded that treadmill locomotor training ameliorated muscle atrophy in moderate contusion SCI rats. Training-induced muscle regeneration and fiber hypertrophy following SCI was associated with an increase in IGF1, an increase in Pax7 positive nuclei, and upregulation of MRFs.

  6. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation

    PubMed Central

    Kostereva, Nataliya V.; Wang, Yong; Fletcher, Derek R.; Unadkat, Jignesh V.; Schnider, Jonas T.; Komatsu, Chiaki; Yang, Yang; Stolz, Donna B.; Davis, Michael R.; Plock, Jan A.; Gorantla, Vijay S.

    2016-01-01

    Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA). Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1) and chondroitinase ABC (CH) have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH) on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus) therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections). Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius) histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC) immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes. PMID:27272754

  7. The expression of IGF-1R in Helicobacter pylori-infected intestinal metaplasia and gastric cancer

    PubMed Central

    Nakajima, Noriko; Kozu, Karina; Kobayashi, Shun; Nishiyama, Ryu; Okubo, Rie; Akai, Yuichi; Moriyama, Mitsuhiko; Kinukawa, Noriko

    2016-01-01

    Overexpression of IGF-1R has been demonstrated in gastrointestinal cancers, and its expression is reported as the result of the loss of tumor suppressors. IL-16 is involved in the pathophysiological process of chronic inflammatory diseases. The aim of this study is to determine the changes in the expression of IGF-1R in intestinal metaplasia (IM) and gastric cancer (GC) as well as the effect of Helicobacter pylori (H. pylori) and IL-16 on cell proliferation and IGF-1R expression in gastric cells. AGS cells were incubated with combinations of IL-16 and H. pylori. Gastric cell proliferation was studied by BrdU uptake. In H. pylori infected mucosa, IGF-1R was significantly higher in IM than chronic gastritis (CG), and also higher in GC than CG and IM. H. pylori significantly decreased BrdU uptake. IL-16 increased BrdU uptake and IGF-1R on AGS cells which had been decreased by H. pylori. Co-incubation with IL-16 increased the expression of IGF-1R mRNA in H. pylori infected cells. We conclude that the expression of IGF-1R in H. pylori infected gastric mucosa may indicate an early stage of carcinogenesis. The IL-16 secretion by H. pylori can be a trigger for the expression of IGF-1R, and it may also be a factor for gastric carcinogenesis. PMID:27499580

  8. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    PubMed

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment.

  9. The expression of IGF-1R in Helicobacter pylori-infected intestinal metaplasia and gastric cancer.

    PubMed

    Nakajima, Noriko; Kozu, Karina; Kobayashi, Shun; Nishiyama, Ryu; Okubo, Rie; Akai, Yuichi; Moriyama, Mitsuhiko; Kinukawa, Noriko

    2016-07-01

    Overexpression of IGF-1R has been demonstrated in gastrointestinal cancers, and its expression is reported as the result of the loss of tumor suppressors. IL-16 is involved in the pathophysiological process of chronic inflammatory diseases. The aim of this study is to determine the changes in the expression of IGF-1R in intestinal metaplasia (IM) and gastric cancer (GC) as well as the effect of Helicobacter pylori (H. pylori) and IL-16 on cell proliferation and IGF-1R expression in gastric cells. AGS cells were incubated with combinations of IL-16 and H. pylori. Gastric cell proliferation was studied by BrdU uptake. In H. pylori infected mucosa, IGF-1R was significantly higher in IM than chronic gastritis (CG), and also higher in GC than CG and IM. H. pylori significantly decreased BrdU uptake. IL-16 increased BrdU uptake and IGF-1R on AGS cells which had been decreased by H. pylori. Co-incubation with IL-16 increased the expression of IGF-1R mRNA in H. pylori infected cells. We conclude that the expression of IGF-1R in H. pylori infected gastric mucosa may indicate an early stage of carcinogenesis. The IL-16 secretion by H. pylori can be a trigger for the expression of IGF-1R, and it may also be a factor for gastric carcinogenesis. PMID:27499580

  10. Genetic and Epigenetic Modulation of Growth Hormone Sensitivity Studied With the IGF-1 Generation Test

    PubMed Central

    Ouni, Meriem; Castell, Anne-Laure; Linglart, Agnès

    2015-01-01

    Context: Like all hormones, GH has variable physiological effects across people. Many of these effects initiated by the binding of GH to its receptor (GHR) in target tissues are mediated by the expression of the IGF1 gene. Genetic as well as epigenetic variation is known to contribute to the individual diversity of GH-dependent phenotypes through two mechanisms. The first one is the genetic polymorphism of the GHR gene due to the common deletion of exon 3. The second, more recently reported, is the epigenetic variation in the methylation of a cluster of CGs dinucleotides located within the proximal part of the P2 promoter of the IGF-1 (IGF1) gene, notably CG-137. Objective: The current study evaluates the relative contribution of these two factors controlling individual GH sensitivity by measuring the response of serum IGF-1 to a GH injection (IGF-1 generation test) in a sample of 72 children with idiopathic short stature. Results: Although the d3 polymorphism of the GHR contributed 19% to the variance of the IGF-1 response, CG-137 methylation in the IGF-1 promoter contributed 30%, the combined contribution of the two factors totaling 43%. Conclusion: Our observation indicates that genetic and epigenetic variation at the GHR and IGF-1 loci play a major role as independent modulators of individual GH sensitivity. PMID:25835289

  11. IGF1R mutation analysis in short children with Silver-Russell syndrome features

    PubMed Central

    Soellner, Lukas; Spengler, Sabrina; Begemann, Matthias; Wollmann, Hartmut A.; Binder, Gerhard; Eggermann, Thomas

    2013-01-01

    The insulin-like growth factor 1 receptor (IGF1R) is a key factor in intrauterine and postnatal growth by mediating the biological function of IGF-I. Mutations of IGF1R gene are usually associated with growth retardation, but the clinical picture of IGF1R mutation carriers is heterogeneous. Indeed, these patients show clinical signs compatible with Silver-Russell syndrome (SRS), and some IGF1R mutation carriers have been identified in SRS cohorts. We therefore investigated deoxyribonucleic acid samples of 19 growth-retarded patients with SRS features. Apart from 8 non-pathogenic variants, we detected heterozygosity for the unknown duplication, c.1056_1057dup, leading to a premature termination in one patient and his growth retarded sister. Due to its nature, we assumed that this variant is probably pathogenic. However, the patient and his sister exhibited spontaneous catch-up growth in later life. We therefore hypothesize that the c.1056_1057dup does not result in a significant disruption to the GH-IGFI axis. Thus, this IGF1R mutation without obvious clinical consequence might challenge the actual concept of IGF1R haploinsufficiency as a general cause for disturbed growth in IGF1R mutation carriers. In the future, mutation analysis of IGF1R should be considered in growth-retarded patients with microcephaly and minor SRS features, but not in probands with the characteristic SRS phenotype including macrocephaly. PMID:27625849

  12. IGF1R mutation analysis in short children with Silver-Russell syndrome features.

    PubMed

    Soellner, Lukas; Spengler, Sabrina; Begemann, Matthias; Wollmann, Hartmut A; Binder, Gerhard; Eggermann, Thomas

    2013-09-01

    The insulin-like growth factor 1 receptor (IGF1R) is a key factor in intrauterine and postnatal growth by mediating the biological function of IGF-I. Mutations of IGF1R gene are usually associated with growth retardation, but the clinical picture of IGF1R mutation carriers is heterogeneous. Indeed, these patients show clinical signs compatible with Silver-Russell syndrome (SRS), and some IGF1R mutation carriers have been identified in SRS cohorts. We therefore investigated deoxyribonucleic acid samples of 19 growth-retarded patients with SRS features. Apart from 8 non-pathogenic variants, we detected heterozygosity for the unknown duplication, c.1056_1057dup, leading to a premature termination in one patient and his growth retarded sister. Due to its nature, we assumed that this variant is probably pathogenic. However, the patient and his sister exhibited spontaneous catch-up growth in later life. We therefore hypothesize that the c.1056_1057dup does not result in a significant disruption to the GH-IGFI axis. Thus, this IGF1R mutation without obvious clinical consequence might challenge the actual concept of IGF1R haploinsufficiency as a general cause for disturbed growth in IGF1R mutation carriers. In the future, mutation analysis of IGF1R should be considered in growth-retarded patients with microcephaly and minor SRS features, but not in probands with the characteristic SRS phenotype including macrocephaly. PMID:27625849

  13. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P < 0.05). Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  14. Rationale for co-targeting IGF-1R and ALK in ALK fusion positive lung cancer

    PubMed Central

    Lovly, Christine M.; McDonald, Nerina T.; Chen, Heidi; Ortiz-Cuaran, Sandra; Heukamp, Lukas C.; Yan, Yingjun; Florin, Alexandra; Ozretić, Luka; Lim, Diana; Wang, Lu; Chen, Zhao; Chen, Xi; Lu, Pengcheng; Paik, Paul K.; Shen, Ronglai; Jin, Hailing; Buettner, Reinhard; Ansén, Sascha; Perner, Sven; Brockmann, Michael; Bos, Marc; Wolf, Jürgen; Gardizi, Masyar; Wright, Gavin M.; Solomon, Benjamin; Russell, Prudence A.; Rogers, Toni-Maree; Suehara, Yoshiyuki; Red-Brewer, Monica; Tieu, Rudy; de Stanchina, Elisa; Wang, Qingguo; Zhao, Zhongming; Johnson, David H.; Horn, Leora; Wong, Kwok-Kin; Thomas, Roman K.; Ladanyi, Marc; Pao, William

    2014-01-01

    The ALK tyrosine kinase inhibitor (TKI), crizotinib, shows significant activity in patients whose lung cancers harbor ALK fusions but its efficacy is limited by variable primary responses and acquired resistance. In work arising from the intriguing clinical observation of a patient with ALK fusion+ lung cancer who had an ‘exceptional response’ to an IGF-1R antibody, we define a therapeutic synergism between ALK and IGF-1R inhibitors. Similar to IGF-1R, ALK fusion proteins bind to the adaptor, IRS-1, and IRS-1 knockdown enhances the anti-tumor effects of ALK inhibitors. In models of ALK TKI resistance, the IGF-1R pathway is activated, and combined ALK/IGF-1R inhibition improves therapeutic efficacy. Consistent with this finding, IGF-1R/IRS-1 levels are increased in biopsy samples from patients progressing on crizotinib therapy. Collectively, these data support a role for the IGF-1R/IRS-1 pathway in both ALK TKI-sensitive and TKI-resistant states and provide biological rationale for further clinical development of dual ALK/IGF-1R inhibitors. PMID:25173427

  15. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2)

    PubMed Central

    Guo, Lili; Costanzo-Garvey, Diane L.; Smith, Deandra R.; Zavorka, Megan E.; Venable-Kang, Megan; MacDonald, Richard G.; Lewis, Robert E.

    2016-01-01

    Individuals with poor postnatal growth are at risk for cardiovascular and metabolic problems as adults. Here we show that disruption of the molecular scaffold Kinase Suppressor of Ras 2 (KSR2) causes selective inhibition of hepatic GH signaling in neonatal mice with impaired expression of IGF-1 and IGFBP3. ksr2−/− mice are normal size at birth but show a marked increase in FGF21 accompanied by reduced body mass, shortened body length, and reduced bone mineral density (BMD) and content (BMC) first evident during postnatal development. However, disrupting FGF21 in ksr2−/− mice does not normalize mass, length, or bone density and content in fgf21−/−ksr2−/− mice. Body length, BMC and BMD, but not body mass, are rescued by infection of two-day-old ksr2−/− mice with a recombinant adenovirus encoding human IGF-1. Relative to wild-type mice, GH injections reveal a significant reduction in JAK2 and STAT5 phosphorylation in liver, but not in skeletal muscle, of ksr2−/− mice. However, primary hepatocytes isolated from ksr2−/− mice show no reduction in GH-stimulated STAT5 phosphorylation. These data indicate that KSR2 functions in a cell non-autonomous fashion to regulate GH-stimulated IGF-1 expression in the liver of neonatal mice, which plays a key role in the development of body length. PMID:27561547

  16. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2).

    PubMed

    Guo, Lili; Costanzo-Garvey, Diane L; Smith, Deandra R; Zavorka, Megan E; Venable-Kang, Megan; MacDonald, Richard G; Lewis, Robert E

    2016-01-01

    Individuals with poor postnatal growth are at risk for cardiovascular and metabolic problems as adults. Here we show that disruption of the molecular scaffold Kinase Suppressor of Ras 2 (KSR2) causes selective inhibition of hepatic GH signaling in neonatal mice with impaired expression of IGF-1 and IGFBP3. ksr2(-/-) mice are normal size at birth but show a marked increase in FGF21 accompanied by reduced body mass, shortened body length, and reduced bone mineral density (BMD) and content (BMC) first evident during postnatal development. However, disrupting FGF21 in ksr2(-/-) mice does not normalize mass, length, or bone density and content in fgf21(-/-)ksr2(-/-) mice. Body length, BMC and BMD, but not body mass, are rescued by infection of two-day-old ksr2(-/-) mice with a recombinant adenovirus encoding human IGF-1. Relative to wild-type mice, GH injections reveal a significant reduction in JAK2 and STAT5 phosphorylation in liver, but not in skeletal muscle, of ksr2(-/-) mice. However, primary hepatocytes isolated from ksr2(-/-) mice show no reduction in GH-stimulated STAT5 phosphorylation. These data indicate that KSR2 functions in a cell non-autonomous fashion to regulate GH-stimulated IGF-1 expression in the liver of neonatal mice, which plays a key role in the development of body length. PMID:27561547

  17. Age- and gender-associated changes in the concentrations of serum TGF-1β, DHEA-S and IGF-1 in healthy captive baboons (Papio hamadryas anubis).

    PubMed

    Willis, E L; Wolf, R F; White, G L; McFarlane, D

    2014-01-01

    Age-related changes in the concentration of factors like TGF-1β, DHEA-S and IGF-1 may increase the risk of disease and illnesses in advanced life. A better understanding of these changes would aid in the development of more appropriate treatments and/or preventative care for many conditions associated with age. Due to their similar immune system and vulnerability to pathogens, baboons are an ideal model for humans. However, little research has been done examining the general effects of age in baboons. Therefore, we wanted to further examine the effects of aging in baboons by determining the age-dependent changes in serum TGF-1β, DHEA-S and IGF-1 concentrations. Blood samples were collected during routine health checks in 113-118 captive baboons. In addition, longitudinal samples from 23 to 27 adult individuals were collected an average of 10.7years apart. Both age and gender influenced the concentrations of serum TGF-1β and IGF-1. When both genders were analyzed together, TGF-1β increased 16.1% as adults, compared to younger and older animals, but male and female baboons showed a slightly different temporal pattern of change. IGF-1 decreased with increasing age and males had a 30% greater concentration of IGF-1 than did females. While there was no effect of gender among our population, serum DHEA-S was negatively correlated with age, decreasing by 51.6% in the oldest animals. There were no effects of age or gender on serum IGFBP-3. In longitudinal samples collected from the same individuals, the concentrations of TGF-1β, DHEA-S and IGF-1 were reduced with age. The results presented herein provide additional knowledge of the aging process in baboons and further validate the use of this species as an appropriate model for aging in humans.

  18. IGF1R tyrosine kinase inhibitor enhances the cytotoxic effect of methyl jasmonate in endometrial cancer.

    PubMed

    Bruchim, Ilan; Sarfstein, Rive; Reiss, Ari; Flescher, Eliezer; Werner, Haim

    2014-10-01

    The present study evaluated the cytotoxic activity of methyl jasmonate (MJ) in endometrial cancer cells and examined the hypothesis that the apoptotic and anti-proliferative actions of MJ in these cell lines can be enhanced by co-targeting the insulin-like growth factor-1 receptor (IGF1R) signaling pathway. MJ had a potent pro-apoptotic effect and exhibited significant toxicity in all cell lines tested. MJ in combination with NVP-AEW541, a selective IGF1R tyrosine kinase inhibitor, had significantly increased cytotoxicity. MJ decreased IGF1R phosphorylation, however, it enhanced AKT phosphorylation and abolished the anti-apoptotic effect of IGF1. These findings suggest that combined IGF1R inhibitor and MJ administration may constitute an attractive modality for treating endometrial cancer.

  19. The Emerging Role of IGF-1 Deficiency in Cardiovascular Aging: Recent Advances

    PubMed Central

    Csiszar, Anna

    2012-01-01

    This review focuses on cardiovascular protective effects of insulin-like growth factor (IGF)-1, provides a landscape of molecular mechanisms involved in cardiovascular alterations in patients and animal models with congenital and adult-onset IGF-1 deficiency, and explores the link between age-related IGF-1 deficiency and the molecular, cellular, and functional changes that occur in the cardiovascular system during aging. Microvascular protection conferred by endocrine and paracrine IGF-1 signaling, its implications for the pathophysiology of cardiac failure and vascular cognitive impairment, and the role of impaired cellular stress resistance in cardiovascular aging considered here are based on emerging knowledge of the effects of IGF-1 on Nrf2-driven antioxidant response. PMID:22451468

  20. Does IGF-1 play a role in the biology of endometrial cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature. PMID:27629137

  1. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cells via inhibition of Bax translocation.

    PubMed

    Park, Yang-Gyu; Jeong, Jae-Kyo; Moon, Myung-Hee; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Kim, Shang-Jin; Kang, Seog-Jin; Park, Sang-Youel

    2012-11-01

    Insulin-like growth factor-1 (IGF-1) is one of the most important components of bovine colostrum. It exhibits antiapoptotic and antioxidative activities. Prion diseases are neurodegenerative disorders caused by cell death through mitochondrial dysfunction and increasing generation of reactive oxygen species (ROS). This study examined the protective effect of IGF-1 on residues 106-126 of the cellular prion protein [PrP (106-126)]-mediated mitochondrial neurotoxicity and oxidative stress. In SH-SY5Y human neuronal cells, treatment with PrP (106-126) decreased the cell viability and IGF-1 pretreatment markedly blocked the PrP (106-126)-induced neuronal cell death. IGF-1 inhibited PrP (106-126)-induced intracellular ROS generation and mitochondrial oxidative stress. In addition, IGF-1 blocked the translocation of the Bax protein to the mitochondria induced by PrP (106-126). These results demonstrate that IGF-1 protects neuronal cells against PrP (106-126)-mediated neurotoxicity through an antioxidative effect and blockage of mitochondrial Bax translocation. The results also suggest that regulation of IGF-1 secretion may have a therapeutic potential in the management of mitochondrial dysfunction and oxidative stress-induced neurodegeneration. PMID:22895829

  2. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    PubMed

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. PMID:26596702

  3. A Fasting Insulin–Raising Allele at IGF1 Locus Is Associated with Circulating Levels of IGF-1 and Insulin Sensitivity

    PubMed Central

    Mannino, Gaia Chiara; Greco, Annalisa; De Lorenzo, Carlo; Andreozzi, Francesco; Marini, Maria A.; Perticone, Francesco; Sesti, Giorgio

    2013-01-01

    Background A meta-analysis of genome-wide data reported the discovery of the rs35767 polymorphism near IGF1 with genome-wide significant association with fasting insulin levels. However, it is unclear whether the effects of this polymorphism on fasting insulin are mediated by a reduced insulin sensitivity or impaired insulin clearance. We investigated the effects of the rs35767 polymorphism on circulating IGF-1 levels, insulin sensitivity, and insulin clearance. Methodology/Principal Findings Two samples of adult nondiabetic white Europeans were studied. In sample 1 (n=569), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (190±77 vs. 218±97 ng/ml, respectively; P=0.007 after adjusting for age, gender, and BMI). Insulin sensitivity assessed by euglycaemic-hyperinsulinemic clamp was lower in GG genotype carriers compared with A allele carriers (8.9±4.1 vs. 10.1±5.1 mg x Kg-1 free fat mass x min-1, respectively; P=0.03 after adjusting for age, gender, and BMI). The rs35767 polymorphism did not show significant association with insulin clearance. In sample 2 (n=859), IGF-1 levels were lower in GG genotype carriers compared with A allele carriers (155±60 vs. 164±63 ng/ml, respectively; P=0.02 after adjusting for age, gender, and BMI). Insulin sensitivity, as estimated by the HOMA index, was lower in GG genotype carriers compared with A allele carriers (2.8±2.2 vs. 2.5±1.3, respectively; P=0.03 after adjusting for age, gender, and BMI). Conclusion/Significance The rs35767 polymorphism near IGF1 was associated with circulating IGF-1 levels, and insulin sensitivity with carriers of the GG genotype exhibiting lower IGF-1 concentrations and insulin sensitivity as compared with subjects carrying the A allele. PMID:24392014

  4. Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF-IGFBP axis

    PubMed Central

    Koyama, Satomi; Cobb, Laura J; Mehta, Hemal H; Seeram, Navindra P.; Heber, David; Pantuck, Allan J.; Cohen, Pinchas

    2009-01-01

    The IGF axis is critical for the regulation of apoptosis in many human cancer cell lines. Recently, potent anti-tumorigenic effects of pomegranate juice and extracts have been reported. Consequently, pomegranate has potential not only as a treatment but also as a preventative measure against certain types of cancer, including prostate. In this study, we investigated the relationship between pomegranate-induced apoptosis in human prostate cancer cells and the IGF/IGFBP system. Treatment of LAPC4 prostate cancer cells with 10 μg/ml POMx, a highly potent pomegranate extract prepared from skin and arils minus seeds and standardized to ellagitannin content (37% punicalagins by HPLC), resulted in inhibition of cell proliferation and induction of apoptosis. Interestingly, co-treatment with POMx and IGFBP-3 revealed synergistic stimulation of apoptosis and additive inhibition of cell growth. Western blot analysis revealed that treatment with POMx or POMx/IGFBP-3 combination resulted in increased JNK phosphorylation, and decreased Akt and mTOR activation, consistent with a growth inhibitory, pro-apoptotic function. We also investigated the relationship between IGF-1 and pomegranate-induced apoptosis in 22RV1 prostate cancer cells. Co-treatment with 100 ng/ml IGF-1 completely blocked apoptosis induction by POMx. In contrast, IGF-I failed to inhibit POMx-induced apoptosis in R- cells, suggesting the importance of IGF-IR. POMx-treatment decreased Igf1 mRNA expression in a dose-dependent manner indicating that its actions also involve tumor-specific suppression of IGF-1. These studies revealed novel interactions between the IGF system and pomegranate-induced apoptosis. PMID:19853487

  5. Plasma concentrations of BDNF and IGF-1 in abstinent cocaine users with high prevalence of substance use disorders: relationship to psychiatric comorbidity.

    PubMed

    Pedraz, María; Martín-Velasco, Ana Isabel; García-Marchena, Nuria; Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    with both primary and cocaine-induced disorders for mood and anxiety disorders. In summary, BDNF, IGF-1 and IGFBP-3 were not affected by a history of pathological use of cocaine supported by the absence of associations with other molecules sensitive to cocaine addiction. However, BDNF was affected by comorbid mood disorders. Further research is necessary to elucidate the role of BDNF and IGF-1 in the transition to cocaine addiction and associated psychiatric comorbidity. PMID:25734326

  6. Plasma Concentrations of BDNF and IGF-1 in Abstinent Cocaine Users with High Prevalence of Substance Use Disorders: Relationship to Psychiatric Comorbidity

    PubMed Central

    Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    with both primary and cocaine-induced disorders for mood and anxiety disorders. In summary, BDNF, IGF-1 and IGFBP-3 were not affected by a history of pathological use of cocaine supported by the absence of associations with other molecules sensitive to cocaine addiction. However, BDNF was affected by comorbid mood disorders. Further research is necessary to elucidate the role of BDNF and IGF-1 in the transition to cocaine addiction and associated psychiatric comorbidity. PMID:25734326

  7. Plasma concentrations of BDNF and IGF-1 in abstinent cocaine users with high prevalence of substance use disorders: relationship to psychiatric comorbidity.

    PubMed

    Pedraz, María; Martín-Velasco, Ana Isabel; García-Marchena, Nuria; Araos, Pedro; Serrano, Antonia; Romero-Sanchiz, Pablo; Suárez, Juan; Castilla-Ortega, Estela; Barrios, Vicente; Campos-Cloute, Rafael; Ruiz, Juan Jesús; Torrens, Marta; Chowen, Julie Ann; Argente, Jesús; de la Torre, Rafael; Santín, Luis Javier; Villanúa, María Ángeles; Rodríguez de Fonseca, Fernando; Pavón, Francisco Javier

    2015-01-01

    with both primary and cocaine-induced disorders for mood and anxiety disorders. In summary, BDNF, IGF-1 and IGFBP-3 were not affected by a history of pathological use of cocaine supported by the absence of associations with other molecules sensitive to cocaine addiction. However, BDNF was affected by comorbid mood disorders. Further research is necessary to elucidate the role of BDNF and IGF-1 in the transition to cocaine addiction and associated psychiatric comorbidity.

  8. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  9. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  10. Combination Testing (Stage 2) of the anti-IGF-1 Receptor Antibody IMC-A12 with Rapamycin by the Pediatric Preclinical Testing Program

    PubMed Central

    Kolb, E. Anders; Gorlick, Richard; Maris, John M.; Keir, Stephen T.; Morton, Christopher L.; Wu, Jianrong; Wozniak, Amy W.; Smith, Malcolm A.; Houghton, Peter J.

    2011-01-01

    Background IMC-A12, a fully human antibody that blocks ligand binding to the Type 1 insulin-like growth factor receptor, and rapamycin, a selective inhibitor of mTORC1 signaling, have both demonstrated significant antitumor activity against PPTP solid tumor models. Here we have evaluated antitumor activity of each agent individually and in combination against nine tumor models. Procedures IMC-A12 was administered twice weekly and rapamycin was administered daily for 5 days per week for a planned 4 weeks. The impact of combining IMC-A12 with rapamycin was evaluated using two measures: 1) the “therapeutic enhancement” measure, and 2) a linear regression model for time-to-event to formally evaluate for sub- and supra-additivity for the combination compared to the agents used alone. Results Two osteosarcomas, and 1 Ewing sarcoma of the nine xenografts tested showed therapeutic enhancement. The combination effect was most dramatic for EW5 for which PD2 responses of short duration were observed for both single agents and a prolonged PR response was observed for the combination. Both OS-2 and OS-9 showed significantly longer times to progression with the combination compared to either of the single agents, although objective response criteria were not met. Conclusions The combination of IMC-A12 with rapamycin was well tolerated, and induced tumor responses that were superior to either single agent alone in several models. These studies confirm reports using other antibodies that inhibit IGF-1 receptor-mediated signaling that indicate enhanced therapeutic effect for this combination, and extend the range of histotypes to encompass additional tumors expressing IGF-1R where this approach may be effective. PMID:21630428

  11. IGF1R Signaling in Ewing Sarcoma Is Shaped by Clathrin-/Caveolin-Dependent Endocytosis

    PubMed Central

    Martins, Ana Sofia; Ordóñez, José Luis; Amaral, Ana Teresa; Prins, Frans; Floris, Giuseppe; Debiec-Rychter, Maria; Hogendoorn, Pancras C. W.; de Alava, Enrique

    2011-01-01

    Receptor endocytosis is critical for cell signaling. IGF1R mediates an autocrine loop that is de-regulated in Ewing Sarcoma (ES) cells. Here we study the impact of IGF1R internalization, mediated by clathrin and caveolin-1 (CAV1), in ES signaling. We used clathrin and CAV1-siRNA to interfere in clathrin- and caveolin-dependent endocytosis. Chlorpromazine (CPMZ) and methyl-beta-cyclo-dextrin (MCD) were also used in order to inhibit clathrin- and caveolin-dependent endocytosis, respectively. We analyzed IGF1R internalization and co-localization with clathrin and CAV1 upon ligand binding, as well as the status of the IGF1R pathway, cellular proliferation, and the apoptosis of interfered and inhibited ES cells. We performed a high-throughput tyrosine kinase phosphorylation assay to analyze the effects of combining the IGF1R tyrosine kinase inhibitor AEW541 (AEW) with CPMZ or MCD on the intracellular phospho-proteome. We observed that IGF1R is internalized upon ligand binding in ES cells and that this process is dependent on clathrin or CAV1. The blockage of receptor internalization inhibited AKT and MAPK phosphorylation, reducing the proliferative rate of ES cells and increasing the levels of apoptosis. Combination of AEW with CPMZ or MCD largely enhanced these effects. CAV1 and clathrin endocytosis controls IGF1R internalization and signaling and has a profound impact on ES IGF1R-promoted survival signaling. We propose the combination of tyrosine-kinase inhibitors with endocytosis inhibitors as a new therapeutic approach to achieve a stronger degree of receptor inhibition in this, or other neoplasms dependent on IGF1R signaling. PMID:21611203

  12. Influence of Intramuscular Application of Autologous Conditioned Plasma on Systemic Circulating IGF-1

    PubMed Central

    Schippinger, Gert; Oettl, Karl; Fankhauser, Florian; Spirk, Stefan; Domej, Wolfgang; Hofmann, Peter

    2011-01-01

    Platelet-rich plasma (PRP) to increase levels of platelets and growth factors has been used for the treatment of sports injuries suggesting to improve healing and regeneration. This method offers some potential especially for elite athletes. However, the insulin like growth factor-1 (IGF-1) is prohibited by the World Anti Doping Agency and, in addition, there may be a possible link between increased levels of IGF-1 and cancer risk. Aim of the study was to evaluate a systemic increase of IGF-1 after local intramuscular administration of PRP in young healthy moderately trained male subjects. Blood samples were drawn and PRP preparation was performed by means of centrifugation. Enriched plasma was injected into the gluteus muscle. Venous blood was collected and serum prepared before as well as after 0.5, 3 and 24 hours after PRP administration. IGF-1 analysis was performed applying an ELISA test kit. No significant systemic increase of mean IGF-1 was found after the PRP injection. Only one subject showed an increase after 24 h, but all IGF-1 values were found within reference limits. We conclude that a single intramuscular application of PRP does not significantly increase systemic IGF-1 levels. Therefore, a single application of PRP is safe with respect to systemic IGF-1 response and cancer risk and this should be allowed for treatment of muscle injuries in elite athletes. Key points There is no increase of systemic IGF-1 levels after a single local intramuscular administration of PRP. Professional athletes and non-athletes alike can benefit from such a treatment option for muscle injuries and related sports injuries without an increased risk of cancer. More studies are warranted to provide definitive evidence to guide surgeon’s decision making regarding the appropriate use for PRP products. PMID:24150615

  13. IGF1R signaling in Ewing sarcoma is shaped by clathrin-/caveolin-dependent endocytosis.

    PubMed

    Martins, Ana Sofia; Ordóñez, José Luis; Amaral, Ana Teresa; Prins, Frans; Floris, Giuseppe; Debiec-Rychter, Maria; Hogendoorn, Pancras C W; de Alava, Enrique

    2011-01-01

    Receptor endocytosis is critical for cell signaling. IGF1R mediates an autocrine loop that is de-regulated in Ewing Sarcoma (ES) cells. Here we study the impact of IGF1R internalization, mediated by clathrin and caveolin-1 (CAV1), in ES signaling. We used clathrin and CAV1-siRNA to interfere in clathrin- and caveolin-dependent endocytosis. Chlorpromazine (CPMZ) and methyl-beta-cyclo-dextrin (MCD) were also used in order to inhibit clathrin- and caveolin-dependent endocytosis, respectively. We analyzed IGF1R internalization and co-localization with clathrin and CAV1 upon ligand binding, as well as the status of the IGF1R pathway, cellular proliferation, and the apoptosis of interfered and inhibited ES cells. We performed a high-throughput tyrosine kinase phosphorylation assay to analyze the effects of combining the IGF1R tyrosine kinase inhibitor AEW541 (AEW) with CPMZ or MCD on the intracellular phospho-proteome. We observed that IGF1R is internalized upon ligand binding in ES cells and that this process is dependent on clathrin or CAV1. The blockage of receptor internalization inhibited AKT and MAPK phosphorylation, reducing the proliferative rate of ES cells and increasing the levels of apoptosis. Combination of AEW with CPMZ or MCD largely enhanced these effects. CAV1 and clathrin endocytosis controls IGF1R internalization and signaling and has a profound impact on ES IGF1R-promoted survival signaling. We propose the combination of tyrosine-kinase inhibitors with endocytosis inhibitors as a new therapeutic approach to achieve a stronger degree of receptor inhibition in this, or other neoplasms dependent on IGF1R signaling.

  14. Irreversible increase of serum IGF-1 and IGFBP-3 levels in GnRH-dependent precocious puberty of different etiologies: implications for the onset of puberty.

    PubMed

    Belgorosky, A; Rivarola, M A

    1998-01-01

    during treatment (1.34+/-2.0 and 0.73+/-1.93). In Gr2, serum IGF-1 and IGFBP-3 SDS CA were high before treatment (3.11+/-0.74 and 1.31+/-1.43, p < 0.02 and p < 0.05, respectively), and they remained high during HC or combined treatment. In the two groups, serum IGF-1 SDS BA and serum IGFBP-3 SDS BA levels were similar to control subjects before and during treatments. In Gr1, mean serum dehydroepiandrosterone sulfate (DS) was within prepubertal preadrenarche values but serum androstenedione (delta4) was significantly higher (6.35+/-3.45 nmol/l) than in our own normal control group (1.84+/-1.18, n = 20), both before and during treatment (p < 0.02). In Gr2, serum DS and serum delta4 were high before treatment but they decreased to prepubertal values during combined treatment. It is concluded that (1) the CNS maturational events which change the regulation of serum IGF-1 and IGFBP-3 are induced by the pubertal increase in sex steroids in a nonreversible way and (2) the high adrenal steroid levels present in CAH induce a nonreversible activation of the GH-IGF-1 axis and of the GnRH pulse generator.

  15. Identification of Novel IGF1R Kinase Inhibitors by Molecular Modeling and High-Throughput Screening

    PubMed Central

    Moriev, R.; Vasylchenko, O.; Platonov, M.; Grygorenko, O.; Volkova, K.; Zozulya, S.

    2013-01-01

    The aim of this study was to identify small molecule compounds that inhibit the kinase activity of the IGF1 receptor and represent novel chemical scaffolds, which can be potentially exploited to develop drug candidates that are superior to the existing experimental anti-IGF1R therapeuticals. To this end, targeted compound libraries were produced by virtual screening using molecular modeling and docking strategies, as well as the ligand-based pharmacophore model. High-throughput screening of the resulting compound sets in a biochemical kinase inhibition assay allowed us to identify several novel chemotypes that represent attractive starting points for the development of advanced IGF1R inhibitory compounds. PMID:23819040

  16. Thorium induced cytoproliferative effect in human liver cell HepG2: role of insulin-like growth factor 1 receptor and downstream signaling.

    PubMed

    Ali, Manjoor; Kumar, Amit; Pandey, Badri N

    2014-03-25

    Thorium-232 ((232)Th), a naturally-occurring actinide has gained significant attention due to its immense potential as a nuclear fuel for advanced reactors. Understanding the biological effects of (232)Th would significantly impact its efficient utilization with adequate health protection. Humans administered with (232)Th (thorotrast patients) or experimental animal models showed that liver is one of the major sites of (232)Th accumulation. Present study reports cellular effects of (232)Th-nitrate in a human-derived liver cell (HepG2). Results showed that the low concentration of (232)Th (0.1-10 μM) induced proliferation of HepG2 cells which was inhibited by the pre-treatment of cells with neutralizing antibody against insulin-like growth factor 1 receptor (IGF-1R). Consistently, (232)Th treatment was found to increase the phosphorylated level of IGF-1R-associated molecule, IRS1 which serves to activate PI3K and MAPK signaling pathways. Pre-treatment with specific inhibitors of PI3K (LY294002) or JNK-MAPK (SP600125) significantly abrogated the cytoproliferative effect of (232)Th. Immunofluorescence analysis showed increased levels of phospho-Akt and phospho-JNK, downstream kinases of IGF-1R, in (232)Th-treated HepG2 cells suggesting the role of IGF-1R-mediated signaling in (232)Th-stimulated cell proliferation. The cell cycle analysis showed that (232)Th increased S and G2-M cell fractions concomitant to the increase of cyclin-E level. Thus, the present investigation highlights the role of IGF-1R-mediated signaling in the cytoproliferative effect of (232)Th in human liver cells at low concentration. PMID:24462957

  17. Differential steroidogenic response of subpopulations of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs.

    PubMed

    Howard, H J; Ford, J J

    1994-07-01

    Two experiments were conducted to examine responses of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs (des [1-3] and Long R3) that have reduced affinity for IGF-binding proteins (IGFBP). Both experiments evaluated estradiol and IGFBP production by granulosa cells after separation of cells into subpopulations that maintain long-term estradiol production in vitro (tightly bound) and those that do not (weakly associated). Granulosa cells were obtained from medium-sized follicles (4-6 mm) at random stages of the estrous cycle in experiment 1 and from the 10 largest follicles per ovary at 0 or 48 h after weaning in experiment 2. Follicle diameter and follicular fluid estradiol concentrations increased with time after weaning (p < 0.05). Tightly bound cells produced more estradiol than weakly associated cells at 24-120 h of culture in experiment 1 and from 0 to 48 h in experiment 2 (p < 0.05). In tightly bound but not weakly associated cells, IGF-1 stimulated estradiol production. The IGF analogs were more potent stimulators than IGF-1 in experiment 1 (p < 0.05); and in experiment 2, this response was restricted to cells collected at 48 h after weaning. Conversely, tightly bound cells obtained at 0 h after weaning responded similarly to IGF-1 and des (1-3). During the final 48 h of culture, weakly associated cells produced greater quantities of 28-30-kDa IGFBP than did tightly bound cells in response to IGF-1 or analogs (both experiments; p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7522591

  18. Differential steroidogenic response of subpopulations of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs.

    PubMed

    Howard, H J; Ford, J J

    1994-07-01

    Two experiments were conducted to examine responses of porcine granulosa cells to insulin-like growth factor-1 (IGF-1) or IGF-1 analogs (des [1-3] and Long R3) that have reduced affinity for IGF-binding proteins (IGFBP). Both experiments evaluated estradiol and IGFBP production by granulosa cells after separation of cells into subpopulations that maintain long-term estradiol production in vitro (tightly bound) and those that do not (weakly associated). Granulosa cells were obtained from medium-sized follicles (4-6 mm) at random stages of the estrous cycle in experiment 1 and from the 10 largest follicles per ovary at 0 or 48 h after weaning in experiment 2. Follicle diameter and follicular fluid estradiol concentrations increased with time after weaning (p < 0.05). Tightly bound cells produced more estradiol than weakly associated cells at 24-120 h of culture in experiment 1 and from 0 to 48 h in experiment 2 (p < 0.05). In tightly bound but not weakly associated cells, IGF-1 stimulated estradiol production. The IGF analogs were more potent stimulators than IGF-1 in experiment 1 (p < 0.05); and in experiment 2, this response was restricted to cells collected at 48 h after weaning. Conversely, tightly bound cells obtained at 0 h after weaning responded similarly to IGF-1 and des (1-3). During the final 48 h of culture, weakly associated cells produced greater quantities of 28-30-kDa IGFBP than did tightly bound cells in response to IGF-1 or analogs (both experiments; p < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. α6 Integrin Transactivates Insulin-like Growth Factor Receptor-1 (IGF-1R) to Regulate Caspase-3-mediated Lens Epithelial Cell Differentiation Initiation*

    PubMed Central

    Basu, Subhasree; Rajakaruna, Suren; De Arcangelis, Adèle; Zhang, Liping; Georges-Labouesse, Elisabeth; Menko, A. Sue

    2014-01-01

    The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells. PMID:24381169

  20. Intrauterine low-functional programming of IGF1 by prenatal nicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring.

    PubMed

    Tie, Kai; Zhang, Xianrong; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Wang, Hui; Chen, Liaobin

    2016-02-01

    This study aimed to evaluate whether female adult offspring born with intrauterine growth retardation induced by prenatal nicotine exposure (PNE) are susceptible to osteoarthritis (OA) and to explore the underlying programming mechanisms. Pregnant rats were treated with nicotine or saline at 2.0 mg/kg/d from gestational d 11 to 20. The female adult offspring with or without PNE were forced with a strenuous treadmill running for 6 wk to induce OA. Nicotine's effects on fetal articular chondrocytes were studied by exposing chondrocytes to nicotine for 10 d, and dihydro-β-erythroidine, a selective α4β2-nicotinic acetylcholine receptor (nAChR) inhibitor, was used to identify the change of nicotine's effect. For adult offspring, increased cartilage destruction and accelerated OA progression were observed in the PNE group with running; the expression of α1 chain of type II collagen (Col2A1), aggrecan, SRY-type high mobility group box 9 (Sox9), and IGF1 signaling molecules in the cartilage of PNE offspring were decreased. For fetuses, elevated serum corticosteroid and nicotine levels and suppressed IGF1 levels were observed; expression of Col2A1, aggrecan, Sox9, and IGF1 were reduced. The result of chondrocytes revealed that nicotine impeded the expression of Col2A1, aggrecan, and IGF1; blocking α4β2-nAChR rescued nicotine's suppression. In conclusion, PNE increases the susceptibility of adult offspring to OA; the potential mechanism involves IGF1 low-functional programming in articular cartilage caused directly by the action of nicotine on α4β2-nAChR.

  1. Fine-mapping IGF1 and prostate cancer risk in African Americans: the multiethnic cohort study.

    PubMed

    Giorgi, Elena E; Stram, Daniel O; Taverna, Darin; Turner, Stephen D; Schumacher, Fredrick; Haiman, Christopher A; Lum-Jones, Annette; Tirikainen, Maarit; Caberto, Christian; Duggan, David; Henderson, Brian E; Le Marchand, Loic; Cheng, Iona

    2014-09-01

    Genetic variation at insulin-like growth factor 1 (IGF1) has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans. We conducted targeted Roche GS-Junior 454 resequencing of a 156-kb region of IGF1 in 80 African American aggressive prostate cancer cases. Three hundred and thirty-four IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry-European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations. We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (P = 0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at P < 0.05. The top associated SNP among African Americans, rs148371593 [minor allele frequency (MAF) = 0.03; P = 0.0014; q > 0.1], did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF < 0.003) and was not associated with prostate cancer risk (P = 0.98). Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans.

  2. Efficient Expression of Igf-1 from Lentiviral Vectors Protects In Vitro but Does Not Mediate Behavioral Recovery of a Parkinsonian Lesion in Rats.

    PubMed

    Lu-Nguyen, Ngoc B; Broadstock, Martin; Yáñez-Muñoz, Rafael J

    2015-11-01

    Gene therapy approaches delivering neurotrophic factors have offered promising results in both preclinical and clinical trials of Parkinson's disease (PD). However, failure of glial cell line-derived neurotrophic factor in phase 2 clinical trials has sparked a search for other trophic factors that may retain efficacy in the clinic. Direct protein injections of one such factor, insulin-like growth factor (IGF)-1, in a rodent model of PD has demonstrated impressive protection of dopaminergic neurons against 6-hydroxydopamine (6-OHDA) toxicity. However, protein infusion is associated with surgical risks, pump failure, and significant costs. We therefore used lentiviral vectors to deliver Igf-1, with a particular focus on the novel integration-deficient lentiviral vectors (IDLVs). A neuron-specific promoter, from the human synapsin 1 gene, excellent for gene expression from IDLVs, was additionally used to enhance Igf-1 expression. An investigation of neurotrophic effects on primary rat neuronal cultures demonstrated that neurons transduced with IDLV-Igf-1 vectors had complete protection on withdrawal of exogenous trophic support. Striatal transduction of such vectors into 6-OHDA-lesioned rats, however, provided neither protection of dopaminergic substantia nigra neurons nor improvement of animal behavior.

  3. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    PubMed Central

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  4. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses.

    PubMed

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-02-01

    The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer's disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca(2+) transients, while promoting spontaneous transmission and resting Ca(2+) level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca(2+) buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer's disease.

  5. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function.

  6. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function. PMID:27207537

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  8. Insulin-like Growth Factor 1 (IGF-1) Stabilizes Nascent Blood Vessels*

    PubMed Central

    Jacobo, Sarah Melissa P.; Kazlauskas, Andrius

    2015-01-01

    Here we report that VEGF-A and IGF-1 differ in their ability to stabilize newly formed blood vessels and endothelial cell tubes. Although VEGF-A failed to support an enduring vascular response, IGF-1 stabilized neovessels generated from primary endothelial cells derived from various vascular beds and mouse retinal explants. In these experimental systems, destabilization/regression was driven by lysophosphatidic acid (LPA). Because previous studies have established that Erk antagonizes LPA-mediated regression, we considered whether Erk was an essential component of IGF-dependent stabilization. Indeed, IGF-1 lost its ability to stabilize neovessels when the Erk pathway was inhibited pharmacologically. Furthermore, stabilization was associated with prolonged Erk activity. In the presence of IGF-1, Erk activity persisted longer than in the presence of VEGF or LPA alone. These studies reveal that VEGF and IGF-1 can have distinct inputs in the angiogenic process. In contrast to VEGF, IGF-1 stabilizes neovessels, which is dependent on Erk activity and associated with prolonged activation. PMID:25564613

  9. Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R.

    PubMed

    Micke, G C; Sullivan, T M; McMillen, I C; Gentili, S; Perry, V E A

    2011-01-30

    Expression of insulin-like growth factor (IGF)1 and IGF2 and their receptor (IGF1R and IGF2R) mRNA in fetal skeletal muscle are changed by variations in maternal nutrient intake. The persistence of these effects into postnatal life and their association with phenotype in beef cattle is unknown. Here we report that the cross-sectional areas of longissimus dorsi and semitendinosus (ST) muscles were greater for mature male progeny born to heifers fed low protein diets (70% vs. 240% of recommended) during the first trimester. In ST, this was accompanied by greater IGF1, IGF2 and IGF2R mRNA at 680 d. Females exposed to low protein diets during the first trimester had decreased IGF2 mRNA in ST at 680 d, however this did not result in an effect to phenotype. Exposure to low protein diets during the second trimester increased IGF1R mRNA in ST of all progeny at 680 d. Changes to expression of IGF genes in progeny skeletal muscle resulting from variations to maternal protein intake during gestation may have permanent and sex-specific effect on postnatal skeletal muscle growth.

  10. Cytoplasmic LSM-1 protein regulates stress responses through the insulin/IGF-1 signaling pathway in Caenorhabditis elegans.

    PubMed

    Cornes, Eric; Porta-De-La-Riva, Montserrat; Aristizábal-Corrales, David; Brokate-Llanos, Ana María; García-Rodríguez, Francisco Javier; Ertl, Iris; Díaz, Mònica; Fontrodona, Laura; Reis, Kadri; Johnsen, Robert; Baillie, David; Muñoz, Manuel J; Sarov, Mihail; Dupuy, Denis; Cerón, Julián

    2015-09-01

    Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance.

  11. Cytoplasmic LSM-1 protein regulates stress responses through the insulin/IGF-1 signaling pathway in Caenorhabditis elegans

    PubMed Central

    Cornes, Eric; Porta-De-La-Riva, Montserrat; Aristizábal-Corrales, David; Brokate-Llanos, Ana María; García-Rodríguez, Francisco Javier; Ertl, Iris; Díaz, Mònica; Fontrodona, Laura; Reis, Kadri; Johnsen, Robert; Baillie, David; Muñoz, Manuel J.; Sarov, Mihail; Dupuy, Denis; Cerón, Julián

    2015-01-01

    Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance. PMID:26150554

  12. Temporal Changes in Plasma Concentration of Leptin, IGF-1, Insulin and Metabolites Under Extended Fasting and Re-Feeding Conditions in Growing Lambs

    PubMed Central

    Kiani, Ali

    2012-01-01

    Background A fall in plasma concentration of energy status related hormones (leptin, insulin-like growth factor-1 (IGF-1) and insulin) and body energy expenditure occurs in response to short term fasting. Nevertheless, the relations of the fasting-induced changes in energy related hormones and metabolites with fasting energy expenditure (FEE) under extended fasting condition have received little attention so far. Objectives It is not clear how energy status related hormones coordinate to cope with feed deprivation under extended fasting time conditions and how quickly these hormones re-bound to fed-state values in response to re-feeding. Thus the objectives of this study were: 1) to determine the effects of extended fasting on plasma concentration of leptin, IGF-1, insulin, glucose, NEFA, 3-β-hydroxybutyrate (BOHB) and urea; and 2) to study the relations of energy status related hormones with FEE and substrate oxidations under extended fasting conditions. Materials and Methods Eighteen six-month-old growing lambs (9 females and 9 males) were fasted for three days. Blood samples were taken one hour before (-1H) and 48 and 72 hours after fasting (48H and 72H) and two hours after re-feeding (+2H) from jugular vein. During the last 22 hours of fasting, gas exchange (CO2 production and O2 consumption) were measured using an open-circuit indirect calorimeter. Respiratory quotient (RQ), FEE and relative proportions of oxidized protein, fat and carbohydrate were calculated. Results Plasma levels of leptin, insulin, IGF-1 and glucose decreased but NEFA and urea levels increased within 48H of fasting. Concentration of insulin significantly increased with extended fasting while leptin and IGF-1 levels remained constant. Glucose was the only blood variable that showed a quick re-bound within two hours after re-feeding. Leptin and IGF-1 showed significant positive relations with glucose and BOHB but negative relations with NEFA and Urea. Carbohydrate, fat and proteins

  13. Proteomic Identification of 14-3-3ζ as an Adapter for IGF-1 and Akt/GSK-3β Signaling and Survival of Renal Mesangial Cells

    PubMed Central

    Singh, Lalit P.; Jiang, Yan; Cheng, Davis W.

    2007-01-01

    Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3β) signaling pathway in the regulation of fibronectin and cyclin D1 expression and survival of renal mesangial cells. A proteomic approach is also employed to identify protein targets of IGF-1 signaling via GSK-3β inhibition in mesangial cells. We show that IGF-1 (100 ng/ml) significantly increases the protein kinase Akt/PKB activity (1.5-2-fold, p<0.05) within 1-5 minutes, which is completely blocked by the presence of 100 nM Wortmannin (phosphatidyl-inositol 3-kinase inhibitor). Akt activation is coupled with Ser9 phosphorylation and inactivation of its down-stream target GSK-3β. IGF-1 increases the cyclic AMP-responsive element (CRE) binding transcription factor CREB phosphorylation at Ser 133 and CRE-binding activity in mesangial cells, which parallels cyclin D1 and fibronectin expressions. Both proteins are known to have CRE-sequences in their promoter regions upstream of the transcription start site. Suppression of GSK-3β by SB216763 (100 nM) increases CREB phosphorylation, cyclin D1 and fibronectin levels. Two dimensional gel electrophoresis followed by MALDI-TOF mass spectrometric analysis of mesangial proteins reveals that IGF-1 treatment or an inhibition of GSK-3β increases the expression of the phosphorylated Ser/Thr binding signal adapter protein 14-3-3ζ. Immuno-precipitation of 14-3-3ζ followed by Western blotting validates the association of phosphorylated GSK-3β with 14-3-3ζ in renal mesangial cells. Stable expression of a constitutively active GSK-3β(Ser9Ala) induces cell death while overexpression of HA-tagged 14-3-3ζ increases cell viability as measured by MTT assays. These results indicate that

  14. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    PubMed

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

  15. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor

    PubMed Central

    Davaadelger, Batzaya; Duan, Lei; Perez, Ricardo E.; Gitelis, Steven; Maki, Carl G.

    2016-01-01

    The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is aberrantly activated in multiple cancers and can promote proliferation and chemotherapy resistance. Multiple IGF-1R inhibitors have been developed as potential therapeutics. However, these inhibitors have failed to increase patient survival when given alone or in combination with chemotherapy agents. The reason(s) for the disappointing clinical effect of these inhibitors is not fully understood. Cisplatin (CP) activated the IGF-1R/AKT/mTORC1 pathway and stabilized p53 in osteosarcoma (OS) cells. p53 knockdown reduced IGF-1R/AKT/mTORC1 activation by CP, and IGF-1R inhibition reduced the accumulation of p53. These data demonstrate positive crosstalk between p53 and the IGF-1R/AKT/mTORC1 pathway in response to CP. Further studies showed the effect of IGF-1R inhibition on CP response is dependent on p53 status. In p53 wild-type cells treated with CP, IGF-1R inhibition increased p53s apoptotic function but reduced p53-dependent senescence, and had no effect on long term survival. In contrast, in p53-null/knockdown cells, IGF-1R inhibition reduced apoptosis in response to CP and increased long term survival. These effects were due to p27 since IGF-1R inhibition stabilized p27 in CP-treated cells, and p27 depletion restored apoptosis and reduced long term survival. Together, the results demonstrate 1) p53 expression determines the effect of IGF-1R inhibition on cancer cell CP response, and 2) crosstalk between the IGF-1R/AKT/mTORC1 pathway and p53 and p27 can reduce cancer cell responsiveness to chemotherapy and may ultimately limit the effectiveness of IGF-1R pathway inhibitors in the clinic. PMID:27050276

  16. IGF-1 Antibody Prolongs the Effective Duration Time of Botulinum Toxin in Decreasing Muscle Strength

    PubMed Central

    Jin, Lingjing; Pan, Lizhen; Liu, Wuchao; Guo, Yan; Zheng, Yuguo; Guan, Qiang; Nie, Zhiyu

    2013-01-01

    Botulinum toxin type-A (Btx-A), a powerful therapeutic tool in various medical specialties, requires repeated injections to maintain its effect. Therefore, novel methods to prolong the effective duration time of Btx-A are highly needed. Rats were assigned to three major groups: control group (n = 30), Btx-A group (n = 30), and IGF-1 Ab groups. IGF-1 Ab groups were composed by sub-groups A1–A5 (each has 25 rats) for the subsequent IGF-1Ab dose-effect study. Muscle strength was determined by a survey system for rat lower limbs nerve and muscle function. Muscle-specific receptor tyrosine kinase (MuSK), Insulin-like growth factor binding protein-5 (IGFBP5), and growth-associated protein, 43-kDa (GAP43) were determined by real-time polymerase chain reactions (PCRs) and Western blot. We found that Btx-A decreased the muscle strength, with a paralysis maintained for 70 days. IGF-1Ab prolonged the effective duration time of Btx-A. Real-time PCRs and Western blot showed that IGF-1Ab delayed the increase of MuSK and IGFBP5 after Btx-A injection, without affecting GAP43. These results indicate that IGF-1Ab might prolong the effective duration time of Btx-A on muscle strength through delaying the increase of MuSK. It would be interesting to determine whether IGF-1Ab can be used as an auxiliary measure to the Btx-A treatment in the future. PMID:23698763

  17. Chronic Exposure to Perfluorooctane Sulfonate Reduces Lifespan of Caenorhabditis elegans Through Insulin/IGF-1 Signaling.

    PubMed

    Xu, Tiantian; Li, Ping; Wu, Siyu; Li, Dan; Wu, Jingxuan; Raley-Susman, Kathleen M; He, Defu

    2016-07-01

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant. Although multiple adverse effects of PFOS have been demonstrated, whether PFOS can accelerate aging and affect animal longevity remains unknown. In Caenorhabditis elegans, we found that a 50 h exposure to 0.2-200 µM PFOS reduced lifespan in a concentration dependent manner. In transgenic nematodes, lifespans are affected by mutations of daf-16, daf-2 or age-1 genes, which are related to the Insulin/IGF-1 Signaling pathway (IIS). PFOS exposure caused an additional reduction in average lifespan in daf-2(e1370) and daf-16b(KO) nematodes. In contrast, daf-16(mu86) nematodes showed no additional reduction with PFOS exposure and age-1(hx546) mutants did not exhibit a reduction in lifespan with PFOS exposure, compared with wildtype nematodes. Overall, our findings demonstrate that PFOS exposure accelerates aging and shortens longevity of animals. The PFOS-induced effect may involve genes of the IIS pathway, particularly daf-16 and age-1.

  18. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    PubMed

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy. PMID:26634242

  19. Evidence that upregulation of serum IGF-1 concentration can trigger acceleration of diabetic retinopathy

    PubMed Central

    Chantelau, E

    1998-01-01

    BACKGROUND—Acute reduction of chronic hyperglycaemia can accelerate early diabetic retinopathy. In adolescent patients with Mauriac's syndrome, this phenomenon is related to an upregulation of subnormal serum IGF-1 levels.
AIM—To obtain longitudinal data on serum IGF-1 and retinopathy status in poorly controlled adult insulin dependent (type 1) diabetic patients without Mauriac's syndrome, in whom hyperglycaemia is reduced by intensive insulin therapy.
METHODS—Four patients with chronic severe insulin deficiency and early microangiopathy were studied prospectively. Changes in plasma glucose, HbA1c, serum IGF-1 levels, proteinuria, retinopathy, and clinical status were followed up closely.
RESULTS—Reducing hyperglycaemia from >16 mmol/l (equivalent to HbA1c >11%) to <10 mmol/l (HbA1c <8%) within 5 months increased serum IGF-1 levels by 70-220%. While proteinuria and symptomatic neuropathy regressed, retinopathy progressed from the mild to the severe non-proliferative stage with maculopathy (n=4), and to the proliferative stage (n=1). Laser coagulation was commenced upon the appearance of sight threatening macular oedema (n=4).
CONCLUSION—Upregulation of serum IGF-1 preceding retinal deterioration in these patients suggests a cause-effect relation, consistent with earlier experimental and clinical data. 

 Keywords: diabetes mellitus; macular oedema; metabolic control; intensive therapy; glycated haemoglobin A1c; growth factors PMID:9924360

  20. Genetic variability in IGF-1 and IGFBP-3 and body size in early life

    PubMed Central

    2012-01-01

    Background Early life body size and circulating levels of IGF-1 and IGFBP-3 have been linked to increased risks of breast and other cancers, but it is unclear whether these exposures act through a common mechanism. Previous studies have examined the role of IGF-1 and IGFBP-3 genetic variation in relation to adult height and body size, but few studies have examined associations with birthweight and childhood size. Methods We examined whether htSNPs in IGF-1 and the IGFBP-1/IGFBP-3 gene region are associated with the self-reported outcomes of birthweight, body fatness at ages 5 and 10, and body mass index (BMI) at age 18 among healthy women from the Nurses’ Health Study (NHS) and NHSII. We used ordinal logistic regression to model odds ratios (ORs) and 95% confidence intervals (CI) of a one category increase for birthweight and somatotypes at ages 5 and 10. We used linear regression to model associations with BMI at age 18. Results Among 4567 healthy women in NHS and NHSII, we observed no association between common IGF-1 or IGFBP-1/IGFBP-3 SNPs and birthweight, body fatness at ages 5 and 10, or BMI at age 18. Conclusions Common IGF-1 and IGFBP-1/IGFBP-3 SNPs are not associated with body size in early life. PMID:22894543

  1. IGF-1 C Domain-Modified Hydrogel Enhances Cell Therapy for AKI.

    PubMed

    Feng, Guowei; Zhang, Jimin; Li, Yang; Nie, Yan; Zhu, Dashuai; Wang, Ran; Liu, Jianfeng; Gao, Jie; Liu, Na; He, Ningning; Du, Wei; Tao, Hongyan; Che, Yongzhe; Xu, Yong; Kong, Deling; Zhao, Qiang; Li, Zongjin

    2016-08-01

    Low cell retention and engraftment after transplantation limit the successful application of stem cell therapy for AKI. Engineered microenvironments consisting of a hydrogel matrix and growth factors have been increasingly successful in controlling stem cell fate by mimicking native stem cell niche components. Here, we synthesized a bioactive hydrogel by immobilizing the C domain peptide of IGF-1 (IGF-1C) on chitosan, and we hypothesized that this hydrogel could provide a favorable niche for adipose-derived mesenchymal stem cells (ADSCs) and thereby enhance cell survival in an AKI model. In vitro studies demonstrated that compared with no hydrogel or chitosan hydrogel only, the chitosan-IGF-1C hydrogel increased cell viability through paracrine effects. In vivo, cotransplantation of the chitosan-IGF-1C hydrogel and ADSCs in ischemic kidneys ameliorated renal function, likely by the observed promotion of stem cell survival and angiogenesis, as visualized by bioluminescence imaging and attenuation of fibrosis. In conclusion, IGF-1C immobilized on a chitosan hydrogel provides an artificial microenvironment for ADSCs and may be a promising therapeutic approach for AKI. PMID:26869006

  2. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma

    PubMed Central

    Svalina, Matthew N.; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A.; Settelmeyer, Teagan P.; Young, Michael C.; Peckham, Jennifer L.; Cho, Yoon-Jae; Michalek, Joel E.; Hernandez, Brian S.; Berlow, Noah E.; Jackson, Melanie; Guillaume, Daniel J.; Selden, Nathan R.; Bigner, Darell D.; Nazemi, Kellie J.; Green, Sarah C.; Corless, Christopher L.; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P.; Woltjer, Randall; Keller, Charles

    2016-01-01

    Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma. PMID:27255663

  3. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc

    PubMed Central

    Youness, Rana Ahmed; El-Tayebi, Hend Mohamed; Assal, Reem Amr; Hosny, Karim; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF)-axis has been paradigmatically involved in hepatocellular carcinoma (HCC) tumor initiation, progression and drug resistance. Consequently, members of the IGF-axis and most importantly, IGF-1 receptor (IGF-1R) have been considered as intriguing targets for HCC therapy. Few miRNAs have been recently reported to be associated with IGF-1R regulation. The present study aimed to investigate the role of microRNA (miRNA/miR)-486-5p in the regulation of IGF-1R and its downstream signaling cascades. miR-486-5p was markedly downregulated in hepatitis C virus-induced HCC tissues and Huh-7 cells. Forcing the expression of miR-486-5p in Huh-7 cells resulted in the repression of IGF-1R, mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and c-Myc mRNA levels. Ectopic expression of miR-486-5p in Huh-7 cells markedly repressed cellular viability, proliferation, migration and clonogenicity in a similar pattern to IGF-1R small interfering RNAs, and were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, BrdU incorporation, wound healing and colony forming assays, respectively. Overall, the study findings demonstrated that miR-486-5p acts as a tumor suppressor in HCC through the repression of essential members of the IGF-axis, including IGF-1R and its downstream mediators mTOR, STAT3 and c-Myc.

  4. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc

    PubMed Central

    Youness, Rana Ahmed; El-Tayebi, Hend Mohamed; Assal, Reem Amr; Hosny, Karim; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    The insulin-like growth factor (IGF)-axis has been paradigmatically involved in hepatocellular carcinoma (HCC) tumor initiation, progression and drug resistance. Consequently, members of the IGF-axis and most importantly, IGF-1 receptor (IGF-1R) have been considered as intriguing targets for HCC therapy. Few miRNAs have been recently reported to be associated with IGF-1R regulation. The present study aimed to investigate the role of microRNA (miRNA/miR)-486-5p in the regulation of IGF-1R and its downstream signaling cascades. miR-486-5p was markedly downregulated in hepatitis C virus-induced HCC tissues and Huh-7 cells. Forcing the expression of miR-486-5p in Huh-7 cells resulted in the repression of IGF-1R, mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3) and c-Myc mRNA levels. Ectopic expression of miR-486-5p in Huh-7 cells markedly repressed cellular viability, proliferation, migration and clonogenicity in a similar pattern to IGF-1R small interfering RNAs, and were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, BrdU incorporation, wound healing and colony forming assays, respectively. Overall, the study findings demonstrated that miR-486-5p acts as a tumor suppressor in HCC through the repression of essential members of the IGF-axis, including IGF-1R and its downstream mediators mTOR, STAT3 and c-Myc. PMID:27698829

  5. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer

    PubMed Central

    Park, Ji Hyun; Choi, Yun Jung; Kim, Seon Ye; Lee, Jung-Eun; Sung, Ki Jung; Park, Sojung; Kim, Woo Sung; Song, Joon Seon; Choi, Chang-Min; Sung, Young Hoon; Rho, Jin Kyung; Lee, Jae Cheol

    2016-01-01

    Mutant-selective, 3rd-generation EGFR-TKIs were recently developed to control lung cancer cells harboring T790M-mediated resistance. However, the development of resistance to these novel drugs seems inevitable. Thus, we investigated the mechanism of acquired resistance to the mutant-selective EGFR-TKI WZ4002. We established five WZ4002-resistant cells, derived from cells harboring both EGFR and T790M mutations by long-term exposure to increasing doses of WZ4002. Compared with the parental cells, all resistant cells showed 10–100-folds higher resistance to WZ4002, as well as cross-resistance to other mutant-selective inhibitors. Among them, three resistant cells (HCC827/WR, PC-9/WR and H1975/WR) showed dependency on EGFR signaling, but two other cells (PC-9/GR/WR and PC-9/ER/WR) were not. Notably, insulin-like growth factor-1 receptor (IGF1R) was aberrantly activated in PC-9/GR/WR cells in phospho-receptor tyrosine kinase array, consistently accompanied by loss of IGF binding protein-3 (IGFBP3). Down-regulation of IGF1R by shRNA, as well as inhibition of IGF1R activity either by AG-1024 (a small molecule IGF1R inhibitor) or BI 836845 (a monoclonal anti-IGF1/2 blocking antibody), restored the sensitivity to WZ4002 both in vitro and xenograft. Taken together, these results suggest that activation of the IGF1R pathway associated with IGFBP3 loss can induce an acquired resistance to the mutant-selective EGFR-TKI, WZ4002. Therefore, a combined therapy of IGF1R inhibitors and mutant-selective EGFR-TKIs might be a viable treatment strategy for overcoming acquired resistance. PMID:26980747

  6. Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice.

    PubMed

    Nikoshkov, Andrej; Sunkari, Vivekananda; Savu, Octavian; Forsberg, Elisabete; Catrina, Sergiu-Bogdan; Brismar, Kerstin

    2011-04-01

    We have investigated promoter methylation of the Insr, Igf1 and Igf1r genes in skeletal and cardiac muscles of normal and diabetic db/db mice. No differences in Insr promoter methylation were found in the heart and skeletal muscles and no methylation was detected in the Igf1 promoter in skeletal muscle. In skeletal muscle, db/db males exhibited a 7.4-fold increase in Igf1r promoter methylation, which was accompanied by a 1.8-fold decrease in Igf1r mRNA levels, compared with controls. More than 50% of the detected methylation events were concentrated within an 18 bp sequence that includes one of the Sp1 binding sites. We conclude that the methylation level and pattern of the Igf1r promoter in skeletal muscle is related to gender and the diabetic state. PMID:21474992

  7. IGF1R and c-met as therapeutic targets for colorectal cancer.

    PubMed

    Shali, Hajar; Ahmadi, Majid; Kafil, Hossein Samadi; Dorosti, Abbasali; Yousefi, Mehdi

    2016-08-01

    The type 1 IGF receptor (IGF1R) and mesenchymal-epithelial transition (MET) are hetrodimeric and transmembrane receptor tyrosine kinases, which are frequently overexpressed by several tumor types, including colorectal cancer (CRC). These receptors bind to their specific ligands, insulin growth factors (IGFs) and hepatocyte growth factor (HGF), respectively, and promote signaling cascades which mediates many functions such as proliferation and protection against apoptosis, cell scattering, tumor cell motility, invasion and metastasis. In patients with metastatic colorectal cancer (mCRC), IGF1R and c-met expression confer resistance to cetuximab (monoclonal antibodies against EGFR). Therefore, the c-met and IGF1R are now an attractive novel target for anticancer therapy. In this review, we will describe correlation between two receptors and their activation effects in tumor cells, and finally introduce useful and available strategies for their targeting. PMID:27470393

  8. Reduction of elevated IGF-1 levels in coincident amyotrophic lateral sclerosis and acromegaly.

    PubMed

    Pereira, Erlick A C; Turner, Martin R; Wass, John A H; Talbot, Kevin

    2010-01-01

    We report a patient presenting with ALS in whom acromegaly was later confirmed. Insulin-like growth factor-1 (IGF-1) has been tried in the treatment of ALS and despite equivocal results from clinical trials, efforts have continued to try to harness the significant positive effects on motor neuron growth observed in vitro and in survival of mouse models of the disease. One subsequent study has reported an association between higher circulating serum IGF-1 levels and longer disease duration in ALS patients. Concern therefore arose in our case that treatment of the acromegaly with a somatostatin analogue might adversely affect the natural course of his ALS through lowering of potentially beneficial IGF-1 levels. Through clinical observation and prognostic modelling we suggest that this concern was unfounded. The potential interaction of these two rarely coincident disorders in our patient is discussed.

  9. IGF-1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors

    PubMed Central

    Rota, Lauren M.; Albanito, Lidia; Shin, Marcus E.; Goyeneche, Corey L.; Shushanov, Sain; Gallagher, Emily J.; LeRoith, Derek; Lazzarino, Deborah A.; Wood, Teresa L.

    2014-01-01

    Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment. PMID:25092896

  10. The IGF-1/cortisol ratio as a useful marker for monitoring training in young boxers

    PubMed Central

    Nassib, S; Moalla, W; Hammoudi-Nassib, S; Chtara, M; Hachana, Y; Tabka, Z; Chamari, K

    2015-01-01

    Training effects on plasma insulin-like growth factor-1 (IGF-1)/cortisol ratio were investigated in boxers. Thirty subjects were assigned to either the training or the control group (n = 15 in both). They were tested before the beginning of training (T0), after 5 weeks of intensive training (T1), and after 1 week of tapering (T2). Physical performances (Yo-Yo intermittent recovery test level-1), training loads, and blood sampling were obtained at T0, T1, and T2. Controls were only tested for biochemical and anthropometric parameters at T0 and T2. A significantly higher physical performance was observed at T2 compared to T1. At T1, cortisol levels were significantly increased whereas IGF-1 and insulin-like growth factor binding protein-3 (IGFBP-3) levels remained unchanged compared to baseline. At T2, cortisol levels decreased while IGF-1 and IGFBP-3 levels increased. The IGF-1/cortisol ratio decreased significantly at T1 and increased at T2, and its variations were significantly correlated with changes in training loads and Yo-Yo intermittent recovery test level 1 (IRT1) performance over the training period. Cortisol variations correlated with changes in training load (r = 0.64; p < 0.01) and Yo-Yo IRT1 performance (r = 0.78; p < 0.001) at T1 whereas IGF-1 variations correlated only with changes in Yo-Yo IRT1 performance at T2 (r = 0.71; p < 0.001). It is concluded that IGF-1/cortisol ratio could be a useful tool for monitoring training loads in young trained boxers. PMID:26985129

  11. Serum IGF-1 Concentrations Change With Soy and Seaweed Supplements in Healthy Postmenopausal American Women

    PubMed Central

    Teas, Jane; Irhimeh, Mohammad R.; Druker, Susan; Hurley, Thomas G.; Hébert, James R.; Savarese, Todd M.; Kurzer, Mindy S.

    2011-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone important for growth and development. However, high-circulating serum concentrations in adults are associated with increased risk of postmenopausal breast cancer. Nutritional status and specific foods influence serum IGF-1 concentrations. Breast cancer incidence is typically low in Asian countries where soy is commonly consumed. Paradoxically, soy supplement trials in American women have reported significant increases in IGF-1. Seaweed also is consumed regularly in Asian countries where breast cancer risk is low. We investigated the possibility that seaweed could modify soy-associated increases in IGF-1 in American women. Thirty healthy postmenopausal women (mean age 58 yr) participated in this 14-wk double-blinded, randomized, placebo-controlled crossover clinical trial. Participants consumed 5 g/day placebo or seaweed (Alaria esculenta) in capsules for 7 wk. During the 7th wk, a high-soy protein isolate powder was added (2 mg/kg body weight aglycone equivalent isoflavones). Overnight fasting blood samples were collected after each intervention period. Soy significantly increased serum IGF-1 concentrations compared to the placebo (21.2 nmol/L for soy vs. 16.9 nmol/L for placebo; P = 0.0001). The combination of seaweed and soy significantly reduced this increase by about 40% (21.2 nmol/L for soy alone vs. 19.4 nmol/L; P = 0.01). Concurrent seaweed and soy consumption may be important in modifying the effect of soy on IGF-1 serum concentrations. PMID:21711174

  12. Cyclopentyl-pyrimidine based analogues as novel and potent IGF-1R inhibitor.

    PubMed

    Aware, Valmik; Gaikwad, Nitin; Chavan, Sambhaji; Manohar, Sonal; Bose, Julie; Khanna, Smriti; B-Rao, Chandrika; Dixit, Neeta; Singh, Kishori Sharan; Damre, Anagha; Sharma, Rajiv; Patil, Sambhaji; Roychowdhury, Abhijit

    2015-03-01

    A series of novel 2-amino-4-pyrazolecyclopentylpyrimidines have been prepared and evaluated as IGF-1R tyrosin kinase inhibitors. The in vitro activity was found to depend strongly on the substitution pattern in the 2- amino ring, 4-pyrazolo moieties and size of fused saturated ring with the central pyrimidine core. A stepwise optimization by combination of active fragments led to discovery of compound 6f and 6k, two structures with IGF-1R IC50 of 20 nM and 10 nM, respectively. 6f was further profiled for its anti cancer activity across various cell lines and pharmacokinetic studies in Sprague Dawley rats. PMID:25559205

  13. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  14. Cyclopentyl-pyrimidine based analogues as novel and potent IGF-1R inhibitor.

    PubMed

    Aware, Valmik; Gaikwad, Nitin; Chavan, Sambhaji; Manohar, Sonal; Bose, Julie; Khanna, Smriti; B-Rao, Chandrika; Dixit, Neeta; Singh, Kishori Sharan; Damre, Anagha; Sharma, Rajiv; Patil, Sambhaji; Roychowdhury, Abhijit

    2015-03-01

    A series of novel 2-amino-4-pyrazolecyclopentylpyrimidines have been prepared and evaluated as IGF-1R tyrosin kinase inhibitors. The in vitro activity was found to depend strongly on the substitution pattern in the 2- amino ring, 4-pyrazolo moieties and size of fused saturated ring with the central pyrimidine core. A stepwise optimization by combination of active fragments led to discovery of compound 6f and 6k, two structures with IGF-1R IC50 of 20 nM and 10 nM, respectively. 6f was further profiled for its anti cancer activity across various cell lines and pharmacokinetic studies in Sprague Dawley rats.

  15. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    PubMed Central

    Gehmert, Sebastian; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases. PMID:24575400

  16. Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors.

    PubMed

    Stauffer, Frédéric; Cowan-Jacob, Sandra W; Scheufler, Clemens; Furet, Pascal

    2016-04-15

    We report structure-guided modifications of the benzyloxy substituent of the Insulin-like Growth Factor-1 Receptor (IGF-1R) inhibitor NVP-AEW541. This chemical group has been shown to confer selectivity against other protein kinases but at the expense of a metabolism liability. X-ray crystallography has revealed that the benzyloxy moiety interacts with a lysine cation of the IGF-1R kinase domain via its ether function and its aromatic π-system and is nicely embedded in an induced hydrophobic pocket. We show that 1,4-diethers displaying an adequate hydrophobic and constrained shape are advantageous benzyloxy replacements. A single digit nanomolar inhibitor (compound 20, IC50=8.9 nM) was identified following this approach.

  17. Gender-Specific Differences in the Skeletal Response to Continuous PTH in Mice Lacking the IGF1 Receptor in Mature Osteoblasts.

    PubMed

    Babey, Muriel; Wang, Yongmei; Kubota, Takuo; Fong, Chak; Menendez, Alicia; ElAlieh, Hashem Z; Bikle, Daniel D

    2015-06-01

    The primary goal of this study was to determine whether the IGF1R in mature osteoblasts and osteocytes was required for the catabolic actions of continuous parathyroid hormone (cPTH). Igf1r was deleted from male and female FVN/B mice by breeding with mice expressing cre recombinase under control of the osteocalcin promoter ((0CN) Igfr1(-/-) ). Littermates lacking the cre recombinase served as controls. PTH, 60 μg/kg/d, was administered continuously by Alzet minipumps for 4 weeks. Blood was obtained for indices of calcium metabolism. The femurs were examined by micro-computed tomography for structure, immunohistochemistry for IGF1R expression, histomorphometry for bone formation rates (BFR), mRNA levels by qPCR, and bone marrow stromal cell cultures (BMSC) for alkaline phosphatase activity (ALP(+) ), mineralization, and osteoblast-induced osteoclastogenesis. Whereas cPTH led to a reduction in trabecular bone volume/tissue volume (BV/TV) and cortical thickness in the control females, no change was found in the control males. Although trabecular BV/TV and cortical thickness were reduced in the (0CN) Igfr1(-/-) mice of both sexes, no further reduction after cPTH was found in the females, unlike the reduction in males. BFR was stimulated by cPTH in the controls but blocked by Igf1r deletion in the females. The (0CN) Igfr1(-/-) male mice showed a partial response. ALP(+) and mineralized colony formation were higher in BMSC from control males than from control females. These markers were increased by cPTH in both sexes, but BMSC from male (0CN) Igfr1(-/-) also were increased by cPTH, unlike those from female (0CN) Igfr1(-/-) . cPTH stimulated receptor activator of NF-κB ligand (RANKL) and decreased osteoprotegerin and alkaline phosphatase expression more in control female bone than in control male bone. Deletion of Igf1r blocked these effects of cPTH in the female but not in the male. However, PTH stimulation of osteoblast-driven osteoclastogenesis was blocked by

  18. MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R.

    PubMed

    Yang, Jing-Jing; Liu, Li-Ping; Tao, Hui; Hu, Wei; Shi, Peng; Deng, Zi-Yu; Li, Jun

    2016-06-01

    Methyl-CpG-binding protein 2 (MeCP2) plays a key role in liver fibrosis. However, the potential mechanism of MeCP2 in liver fibrosis remains unclear. Early reports suggest that LncRNA H19 is important epigenetic regulator with critical roles in cell proliferation, but its role in hepatic fibrosis remains elusive. Sprague-Dawley rats liver fibrosis was generated by 12-weeks treatment with CCl4 intraperitoneal injection. HSC-T6 cells were used in vitro study. The expression levels of MeCP2, H19, IGF1R, α-SMA, and Col1A1 were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSC-T6 cells were transfected with MeCP2-siRNA, pEGF-C1-MeCP2, pEX-3-H19, and H19-siRNA. Finally, cell proliferation ability was assessed by the MTT assay. Here, we found that H19 was significantly down-regulated in HSCs and fibrosis tissues, and an opposite pattern is observed for MeCP2 and IGF1R. Silencing of MeCP2 blocked HSCs proliferation. Knockdown of MeCP2 elevated H19 expression in activated HSCs, and over-expression of MeCP2 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on IGF1R expression. Overexpression of H19 in HSCs repressed the expression of IGF1R, and an opposite pattern is observed for H19 silenced. In addition, we reported that overexpression of H19 inhibited the TGF-β1-induced proliferation of HSCs. Furthermore, MeCP2 negative regulation of H19 by targeting the protein IGF1R. Taken together, these results demonstrated that MeCP2 silencing of H19 can alter the IGF1R overexpression, thus contributing to HSCs proliferation. These data could suggest the development of combination therapies that target the MeCP2. PMID:27350269

  19. HRD1 suppresses the growth and metastasis of breast cancer cells by promoting IGF-1R degradation.

    PubMed

    Xu, Yue-Mei; Wang, Hong-Jiang; Chen, Fang; Guo, Wan-Hua; Wang, Yan-Yang; Li, Hang-Yu; Tang, Jin-Hai; Ding, Ying; Shen, Ya-Chen; Li, Min; Xuan, Wen-Ying; Liu, Lin-Hui; Wang, Jia; Wang, Xue-Rong; Gao, Ze-Jun; Liang, Xiu-Bin; Su, Dong-Ming

    2015-12-15

    HRD1 (3-hydroxy-3-methylglutaryl reductase degradation) is an E3 ubiquitin ligase. We found that HRD1 was significantly downregulated in 170 breast cancer tissues. Low tumoral HRD1 expression was correlated with clinicopathological characteristics and a shorter survival in breast cancer patients. P65 specifically bound to the HRD1 promoter and inhibited HRD1 expression. Suppression of NF-κB activity reversed IL-6-induced downregulation of HRD1 expression. HRD1 interacted with IGF-1R and promoted its ubiquitination and degradation by the proteasome. Overexpression of HRD1 resulted in the inhibition of growth, migration and invasion of breast cancer cells in vitro and in vivo. Furthermore, HRD1 attenuated IL-6-induced epithelial-mesenchymal transition in MCF10A cells. These findings uncover a novel role for HRD1 in breast cancer.

  20. HRD1 suppresses the growth and metastasis of breast cancer cells by promoting IGF-1R degradation

    PubMed Central

    Ding, Ying; Shen, Ya-Chen; Li, Min; Xuan, Wen-Ying; Liu, Lin-Hui; Wang, Jia; Wang, Xue-Rong; Gao, Ze-Jun; Liang, Xiu-Bin; Su, Dong-Ming

    2015-01-01

    HRD1 (3-hydroxy-3-methylglutaryl reductase degradation) is an E3 ubiquitin ligase. We found that HRD1 was significantly downregulated in 170 breast cancer tissues. Low tumoral HRD1 expression was correlated with clinicopathological characteristics and a shorter survival in breast cancer patients. P65 specifically bound to the HRD1 promoter and inhibited HRD1 expression. Suppression of NF-κB activity reversed IL-6-induced downregulation of HRD1 expression. HRD1 interacted with IGF-1R and promoted its ubiquitination and degradation by the proteasome. Overexpression of HRD1 resulted in the inhibition of growth, migration and invasion of breast cancer cells in vitro and in vivo. Furthermore, HRD1 attenuated IL-6-induced epithelial-mesenchymal transition in MCF10A cells. These findings uncover a novel role for HRD1 in breast cancer. PMID:26536657

  1. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster

    PubMed Central

    Altintas, Ozlem; Park, Sangsoon; Lee, Seung-Jae V.

    2016-01-01

    Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates aging in many organisms, ranging from simple invertebrates to mammals, including humans. Many seminal discoveries regarding the roles of IIS in aging and longevity have been made by using the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In this review, we describe the mechanisms by which various IIS components regulate aging in C. elegans and D. melanogaster. We also cover systemic and tissue-specific effects of the IIS components on the regulation of lifespan. We further discuss IIS-mediated physiological processes other than aging and their effects on human disease models focusing on C. elegans studies. As both C. elegans and D. melanogaster have been essential for key findings regarding the effects of IIS on organismal aging in general, these invertebrate models will continue to serve as workhorses to help our understanding of mammalian aging. [BMB Reports 2016; 49(2): 81-92] PMID:26698870

  2. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster.

    PubMed

    Altintas, Ozlem; Park, Sangsoon; Lee, Seung-Jae V

    2016-02-01

    Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates aging in many organisms, ranging from simple invertebrates to mammals, including humans. Many seminal discoveries regarding the roles of IIS in aging and longevity have been made by using the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In this review, we describe the mechanisms by which various IIS components regulate aging in C. elegans and D. melanogaster. We also cover systemic and tissue-specific effects of the IIS components on the regulation of lifespan. We further discuss IIS-mediated physiological processes other than aging and their effects on human disease models focusing on C. elegans studies. As both C. elegans and D. melanogaster have been essential for key findings regarding the effects of IIS on organismal aging in general, these invertebrate models will continue to serve as workhorses to help our understanding of mammalian aging. [BMB Reports 2016; 49(2): 81-92].

  3. A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats.

    PubMed

    Tang, Maoxue; Xie, Tingting; Cheng, Wenke; Qian, Lili; Yang, Shulin; Yang, Daichang; Cui, Wentao; Li, Kui

    2012-06-01

    Genetically modified plants expressing disease resistance traits offer new treatment strategies for human diseases, but at the same time present a challenge in terms of food safety assessment. The present 90-day feeding study was designed to assess the safety of transgenic rice expressing the recombinant human insulin-like growth factor-1 (rhIGF-1) compared to its parental wild rice. Male and female C57BL/6J rats were given a nutritionally balanced purified diet with 20% transgenic rhIGF-1 rice or 20% parental rice for 90 days. This corresponds to a mean daily rhIGF-1 protein intake of approximately 217.6 mg/kg body weight based on the average feed consumption. In the animal study a range of biological, biochemical, clinical, microbiological and pathological parameters were examined and several significant differences were observed between groups, but none of the effects were considered to be adverse. In conclusion, no adverse or toxic effects on C57BL/6J rats were observed in the design used in this 90-day study. These results will provide valuable information for the safety assessment of genetically modified food crops.

  4. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling.

    PubMed

    Ding, Ming; Bruick, Richard K; Yu, Yonghao

    2016-03-01

    The PI(3)K-Akt-mTORC1 pathway is a highly dynamic network that is balanced and stabilized by a number of feedback inhibition loops. Specifically, activation of mTORC1 has been shown to lead to the inhibition of its upstream growth factor signalling. Activation of the growth factor receptors is triggered by the binding of their cognate ligands in the extracellular space. However, whether secreted proteins contribute to the mTORC1-dependent feedback loops remains unclear. We found that cells with hyperactive mTORC1 secrete a protein that potently inhibits the function of IGF-1. Using a large-scale, unbiased quantitative proteomic platform, we comprehensively characterized the rapamycin-sensitive secretome in TSC2(-/-) mouse embryonic fibroblasts, and identified IGFBP5 as a secreted, mTORC1 downstream effector protein. IGFBP5 is a direct transcriptional target of HIF1, which itself is a known mTORC1 target. IGFBP5 is a potent inhibitor of both the signalling and functional outputs of IGF-1. Once secreted, IGFBP5 cooperates with intracellular branches of the feedback mechanisms to block the activation of IGF-1 signalling. Finally, IGFBP5 is a potential tumour suppressor, and the proliferation of IGFBP5-mutated cancer cells is selectively blocked by IGF-1R inhibitors. PMID:26854565

  5. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice.

    PubMed

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle.

  6. The effects of IGF1 on the melanogenesis in alpaca melanocytes in vitro.

    PubMed

    Hu, Shuaipeng; Liu, Yu; Yang, Shanshan; Ji, Kaiyuan; Liu, Xuexian; Zhang, Junzhen; Fan, Ruiwen; Dong, Changsheng

    2016-09-01

    In order to investigate the effects of the insulin-like growth factor 1(IGF-1) on alpaca melanocyte in vitro, different dosees of IGF1 (0, 10, 20, 40 ng/ml) were added in the medium of alpaca melanocyte. The RTCA machine was used to monitor the proliferation, quantitative real-time PCR, and western blot to test the relative gene expression, ELISA to test cAMP production, and spectrum method to test the melanin production. The results showed that compared to the normal melanocyte, the proliferation of melanocytes was increased within 60 h following adding IGF1. It also showed that cAMP content produced by melanocytes was increased, microphthalmia-associtated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 2 (TYRP2) expression was increased, and melanin production with most obvious change in 10 ng/ml supplementary group, when compared with the control group. The results suggested that IGF1 with the dose of 10 ng/ml had the important effects on the melanogenesis in alpaca melanocyte by the cAMP pathway.

  7. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    NASA Astrophysics Data System (ADS)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  8. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.

    PubMed

    Moll, Lorna; Ben-Gedalya, Tziona; Reuveni, Hadas; Cohen, Ehud

    2016-04-01

    The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. PMID:26722006

  9. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice

    PubMed Central

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle. PMID:25999854

  10. Protein kinase C beta II suppresses colorectal cancer by regulating IGF-1 mediated cell survival

    PubMed Central

    Dowling, Catríona M.; Phelan, James; Callender, Julia A.; Cathcart, Mary Clare; Mehigan, Brian; McCormick, Paul; Dalton, Tara; Coffey, John C.; Newton, Alexandra C.; O'sullivan, Jacintha; Kiely, Patrick A.

    2016-01-01

    Despite extensive efforts, cancer therapies directed at the Protein Kinase C (PKC) family of serine/threonine kinases have failed in clinical trials. These therapies have been directed at inhibiting PKC and have, in some cases, worsened disease outcome. Here we examine colon cancer patients and show not only that PKC Beta II is a tumour suppressor, but patients with low levels of this isozyme have significantly decreased disease free survival. Specifically, analysis of gene expression levels of all PKC genes in matched normal and cancer tissue samples from colon cancer patients revealed a striking down-regulation of the gene coding PKC Beta in the cancer tissue (n = 21). Tissue microarray analysis revealed a dramatic down-regulation of PKC Beta II protein levels in both the epithelial and stromal diseased tissue (n = 166). Of clinical significance, low levels of the protein in the normal tissue of patients is associated with a low (10%) 10 year survival compared with a much higher (60%) survival in patients with relatively high levels of the protein. Consistent with PKC Beta II levels protecting against colon cancer, overexpression of PKC Beta II in colon cancer cell lines reveals that PKC Beta II reverses transformation in cell based assays. Further to this, activation of PKC Beta II results in a dramatic downregulation of IGF-I-induced AKT, indicating a role for PKCs in regulating IGF-1 mediated cell survival. Thus, PKC Beta II is a tumour suppressor in colon cancer and low levels serve as a predictor for poor survival outcome. PMID:26989024

  11. Durable Response of Spinal Chordoma to Combined Inhibition of IGF-1R and EGFR.

    PubMed

    Aleksic, Tamara; Browning, Lisa; Woodward, Martha; Phillips, Rachel; Page, Suzanne; Henderson, Shirley; Athanasou, Nicholas; Ansorge, Olaf; Whitwell, Duncan; Pratap, Sarah; Hassan, A Bassim; Middleton, Mark R; Macaulay, Valentine M

    2016-01-01

    Chordomas are rare primary malignant bone tumors arising from embryonal notochord remnants of the axial skeleton. Chordomas commonly recur following surgery and radiotherapy, and there is no effective systemic therapy. Previous studies implicated receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R), in chordoma biology. We report an adult female patient who presented in 2003 with spinal chordoma, treated with surgery and radiotherapy. She underwent further surgery for recurrent chordoma in 2008, with subsequent progression in pelvic deposits. In June 2009, she was recruited onto the Phase I OSI-906-103 trial of EGFR inhibitor erlotinib with linsitinib, a novel inhibitor of IGF-1R/insulin receptor (INSR). Treatment with 100 mg QD erlotinib and 50 mg QD linsitinib was well-tolerated, and after 18 months a partial response was achieved by RECIST criteria. From 43 months, a protocol modification allowed intra-patient linsitinib dose escalation to 50 mg BID. The patient remained stable on trial treatment for a total of 5 years, discontinuing treatment in August 2014. She subsequently experienced further disease progression for which she underwent pelvic surgery in April 2015. Analysis of DNA extracted from 2008 (pre-trial) tissue showed that the tumor harbored wild-type EGFR, and a PIK3CA mutation was detected in plasma, but not tumor DNA. The 2015 (post-trial) tumor harbored a mutation of uncertain significance in ATM, with no detectable mutations in other components of a 50 gene panel, including EGFR, PIK3CA, and TP53. By immunohistochemistry, the tumor was positive for brachyury, the molecular hallmark of chordoma, and showed weak-moderate membrane and cytoplasmic EGFR. IGF-1R was detected in the plasma membrane and cytoplasm and was expressed more strongly in recurrent tumor than the primary. We also noted heterogeneous nuclear IGF-1R, which has been linked with sensitivity

  12. Durable Response of Spinal Chordoma to Combined Inhibition of IGF-1R and EGFR

    PubMed Central

    Aleksic, Tamara; Browning, Lisa; Woodward, Martha; Phillips, Rachel; Page, Suzanne; Henderson, Shirley; Athanasou, Nicholas; Ansorge, Olaf; Whitwell, Duncan; Pratap, Sarah; Hassan, A. Bassim; Middleton, Mark R.; Macaulay, Valentine M.

    2016-01-01

    Chordomas are rare primary malignant bone tumors arising from embryonal notochord remnants of the axial skeleton. Chordomas commonly recur following surgery and radiotherapy, and there is no effective systemic therapy. Previous studies implicated receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R), in chordoma biology. We report an adult female patient who presented in 2003 with spinal chordoma, treated with surgery and radiotherapy. She underwent further surgery for recurrent chordoma in 2008, with subsequent progression in pelvic deposits. In June 2009, she was recruited onto the Phase I OSI-906-103 trial of EGFR inhibitor erlotinib with linsitinib, a novel inhibitor of IGF-1R/insulin receptor (INSR). Treatment with 100 mg QD erlotinib and 50 mg QD linsitinib was well-tolerated, and after 18 months a partial response was achieved by RECIST criteria. From 43 months, a protocol modification allowed intra-patient linsitinib dose escalation to 50 mg BID. The patient remained stable on trial treatment for a total of 5 years, discontinuing treatment in August 2014. She subsequently experienced further disease progression for which she underwent pelvic surgery in April 2015. Analysis of DNA extracted from 2008 (pre-trial) tissue showed that the tumor harbored wild-type EGFR, and a PIK3CA mutation was detected in plasma, but not tumor DNA. The 2015 (post-trial) tumor harbored a mutation of uncertain significance in ATM, with no detectable mutations in other components of a 50 gene panel, including EGFR, PIK3CA, and TP53. By immunohistochemistry, the tumor was positive for brachyury, the molecular hallmark of chordoma, and showed weak–moderate membrane and cytoplasmic EGFR. IGF-1R was detected in the plasma membrane and cytoplasm and was expressed more strongly in recurrent tumor than the primary. We also noted heterogeneous nuclear IGF-1R, which has been linked with sensitivity

  13. Effects of estradiol and IGF-1 on the sodium calcium exchanger in rat cultured cortical neurons.

    PubMed

    Sánchez, Julio C; López-Zapata, Diego F; Francis, Liliana; De Los Reyes, Lina

    2011-05-01

    The Na(+)/Ca(2+) exchanger (NCX) is an important bidirectional transporter of calcium in neurons and has been shown to be involved in neuroprotection. Calcium can activate a number of cascades that can result in apoptosis and cell death, and NCX is a key factor in regulating the cytoplasmic concentration of this ion. 17-β-estradiol and insulin-like growth factor 1 (IGF-1) are known neuroprotective hormones with interacting mechanisms and effects on intracellular calcium; however, their relationship with the NCX has not been explored. In this article, the effects of these two hormones on neuronal NCX were tested using the whole-cell patch clamp technique on rat primary culture neurons. Both 17-β-estradiol and IGF-1 produced an increase in the NCX-mediated inward current and a decrease in the NCX-mediated outward current. However, the IGF-1 effect was lower than that of 17-β-estradiol, and the effect of both agents together was greater than the sum of each agent alone. Neither of the agents affected the pattern of regulation by extracellular or intrapipette calcium. Inhibitors of the IGF-1 and 17-β-estradiol receptors and inhibitors of the main signaling pathways failed to change the observed effects, indicating that these actions were not mediated by the classical receptors of these hormones. These effects on the NCX could be a mechanism explaining the neuroprotective actions of 17-β-estradiol and IGF-1, and these findings could help researchers to understand the role of the NCX in neuroprotection.

  14. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment

    PubMed Central

    Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.

    2015-01-01

    Purpose. Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. Methods. Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. Results. Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. Conclusions. Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus. PMID:26030103

  15. Fatty Liver Index Associates with Relative Sarcopenia and GH/ IGF- 1 Status in Obese Subjects

    PubMed Central

    Gnessi, Lucio; Mariani, Stefania; Lenzi, Andrea; Donini, Lorenzo Maria

    2016-01-01

    Introduction Recently the association between hepatic steatosis and sarcopenia has been described. GH/IGF-1 axis has been postulated to play a role in linking fatty liver and low muscle mass. The aim of our study was to explore the association between fatty liver index, sarcopenic obesity, insulin sensitivity, and GH/IGF-1 status. Methods 427 subjects [age: 45.65±13.94 years, BMI: 36.92±6.43 kg/m2] were enrolled. Participants were divided into three groups: fatty liver index (FLI) <20, 20≥FLI<60, and FLI≥60. Body composition was assessed by DXA. The truncal fat mass (TrFM) to appendicular skeletal muscle (ASM) ratio was used as an indicator of sarcopenic obesity. ISI-Matsuda index was used. Results BMI, fat mass, and the TrFM/ASM ratio were higher in subjects with FLI≥60. GH, IGF-1 and ISI-Matsuda were lower in the high FLI group (all p<0.05). A significantly positive correlation between FLI and TrFM/ ASM ratio (r = 0.221, p<0.001) was found, whereas FLI levels were negatively correlated with ISI- Matsuda (r = -0.335, p<0.001), GH (r = -0.200, p = 0.006), and IGF- 1 levels (r = -0.157, p = 0.028). Stepwise linear regression analysis showed that GH levels were significantly negatively correlated with FLI, while the TrFM/ ASM ratio was positively associated with FLI, after adjustment for age, BMI, total fat mass, truncal fat mass, fat- free mass, and ISI- Matsuda. Conclusions Impairment of GH/IGF-1 axis seems to be associated to the risk of the development of sarcopenic obesity and ectopic fat deposition in the liver. Metabolic and hormonal derangements as determinants of ectopic fat deposition and body composition deserve to be evaluated in obese subjects. PMID:26741958

  16. Polychlorinated dibenzo-p-dioxins, furans, and biphenyls (PCDDs/PCDFs and PCBs) in breast milk and early childhood growth and IGF1.

    PubMed

    Wohlfahrt-Veje, Christine; Audouze, Karine; Brunak, Søren; Antignac, Jean Philippe; le Bizec, Bruno; Juul, Anders; Skakkebæk, Niels E; Main, Katharina Maria

    2014-01-01

    Experimental studies have shown that dioxin-like chemicals may interfere with aspects of the endocrine system including growth. However, human background population studies are, however, scarce. We aimed to investigate whether early exposure of healthy infants to dioxin-like chemicals was associated with changes in early childhood growth and serum IGF1. In 418 maternal breast milk samples of Danish children (born 1997-2001) from a longitudinal cohort, we measured polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls (pg or ng/g lipid) and calculated total toxic equivalent (total TEQ). SDS and SDS changes over time (ΔSDS) were calculated for height, weight, BMI, and skinfold fat percentage at 0, 3, 18, and 36 months of age. Serum IGF1 was measured at 3 months. We adjusted for confounders using multivariate regression analysis. Estimates (in parentheses) correspond to a fivefold increase in total TEQ. TEQ levels in breast milk increased significantly with maternal age and fish consumption and decreased with maternal birth year, parity, and smoking. Total TEQ was associated with lower fat percentage (-0.45 s.d., CI: -0.89; -0.04), non-significantly with lower weight and length at 0 months, accelerated early height growth (increased ΔSDS) (ΔSDS 0-18 months: +0.77 s.d., CI: 0.34; 1.19) and early weight increase (ΔSDS 0-18: +0.52 s.d., CI: 0.03; 1.00), and increased IGF1 serum levels at 3 months (+13.9 ng/ml, CI: 2.3; 25.5). Environmental exposure to dioxin-like chemicals was associated with being skinny at birth and with higher infant levels of circulating IGF1 as well as accelerated early childhood growth (rapid catch-up growth).

  17. Microsatellite polymorphism in the P1 promoter region of the IGF-1 gene is associated with endometrial cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; WOLUN-CHOLEWA, MARIA; POLAK, GRZEGORZ; SIEROCINSKA-SAWA, JADWIGA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2016-01-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF-1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI-H) accumulate mutations at a microsatellite sequence in the IGF-1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF-1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)-1 and IGFBP-3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF-1. ELISA was used to determine the blood serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=−0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=−0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P= 0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20

  18. Both Low and High Serum IGF-1 Levels Associate With Increased Risk of Cardiovascular Events in Elderly Men

    PubMed Central

    Carlzon, Daniel; Svensson, Johan; Petzold, Max; Karlsson, Magnus K.; Ljunggren, Östen; Tivesten, Åsa; Mellström, Dan

    2014-01-01

    Context: Most previous prospective studies suggest that low serum IGF-1 associates with increased risk of cardiovascular disease (CVD) events whereas other studies suggest that high serum IGF-1 associates with increased risk of CVD events. Objective: We tested the hypothesis that not only low, but also high serum IGF-1 levels associate with increased risk of CVD events in elderly men. Setting and Design: Serum IGF-1 levels were measured in 2901 elderly men (age 69–81 years) included in the Swedish cohort of the prospective, population-based Osteoporotic Fractures in Men Study (MrOS), Sweden cohort. Data for CVD events were obtained from national Swedish registers with no loss of followup. Results: During followup (median, 5.1 y) 589 participants experienced a CVD event. The association between serum IGF-1 and risk of CVD events was nonlinear, and restricted cubic spline Cox regression analysis revealed a U-shaped association between serum IGF-1 levels and CVD events (P < .01 for nonlinearity). Low as well as high serum IGF-1 (quintile 1 or 5 vs quintiles 2–4) significantly associated with increased risk for CVD events (hazard ratio [HR] = 1.25, 95% confidence interval, [CI], 1.02–1.54; and HR = 1.35, 95% CI 1.10–1.66, respectively). These associations remained after adjustment for prevalent CVD and multiple risk factors. High serum IGF-1 associated with increased risk of coronary heart disease (CHD) events but not with risk of cerebrovascular events. Conclusions: Both low and high serum IGF-1 levels are risk markers for CVD events in elderly men. The association between high serum IGF-1 and CVD events is mainly driven by CHD events. PMID:25057875

  19. Circulating IGF1 and IGF2 and SNP genotypes in men and pregnant and non-pregnant women.

    PubMed

    Gatford, K L; Heinemann, G K; Thompson, S D; Zhang, J V; Buckberry, S; Owens, J A; Dekker, G A; Roberts, C T

    2014-09-01

    Circulating IGFs are important regulators of prenatal and postnatal growth, and of metabolism and pregnancy, and change with sex, age and pregnancy. Single-nucleotide polymorphisms (SNPs) in genes coding for these hormones associate with circulating abundance of IGF1 and IGF2 in non-pregnant adults and children, but whether this occurs in pregnancy is unknown. We therefore investigated associations of plasma IGF1 and IGF2 with age and genotype at candidate SNPs previously associated with circulating IGF1, IGF2 or methylation of the INS-IGF2-H19 locus in men (n=134), non-pregnant women (n=74) and women at 15 weeks of gestation (n=98). Plasma IGF1 concentrations decreased with age (P<0.001) and plasma IGF1 and IGF2 concentrations were lower in pregnant women than in non-pregnant women or men (each P<0.001). SNP genotypes in the INS-IGF2-H19 locus were associated with plasma IGF1 (IGF2 rs680, IGF2 rs1004446 and IGF2 rs3741204) and IGF2 (IGF2 rs1004446, IGF2 rs3741204 and H19 rs217727). In single SNP models, effects of IGF2 rs680 were similar between groups, with higher plasma IGF1 concentrations in individuals with the GG genotype when compared with GA (P=0.016), or combined GA and AA genotypes (P=0.003). SNPs in the IGF2 gene associated with IGF1 or IGF2 were in linkage disequilibrium, hence these associations could reflect other genotype variations within this region or be due to changes in INS-IGF2-H19 methylation previously associated with some of these variants. As IGF1 in early pregnancy promotes placental differentiation and function, lower IGF1 concentrations in pregnant women carrying IGF2 rs680 A alleles may affect placental development and/or risk of pregnancy complications. PMID:25117571

  20. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung

  1. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    SciTech Connect

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  2. The key role of growth hormone — insulin — IGF-1 signaling in aging and cancer

    PubMed Central

    Anisimov, Vladimir N.; Bartke, Andrzej

    2014-01-01

    Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients. PMID:23434537

  3. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  4. A single IGF1 allele is a major determinant of small size in dogs.

    PubMed

    Sutter, Nathan B; Bustamante, Carlos D; Chase, Kevin; Gray, Melissa M; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G; Quignon, Pascale; Johnson, Gary S; Parker, Heidi G; Fretwell, Neale; Mosher, Dana S; Lawler, Dennis F; Satyaraj, Ebenezer; Nordborg, Magnus; Lark, K Gordon; Wayne, Robert K; Ostrander, Elaine A

    2007-04-01

    The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.

  5. IGF-1, IGFBP-3, and nutritional factors in young black and white men: the CARDIA Male Hormone Study.

    PubMed

    Colangelo, Laura A; Chiu, Brian C-H; Liu, Kiang; Kopp, Peter A; Gann, Peter H; Gapstur, Susan M

    2005-01-01

    Nutritional factors might play a role in regulating serum levels of insulin-like growth factors (IGFs), which are associated with some cancers. We examined the associations of nutritional factors with IGF-1 and IGF binding protein-3 (IGFBP-3). Serum IGF-1 and IGFBP-3 levels and dietary intake were measured in 459 black and 682 white male subjects of the Coronary Artery Risk Development in Young Adults study at the Year 7 (1992-1993) exam. Analysis of covariance and multivariable linear regression were used to assess associations of IGFs with dietary factors by race. IGF-1 was positively associated with magnesium in both black and white men (P = 0.008 and 0.05, respectively). Calcium was positively significantly related to IGF-1 in black men (P = 0.04) and marginally so in white men (P = 0.09). In black men, IGFBP-3 was positively associated with magnesium (P = 0.02), and one serving of milk per day was associated with an 8.23-ng/ml higher IGF-1 concentration (P = 0.05). Tests for interaction, however, revealed no differences between blacks and whites in the associations of nutrients with IGF-1 or IGFBP-3. In conclusion, the associations of dietary factors with serum IGF-1 and IGFBP-3 observed in our study corroborate those from other studies and generally do not differ between black and white men.

  6. Association between GNRHR, LHR and IGF1 polymorphisms and timing of puberty in male Angus cattle

    PubMed Central

    2012-01-01

    Background In bovines, there are significant differences within and among beef breeds in the time when bulls reach puberty. Although the timing of puberty is likely to be a multigenic trait, previous studies indicate that there may also be single genes that exert major effects on the timing of puberty within the general population. Despite its economic importance, there are not many SNPs or genetic markers associated with the age of puberty in male cattle. In the present work, we selected three candidate genes, GNRHR, LHR and IGF1, and associated their polymorphisms with the age of puberty in Angus male cattle. Results After weaning, 276 Angus males were measured every month for weight (W), scrotal circumference (SC), sperm concentration (C) and percentage of motility (M). A total of 4 SNPs, two within GNRHR, one in LHR and one in IGF1 were genotyped using the pyrosequencing technique. IGF1-SnaBI SNP was significant associated (P < 0.01) with age at SC 28 cm, but it were not associated with age at M 10% and C 50 million. Genotype CC exhibited an average age at SC 28 cm of 7 and 11 days higher than CT (p = 0.037) and TT (p = 0.012), respectively. This SNP explained 1.5% of the genetic variance of age of puberty at SC28. LHR-I499L, GNRHR-SNP5 and GNRHR-SNP6 were not associated with any of the measurements. However, GNRHR haplotypes showed a suggestive association with age at SC 28 cm. Conclusions The findings presented here could support the hypothesis that IGF1 is a regulator of the arrival to puberty in male calves and is involved in the events that precede and initiate puberty in bull calves. Given that most studies in cattle, as well as in other mammals, were done in female, the present results are the first evidence of markers associated with age at puberty in male cattle. PMID:22480211

  7. Disentangling the effects of circulating IGF-1, glucose, and cortisol on features of perceived age.

    PubMed

    van Drielen, Kelly; Gunn, David A; Noordam, Raymond; Griffiths, Christopher E M; Westendorp, Rudi G J; de Craen, Anton J M; van Heemst, Diana

    2015-06-01

    Circulatory levels of insulin-like growth factor (IGF-1), glucose, and cortisol have been previously associated with facial aging. However, as these serum measures are related, it is unclear whether their associations with skin aging occur independently from each other. We aimed to investigate whether the associations between serum IGF-1, glucose, and cortisol levels and perceived age/wrinkle grade occur independently of each other and whether these are mediated via skin wrinkling or via other skin aging features. Perceived age and skin wrinkling grade were assessed in a random sample from the Leiden Longevity Study with non-fasted (N = 579) and fasted blood sampling (N = 219). In our study population, a higher non-fasted IGF-1 level was associated with a lower skin wrinkling grade (p value = 0.014) and tended to associate with a lower perceived age (p value = 0.067), which was mediated for approximately 100 % by skin wrinkling. A higher non-fasted glucose level was associated with a higher perceived age (p value = 0.017), which was mediated for 51 % by skin wrinkling grade (p value = 0.112). A higher fasted cortisol level tended to associate with a higher perceived age (p value = 0.116), which was mediated for 29 % by skin wrinkling. Results remained similar when the serum measures were statistically adjusted for each other. Thus, the previously reported serum measures associate independently from each other with skin aging. IGF-1 is predominantly associated with perceived age by skin wrinkling, whereas cortisol and glucose also by other skin aging features.

  8. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  9. IGF-1 and VEGF can be used as prognostic indicators for patients with uterine fibroids treated with uterine artery embolization

    PubMed Central

    MU, YONGXU; HE, JUNFENG; YAN, RUIQIANG; HU, XIAOYAN; LIU, HAIYAN; HAO, ZHIMING

    2016-01-01

    The aim of the present study was to investigate the association between serum vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) levels and the prognosis of patients with uterine fibroids following uterine artery embolization (UAE) treatment. A total of 70 patients with uterine fibroids and 20 healthy controls were enrolled in this study between 2012 and 2014. The serum levels of IGF-1 and VEGF were measured using ELISA. Multiple-factor analysis was performed to assess the association between serum levels of IGF-1/VEGF and certain clinical characteristics, including size, location, number of uterine fibroids and adenomyosis. Progression-free survival curves were analyzed using the Kaplan-Meier method. The serum levels of IGF-1 and VEGF in patients with uterine fibroids prior to UAE treatment were significantly higher than those in controls (P<0.05). At 1 week after UAE treatment, the serum levels of IGF-1 and VEGF were significantly lower compared with those prior to UAE treatment. The serum levels of IGF-1 and VEGF at 1 or 3 months after UAE treatment were significantly higher than those at 1 week after UAE treatment. The serum levels of IGF-1 and VEGF were significantly correlated with the clinical characteristics of uterine fibroids (P<0.05). Lower levels of IGF-1 and VEGF in the serum following UAE treatment were associated with an enhanced progression-free survival of patients. In conclusion, the levels of IGF-1 and VEGF in the serum following UAE treatment can be used as indicators of prognosis in patients with uterine fibroids. PMID:26893660

  10. Repression of malignant tumor progression upon pharmacologic IGF1R blockade in a mouse model of insulinoma.

    PubMed

    Zumsteg, Adrian; Caviezel, Christoph; Pisarsky, Laura; Strittmatter, Karin; García-Echeverría, Carlos; Hofmann, Francesco; Christofori, Gerhard

    2012-06-01

    NVP-AEW541, a specific ATP-competitive inhibitor of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase, has been reported to interfere with tumor growth in various tumor transplantation models. We have assessed the efficacy of NVP-AEW541 in repressing tumor growth and tumor progression in the Rip1Tag2 transgenic mouse model of pancreatic β-cell carcinogenesis. In addition, we have tested NVP-AEW541 in Rip1Tag2;RipIGF1R double-transgenic mice which show accelerated tumor growth and increased tumor malignancy compared with Rip1Tag2 single-transgenic mice. Previously, we have shown that high levels of IGF-2, a high-affinity ligand for IGF1R, are required for Rip1Tag2 tumor cell survival and tumor growth. Unexpectedly, treatment of Rip1Tag2 mice with NVP-AEW541 in prevention and intervention trials neither did affect tumor growth nor tumor cell proliferation and apoptosis. Yet, it significantly repressed progression to tumor malignancy, that is, the rate of the transition from differentiated adenoma to invasive carcinoma. Treatment of Rip1Tag2;RipIGF1R double-transgenic mice resulted in moderately reduced tumor volumes and increased rates of tumor cell apoptosis. Sustained expression of IGF-2 and of the IGF-2-binding form of insulin receptor (IR-A) in tumor cells suggests a compensatory role of IR-A upon IGF1R blockade. The results indicate that inhibition of IGF1R alone is not sufficient to efficiently block insulinoma growth and imply an overlapping role of IGF1R and insulin receptor in executing mitogenic and survival stimuli elicited by IGF-2. The reduction of tumor invasion upon IGF1R blockade on the other hand indicates a critical function of IGF1R signaling for the acquisition of a malignant phenotype.

  11. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma.

    PubMed

    Lin, Jau-Chen; Wu, Yi-Ying; Wu, Jing-Yi; Lin, Tzu-Chieh; Wu, Chen-Tu; Chang, Yih-Leong; Jou, Yuh-Shan; Hong, Tse-Ming; Yang, Pan-Chyr

    2012-06-01

    Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2'-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth. PMID:22419550

  12. Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation.

    PubMed

    Troyano, Nuria; Nogal, María Del; Mora, Inés; Diaz-Naves, Manuel; Lopez-Carrillo, Natalia; Sosa, Patricia; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruiz-Torres, María P

    2015-12-01

    Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon. Human aortic smooth muscle cells treated with β-Glycerophosphate (BGP, 10mM) suffered cellular senescence by increasing p53, p21 and p16 expression and the senescence associated β-galactosidase activity. In parallel, BGP induced ILK overexpression, dependent on the IGF-1 receptor activation, and oxidative stress. Down-regulating ILK expression prevented BGP-induced senescence and oxidative stress. Aortic rings from young rats treated with 10mM BGP for 48h, showed increased p53, p16 and ILK expression and SA-β-gal activity. Seven/eight nephrectomized rats feeding a hyperphosphatemic diet and fifteenth- month old mice showed hyperphosphatemia and aortic ILK, p53 and p16 expression. In conclusion, we demonstrated that high extracellular concentration of phosphate induced senescence in cultured smooth muscle through the activation of IGF-1 receptor and ILK overexpression and provided solid evidences for the in vivo relevance of these results since aged animals showed high levels of serum phosphate linked to increased expression of ILK and senescence genes.

  13. Regulation of IGF-1-dependent cyclin D1 and E expression by hEag1 channels in MCF-7 cells: the critical role of hEag1 channels in G1 phase progression.

    PubMed

    Borowiec, Anne-Sophie; Hague, Frédéric; Gouilleux-Gruart, Valérie; Lassoued, Kaiss; Ouadid-Ahidouch, Halima

    2011-05-01

    Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K(+)) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K(+) channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K(+) channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21(WAF1/Cip1) expression with a kinetic similar to that of cyclin D1, however p27(Kip1) expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21(WAF1/Cip1) and p27(Kip1) expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K(+) channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. PMID:21315112

  14. Virtual screening of specific insulin-like growth factor 1 receptor (IGF1R) inhibitors from the National Cancer Institute (NCI) molecular database.

    PubMed

    Fan, Cong; Huang, Yan-Xin; Bao, Yong-Li; Sun, Lu-Guo; Wu, Yin; Yu, Chun-Lei; Zhang, Yu; Song, Zhen-Bo; Zheng, Li-Hua; Sun, Ying; Wang, Guan-Nan; Li, Yu-Xin

    2012-12-14

    Insulin-like growth factor 1 receptor (IGF1R) is an attractive drug target for cancer therapy and research on IGF1R inhibitors has had success in clinical trials. A particular challenge in the development of specific IGF1R inhibitors is interference from insulin receptor (IR), which has a nearly identical sequence. A few potent inhibitors that are selective for IGF1R have been discovered experimentally with the aid of computational methods. However, studies on the rapid identification of IGF1R-selective inhibitors using virtual screening and confidence-level inspections of ligands that show different interactions with IGF1R and IR in docking analysis are rare. In this study, we established virtual screening and binding-mode prediction workflows based on benchmark results of IGF1R and several kinase receptors with IGF1R-like structures. We used comprehensive analysis of the known complexes of IGF1R and IR with their binding ligands to screen specific IGF1R inhibitors. Using these workflows, 17 of 139,735 compounds in the NCI (National Cancer Institute) database were identified as potential specific inhibitors of IGF1R. Calculations of the potential of mean force (PMF) with GROMACS were further conducted for three of the identified compounds to assess their binding affinity differences towards IGF1R and IR.

  15. Virtual Screening of Specific Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors from the National Cancer Institute (NCI) Molecular Database

    PubMed Central

    Fan, Cong; Huang, Yan-Xin; Bao, Yong-Li; Sun, Lu-Guo; Wu, Yin; Yu, Chun-Lei; Zhang, Yu; Song, Zhen-Bo; Zheng, Li-Hua; Sun, Ying; Wang, Guan-Nan; Li, Yu-Xin

    2012-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is an attractive drug target for cancer therapy and research on IGF1R inhibitors has had success in clinical trials. A particular challenge in the development of specific IGF1R inhibitors is interference from insulin receptor (IR), which has a nearly identical sequence. A few potent inhibitors that are selective for IGF1R have been discovered experimentally with the aid of computational methods. However, studies on the rapid identification of IGF1R-selective inhibitors using virtual screening and confidence-level inspections of ligands that show different interactions with IGF1R and IR in docking analysis are rare. In this study, we established virtual screening and binding-mode prediction workflows based on benchmark results of IGF1R and several kinase receptors with IGF1R-like structures. We used comprehensive analysis of the known complexes of IGF1R and IR with their binding ligands to screen specific IGF1R inhibitors. Using these workflows, 17 of 139,735 compounds in the NCI (National Cancer Institute) database were identified as potential specific inhibitors of IGF1R. Calculations of the potential of mean force (PMF) with GROMACS were further conducted for three of the identified compounds to assess their binding affinity differences towards IGF1R and IR. PMID:23242155

  16. Prolonged Response to an IGF-1 Receptor Antibody in a Patient with Metastatic Castration Prostate Cancer with Neuroendocrine Differentiation

    PubMed Central

    Thomas, George V; Higano, Celestia S; Beer, Tomasz M

    2015-01-01

    The androgen receptor is the main therapeutic target that has been successfully exploited through direct inhibition to extend survival of patients with metastatic castration-resistant prostate cancer (mCRPC). We present a patient who participated in a Phase II study of an antagonist antibody to insulin-like growth factor 1 receptor (IGF-1R) in men with mCRPC and experienced over five years of stable disease. His disease was rapidly progressing before exposure to the antibody and resumed its aggressive behavior following discontinuation of therapy, strongly supporting the attribution of his stable disease to IGF-1R inhibition. His pre-treatment biopsy exhibited increased protein expression of IGF-1R (and its downstream effector, phosphorylated-S6). Consequently, agents that target IGF-1R may provide profound and durable responses in a subset of patients and upfront molecular selection may enable us to identify those most likely to benefit. PMID:26848415

  17. Hepatic IGF1 DNA methylation is influenced by gender but not by intrauterine growth restriction in the young lamb.

    PubMed

    Carr, D J; Milne, J S; Aitken, R P; Adam, C L; Wallace, J M

    2015-12-01

    Intrauterine growth restriction (IUGR) and postnatal catch-up growth confer an increased risk of adult-onset disease. Overnourishment of adolescent ewes generates IUGR in ∼ 50% of lambs, which subsequently exhibit increased fractional growth rates. We investigated putative epigenetic changes underlying this early postnatal phenotype by quantifying gene-specific methylation at cytosine:guanine (CpG) dinucleotides. Hepatic DNA/RNA was extracted from IUGR [eight male (M)/nine female (F)] and normal birth weight (12 M/9 F) lambs. Polymerase chain reaction was performed using primers targeting CpG islands in 10 genes: insulin, growth hormone, insulin-like growth factor (IGF)1, IGF2, H19, insulin receptor, growth hormone receptor, IGF receptors 1 and 2, and the glucocorticoid receptor. Using pyrosequencing, methylation status was determined by quantifying cytosine:thymine ratios at 57 CpG sites. Messenger RNA (mRNA) expression of IGF system genes and plasma IGF1/insulin were determined. DNA methylation was independent of IUGR status but sexual dimorphism in IGF1 methylation was evident (MF (both P<0.001). IGF1 mRNA expression correlated negatively with IGF1 methylation (r=-0.507, P=0.002) and positively with plasma IGF1 (r=0.884, P<0.001). Carcass and empty body weights were greater in males (P=0.002-0.014) and this gender difference in early body conformation was mirrored by sexual dimorphism in hepatic IGF1 DNA methylation, mRNA expression and plasma IGF1 concentrations. PMID:26310177

  18. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors.

    PubMed

    Svejda, Bernhard; Kidd, Mark; Timberlake, Andrew; Harry, Kathy; Kazberouk, Alexander; Schimmack, Simon; Lawrence, Ben; Pfragner, Roswitha; Modlin, Irvin M

    2013-07-01

    Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors. PMID:23578138

  19. Serum IGF-1 and IGFBP-3 Levels in Healthy Children Between 0 and 6 Years of Age

    PubMed Central

    Yüksel, Bilgin; Özbek, M. Nuri; Mungan, Neslihan Önenli; Darendeliler, Feyza; Budan, Bahar; Bideci, Aysun; Çetinkaya, Ergün; Berberoğlu, Merih; Evliyaoğlu, Olcay; Yeşilkaya, Ediz; Arslanoğlu, İlknur; Darcan, Şükran; Bundak, Ruveyda; Ercan, Olcay

    2011-01-01

    Objective: Along with growth hormone (GH) levels, measurements of serum insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) are used in the diagnosis of GH deficiency and in monitoring the efficacy and safety of long-term GH treatment. The purpose of the present study was to establish reference values for serum IGF-1 and IGFBP-3 in healthy Turkish children less than 6 years of age. Methods: This study was designed as a multicenter project. Five hundred sixty-seven healthy children younger than 6 years of age from different geographical regions of Turkey, with weight and height values between the 10th and 90th percentiles according to the national standards were included in the study. In addition to anthropometric parameters, serum IGF-1 and IGFBP-3 levels were measured in all subjects. Results: Although not statistically significant, the serum IGF-1 levels in infants at age 6 months were lower than those in infants at age 3 months. The IGF-1 levels showed a slow increase with age. Serum IGF-1 levels were lower in girls as compared to boys only at age 6 months. No correlation was found between either serum IGFBP-3 levels and body mass index (BMI) or serum IGFBP-3 and weight and height standard deviation scores (SDS). A weak correlation was observed between serum IGF-1 and IGFBP-3 concentrations. Conclusions: The age- and gender-specific reference values for serum IGF-1 and IGFBP-3 reported in this study will aid in the diagnosis of GH deficiency and in the monitoring of children receiving GH treatment. Conflict of interest:None declared. PMID:21750637

  20. Molecular cloning, SNP detection and association analysis of 5' flanking region of the goat IGF1 gene with prolificacy.

    PubMed

    Thomas, Naicy; Venkatachalapathy, Thirupathy; Aravindakshan, Thazhathuveettil; Raghavan, K C

    2016-04-01

    The insulin-like growth factor 1 has an important role in reproduction, foetal development and growth. It regulates the secretion of gonadotrophin releasing hormone, stimulates ovarian function and steroidogenesis. The present study was conducted to characterise the 5' flanking region of goat IGF 1 gene, ascertain ovarian expression of the IGF1 gene, detect SNPs and assess the association with prolificacy in the two indigenous goat breeds of South India viz., low prolific Attappady Black and high prolific Malabari. The 5' flanking region of IGF1 gene was PCR amplified, cloned and sequenced from both breeds. Genotyping was performed in 277 goats from the two genetic groups using the PCR-Single Strand Conformational Polymorphism (SSCP) and the expression of the IGF1 gene in the ovary was analysed by quantitative real time PCR. The 5' flanking region of the IGF1 gene was 601 bp long and located at 450 bp upstream of the start codon. Sequence exhibited 97-99% similarity with that of the sheep, cattle and sika deer IGF1 genes. Three genotypes, PP, PQ and QR were observed at this locus with the frequency of 0.62, 0.30 and 0.08, respectively. Sequencing of the representative PCR products from each genotype revealed two SNPs, g.224A>G and g.227C>T. The population was found to be in Hardy-Weinberg disequilibrium at both loci. Statistical results indicated that these loci were associated with litter size (P ≤ 0.05). However, no significant difference was found in the expression of the IGF1 gene in the ovaries of the two goat breeds. These results suggest the significant influence of the IGF1 gene on prolificacy in goats and identified SNPs would benefit the selection of prolific animals in future breeding programs. PMID:26852275

  1. IGF-1 Receptor and Adhesion Signaling: An Important Axis in Determining Cancer Cell Phenotype and Therapy Resistance

    PubMed Central

    Cox, Orla T.; O’Shea, Sandra; Tresse, Emilie; Bustamante-Garrido, Milan; Kiran-Deevi, Ravi; O’Connor, Rosemary

    2015-01-01

    IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell–cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize β1 integrin and participate in signaling complexes that promote invasiveness associated with epithelial mesenchymal transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to non-invasive tumor growth may be strongly influenced by the degree of extracellular matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion complexes. One such protein is PDLIM2, which promotes both cell polarization and EMT by regulating the stability of transcription factors including NFκB, STATs, and beta catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R signaling during cancer progression or adaptive responses to therapy. Thus, identifying the key modulators will be important for developing effective therapeutic strategies and predictive biomarkers. PMID:26191041

  2. Down-Regulation of MicroRNA-223 Promotes Degranulation via the PI3K/Akt Pathway by Targeting IGF-1R in Mast Cells

    PubMed Central

    Xu, Hong; Zhou, Hui; Yang, Qian-Yuan; Liu, Feng; Zhou, Guo-Ping

    2015-01-01

    Background Mast cells play a central role in allergic and inflammatory disorders by inducing degranulation and inflammatory mediator release. Recent reports have shown that miRNAs play an important role in inflammatory response regulation. Therefore, the role of miR-223 in mast cells was investigated. Methods The expression of miR-223 was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) in immunoglobulin E (IgE)-mediated mast cells. After successful miR-223 inhibition by transfection, degranulation was detected in IgE-mediated mast cells. The phosphorylation of IκB-α and Akt were examined using western blotting. NF-κB was tested using electrophoretic mobility shift assay. PI3K-inhibitor (LY294002) was used to investigate whether the PI3K/Akt pathway was essential for mast cell activation. The TargetScan database and a luciferase reporter system were used to identify whether insulin-like growth factor 1 receptor (IGF-1R) is a direct target of miR-223. Results MiR-223 expression was up-regulated in IgE-mediated mast cells, whereas its down-regulation promoted mast cell degranulation. Levels of IκB-α and Akt phosphorylation as well as NF-κB were increased in miR-223 inhibitor cells. LY294002 could block the PI3K/Akt signaling pathway and rescue the promotion caused by suppressing miR-223 in mast cells. IGF-1R was identified as a direct target of miR-223. Conclusions These findings suggest that down-regulation of miR-223 promotes degranulation via the PI3K/Akt pathway by targeting IGF-1R in mast cells. PMID:25875646

  3. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    SciTech Connect

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  4. Developmental competence and mRNA expression of preimplantation in vitro-produced embryos from prepubertal and postpubertal cattle and their relationship with apoptosis after intraovarian administration of IGF-1.

    PubMed

    Zaraza, J; Oropeza, A; Velazquez, M A; Korsawe, K; Herrmann, D; Carnwath, J W; Niemann, H

    2010-07-01

    Recombinant human Insulin-like growth factor-I (hIGF-1) was administered to one ovary of prepubertal and postpubertal cattle to determine its effects on (1) oocyte developmental competence, (2) the expression pattern of six developmentally important genes (GLUT3, GLUT8, AKT1, BCL-XL, BAD, and BAX), and (3) its relationship with apoptosis (female Holstein-Friesian). Oocytes were retrieved from 7- to 10-mo-old prepubertal dairy calves (preP), 11- to 18-mo-old postpubertal heifers (postP), and cows via ultrasound-guided follicular aspiration. Immature oocytes were matured in vitro then fertilized and cultured up to the blastocyst stage. Apoptosis was determined by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) in 8-d blastocysts. Similar low blastocyst yields were observed in the IGF-1-treated preP group (11.2+/-2.4%), the control preP group (10.4+/-3.0%), and in the IGF-1 postP group (10.9+/-2.3%). These were lower (PIGF-1 treatment. Apoptosis was correlated with the age of the oocyte donors and was increased in blastocysts derived from prepubertal heifers. Results show that apoptosis is a critical feature of the acquisition of developmental competence of oocytes from prepubertal cattle and that IGF-1 did not beneficially affect oocyte developmental competence. PMID:20138354

  5. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas

    PubMed Central

    Huang, Xin; Park, Haein; Greene, Joseph; Zhou, Sophia X.; Albert, Catherine M.; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V.; Loeb, David M.; Cairo, Mitchell S.; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients. PMID:26173023

  6. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.

    PubMed

    Huang, Xin; Park, Haein; Greene, Joseph; Pao, James; Mulvey, Erin; Zhou, Sophia X; Albert, Catherine M; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V; Loeb, David M; Cairo, Mitchell S; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients. PMID:26173023

  7. Single-nucleotide polymorphism analysis of GH, GHR, and IGF-1 genes in minipigs.

    PubMed

    Tian, Y G; Yue, M; Gu, Y; Gu, W W; Wang, Y J

    2014-09-01

    Tibetan (TB) and Bama (BM) miniature pigs are two popular pig breeds that are used as experimental animals in China due to their small body size. Here, we analyzed single-nucleotide polymorphisms (SNPs) in gene fragments that are closely related to growth traits [growth hormone (GH), growth hormone receptor (GHR), and insulin-like growth factor (IGF)-1)] in these pig breeds and a large white (LW) control pig breed. On the basis of the analysis of 100 BMs, 108 TBs, and 50 LWs, the polymorphic distribution levels of GH, GHR, and IGF-1 were significantly different among these three pig breeds. According to correlation analyses between SNPs and five growth traits--body weight (BW), body length (BL), withers height (WH), chest circumference (CC), and abdomen circumference (AC)--three SNP loci in BMs and four SNP loci in TBs significantly affected growth traits. Three SNP sites in BMs and four SNP sites in TBs significantly affected growth traits. SNPs located in the GH gene fragment significantly affected BL and CC at locus 12 and BL at locus 45 in BMs, and also BW, WH, CC, and AC at locus 45 and WH and CC at locus 93 in TBs. One SNP at locus 85 in the BM GHR gene fragment significantly affected all growth traits. All indices were significantly reduced with a mixture of alleles at locus 85. These results provide more information regarding the genetic background of these minipig species and indicate useful selection markers for pig breeding programs. PMID:25098617

  8. Relationships between metabolite and IGF1 concentrations with fertility and production outcomes following left abomasal displacement.

    PubMed

    Lyons, N A; Cooke, J S; Wilson, S; van Winden, S C; Gordon, P J; Wathes, D C

    2014-06-28

    Left displacement of the abomasum (LDA) is an important periparturient disorder of dairy cows. This study evaluated differences in metabolic parameters between case-control pairs of cows (n=67) from 24 farms, and related these to outcomes in fertility and production. Cows with an assisted delivery were ×3 more likely to develop LDA, and affected cows tended to have had a longer dry period. At recruitment, cows with LDA tended to be in lower body condition accompanied by significantly higher circulating concentrations of β-hydroxybutyrate (BHB), non-esterified fatty acid (NEFA) and glucose and lower IGF1. Overall culling rate for all cows in the subsequent lactation was 22.5 per cent. Cows with LDA were not at increased odds of being culled but they produced, on average, 2272 l less milk and tended to have longer intervals to conception. Considering all cows irrespective of LDA status, the mean IGF1 level at recruitment was the only measured parameter associated with subsequent risk of culling (culled 11.7 ng/ml, not culled 23.5 ng/ml; P=0.005). Our findings support previous work indicating that poor insulin sensitivity through an uncoupling of the somatotrophic axis may be an important factor associated with LDA. Improved nutritional management of dry cows should reduce the incidence of both LDA and culling. PMID:24696444

  9. PTEN deficiency mediates a reciprocal response to IGF-1 and mTOR inhibition

    PubMed Central

    Patel, Mukund; Gomez, Nicholas C.; McFadden, Andrew W.; Moats-Staats, Billie M.; Wu, Sam; Rojas, Andres; Sapp, Travis; Simon, Jeremy M.; Smith, Scott V.; Kaiser-Rogers, Kathleen; Davis, Ian J.

    2014-01-01

    Recent evidence implicates the insulin-like growth factor (IGF) pathway in development of Ewing Sarcoma, a highly malignant bone and soft tissue tumor that primarily affects children and young adults. Despite promising results from preclinical studies of therapies that target this pathway, early phase clinical trials have shown that a significant fraction of patients do not benefit, suggesting that cellular factors determine tumor sensitivity. Using FAIRE-seq, a chromosomal deletion of the PTEN locus in a Ewing sarcoma cell line was identified. In primary tumors PTEN deficiency was observed in a large subset of cases, although not mediated by large chromosomal deletions. PTEN loss resulted in hyper-activation of the AKT signaling pathway. PTEN rescue led to decreased proliferation, inhibition of colony formation, and increased apoptosis. Strikingly, PTEN loss decreased sensitivity to IGF-1R inhibitors but increased responsiveness to temsirolimus, a potent mTOR inhibitor, as marked by induction of autophagy. These results suggest that PTEN is lost in a significant fraction of primary tumors and this deficiency may have therapeutic consequences by concurrently attenuating responsiveness to IGF-1R inhibition while increasing activity of mTOR inhibitors. The identification of PTEN status in the tumors of patients with recurrent disease could help guide the selection of therapies. PMID:24994750

  10. Delivery of AAV-IGF-1 to the CNS Extends Survival in ALS Mice Through Modification of Aberrant Glial Cell Activity

    PubMed Central

    Dodge, James C; Haidet, Amanda M; Yang, Wendy; Passini, Marco A; Hester, Mark; Clarke, Jennifer; Roskelley, Eric M; Treleaven, Christopher M; Rizo, Liza; Martin, Heather; Kim, Soo H; Kaspar, Rita; Taksir, Tatyana V; Griffiths, Denise A; Cheng, Seng H; Shihabuddin, Lamya S; Kaspar, Brian K

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1’s mechanism of action along the neuromuscular axis remains unclear. In this study, symptomatic ALS mice received IGF-1 through stereotaxic injection of an IGF-1-expressing viral vector to the deep cerebellar nuclei (DCN), a region of the cerebellum with extensive brain stem and spinal cord connections. We found that delivery of IGF-1 to the central nervous system (CNS) reduced ALS neuropathology, improved muscle strength, and significantly extended life span in ALS mice. To explore the mechanism of action of IGF-1, we used a newly developed in vitro model of ALS. We demonstrate that IGF-1 is potently neuroprotective and attenuates glial cell–mediated release of tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Our results show that delivering IGF-1 to the CNS is sufficient to delay disease progression in a mouse model of familial ALS and demonstrate for the first time that IGF-1 attenuates the pathological activity of non-neuronal cells that contribute to disease progression. Our findings highlight an innovative approach for delivering IGF-1 to the CNS. PMID:18388910

  11. Expression of brain-derived neurotrophic factor, IGF-1 and cortisol elicited by regular aerobic exercise in adolescents

    PubMed Central

    Jeon, Yong Kyun; Ha, Chang Ho

    2015-01-01

    [Purpose] This study was conducted on adolescent subjects whose brains are still developing with the purpose of identifying the effect of 8 weeks duration of aerobic exercises on the expression of BDNF, IGF-1 and cortisol, to identify effect of aerobic exercise on the expression of cortisol, BDNF and IGF-1 related to nerve cell growth. [Subjects and Methods] The subjects were 20 junior-high school students with no history of physical illness. The students were divided into an exercise group and a control group. The exercise group performed 3 treadmill exercise times per week for 8 weeks. The exercise time for the consumption of 200 kcal was calculated and the exercises were performed by each individual for 8 weeks. [Results] The exercise group showed statistically significant in increases serum BDNF and IGF-1 after 8 weeks, but cortisol showed no significant change. There were statistically significant differences between the groups in serum BDNF and IGF-1 after 8 weeks, but the difference in cortisol levels was not significant. [Conclusion] We found that long-term regular aerobic exercises has a positive effect on the enhancement of serum BDNF levels at rest and IGF-1 of adolescents who are still undergoing through brain developments. PMID:25931720

  12. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    PubMed

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. PMID:26690777

  13. Smoking Functions as a Negative Regulator of IGF1 and Impairs Adipokine Network in Patients with Rheumatoid Arthritis

    PubMed Central

    Erlandsson, Malin C.; Doria Medina, Roberto; Töyrä Silfverswärd, Sofia; Bokarewa, Maria I.

    2016-01-01

    Objectives. Smoking is pathogenic for rheumatoid arthritis (RA) being tightly connected to the genetic and serological risk factors for this disease. This study aims to understand connections between cigarette smoking and serum levels of IGF1 and adipokines in RA. Methods. Serum levels of IGF1 and adipokines leptin, adiponectin, resistin, and visfatin were measured in two independent cohorts of RA patients from Gothenburg (n = 350) and Leiden (n = 193). An association of these parameters with smoking was tested in a direct comparison and proved by bivariate correlation analysis. The obtained associations were further tested in multivariate regression models where the confounders (age, gender, disease duration, and BMI) were controlled. Results. The smokers had significantly lower serum levels of IGF1, adiponectin, and leptin compared to never smokers. In regression analysis, smoking and low leptin, but not adiponectin, were associated and predicted low IGF1. Additionally, high disease activity and high BMI increased the probability of low leptin. Conclusions. The study indicates cigarette smoking as an important cause of a relative IGF1 and leptin deficiency in RA patients. This novel association between smoking and hypoleptinemia may be of importance for long-term prognosis of RA and for prediction of comorbidities. PMID:27041823

  14. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/Pi3K/AKT pathways during muscle differentiation

    PubMed Central

    Carlo, Serra; Daniela, Palacios; Chiara, Mozzetta; Sonia, Forcales; Ianessa, Morantte; Meri, Ripani; Jones David, R.; Keyong, Du; Jhala Ulupi, S.; Cristiano, Simone; Lorenzo, Puri Pier

    2009-01-01

    During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and IGF1-induced Pi3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 α/β kinases recruit the SWI/SNF chromatin-remodeling complex; AKT 1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, Pi3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/Pi3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling PMID:17964260

  15. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α.

    PubMed

    Kackstein, Katharina; Teren, Andrej; Matsumoto, Yasuharu; Mangner, Norman; Möbius-Winkler, Sven; Linke, Axel; Schuler, Gerhard; Punkt, Karla; Adams, Volker

    2013-05-01

    Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1.

  16. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers

    PubMed Central

    Heilmann, Andreas M.; Perera, Rushika M.; Ecker, Veronika; Nicolay, Brandon N.; Bardeesy, Nabeel; Benes, Cyril H.; Dyson, Nicholas J.

    2014-01-01

    Loss-of-function mutations in p16INK4A (CDKN2A) occur in approximately 80% of sporadic pancreatic ductal adenocarcinoma (PDAC), contributing to its early progression. While this loss activates the cell cycle-dependent kinases CDK4/6, which have been considered as drug targets for many years, p16INK4A-deficient PDAC cells are inherently resistant to CDK4/6 inhibitors. This study searched for targeted therapies that might synergize with CDK4/6 inhibition in this setting. We report that the IGF1R/IR inhibitor BMS-754807 cooperated with the CDK4/6 inhibitor PD-0332991 to strongly block proliferation of p16INK4A-deficient PDAC cells in vitro and in vivo. Sensitivity to this drug combination correlated with reduced activity of the master cell growth regulator mTORC1. Accordingly, replacing the IGF1R/IR inhibitor with the rapalog inhibitor temsirolimus broadened the sensitivity of PDAC cells to CDK4/6 inhibition. Our results establish targeted therapy combinations with robust cytostatic activity in p16INK4A-deficient PDAC cells and possible implications for improving treatment of a broad spectrum of human cancers characterized by p16INK4A loss. PMID:24986516

  17. Prepubertal Exposure to Arsenic(III) Suppresses Circulating Insulin-like Growth Factor-1 (IGF-1) Delaying Sexual Maturation in Female Rats

    PubMed Central

    Reilly, Michael P.; Saca, James C.; Hamilton, Alina; Solano, Rene F.; Rivera, Jesse R.; Whitehouse-Innis, Wendy; Parsons, Jason G.; Dearth, Robert K.

    2013-01-01

    Arsenic (As) is a prevalent environmental toxin; readily accessible for human consumption and has been identified as an endocrine disruptor. However, it is not known what impact As has on female sexual maturation. Therefore, in the present study, we investigated the effects of prepubertal exposure on mammary gland development and pubertal onset in female rats. Results showed that prepubertal exposure to 10mg/kg of arsenite (As(III)) delayed vaginal opening (VO) and prepubertal mammary gland maturation. We determined that As accumulates in the liver, disrupts hepatocyte function and suppresses serum levels of the puberty related hormone insulin-like growth factor 1 (IGF-1) in prepubertal animals. Overall, this is the first study to show that prepubertal exposure to As(III) acts peripherally to suppresses circulating levels of IGF-1 resulting in delayed sexual maturation. Furthermore, this study identifies a critical window of increased susceptibility to As(III) that may have a lasting impact on female reproductive function. PMID:24090629

  18. Evaluation of insulin like growth factor-1 (IGF-1) level and its impact on muscle and bone mineral density in frail elderly male.

    PubMed

    Mohamad, Magda I; Khater, Mohamed S

    2015-01-01

    Decrease in IGF-1 level is a major endocrine dysregulation that has been implicated in frailty, disability, and mortality in older adults. Our aim was to clarify the effect of IGF-1 on muscle and bone mineral density (BMD) in frail males. One hundred elderly males were included and divided into frail group (n=50) and robust group (n=50) based on the study of osteoporotic fractures (SOF) frailty index. Anthropometric measures, femoral BMD, and serum IGF-1 level were measured. Our results showed that the IGF-1 level was significantly lower in the frail males in comparison to the robust with mean value 37.1±24.2 versus 68.5±18.4ng/ml (P<0.05). Receiver operating curve (ROC) analysis of the IGF-1 level revealed that sensitivity was 88.5%, specificity was 100%, cutoff value was 46.5ng/ml and area under the curve (AUC) was 0.897 (P<0.05). Participants with low IGF-1 percentile had significantly higher odds ratio of being frail compared to those with high IGF-1 percentile (odds ratio=12.8, 95% CI: 4.2-38.8, P-value<0.05). Subjects with low IGF-1 percentile had 13.5 times the odds of having an abnormal BMD than those with middle IGF-1 percentile (95% CI: 3.4-53.3, P<0.05). In multivariate analysis BMD, mid arm circumference (MAC), mid calf circumference (MCC), and handgrip strength were significantly affected by IGF-1 percentiles with age and co-morbid diseases adjustment. Male subjects with a low IGF-1 level may be at risk of being frail and having abnormal BMD. 16.8% and 15% of variability in MCC and BMD may be attributed to IGF-1 level respectively. PMID:25240725

  19. Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk?

    PubMed

    Tentori, Lucio; Graziani, Grazia

    2007-05-01

    Anabolic steroid and peptide hormones or growth factors are utilized to increase the performance of athletes of professional or amateur sports. Despite their well-documented adverse effects, the use of some of these agents has significantly grown and has been extended also to non-athletes with the aim to improve appearance or to counteract ageing. Pre-clinical studies and epidemiological observations in patients with an excess of hormone production or in patients chronically treated with hormones/growth factors for various pathologies have warned about the potential risk of cancer development and progression which may be also associated to the use of certain doping agents. Anabolic steroids have been described to provoke liver tumours; growth hormone or high levels of its mediator insulin-like growth factor-1 (IGF-1) have been associated with colon, breast, and prostate cancers. Actually, IGF-1 promotes cell cycle progression and inhibits apoptosis either by triggering other growth factors or by interacting with pathways which have an established role in carcinogenesis and cancer promotion. More recently, the finding that erythropoietin (Epo) may promote angiogenesis and inhibit apoptosis or modulate chemo- or radiosensitivity in cancer cells expressing the Epo receptor, raised the concern that the use of recombinant Epo to increase tissue oxygenation might favour tumour survival and aggressiveness. Cancer risk associated to doping might be higher than that of patients using hormones/growth factors as replacement therapy, since enormous doses are taken by the athletes often for a long period of time. Moreover, these substances are often used in combination with other licit or illicit drugs and this renders almost unpredictable all the possible adverse effects including cancer. Anyway, athletes should be made aware that long-term treatment with doping agents might increase the risk of developing cancer.

  20. Comparative gene expression study of the vestibular organ of the Igf1 deficient mouse using whole-transcript arrays.

    PubMed

    Rodríguez-de la Rosa, Lourdes; Sánchez-Calderón, Hortensia; Contreras, Julio; Murillo-Cuesta, Silvia; Falagan, Sandra; Avendaño, Carlos; Dopazo, Joaquín; Varela-Nieto, Isabel; Milo, Marta

    2015-12-01

    The auditory and vestibular organs form the inner ear and have a common developmental origin. Insulin like growth factor 1 (IGF-1) has a central role in the development of the cochlea and maintenance of hearing. Its deficiency causes sensorineural hearing loss in man and mice. During chicken early development, IGF-1 modulates neurogenesis of the cochleovestibular ganglion but no further studies have been conducted to explore the potential role of IGF-1 in the vestibular system. In this study we have compared the whole transcriptome of the vestibular organ from wild type and Igf1(-/-) mice at different developmental and postnatal times. RNA was prepared from E18.5, P15 and P90 vestibular organs of Igf1(-/-) and Igf1(+/+) mice and the transcriptome analysed in triplicates using Affymetrix(®) Mouse Gene 1.1 ST Array Plates. These plates are whole-transcript arrays that include probes to measure both messenger (mRNA) and long intergenic non-coding RNA transcripts (lincRNA), with a coverage of over 28 thousand coding transcripts and over 7 thousands non-coding transcripts. Given the complexity of the data we used two different methods VSN-RMA and mmBGX to analyse and compare the data. This is to better evaluate the number of false positives and to quantify uncertainty of low signals. We identified a number of differentially expressed genes that we described using functional analysis and validated using RT-qPCR. The morphology of the vestibular organ did not show differences between genotypes and no evident alterations were observed in the vestibular sensory areas of the null mice. However, well-defined cellular alterations were found in the vestibular neurons with respect their number and size. Although these mice did not show a dramatic vestibular phenotype, we conducted a functional analysis on differentially expressed genes between genotypes and across time. This was with the aim to identify new pathways that are involved in the development of the vestibular organ

  1. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction

    NASA Astrophysics Data System (ADS)

    Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.

    2006-05-01

    Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold

  2. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells.

    PubMed

    Taliaferro-Smith, LaTonia; Oberlick, Elaine; Liu, Tongrui; McGlothen, Tanisha; Alcaide, Tiffanie; Tobin, Rachel; Donnelly, Siobhan; Commander, Rachel; Kline, Erik; Nagaraju, Ganji Purnachandra; Havel, Lauren; Marcus, Adam; Nahta, Rita; O'Regan, Ruth

    2015-03-10

    Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs. PMID:25749031

  3. EGFR and IGF-1R in regulation of prostate cancer cell phenotype and polarity: opposing functions and modulation by T-cadherin.

    PubMed

    Maslova, Kseniya; Kyriakakis, Emmanouil; Pfaff, Dennis; Frachet, Audrey; Frismantiene, Agne; Bubendorf, Lukas; Ruiz, Christian; Vlajnic, Tatjana; Erne, Paul; Resink, Thérèse J; Philippova, Maria

    2015-02-01

    T-cadherin is an atypical glycosylphosphatidylinsoitol-anchored member of the cadherin superfamily of adhesion molecules. We found that T-cadherin overexpression in malignant (DU145) and benign (BPH-1) prostatic epithelial cell lines or silencing in the BPH-1 cell line, respectively, promoted or inhibited migration and spheroid invasion in collagen I gel and Matrigel. T-cadherin-dependent effects were associated with changes in cell phenotype: overexpression caused cell dissemination and loss of polarity evaluated by relative positioning of the Golgi/nuclei in cell groups, whereas silencing caused formation of compact polarized epithelial-like clusters. Epidermal growth factor receptor (EGFR) and IGF factor-1 receptor (IGF-1R) were identified as mediators of T-cadherin effects. These receptors per se had opposing influences on cell phenotype. EGFR activation with EGF or IGF-1R inhibition with NVP-AEW541 promoted dissemination, invasion, and polarity loss. Conversely, inhibition of EGFR with gefitinib or activation of IGF-1R with IGF-1 rescued epithelial morphology and decreased invasion. T-cadherin silencing enhanced both EGFR and IGF-1R phosphorylation, yet converted cells to the morphology typical for activated IGF-1R. T-cadherin effects were sensitive to modulation of EGFR or IGF-1R activity, suggesting direct involvement of both receptors. We conclude that T-cadherin regulates prostate cancer cell behavior by tuning the balance in EGFR/IGF-1R activity and enhancing the impact of IGF-1R.

  4. Analysis of cytosine-adenine repeats in P1 promoter region of IGF-1 gene in peripheral blood cells and cervical tissue samples of females with cervical intraepithelial lesions and squamous cervical cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; KOTARSKA, MARIA; POLAK, GRZEGORZ; BARCZYNSKI, BARTLOMIEJ; BRONIARCZYK, JUSTYNA; NOWAK, WITOLD; WOLUN-CHOLEWA, MARIA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2015-01-01

    High oncogenic risk human papillomaviruses (HPVs) are closely associated with cancer of the cervix. However, HPV infection alone may not be sufficient to cause cervical cancer, and other factors or cofactors may have a cumulative effect on the risk of progression from cervical HPV infection to cancer. The present study investigates the cytosine-adenine (CA) repeat polymorphism in the P1 promoter region of the insulin-like growth factor-1 (IGF-1) gene among cervical precancerous and cancer patients and healthy control females. The association between these polymorphisms, tissue and blood serum levels of IGF-1, and cervical cancer risk and progression is evaluated. The material for analysis consisted of blood cells and postoperative tissues from patients diagnosed with low-grade squamous intraepithelial lesions (L-SILs), high-grade squamous intraepithelial lesions (H-SILs) and invasive cervical cancer (ICC). A polymerase chain reaction amplification and the sequencing of DNA were used for the identification of (CA)n repeats in the IGF-1 P1 region and detection of HPV DNA. The blood serum concentration of IGF was determined by enzyme-linked immunosorbent assay. The identification of the IGF-1 protein in the cervical tissues was performed by immunohistochemical analysis. The range of the length of the CA repeats in the study DNA was 11 to 21. However, the most common allele length and genotype in the control and study patients from serum and tissues was 19 CA repeats and a homozygous genotype of CA19/19. Statistically significant differences in the concentration of IGF-1 in the blood serum were observed between H-SILs and controls, only (p=0.047). However, the concentration of IGF-1 in the group of females with CA19/19, CA19<19 and CA19>19 was significantly higher in the group of patients with H-SIL (P=0.041) and ICC (P=0.048) in comparison with the control group. An association was detected between CA repeat length <19 and/or >19, IGF concentration in blood serum and

  5. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling

    PubMed Central

    Rivas, Donato A.; Lessard, Sarah J.; Rice, Nicholas P.; Lustgarten, Michael S.; So, Kawai; Goodyear, Laurie J.; Parnell, Laurence D.; Fielding, Roger A.

    2014-01-01

    Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.—Rivas, D. A., Lessard, S. J., Rice, N. P., Lustgarten, M. S., So, K., Goodyear, L. J., Parnell, L. D., Fielding, R. A. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. PMID:24928197

  6. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells

    SciTech Connect

    Shimizu, Masahito; Deguchi, Atsuko; Hara, Yukihiko; Moriwaki, Hisataka; Weinstein, I. Bernard . E-mail: ibw1@columbia.edu

    2005-09-02

    The IGF/IGF-1R system, which includes the IGF, IGF-1R, and IGFBPs proteins, plays an important role in the development and growth of colorectal cancer. We previously reported that in the HT29 human colon cancer cell line EGCG, the major biologically active component of green tea, inhibits activation of the RTKs EGFR, HER2, and HER3, and that this is associated with inhibition of multiple downstream signaling pathways. Since IGF-1R is also a RTK, in this study we examined the effects of EGCG on the activity of IGF/IGF-1R system in human colon cancer cells. We found that the colon cancer cell lines Caco2, HT29, SW837, and SW480 express high levels of the IGF-1R receptor, and that both SW837 and SW480 cells display constitutive activation of this receptor. Treatment of SW837 cells with 20 {mu}g/ml of EGCG (the IC{sub 50} concentration for growth inhibition) caused within 6 h a decrease in the phosphorylated (i.e., activated) form of the IGF-1R protein. At 12 h, there was a decrease in the levels of both IGF-1 protein and mRNA and within 3-6 h there was an increase in the levels of both IGFBP-3 protein and mRNA. The increased expression of the latter protein was sustained for at least 48 h. When SW837 cells were treated with EGCG for a longer time, i.e., 96 h, a very low concentration (1.0 {mu}g/ml) of EGCG also caused inhibition of activation of IGF-1R, a decrease in the IGF-1 protein, and an increase in the IGFBP-3 protein. EGCG also caused a decrease in the levels of mRNAs that encode MMPs-7 and -9, proteins that proteolyze IGFBP-3. In addition, treatment with EGCG caused a transient increase in the expression of TGF-{beta}2, an inducer of IGFBP-3 expression. These findings expand the roles of EGCG as an inhibitor of critical RTKs involved in cell proliferation, providing further evidence that EGCG and related compounds may be useful in the chemoprevention or treatment of colorectal cancer.

  7. Discovery of the first non-ATP competitive IGF-1R kinase inhibitors: advantages in comparison with competitive inhibitors.

    PubMed

    Lesuisse, Dominique; Mauger, Jacques; Nemecek, Conception; Maignan, Sébastien; Boiziau, Janine; Harlow, Greg; Hittinger, Augustin; Ruf, Swen; Strobel, Hartmut; Nair, Anil; Ritter, Kurt; Malleron, Jean-Luc; Dagallier, Anne; El-Ahmad, Youssef; Guilloteau, Jean-Pierre; Guizani, Houlfa; Bouchard, Hervé; Venot, Corinne

    2011-04-15

    A new series of IGF-1R inhibitors related to hydantoins were identified from a lead originating from HTS. Their noncompetitive property as well as their slow binding characteristics provided a series of compounds with unique selectivity and excellent cellular activities.

  8. Effect of Taekwondo Training on Physical Fitness and Growth Index According to IGF-1 Gene Polymorphism in Children.

    PubMed

    Lee, Bonghan; Kim, Kijin

    2015-07-01

    This study analyzed the effect of regular Taekwondo training for 16 weeks on physical fitness and growth index depending on different IGF-1 gene polymorphisms. The subjects of the study were 44 male students who were 8 year years old. The IGF-1 gene showed the highest frequency of 18 CA repeat (190 bp) in 50% of subjects, and was found in the homozygote (n=11), heterozygote (n=22) and non-carriers (n=11). The results of the physical fitness and growth index among the gene polymorphism groups indicated no significant differences but the expected height of the non-carrier group was significantly high (p<0.05). After Taekwondo training, the homozygote group and the non-carrier groups demonstrated significant (p<0.05) increase in grip strength and in time in the standing with one leg while closing eyes test, respectively. Only the homozygote group had a significant (p< 0.05) increase in thigh circumference. IGF-1 concentration significantly (p<0.05) increased in the heterozygote group, while HOMA-IR significantly (p<0.05) decreased in the homozygote group. Furthermore, there was a significant (p<0.05) decrease in glucose in both the homozygote and the non-carriers groups. The difference between physical fitness and growth index depending on the IGF-1 gene polymorphism after Taekwondo training did not show consistent impact. PMID:26170738

  9. Effect of Taekwondo Training on Physical Fitness and Growth Index According to IGF-1 Gene Polymorphism in Children.

    PubMed

    Lee, Bonghan; Kim, Kijin

    2015-07-01

    This study analyzed the effect of regular Taekwondo training for 16 weeks on physical fitness and growth index depending on different IGF-1 gene polymorphisms. The subjects of the study were 44 male students who were 8 year years old. The IGF-1 gene showed the highest frequency of 18 CA repeat (190 bp) in 50% of subjects, and was found in the homozygote (n=11), heterozygote (n=22) and non-carriers (n=11). The results of the physical fitness and growth index among the gene polymorphism groups indicated no significant differences but the expected height of the non-carrier group was significantly high (p<0.05). After Taekwondo training, the homozygote group and the non-carrier groups demonstrated significant (p<0.05) increase in grip strength and in time in the standing with one leg while closing eyes test, respectively. Only the homozygote group had a significant (p< 0.05) increase in thigh circumference. IGF-1 concentration significantly (p<0.05) increased in the heterozygote group, while HOMA-IR significantly (p<0.05) decreased in the homozygote group. Furthermore, there was a significant (p<0.05) decrease in glucose in both the homozygote and the non-carriers groups. The difference between physical fitness and growth index depending on the IGF-1 gene polymorphism after Taekwondo training did not show consistent impact.

  10. Drug Synergy Screen and Network Modeling in Dedifferentiated Liposarcoma Identifies CDK4 and IGF1R as Synergistic Drug Targets

    PubMed Central

    Miller, Martin L.; Molinelli, Evan J.; Nair, Jayasree S.; Sheikh, Tahir; Samy, Rita; Jing, Xiaohong; He, Qin; Korkut, Anil; Crago, Aimee M.; Singer, Samuel; Schwartz, Gary K.; Sander, Chris

    2014-01-01

    Dedifferentiated liposarcoma (DDLS) is a rare but aggressive cancer with high recurrence and low response rates to targeted therapies. Increasing treatment efficacy may require combinations of targeted agents that counteract the effects of multiple abnormalities. To identify a possible multicomponent therapy, we performed a combinatorial drug screen in a DDLS-derived cell line and identified cyclin-dependent kinase 4 (CDK4) and insulin-like growth factor 1 receptor (IGF1R) as synergistic drug targets. We measured the phosphorylation of multiple proteins and cell viability in response to systematic drug combinations and derived computational models of the signaling network. These models predict that the observed synergy in reducing cell viability with CDK4 and IGF1R inhibitors depend on activity of the AKT pathway. Experiments confirmed that combined inhibition of CDK4 and IGF1R cooperatively suppresses the activation of proteins within the AKT pathway. Consistent with these findings, synergistic reductions in cell viability were also found when combining CDK4 inhibition with inhibition of either AKT or epidermal growth factor receptor (EGFR), another receptor similar to IGF1R that activates AKT. Thus, network models derived from context-specific proteomic measurements of systematically perturbed cancer cells may reveal cancer-specific signaling mechanisms and aid in the design of effective combination therapies. PMID:24065146

  11. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia.

    PubMed

    Blanco-Alvarez, Victor Manuel; Soto-Rodriguez, Guadalupe; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Brambila, Eduardo; Torres-Soto, Maricela; Aguilar-Peralta, Ana Karina; Gonzalez-Vazquez, Alejandro; Tomás-Sanchez, Constantino; Limón, I Daniel; Eguibar, Jose R; Ugarte, Araceli; Hernandez-Castillo, Jeanett; Leon-Chavez, Bertha Alicia

    2015-01-01

    Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.

  12. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia

    PubMed Central

    Blanco-Alvarez, Victor Manuel; Soto-Rodriguez, Guadalupe; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Brambila, Eduardo; Torres-Soto, Maricela; Aguilar-Peralta, Ana Karina; Gonzalez-Vazquez, Alejandro; Tomás-Sanchez, Constantino; Limón, I. Daniel; Eguibar, Jose R.; Ugarte, Araceli; Hernandez-Castillo, Jeanett; Leon-Chavez, Bertha Alicia

    2015-01-01

    Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors. PMID:26355725

  13. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    PubMed

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway.

  14. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    SciTech Connect

    Hong, Gia-Ming

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  15. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  16. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    PubMed

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  17. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk

    PubMed Central

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids. PMID:26134630

  18. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    PubMed

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids. PMID:26134630

  19. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis.

    PubMed

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-12-15

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1(S310A) mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1(V205G) mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  20. Neuroprotective role of estrogens: relationship with insulin/IGF-1 signaling.

    PubMed

    Alonso, Ana; Gonzalez, Celestino

    2012-01-01

    Postmenopausal women have an elevated risk of developing a neurodegenerative disease. These clinical observation supported by basic research, suggest that estrogens are neuroprotective. Insulin resistance represents an independent factor in the etiology of age-associated disease and metabolic syndrome should be considered as a contributing factor to the higher post-menopausal vulnerability to neurological disorders. Elucidating the relationship between insulin resistance associated with aging in females, and the cross-talk between estradiol, insulin, and insulin-like growth factor (IGF-1) signaling pathways, will lead to a more complete understanding of the mechanism underlying estradiol-mediated neuroprotection. In past decades, estrogen replacement therapy (ERT) was commonly used as a palliative therapy during menopause, but the mid-term and long-term effects of estrogen as possible promoters of breast cancer and the increased risk of coronary illness or stroke, has limited current usage. A deeper understanding of the molecular mechanisms common to all forms of neurodegenerative diseases may hasten the development of protective strategies against chronic age-related deterioration and acute illness, ultimately providing a better quality of life for the elderly. PMID:22201898

  1. Erythropoietin and IGF-1 signaling synchronize cell proliferation and maturation during erythropoiesis

    PubMed Central

    Kadri, Zahra; Lefevre, Carine; Goupille, Olivier; Penglong, Tipparat; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chretien, Leila; Leboulch, Philippe; Chretien, Stany

    2015-01-01

    Tight coordination of cell proliferation and differentiation is central to red blood cell formation. Erythropoietin controls the proliferation and survival of red blood cell precursors, while variations in GATA-1/FOG-1 complex composition and concentrations drive their maturation. However, clear evidence of cross-talk between molecular pathways is lacking. Here, we show that erythropoietin activates AKT, which phosphorylates GATA-1 at Ser310, thereby increasing GATA-1 affinity for FOG-1. In turn, FOG-1 displaces pRb/E2F-2 from GATA-1, ultimately releasing free, proproliferative E2F-2. Mice bearing a Gata-1S310A mutation suffer from fatal anemia when a compensatory pathway for E2F-2 production involving insulin-like growth factor-1 (IGF-1) signaling is simultaneously abolished. In the context of the GATA-1V205G mutation resulting in lethal anemia, we show that the Ser310 cannot be phosphorylated and that constitutive phosphorylation at this position restores partial erythroid differentiation. This study sheds light on the GATA-1 pathways that synchronize cell proliferation and differentiation for tissue homeostasis. PMID:26680303

  2. The P2 promoter of the IGF1 gene is a major epigenetic locus for GH responsiveness.

    PubMed

    Ouni, M; Belot, M P; Castell, A L; Fradin, D; Bougnères, P

    2016-02-01

    Short children using growth hormone (GH) to accelerate their growth respond to this treatment with a variable efficacy. The causes of this individual variability are multifactorial and could involve epigenetics. Quantifying the impact of epigenetic variation on response to treatments is an emerging challenge. Here we show that methylation of a cluster of CGs located within the P2 promoter of the insulin-like growth factor 1 (IGF1) gene, notably CG-137, is inversely closely correlated with the response of growth and circulating IGF1 to GH administration. For example, variability in CG-137 methylation contributes 25% to variance of growth response to GH. Methylation of CGs in the P2 promoter is negatively associated with the increased transcriptional activity of P2 promoter in patients' mononuclear blood cells following GH administration. Our observation indicates that epigenetics is a major determinant of GH signaling (physiology) and of individual responsiveness to GH treatment (pharmacoepigenetics). PMID:25869012

  3. A polymorphic repeat in the IGF1 promoter influences the risk of endometrial cancer

    PubMed Central

    Bolton, Katherine A; Avery-Kiejda, Kelly A; Holliday, Elizabeth G; Attia, John; Bowden, Nikola A

    2016-01-01

    Due to the lack of high-throughput genetic assays for tandem repeats, there is a paucity of knowledge about the role they may play in disease. A polymorphic CA repeat in the promoter region of the insulin-like growth factor 1 gene (IGF1 has been studied extensively over the past 10 years for association with the risk of developing breast cancer, among other cancers, with variable results. The aim of this study was to determine if this CA repeat is associated with the risk of developing breast cancer and endometrial cancer. Using a case–control design, we analysed the length of this CA repeat in a series of breast cancer and endometrial cancer cases and compared this with a control population. Our results showed an association when both alleles were considered in breast and endometrial cancers (P=0.029 and 0.011, respectively), but this did not pass our corrected threshold for significance due to multiple testing. When the allele lengths were analysed categorically against the most common allele length of 19 CA repeats, an association was observed with the risk of endometrial cancer due to a reduction in the number of long alleles (P=0.013). This was confirmed in an analysis of the long alleles separately for endometrial cancer risk (P=0.0012). Our study found no association between the length of this polymorphic CA repeat and breast cancer risk. The significant association observed between the CA repeat length and the risk of developing endometrial cancer has not been previously reported. PMID:27090263

  4. A polymorphic repeat in the IGF1 promoter influences the risk of endometrial cancer.

    PubMed

    Bolton, Katherine A; Avery-Kiejda, Kelly A; Holliday, Elizabeth G; Attia, John; Bowden, Nikola A; Scott, Rodney J

    2016-05-01

    Due to the lack of high-throughput genetic assays for tandem repeats, there is a paucity of knowledge about the role they may play in disease. A polymorphic CA repeat in the promoter region of the insulin-like growth factor 1 gene (IGF1 has been studied extensively over the past 10 years for association with the risk of developing breast cancer, among other cancers, with variable results. The aim of this study was to determine if this CA repeat is associated with the risk of developing breast cancer and endometrial cancer. Using a case-control design, we analysed the length of this CA repeat in a series of breast cancer and endometrial cancer cases and compared this with a control population. Our results showed an association when both alleles were considered in breast and endometrial cancers (P=0.029 and 0.011, respectively), but this did not pass our corrected threshold for significance due to multiple testing. When the allele lengths were analysed categorically against the most common allele length of 19 CA repeats, an association was observed with the risk of endometrial cancer due to a reduction in the number of long alleles (P=0.013). This was confirmed in an analysis of the long alleles separately for endometrial cancer risk (P=0.0012). Our study found no association between the length of this polymorphic CA repeat and breast cancer risk. The significant association observed between the CA repeat length and the risk of developing endometrial cancer has not been previously reported. PMID:27090263

  5. Small-molecule ATP-competitive dual IGF-1R and insulin receptor inhibitors: structural insights, chemical diversity and molecular evolution.

    PubMed

    Jin, Meizhong; Wang, Jing; Buck, Elizabeth; Mulvihill, Mark J

    2012-03-01

    IGF-1R has been recognized as a major target in cancer drug discovery due to its strong implications in various stages of tumorigenesis based on accumulated preclinical data. Recent research on compensatory crosstalk between IGF-1R and insulin receptor (IR) signaling pathways suggests that targeting both IGF-1R and IR should result in a more therapeutically beneficial response, than targeting IGF-1R alone (e.g., IGF-1R-specific antibodies). These findings provided biological rationale and opened the door to the discovery of a variety of small-molecule dual IGF-1R and IR inhibitors. In this review we summarize the recent developments in this field, with a focus on binding modes and binding interactions of these inhibitors with IGF-1R and/or IR. Selectivity of these inhibitors has been discussed in this context as well. This is an important area to be discussed since one of the major challenges in kinase inhibitor drug discovery is to build an optimal selectivity profile based on biological rationale.

  6. IGF-1R, a target of let-7b, mediates crosstalk between IRS-2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma

    PubMed Central

    Gao, Ling; Wang, Xiaolong; Wang, Xiaofei; Zhang, Linmei; Qiang, Cui; Chang, Su'e; Ren, Wenhao; Li, Shaoming; Yang, Yang; Tong, Dongdong; Chen, Cheng; Li, Zongfang; Song, Tusheng; Zhi, Keqian; Huang, Chen

    2014-01-01

    Insulin-like growth factor (IGF) signaling is involved in oral squamous cell carcinoma (OSCC), but IGF-1 receptor (IGF-1R)-mediated intricate regulatory networks among molecular interactions and signalling path ways in OSCC remain unclear. Here, we found that overexpression of IGF-1R and insulin receptor substrate-2 (IRS-2) was negatively associated with histological differentiation. IGF signaling stimulated OSCC cell growth. Conversely, overexpression of let-7b inhibited proliferation and colony formation and triggered S/G2 cell cycle arrest by targeting IGF-1R and IRS-2 through the Akt pathway. Also, the inverse relationship between expression of let-7b and IGF-1R/IRS-2 was confirmed in OSCC tumor xenografts and clinical specimens. Furthermore, by activating ERK1/2, IGF-1R transcriptionally upregulated IRS-2. Our results indicate that let-7b/IGF-1R-mediated crosstalk between IRS-2/Akt and MAPK is involved in OSCC and is a potential therapeutic target for therapy. PMID:24810113

  7. Combinational Therapy Enhances the Effects of Anti-IGF-1R mAb Figitumumab to Target Small Cell Lung Cancer

    PubMed Central

    Shen, Hongchang; Xu, Jun; Zhu, Linhai; Liu, Qi; Du, Jiajun

    2015-01-01

    Background Small cell lung cancer (SCLC) is a recalcitrant malignancy with distinct biologic properties. Antibody targeting therapy has been actively investigated as a new drug modality. Methods We tested the expression of IGF-1R and calculated the survival in 61 SCLC patients. We also evaluated the anti-tumor effects of anti-IGF-1R monoclonal antibody Figitumumab (CP) on SCLC, and tried two drug combinations to improve CP therapy. Results Our clinical data suggested that high IGF-1R expression was correlated with low SCLC patient survival. We then demonstrated the effect of CP was likely through IGF-1R blockage and down-regulation without IGF-1R auto-phosphorylation and PI3K/AKT activation. However, we observed elevated MEK/ERK activation upon CP treatment in SCLC cells, and this MEK/ERK activation was enhanced by ß-arrestin1 knockdown while attenuated by ß-arrestin2 knockdown. We found both MEK/ERK inhibitor and metformin could enhance CP treatment in SCLC cells. We further illustrated the additive effect of metformin was likely through promoting further IGF-1R down-regulation. Conclusion Our results highlighted the potential of anti-IGF-1R therapy and the adjuvant therapy strategy with either MEK/ERK inhibitor or metformin to target SCLC, warranting further studies. PMID:26287334

  8. A preliminary study of pamidronic acid downregulation of angiogenic factors IGF-1/PECAM-1 expression in circulating level in bone metastatic breast cancer patients

    PubMed Central

    Wang, Zeng; Lei, Lei; Cai, Xin-jun; Chen, Ling Ya; Yuan, Meiqin; Yang, Guonong; Huang, Ping; Wang, Xiaojia

    2016-01-01

    Objective To evaluate the expressions of circulating angiogenic factors affected by pamidronic acid (PA) intravenous infusion in bone metastatic breast cancer patients and the impact on their prognosis. Methods Peripheral blood of ten bone metastatic breast cancer patients was collected for serum insulin-like growth factor-1 (IGF-1) and platelet endothelial cell adhesion molecule-1 expression detection just before and 2 days after PA infusion. Results Both IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations decreased after PA treatment for 48 hours (P<0.05). Modification was defined as >20% decrease recorded 2 days after PA administration. The decrease of IGF-1 was more significant in breast cancer patients who had received previous hormonotherapy. Moreover, the progression-free survival of first-line chemotherapy treatment of IGF-1 modified patients was longer than that of IGF-1 unmodified patients (P=0.009). Conclusion PA treatment could suppress circulating serum IGF-1 and platelet endothelial cell adhesion molecule-1 concentrations; moreover, the prognosis of patients in IGF-1 unmodified group was relatively poor. PMID:27307756

  9. Growth hormone as concomitant treatment in severe fibromyalgia associated with low IGF-1 serum levels. A pilot study

    PubMed Central

    Cuatrecasas, Guillem; Riudavets, Cristina; Güell, Maria Antònia; Nadal, Albert

    2007-01-01

    Background There is evidence of functional growth hormone (GH) deficiency, expressed by means of low insulin-like growth factor 1 (IGF-1) serum levels, in a subset of fibromyalgia patients. The efficacy of GH versus placebo has been previously suggested in this population. We investigated the efficacy and safety of low dose GH as an adjunct to standard therapy in the treatment of severe, prolonged and well-treated fibromyalgia patients with low IGF-1 levels. Methods Twenty-four patients were enrolled in a randomized, open-label, best available care-controlled study. Patients were randomly assigned to receive either 0.0125 mg/kg/d of GH subcutaneously (titrated depending on IGF-1) added to standard therapy or standard therapy alone during one year. The number of tender points, the Fibromyalgia Impact Questionnaire (FIQ) and the EuroQol 5D (EQ-5D), including a Quality of Life visual analogic scale (EQ-VAS) were assessed at different time-points. Results At the end of the study, the GH group showed a 60% reduction in the mean number of tender points (pairs) compared to the control group (p < 0.05; 3.25 ± 0.8 vs. 8.25 ± 0.9). Similar improvements were observed in FIQ score (p < 0.05) and EQ-VAS scale (p < 0.001). There was a prompt response to GH administration, with most patients showing improvement within the first months in most of the outcomes. The concomitant administration of GH and standard therapy was well tolerated, and no patients discontinued the study due to adverse events. Conclusion The present findings indicate the advantage of adding a daily GH dose to the standard therapy in a subset of severe fibromyalgia patients with low IGF-1 serum levels. Trial Registration NCT00497562 (ClinicalTrials.gov). PMID:18053120

  10. Role of the GH-IGF-1 system in Atlantic salmon and rainbow trout postsmolts at elevated water temperature.

    PubMed

    Hevrøy, Ernst M; Tipsmark, Christian K; Remø, Sofie C; Hansen, Tom; Fukuda, Miki; Torgersen, Thomas; Vikeså, Vibeke; Olsvik, Pål A; Waagbø, Rune; Shimizu, Munetaka

    2015-10-01

    A comparative experiment with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) postsmolts was conducted over 35 days to provide insight into how growth, respiration, energy metabolism and the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) system are regulated at elevated sea temperatures. Rainbow trout grew better than Atlantic salmon, and did not show reduced growth at 19 °C. Rainbow trout kept at 19 °C had increased blood hemoglobin concentration compared to rainbow trout kept at 13 °C, while salmon did not show the same hemoglobin response due to increased temperature. Both species showed reduced length growth and decreased muscle glycogen stores at 19 °C. Circulating IGF-1 concentration was higher in rainbow trout than in Atlantic salmon, but was not affected by temperature in either species. Plasma IGF-binding protein 1b (IGFBP-1b) concentration was reduced in Atlantic salmon reared at 19 °C after 15 days but increased in rainbow trout at 19 °C after 35 days. The igfbp1b mRNA level in liver showed a positive correlation to plasma concentrations of glucose and IGFBP-1b, suggesting involvement of this binding protein in carbohydrate metabolism at 19 °C. At this temperature muscle igfbp1a mRNA was down-regulated in both species. The muscle expression of this binding protein correlated negatively with muscle igf1 and length growth. The plasma IGFBP-1b concentration and igfbp1b and igfbp1a expression suggests reduced muscle igf1 signaling at elevated temperature leading to glucose allostasis, and that time course is species specific due to higher thermal tolerance in rainbow trout. PMID:26144599

  11. Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation.

    PubMed

    Triplett, Todd A; Cardenas, Kim T; Lancaster, Jessica N; Hu, Zicheng; Selden, Hilary J; Jasso, Guadalupe J; Balasubramanyam, Sadhana; Chan, Kathy; Li, LiQi; Chen, Xi; Marcogliese, Andrea N; Davé, Utpal P; Love, Paul E; Ehrlich, Lauren I R

    2016-02-23

    Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets. PMID:26862168

  12. miR-448 suppresses proliferation and invasion by regulating IGF1R in colorectal cancer cells

    PubMed Central

    Li, Bai; Ge, Liang; Li, Minghe; Wang, Lei; Li, Zhihong

    2016-01-01

    Accumulating evidence has demonstrated that miR-448 expression was downregulated, and exerted tumor suppressor roles in several types of cancer. However, the biological function and underlying mechanism of miR-448 in colorectal cancer (CRC) have not been elucidated. In this study, we detected the miR-448 expression in CRC tumor tissues and adjacent normal tissues (ANT) and five colorectal cancer cell lines by real time quantitative RT-PCR (qRT-PCR). Cell proliferation, colony formation, migration and invasion were investigated in CRC cells transfected miR-448 mimic or negative control mimic by MTT, colony forming, wound healing and transwell invasion assays, respectively. Target gene was identified by bioinformatic prediction, dual-luciferase reporter assay, qRT-PCR and Western blot. Our data proved that miR-448 expression was downregulated in CRC tissues and cell lines, and was inversely associated with advanced tumor-node-metastasis (TNM) stage (P < 0.01), and lymph node metastasis (P < 0.01). Overexpression of miR-448 suppressed CRC cell proliferation, colony formation, migration, and invasion. Moreover, we identified insulin-like growth factor 1 receptor (IGF1R) as a direct target gene of miR-448 in CRC cell. IGF1R expression was upregulated in CRC tissues and cell lines, and its expression was negatively correlated with the expression level of miR-448 in CRC tissues(r = -0.569, P = 0.002). In addition, IGF1R overexpression rescued the suppressive effect of miR-448-mediated CRC on cell proliferation, colony formation, migration and invasion. These results suggested that miR-448 might serve as a tumor suppressor in CRC partly through targeting IGF1R. PMID:27508021

  13. Role of the GH-IGF-1 system in Atlantic salmon and rainbow trout postsmolts at elevated water temperature.

    PubMed

    Hevrøy, Ernst M; Tipsmark, Christian K; Remø, Sofie C; Hansen, Tom; Fukuda, Miki; Torgersen, Thomas; Vikeså, Vibeke; Olsvik, Pål A; Waagbø, Rune; Shimizu, Munetaka

    2015-10-01

    A comparative experiment with Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) postsmolts was conducted over 35 days to provide insight into how growth, respiration, energy metabolism and the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) system are regulated at elevated sea temperatures. Rainbow trout grew better than Atlantic salmon, and did not show reduced growth at 19 °C. Rainbow trout kept at 19 °C had increased blood hemoglobin concentration compared to rainbow trout kept at 13 °C, while salmon did not show the same hemoglobin response due to increased temperature. Both species showed reduced length growth and decreased muscle glycogen stores at 19 °C. Circulating IGF-1 concentration was higher in rainbow trout than in Atlantic salmon, but was not affected by temperature in either species. Plasma IGF-binding protein 1b (IGFBP-1b) concentration was reduced in Atlantic salmon reared at 19 °C after 15 days but increased in rainbow trout at 19 °C after 35 days. The igfbp1b mRNA level in liver showed a positive correlation to plasma concentrations of glucose and IGFBP-1b, suggesting involvement of this binding protein in carbohydrate metabolism at 19 °C. At this temperature muscle igfbp1a mRNA was down-regulated in both species. The muscle expression of this binding protein correlated negatively with muscle igf1 and length growth. The plasma IGFBP-1b concentration and igfbp1b and igfbp1a expression suggests reduced muscle igf1 signaling at elevated temperature leading to glucose allostasis, and that time course is species specific due to higher thermal tolerance in rainbow trout.

  14. Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis).

    PubMed

    El-Magd, M A; Abbas, H E; El-kattawy, A M; Mokhbatly, A

    2013-08-01

    The objective of this study was to detect insulin-like growth factor 1 receptor (IGF1R) polymorphisms, their allele, and genotype frequencies and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. Three loci of the IGF1R coding region were amplified by RT-PCR and, subsequently, subjected to sequence analysis, followed by single-strand conformation polymorphism to identify different allelic patterns. A total of 11 novel polymorphisms were detected; 6 SNPs among Egyptian water buffaloes and 5 polymorphisms compared with Indian buffalo (Y12700). Three of those polymorphisms; GAG Indel polymorphism, C261G, and G263C SNPs, were nonsynonymous mutations. The GAG Indel polymorphism led to deletion of E (glutamic) amino acid (aa) in the IGF1R of Egyptian water buffaloes compared with Indian buffalo. However, C261G SNP, which replaced A (alanine) by G (glycine) aa, and G263C SNP, which changed A (alanine) to P (proline) aa, were detected among Egyptian water buffaloes. Three different single-strand conformation polymorphism patterns were observed in exon 21: CC/CC, GG/GG, and CG/GC with frequencies of 0.291, 0.253, and 0.556, respectively. The heterozygous animals (CG/GC) had a higher ADG than homozygous animals (CC/CC and GG/GG) from birth to 6 mo of age. We conclude that the heterozygous haplotype, C261G/G263C, in exon 21 of the IGF1R gene is associated with the ADG during the early stages of life (from birth to 6 mo of age) and could be used as a genetic marker for selection of growth traits in Egyptian buffalo.

  15. The expressions of IGF-1, BMP-2 and TGF-β1 in cartilage of condylar hyperplasia.

    PubMed

    Meng, Q; Long, X; Deng, M; Cai, H; Li, J

    2011-01-01

    Condylar hyperplasia is a complex post-natal growth abnormality of the mandible and condyle, which leads to facial asymmetry. We investigated the distributions of insulin-like growth fac