Science.gov

Sample records for igg4-positive plasma cell

  1. Oral lichen sclerosus expressing extracellular matrix proteins and IgG4-positive plasma cells.

    PubMed

    De Aquino Xavier, Flavia Calo; Prates, Alisio Alves; Gurgel, Clarissa Araujo; De Souza, Tulio Geraldo; Andrade, Rodrigo Guimaraes; Goncalves Ramos, Eduardo Antonio; Pedreira Ramalho, Luciana Maria; Dos Santos, Jean Nunes

    2014-09-16

    Lichen sclerosus (LS) is a mucocutaneous disease with uncommon oral involvement. The etiology is not yet well understood, but LS has been associated with autoimmune, genetic, and immunological factors. We report a 47-year-old man with LS that exhibited an asymptomatic white plaque with red patches on the maxillary alveolar mucosa extending to the labial mucosa. He had no other skin disease. Positive immunostaining for tenascin and scarcity of fibronectin suggested extracellular matrix reorganization. Elastin immunostaining indicated a reduction of elastic fibers. Immunoexpression of collagen IV in blood vessels and its absence in the epithelial basement membrane, together with diffuse MMP-9 immunoexpression, suggested altered proteolytic activity. Mast cell staining bordering areas of sclerosis indicated a possible role in the synthesis of collagen. IgG4 positivity in plasma cells suggested a role in the fibrogenesis. This is an unusual presentation of oral LS and we discuss immunohistochemical findings regarding cellular and extracellular matrix components.

  2. Cronkhite-Canada syndrome polyps infiltrated with IgG4-positive plasma cells

    PubMed Central

    Fan, Ru-Ying; Wang, Xiao-Wei; Xue, Li-Jun; An, Ran; Sheng, Jian-Qiu

    2016-01-01

    Cronkhite-Canada syndrome (CCS) is a rare but serious protein-losing enteropathy, but little is known about the mechanism. Further more, misdiagnosis is common due to non-familiarity of its clinical manifestation. A 40-year-old male patient was admitted to our hospital because of diarrhea and hypogeusia associated with weight loss for 4 mo. On physical examination, skin pigmentation, dystrophic nail changes and alopecia were noted. He had no alike family history. Laboratory results revealed low levels of serum albumin (30.1 g/L, range: 35.0-55.0 g/L), serum potassium (2.61 mmol/L, range: 3.5-5.5 mmol/L) and blood glucose (2.6 mmol/L, range: 3.9-6.1 mmol/L). The erythrocyte sedimentation rate was elevated to 17 mm/h (range: 0-15 mm/h). X-ray of chest and mandible was normal. The endoscopic examination showed multiple sessile polyps in the stomach, small bowel and colorectum. Histopathologic examination of biopsies obtained from those polyps showed hyperplastic change, cystic dilatation and distortion of glands with inflammatory infiltration, eosinophilic predominance and stromal edema. Immune staining for IgG4 plasma cells was positive in polyps of stomach and colon. The patient was diagnosed of CCS and treated with steroid, he had a good response to steroid. Both histologic findings and treatment response to steroid suggested an autoimmune mechanism underling CCS. PMID:27574615

  3. Cronkhite-Canada syndrome polyps infiltrated with IgG4-positive plasma cells.

    PubMed

    Fan, Ru-Ying; Wang, Xiao-Wei; Xue, Li-Jun; An, Ran; Sheng, Jian-Qiu

    2016-08-16

    Cronkhite-Canada syndrome (CCS) is a rare but serious protein-losing enteropathy, but little is known about the mechanism. Further more, misdiagnosis is common due to non-familiarity of its clinical manifestation. A 40-year-old male patient was admitted to our hospital because of diarrhea and hypogeusia associated with weight loss for 4 mo. On physical examination, skin pigmentation, dystrophic nail changes and alopecia were noted. He had no alike family history. Laboratory results revealed low levels of serum albumin (30.1 g/L, range: 35.0-55.0 g/L), serum potassium (2.61 mmol/L, range: 3.5-5.5 mmol/L) and blood glucose (2.6 mmol/L, range: 3.9-6.1 mmol/L). The erythrocyte sedimentation rate was elevated to 17 mm/h (range: 0-15 mm/h). X-ray of chest and mandible was normal. The endoscopic examination showed multiple sessile polyps in the stomach, small bowel and colorectum. Histopathologic examination of biopsies obtained from those polyps showed hyperplastic change, cystic dilatation and distortion of glands with inflammatory infiltration, eosinophilic predominance and stromal edema. Immune staining for IgG4 plasma cells was positive in polyps of stomach and colon. The patient was diagnosed of CCS and treated with steroid, he had a good response to steroid. Both histologic findings and treatment response to steroid suggested an autoimmune mechanism underling CCS. PMID:27574615

  4. Hepatic nodular lymphoid lesion with increased IgG4-positive plasma cells associated with primary biliary cirrhosis: a report of two cases.

    PubMed

    Calvo, Jessica; Carbonell, Nicolas; Scatton, Olivier; Marzac, Christophe; Ganne-Carrie, Nathalie; Wendum, Dominique

    2015-11-01

    The nodular lymphoid lesion of the liver known as reactive lymphoid hyperplasia or pseudolymphoma is rare and its pathogenesis is unknown. We report two cases of nodular lymphoid lesions of the liver with numerous IgG4-positive plasma cells in patients with primary biliary cirrhosis. Histologically, in both cases, the lesion showed a dense lymphoplasmacytic infiltrate with lymphoid follicles and granulomas. Fibrous tissue was scarce and without a storiform pattern. Obliterative phlebitis was not identified. The IgG4+ plasma cell counts were 82 and 76 per high power field, with an IgG4/IgG ratio of 75 and 64 %, respectively, which qualifies the lesions according to the diagnostic criteria for IgG4-related disease as « probable histological feature of IgG4-related disease ». There were no rearrangements of immunoglobulin heavy-chain genes and plasma cells had a polytypic pattern of kappa and lambda light-chain expression. The non-tumor liver showed primary biliary cirrhosis with destructive cholangitis without IgG4 plasma cells. In both cases, IgG4-related disease was not found in other organs neither at the time of diagnosis nor 3 years later. Serum IgG4 levels normalized after local ablation of the lesions. It seems unlikely that these lesions are a manifestation of IgG4-related disease. However, because the pathogenesis of both nodular lymphoid lesions and IgG4-related disease remains unclear, further studies are needed to elucidate a potential link between nodular lymphoid lesions of the liver and an increased number of IgG4 plasma cells. More definite conclusions will be possible when the pathogenesis of IgG4-related disease has been clarified.

  5. A high number of IgG4-positive cells in gastric cancer tissue is associated with tumor progression and poor prognosis.

    PubMed

    Miyatani, Kozo; Saito, Hiroaki; Murakami, Yuki; Watanabe, Joji; Kuroda, Hirohiko; Matsunaga, Tomoyuki; Fukumoto, Yoji; Osaki, Tomohiro; Nakayama, Yuji; Umekita, Yoshihisa; Ikeguchi, Masahide

    2016-05-01

    IgG4-related disease is a newly defined disease characterized by elevated serum IgG4 levels and infiltration of affected organs by IgG4-positive plasma cells. Recently, increased IgG4 levels were reported to be closely related with malignancy. To assess the relationship between IgG4 and the progression of gastric cancer, we immunohistochemically stained in this study gastric cancer tissue samples for IgG4-positive cells using an anti-IgG4 antibody. In addition, pre- and postoperative serum concentrations of IgG4 were measured, using an enzyme-linked immunosorbent assay. In gastric cancer samples, the number of CD138-positive plasma cells was significantly lower and the number of IgG4-positive cells significantly higher than in non-cancerous gastric mucosa. The number of IgG4-positive cells was significantly correlated with gross tumor appearance, tumor depth, lymph node metastasis, venous invasion, and lymphatic invasion. Prognosis was significantly poorer in patients with a high number of IgG4-positive cells than in those with a low number. Multivariate analysis indicated that both the number of IgG4-positive cells and the depth of tumor invasion were independently prognostic of survival. In conclusion, in gastric cancer, the number of IgG4-positive cells is increased and this is closely associated with gastric cancer progression.

  6. Increased serum IgG4 levels and intimal IgG4-positive cell infiltration in rapidly growing aortic aneurysm

    PubMed Central

    Fujita, Shuichi; Nishioka, Nobu; Ito, Takahide; Wada, Yuki; Kakita, Ken; Ozawa, Hideki; Tsuji, Motomu; Katsumata, Takahiro

    2013-01-01

    A 67-year-old Japanese man had been complaining of discomfort in the chest and back and feeling febrile for 2 weeks. Chest computed tomography indicated a thoracic aortic aneurysm. He occasionally showed a high fever (up to 38.0°C), even after hospital admission, irrespective of antibiotic therapy. The patient was found to have elevated serum IgG4 levels (366 mg/dL). The aneurysm demonstrated rapid growth; therefore, rifampicin-soaked woven Dacron synthetic graft replacement was performed 22 days after admission. Immunohistostatining of the resected aorta segment showed an IgG4-positive plasma cell infiltrate within the intimal layer neighboring the cholesterol-rich atheromatous plaque. After surgery, the patient’s serum IgG4 level dropped acutely; however, it did not reach the normal range. The possible role of IgG4 in the development or suppression of aortic remodeling, as well as in atherogenesis, among patients with rapidly growing aortic aneurysm requires further investigation. PMID:27489625

  7. Plasma Cell Disorders

    MedlinePlus

    ... microorganisms to which the body is exposed. In plasma cell disorders, one clone of plasma cells multiplies uncontrollably. As a result, this clone ... a light chain and heavy chain). These abnormal plasma cells and the ... produce are limited to one type, and levels of other types of antibodies ...

  8. Plasma cell granuloma of the oral cavity: a mucosal manifestation of immunoglobulin G4-related disease or a mimic?

    PubMed

    Laco, Jan; Kamarádová, Kateřina; Mottl, Radovan; Mottlová, Alena; Doležalová, Helena; Tuček, Luboš; Žatečková, Kamila; Slezák, Radovan; Ryška, Aleš

    2015-03-01

    The aim of the study was to test the hypothesis that oral plasma cell granuloma may represent a mucosal manifestation of immunoglobulin (Ig)G4-related disease (IgG4-RD) in the oral cavity. The study sample comprised two males and four females, aged 54-79 years (median 62 years). The lesions were localized on gingival/alveolar mucosa (four cases), hard palate, and floor of the mouth, measuring 17-40 mm (median 31 mm). The duration of the lesions ranged from 3 months to several years. Information on IgG4 serum levels was available for two patients, and these were increased to 1.85 and 1.65 g/L, respectively. The follow-up period ranged 11-30 months (median 13 months). None of the lesions recurred, and none of the patients developed any manifestation of IgG4-RD. Microscopically, all cases presented as nodular lesions composed of numerous polyclonal plasma cells admixed with lymphocytes, histiocytes, mast cells, and eosinophils, set within collagenized stroma in variable proportions. Obliterative phlebitis was observed in two cases. The number of IgG4-positive plasma cells ranged between 51 and 142 per HPF (median 114), while the IgG4/IgG ratio values ranged between 0.16 and 0.72 (median 0.44) and were above 0.40 in three cases. Based on international criteria, two cases were diagnosed as definite and one as probable IgG4-RD. Oral plasma cell granuloma is a heterogeneous group of lesions, and a subset may represent a mucosal manifestation of IgG4-RD in the oral cavity. PMID:25522952

  9. Plasma cell gingivitis

    PubMed Central

    Joshi, Chandershekhar; Shukla, Pradeep

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, often flavouring agents or spices found in chewing gums, toothpastes and lorenzes. A 27-yr old male with a chief complaint of painful, bleeding swollen mass in his lower front teeth region with prolong use of herbal toothpowder. The gingiva bled readily on probing. Patient was advised to refrain from the use of herbal toothpowder and along with periodontal treatment, no further reoccurrence was found. as more and more herbal products are gaining popularity, clinicians should be aware of effects of these products. Early diagnosis is essential as plasma cell gingivitis has similar pathologic changes seen clinically as in leukemia, HIV infection, discoid lupus erythematosis, atrophic lichen planus, desquamative gingivitis, or cicatrical pemphigoid which must be differentiated through hematologic and serologic testing. PMID:26015677

  10. Regulatory T Cells in Type 1 Autoimmune Pancreatitis

    PubMed Central

    Uchida, Kazushige; Kusuda, Takeo; Koyabu, Masanori; Miyoshi, Hideaki; Fukata, Norimasa; Sumimoto, Kimi; Fukui, Yuri; Sakaguchi, Yutaku; Ikeura, Tsukasa; Shimatani, Masaaki; Fukui, Toshiro; Matsushita, Mitsunobu; Takaoka, Makoto; Nishio, Akiyoshi; Okazaki, Kazuichi

    2012-01-01

    Autoimmune pancreatitis (AIP) is a newly recognized pancreatic disorder. Recently, International Consensus Diagnostic Criteria for AIP (ICDC) was published. In this ICDC, AIP was classified into Type 1 and Type 2. Patients with Type 1 AIP have several immunologic and histologic abnormalities specific to the disease, including increased levels of serum IgG4 and storiform fibrosis with infiltration of lymphocytes and IgG4-positive plasmacytes in the involved organs. Among the involved organs showing extrapancreatic lesions, the bile duct is the most common, exhibiting sclerosing cholangitis (IgG4-SC). However, the role of IgG4 is unclear. Recently, it has been reported that regulatory T cells (Tregs) are involved in both the development of various autoimmune diseases and the shift of B cells toward IgG4, producing plasmacytes. Our study showed that Tregs were increased in the pancreas with Type 1 AIP and IgG4-SC compared with control. In the patients with Type 1 AIP and IgG4-SC, the numbers of infiltrated Tregs were significantly positively correlated with IgG4-positive plasma cells. In Type 1 AIP, inducible costimulatory molecule (ICOS)+ and IL-10+ Tregs significantly increased compared with control groups. Our data suggest that increased quantities of ICOS+ Tregs may influence IgG4 production via IL-10 in Type 1 AIP. PMID:22536257

  11. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  12. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  13. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  14. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  15. IgG4-related inflammatory pseudotumor of the kidney mimicking renal cell carcinoma: A case report

    PubMed Central

    CAI, YI; LI, HAN-ZHONG; ZHANG, YU-SHI

    2016-01-01

    IgG4-related disease is a recently recognized clinical entity. It is characterized by diffuse organ swelling or mass formation, a dense lymphoplasmacytic infiltrate rich in IgG4-positive plasma cells with fibrosis and typically an increased serum IgG4 concentration, which may affect various organs. An 80-year-old woman with an otherwise unremarkable previous medical history was revealed to have a renal mass that was indicative of renal malignant carcinoma, for which a radical nephrectomy was performed. The mass was diagnosed as an IgG4-related inflammatory pseudotumor, which was histopathologically confirmed. The patient is currently well without evidence of IgG4-related disease at 3 months post-surgery, and did not require any additional therapy. PMID:27123131

  16. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  17. Plasma stencilling methods for cell patterning.

    PubMed

    Frimat, Jean-Philippe; Menne, Heike; Michels, Antje; Kittel, Silke; Kettler, Raffael; Borgmann, Sabine; Franzke, Joachim; West, Jonathan

    2009-10-01

    In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS-PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.

  18. Plasma interactions with biased concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Stillwell, R. P.; Stevens, N. J.

    1986-12-01

    Concentrator solar arrays are being proposed for future space missions as replacements for less efficient (power/mass) planar arrays. While planar solar arrays have been used in space and their characteristics evaluated, concentrator cell interactions have not. This study investigates the possible interactions between a biased concentrator cell and a plasma environment. This study involved experimental and preliminary analytical work. It has been found that the electric fields associated with the biased cell are confined to the light collector region of the cell configuration, and that the cell arcs in dense plasma environments, at negative voltages of less than -200 volts, in a way similar to the arcing experienced by planar cells.

  19. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  20. Kidney disease associated with plasma cell dyscrasias

    PubMed Central

    Goes, Nelson B.; Spitzer, Thomas R.; Raje, Noopur S.; Humphreys, Benjamin D.; Anderson, Kenneth C.; Richardson, Paul G.

    2010-01-01

    Plasma cell dyscrasias are frequently encountered malignancies often associated with kidney disease through the production of monoclonal immunoglobulin (Ig). Paraproteins can cause a remarkably diverse set of pathologic patterns in the kidney and recent progress has been made in explaining the molecular mechanisms of paraprotein-mediated kidney injury. Other recent advances in the field include the introduction of an assay for free light chains and the use of novel antiplasma cell agents that can reverse renal failure in some cases. The role of stem cell transplantation, plasma exchange, and kidney transplantation in the management of patients with paraprotein-related kidney disease continues to evolve. PMID:20462963

  1. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  2. Cytology of plasma cell rich effusion in cases of plasma cell neoplasm

    PubMed Central

    Gochhait, Debasis; Dey, Pranab; Verma, Neelam

    2016-01-01

    Background: Multiple myeloma or plasmacytoma resulting in malignant effusion is rarely described in literature. Aims: In this paper, we have studied the seven rare cases of plasma cell infiltration in effusion fluid. Materials and Methods: We studied six cases of pleural fluid and one case of ascetic fluid. Detailed cytological features, clinical history, bone marrow examinations, serum electrophoresis, and immunofixation data were analyzed. Result: There were two cases of plasmacytoma, four cases of multiple myeloma, and one case of plasmablastic lymphoma. On cytology, all the cases showed excess plasma cells along with mesothelial cells and lymphocytes on effusion cytology smear. Conclusion: Plasma cell rich effusion in cases of plasma cell tumor is rare. However, on cytology these cases do not pose much problem if relevant history is known.

  3. Overview of IgG4-Related Tubulointerstitial Nephritis and Its Mimickers

    PubMed Central

    Jeong, Hyeon Joo; Shin, Su-Jin; Lim, Beom Jin

    2016-01-01

    Tubulointerstitial nephritis (TIN) is the most common form of renal involvement in IgG4-related disease. It is characterized by a dominant infiltrate of IgG4-positive plasma cells in the interstitium and storiform fibrosis. Demonstration of IgG4-positive plasma cells is essential for diagnosis, but the number of IgG4-positive cells and the ratio of IgG4-positive/IgG-positive plasma cells may vary from case to case and depending on the methods of tissue sampling even in the same case. IgG4-positive plasma cells can be seen in TIN associated with systemic lupus erythematosus, Sjögren syndrome, or anti-neutrophil cytoplasmic antibody–associated vasculitis, which further add diagnostic confusion and difficulties. To have a more clear view of IgG4-TIN and to delineate differential points from other TIN with IgG4-positive plasma cell infiltrates, clinical and histological features of IgG4-TIN and its mimickers were reviewed. In the rear part, cases suggesting overlap of IgG4-TIN and its mimickers and glomerulonephritis associated with IgG4-TIN were briefly described. PMID:26666884

  4. Overview of IgG4-Related Tubulointerstitial Nephritis and Its Mimickers.

    PubMed

    Jeong, Hyeon Joo; Shin, Su-Jin; Lim, Beom Jin

    2016-01-01

    Tubulointerstitial nephritis (TIN) is the most common form of renal involvement in IgG4-related disease. It is characterized by a dominant infiltrate of IgG4-positive plasma cells in the interstitium and storiform fibrosis. Demonstration of IgG4-positive plasma cells is essential for diagnosis, but the number of IgG4-positive cells and the ratio of IgG4-positive/IgG-positive plasma cells may vary from case to case and depending on the methods of tissue sampling even in the same case. IgG4-positive plasma cells can be seen in TIN associated with systemic lupus erythematosus, Sjögren syndrome, or anti-neutrophil cytoplasmic antibody-associated vasculitis, which further add diagnostic confusion and difficulties. To have a more clear view of IgG4-TIN and to delineate differential points from other TIN with IgG4-positive plasma cell infiltrates, clinical and histological features of IgG4-TIN and its mimickers were reviewed. In the rear part, cases suggesting overlap of IgG4-TIN and its mimickers and glomerulonephritis associated with IgG4-TIN were briefly described.

  5. Plasma Cell Gingivitis: An Occasional Case Report.

    PubMed

    Mishra, M B; Sharma, Swati; Sharma, Alok

    2015-01-01

    Plasma cell gingivitis, an infrequently observed oral condition, has been clinically characterized by diffuse gingival enlargement, erythema and sometimes desquamation. These lesions are usually asymptomatic, but invariably the patient will complain of a burning sensation in the gingiva and bleeding from the mouth. The diagnosis requires hematological screening in addition to clinical and histopathological examinations. This case report outlines one such case of plasma cell gingivitis in a 15-year-old female caused by use of an herbal, homemade toothpowder. The case presented here highlights the adverse effects and irrational use of herbal agents in dentifrices. At the same time, it emphasizes the need for comprehensive history taking, careful clinical examination and appropriate diagnostic tests in order to arrive at a definitive diagnosis and treatment plan for gingival conditions that are refractory to conventional therapy and to exclude certain malignancies and oral manifestations of systemic diseases.

  6. Interaction between clonal plasma cells and the immune system in plasma cell dyscrasias.

    PubMed

    Perez-Andres, M; Almeida, J; Martin-Ayuso, M; Moro, M J; Garcia-Marcos, M A; Moreno, I; Dominguez, M; Galende, J; Heras, N; Gonzalez, M I; San Miguel, J F; Orfao, A

    2004-01-01

    The term "monoclonal gammopathy" (MG) includes a group of clonal plasma cell disorders, which show heterogeneous clinical behavior. While multiple myeloma (MM) and plasma cell leukemia (PCL) are incurable malignant diseases, most patients with MG of undetermined significance (MGUS) show an indolent/benign clinical course. Evidence has accumulated which supports the role of the bone marrow microenvironment in MG. Accordingly, the survival, drug-resistance and proliferation of MM cells have been shown to be largely dependent on a supportive microenvironment. Among the different environment-associated parameters, those related to the status/activity of the immune system are particularly relevant. This review focuses on the different ways clonal plasma cells (PC) interact with the immune system in different models of MG, to characterize crucial events in the development and progression of MG. These advances may support the design of novel therapeutic approaches in patients with MG. PMID:15471221

  7. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  8. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage.

    PubMed

    Schoenhals, Matthieu; Jourdan, Michel; Seckinger, Anja; Pantesco, Véronique; Hose, Dirk; Kassambara, Alboukadel; Moreaux, Jérôme; Klein, Bernard

    2016-07-17

    A role of the transcription factor Krüppel-like factor 4 (KLF4) in the generation of mature plasma cells (PC) is unknown. Indeed, KLF4 is critical in controlling the differentiation of various cell linages, particularly monocytes and epithelial cells. KLF4 is expressed at low levels in pro-B cells and its expression increases as they mature into pre-B cells, resting naïve B cells and memory B cells. We show here that KLF4 is expressed in human bone marrow plasma cells and its function was studied using an in vitro model of differentiation of memory B cells into long lived plasma cells. KLF4 is rapidly lost when memory B cells differentiate into highly cell cycling plasmablasts, poorly cycling early plasma cells and then quiescent long-lived plasma cells. A forced expression of KLF4 in plasmablasts enhances the yield of their differentiation into early plasma cell and long lived plasma cells, by inhibiting apoptosis and upregulating previously unknown plasma cell pathways.

  9. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  10. Plasmocytoma, multiple myeloma and plasma cell neoplasms in orofacial region.

    PubMed

    Zajko, J; Czako, L; Galis, B

    2016-01-01

    A neoplastic proliferation of B cell lymphocyte is called plasma cell neoplasms, results from malignant plasma cells transformation in bone marrow. The authors present a clinical study and overview of this pathology in maxillofacial region for six years (Tab. 2, Ref. 14). PMID:27546545

  11. [Plasma cell dyscrasias and renal damage].

    PubMed

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  12. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas-liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas-liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  13. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas–liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas–liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  14. Towards Stratified Medicine in Plasma Cell Myeloma

    PubMed Central

    Egan, Philip; Drain, Stephen; Conway, Caroline; Bjourson, Anthony J.; Alexander, H. Denis

    2016-01-01

    Plasma cell myeloma is a clinically heterogeneous malignancy accounting for approximately one to 2% of newly diagnosed cases of cancer worldwide. Treatment options, in addition to long-established cytotoxic drugs, include autologous stem cell transplant, immune modulators, proteasome inhibitors and monoclonal antibodies, plus further targeted therapies currently in clinical trials. Whilst treatment decisions are mostly based on a patient’s age, fitness, including the presence of co-morbidities, and tumour burden, significant scope exists for better risk stratification, sub-classification of disease, and predictors of response to specific therapies. Clinical staging, recurring acquired cytogenetic aberrations, and serum biomarkers such as β-2 microglobulin, and free light chains are in widespread use but often fail to predict the disease progression or inform treatment decision making. Recent scientific advances have provided considerable insight into the biology of myeloma. For example, gene expression profiling is already making a contribution to enhanced understanding of the biology of the disease whilst Next Generation Sequencing has revealed great genomic complexity and heterogeneity. Pathways involved in the oncogenesis, proliferation of the tumour and its resistance to apoptosis are being unravelled. Furthermore, knowledge of the tumour cell surface and its interactions with bystander cells and the bone marrow stroma enhance this understanding and provide novel targets for cell and antibody-based therapies. This review will discuss the development in understanding of the biology of the tumour cell and its environment in the bone marrow, the implementation of new therapeutic options contributing to significantly improved outcomes, and the progression towards more personalised medicine in this disorder. PMID:27775669

  15. Immunophenotyping in multiple myeloma and related plasma cell disorders

    PubMed Central

    Kumar, Shaji; Kimlinger, Teresa; Morice, William

    2010-01-01

    SUMMARY Plasma cell disorders form a spectrum ranging from the asymptomatic presence of small monoclonal populations of plasma cells to conditions like plasma cell leukemia and multiple myeloma, in which the bone marrow can be replaced by the accumulation of neoplastic plasma cells. Immunophenotyping has become an invaluable tool in the management of hematological malignancies and is increasingly finding a role in the diagnosis and monitoring of plasma cell disorders. Multiparameter flow cytometry has evolved considerably during the past decade with an increasing ability to screen large numbers of events and to detect multiple antigens at the same time. This, along with a better understanding of the phenotypic heterogeneity of the clonal plasma cells in different disorders, has made immunophenotyping an indispensible tool in the diagnosis, prognostic classification and management of plasma cell disorders. This book chapter addresses the approaches taken to evaluate monoclonal plasma cell disorders, and the different markers and techniques that are important for the study of these diseases. PMID:21112041

  16. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  17. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  18. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  19. Differential effects of lenalidomide during plasma cell differentiation

    PubMed Central

    Jourdan, Michel; Cren, Maïlys; Schafer, Peter; Robert, Nicolas; Duperray, Christophe; Vincent, Laure; Ceballos, Patrice; Cartron, Guillaume; Rossi, Jean-François; Moreaux, Jérôme; Chopra, Rajesh; Klein, Bernard

    2016-01-01

    Thalidomide, lenalidomide and pomalidomide have greatly improved the outcome of patients with multiple myeloma. However, their effects on plasma cells, the healthy counterpart of myeloma cells, are unknown. Here, we investigated lenalidomide effects on normal human plasma cell generation using an in vitro model. Lenalidomide inhibited the generation of pre-plasmablasts and early plasma cells, while it moderately affected plasmablast production. It also reduced the expression level of Ikaros, Aiolos, and IRF4 transcription factors, in plasmablasts and early plasma cells. This suggests that their differential sensitivity to lenalidomide is not due to a difference in Ikaros or Aiolos degradation. Lenalidomide also inhibited long-lived plasma cell generation, but did not impair their long-term survival once generated. This last observation is in agreement with the finding that lenalidomide treatment for 3-18 months did not affect the bone marrow healthy plasma cell count in allografted patients with multiple myeloma. Our findings should prompt to investigate whether lenalidomide resistance in patients with multiple myeloma could be associated with the emergence of malignant plasmablasts or long-lived plasma cells that are less sensitive to lenalidomide. PMID:27057635

  20. Development of plasma apparatus for plasma irradiation to living cell model

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Kato, Ryo; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo

    2012-10-01

    Atmospheric pressure plasma has been studied for the industrial applications of biotechnology and medical care. For the development of these fields, understanding the influence of atmospheric pressure plasma on living cell and the mechanism of cell death is necessary. We focus on a basic structure of cell membrane, called lipid bilayer. Lipid bilayer is composed of lipid molecules with an amphipathic property and can be formed on hydrophilic substrates. In this paper, we report the development of the plasma apparatus for the treatment of lipid bilayer. The plasma apparatus uses a typical dielectric barrier discharge (DBD) system and employs parallel plate electrodes with a gap distance of 1 mm [1]. Each electrode is covered with a quartz plate and the substrate temperature is kept constant by cooling medium. The lower quartz electrode has a dimple, in which the substrate coated with a lipid bilayer and buffer fluid are mounted. [4pt] [1] Y. Sugioka, et al, IEEE Trans. Plasma Sci., in press

  1. Antibacterial plasma at safe levels for skin cells

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Hofmann, S.; van Ham, B. J. T.; Bruggeman, P. J.; Middelkoop, E.

    2013-10-01

    Plasmas produce various reactive species, which are known to be very effective in killing bacteria. Plasma conditions, at which efficient bacterial inactivation is observed, are often not compatible with leaving human cells unharmed. The purpose of this study was to determine plasma settings for inactivation of Pseudomonas aeruginosa, without damaging skin cells in vitro under the same treatment conditions. An RF argon plasma jet excited with either continuous or time modulated (20 kHz, 20% duty cycle) voltages was used. To compare these two operation modes, only the input voltage was adjusted in order to obtain the same average power (1.7 W) for both modes. All other settings, i.e. gas flow, distance plasma tip to liquid surface, were kept constant. Bacteria or skin cells in physiological salt solution were exposed to direct non-contact plasma treatments. Short plasma treatments of up to 2 min resulted in a high reduction of bacterial numbers and did not affect dermal fibroblasts or keratinocytes. Bacterial inactivation has been previously ascribed to peroxynitrite, nitrite and H2O2 while eukaryotic cell viability is proposed to be reduced in the long term by the presence of H2O2 and is less affected by reactive nitrogen species. The remote RF plasma jet treatment was highly effective for bacterial inactivation while skin cell viability was preserved.

  2. Plasma cell gingivitis with severe alveolar bone loss.

    PubMed

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  3. Disseminated plasma cell myeloma presenting as massive pleural effusion

    PubMed Central

    Babu, Kanahasubramanian Anand; Sundararajan, Lakshmikanthan; Prabu, Pandurangan; Parameswaran, Ashok

    2015-01-01

    Plasma cell myeloma (PCM) is a hematologic malignancy of plasma cell origin and usually associated with the presence of lytic bone lesions. Pleural effusions are rarely associated with PCM and most often signify a concurrent disease process. Malignant myelomatous pleural effusions are even more unusual and carry a poor prognosis. We report a unique case of unsuspected PCM with thoracic involvement in the form of massive left side pleural effusion. Pleural fluid cytology revealed numerous atypical plasma cells. Subsequently on further workup, urine Bence Jones protein was positive. Bone marrow aspiration and biopsy and computed tomography of the chest and abdomen revealed features consistent with multiple myeloma. PMID:26664659

  4. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production

    PubMed Central

    Dorner, Marcus; Brandt, Simone; Tinguely, Marianne; Zucol, Franziska; Bourquin, Jean-Pierre; Zauner, Ludwig; Berger, Christoph; Bernasconi, Michele; Speck, Roberto F; Nadal, David

    2009-01-01

    Toll-like receptors (TLRs) are key receptors of the innate immune system and show cell subset-specific expression. We investigated the messenger RNA (mRNA) expression of TLR genes in human haematopoietic stem cells (HSC), in naïve B cells, in memory B cells, in plasma cells from palatine tonsils and in plasma cells from peripheral blood. HSC and plasma cells showed unrestricted expression of TLR1–TLR9, in contrast to B cells which lacked TLR3, TLR4 and TLR8 but expressed mRNA of all other TLRs. We demonstrated, for the first time, that TLR triggering of terminally differentiated plasma cells augments immunoglobulin production. Thus, boosting the immediate antibody response by plasma cells upon pathogen recognition may point to a novel role of TLRs. PMID:19950420

  5. General Information about Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  6. Epidemiology of the plasma-cell disorders.

    PubMed

    Kyle, Robert A; Rajkumar, S Vincent

    2007-12-01

    This review of the plasma-cell disorders begins with the definition of monoclonal gammopathy of undetermined significance (MGUS). The prevalence of MGUS in white and black populations is described. MGUS is a common finding in the medical practice of all physicians, and thus it is important to both the patient and the physician to determine whether the monoclonal protein remains stable or progresses to multiple myeloma (MM), Waldenström's macroglobulinemia (WM), primary systemic amyloidosis (AL), or a related disorder. The long-term (almost 40 years) follow-up data of 241 patients in the Mayo Clinic population is provided. In a large study of 1384 patients with MGUS from southeastern Minnesota, the risk of progression to MM, WM, AL, or other disorders was approximately 1% per year. Risk factors for progression are provided. The incidence of MM in Olmsted County, Minnesota, remained stable for the 56-year span 1945-2001. The apparent increase in incidence and mortality rates among patients with MM in many studies is due to improved case ascertainment, especially among the elderly. The incidence and mortality rates of MM in the United States and other countries are presented. The major emphasis is on the cause of MM, which is unclear. Exposure to radiation from atomic bombs, therapeutic and diagnostic radiation, and in workers in the nuclear industry field are addressed. Many studies involving agricultural occupations, exposure to benzene, petroleum products, and engine exhaust and other industrial exposures are discussed. Tobacco use, obesity, diet, and alcohol ingestion are all possible causes of MM. Clusters of MM have been noted. Multiple cases of MM have been found in first-degree relatives.

  7. Primary Plasma Cell Leukemia: Identity Card 2016.

    PubMed

    Musto, Pellegrino; Simeon, Vittorio; Todoerti, Katia; Neri, Antonino

    2016-04-01

    Primary plasma cell leukemia (PPCL) is an aggressive and rare variant of multiple myeloma (MM), characterized by peculiar adverse clinical and biological features. Though the poor outcome of PPCL has been slightly improved by novel treatments during the last 10 years, due to the limited number of available studies in this uncommon disease, optimal therapy remains a classic unmet clinical need. Anyway, in the real-life practice, induction with a bortezomib-based three-drug combination, including dexamethasone and, possibly, lenalidomide, or, alternatively, thalidomide, cyclophosphamide, or doxorubicin, is a reasonable first-line option. This approach may be particularly advisable for patients with adverse cytogenetics, hyperleucocytosis, and rapidly progressive disease, in whom a fast response is required, or for those with suboptimal renal function, where, however, lenalidomide should be used with caution until renal activity is restored. In younger subjects, leukemia/lymphoma-like more intensive regimens, including hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone or continue-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide, may be also combined with bortezomib +/- thalidomide. Treatment must be started immediately after a diagnosis of PPCL is made to avoid the risk of irreversible disease complications and, in such a context, the prevention of tumor lysis syndrome is mandatory. In patients eligible for autologous stem cell transplantation (AuSCT), other alkylating agents, in particular melphalan, should be initially avoided in order to allow adequate collections of CD34+ peripheral blood stem cells (PBSC). A combination of lenalidomide and dexamethasone may be a valuable alternative option to manage older or unfit patients or those with slower disease evolution or with signs of neuropathy, contraindicating the use of bortezomib. Patients not suitable for transplant procedures should continue the treatment, if a

  8. Primary Plasma Cell Leukemia: Identity Card 2016.

    PubMed

    Musto, Pellegrino; Simeon, Vittorio; Todoerti, Katia; Neri, Antonino

    2016-04-01

    Primary plasma cell leukemia (PPCL) is an aggressive and rare variant of multiple myeloma (MM), characterized by peculiar adverse clinical and biological features. Though the poor outcome of PPCL has been slightly improved by novel treatments during the last 10 years, due to the limited number of available studies in this uncommon disease, optimal therapy remains a classic unmet clinical need. Anyway, in the real-life practice, induction with a bortezomib-based three-drug combination, including dexamethasone and, possibly, lenalidomide, or, alternatively, thalidomide, cyclophosphamide, or doxorubicin, is a reasonable first-line option. This approach may be particularly advisable for patients with adverse cytogenetics, hyperleucocytosis, and rapidly progressive disease, in whom a fast response is required, or for those with suboptimal renal function, where, however, lenalidomide should be used with caution until renal activity is restored. In younger subjects, leukemia/lymphoma-like more intensive regimens, including hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone or continue-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide, may be also combined with bortezomib +/- thalidomide. Treatment must be started immediately after a diagnosis of PPCL is made to avoid the risk of irreversible disease complications and, in such a context, the prevention of tumor lysis syndrome is mandatory. In patients eligible for autologous stem cell transplantation (AuSCT), other alkylating agents, in particular melphalan, should be initially avoided in order to allow adequate collections of CD34+ peripheral blood stem cells (PBSC). A combination of lenalidomide and dexamethasone may be a valuable alternative option to manage older or unfit patients or those with slower disease evolution or with signs of neuropathy, contraindicating the use of bortezomib. Patients not suitable for transplant procedures should continue the treatment, if a

  9. ELECTRON MICROSCOPY OF PLASMA-CELL TUMORS OF THE MOUSE

    PubMed Central

    Parsons, D. F.; Darden, E. B.; Lindsley, D. L.; Pratt, Guthrie T.

    1961-01-01

    An electron microscope study was made of a series of transplanted MPC-1 plasma-cell tumors carried by BALB/c mice. Large numbers of particles similar in morphology to virus particles were present inside the endoplasmic reticulum of tumor plasma cells. Very few particles were seen outside the cells or in ultracentrifuged preparations of the plasma or ascites fluid. In very early tumors particles were occasionally seen free in the cytoplasm adjacent to finely granular material. In general, the distribution of these particles inside endoplasmic reticulum is similar in early and late tumors. A few transplanted X5563 tumors of C3H mice were also examined. Large numbers of particles were found in the region of the Golgi apparatus in late X5663 tumors. A newly described cytoplasmic structure of plasma cells, here called a "granular body," appears to be associated with the formation of the particles. Particles present in MPC-1 tumors are exclusively of a doughnut form, whereas some of those in the inclusions of the late X5563 tumors show a dense center. Normal plasma cells, produced by inoculation of a modified Freund adjuvant into BALB/c mice. have been compared morphologically with tumor plasma cells of both tumor lines. PMID:13733008

  10. Microarray-based understanding of normal and malignant plasma cells

    PubMed Central

    De Vos, John; Hose, Dirk; Rème, Thierry; Tarte, Karin; Moreaux, Jérôme; Mahtouk, Karéne; Jourdan, Michel; Goldschmidt, Hartmut; Rossi, Jean-François; Cremer, Friedrich W.; Klein, Bernard

    2006-01-01

    Plasma cells develop from B-lymphocytes following stimulation by antigen and express a genetic program aimed at the synthesis of immunoglobulins. This program includes the induction of genes coding for transcription factors such as PRDM1 and XBP1, cell-surface molecules such as CD138/syndecan-1 and for the unfolded protein response (UPR). We review how the microarray technology has recently contributed to the understanding of the biology of this rare but essential cell population and its transformation into pre-malignant and malignant plasma cells. PMID:16623766

  11. Biomedical Applications of the Cold Atmospheric Plasma: Cell Responses

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. Depending on the configuration the cold plasma sources can be used in the following areas: wound healing, skin diseases, hospital hygiene, sterilization, antifungal treatments, dental care, cosmetics targeted cell/tissue removal, and cancer treatments. This dissertation is focused on the studies of biomedical applications of cold atmospheric plasma jet based on helium flow and resultant cell responses to the cold plasma treatment. The studies were carried out on extra-cellular and intra-cellular levels in vitro. The main practical applications are wound healing and alternative to existing cancer therapy methods, areas of great interest and significant challenges. The CAP jet was built in the Micropropulsion and Nanotechnology Laboratory of Dr. Michael Keidar, as a part of multidisciplinary collaboration with the GW Medical School (Dr. M.A. Stepp) concerned with plasma medicine and bioengineering studies. Normal and cancer cells have two fundamental behavioral properties, proliferation and motility, which can be evaluated through cell migration rates and cell cycle progression. Various microscopic, spectroscopic and flow cytometry techniques were used to characterize cell responses to the cold plasma treatment. It was found that CAP effect on the cells is localized within the area of the treatment (of around ˜ 5mm in diameter). The migration rates of the normal skin cells can be reduced up to ˜ 40%. However, depending on the cell type the required treatment time is different, thus differential treatment of various cells presented in tissue is possible. The CAP effect on the migration was explained through the changes of the cell surface proteins/integrins. It was also found that normal and cancer cells respond differently to the CAP treatment under the same

  12. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  13. Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders.

    PubMed

    Witzig, T E; Timm, M; Larson, D; Therneau, T; Greipp, P R

    1999-01-01

    The proliferative rate of malignant plasma cells, as measured by the plasma cell labelling index (PCLI), is an important prognostic factor in multiple myeloma (MM); however, the PCLI alone is probably Inadequate to describe tumour growth because it ignores the idea that myeloma cells may have a reduced rate of apoptosis. The aims of this study were to develop a flow cytometric method to measure the apoptosis index of fresh marrow plasma cells and develop a plasma cell growth index (PCGI) that related both proliferation and apoptosis to disease activity. Marrow aspirates were obtained from 91 patients with plasma cell disorders and the plasma cells in apoptosis were identified by either 7-amino actinomycin-D (7-AAD) or annexin V-FITC three-colour flow cytometry. The median plasma cell apoptotic index (PCAI) for patients with monoclonal gammopathy of undetermined significance (MGUS), smouldering or indolent myeloma (SMM/IMM), and new multiple myeloma (MM) was 5.2, 3.4 and 2.4, respectively (P=0.03, MGUS v MM). The median PCLI for these same patient groups was 0.0, 0.2 and 0.6, respectively (P<0.001, MGUS v MM). The paired PCLI and PCAI for each sample were used to derive the PCGI=2 + [PCLI-(O.1)(PCAI)]. The median PCGI for patients with inactive disease (MGUS, SMM/IMM or amyloidosis) was 1.8 compared to 2.4 for those with active disease (new or relapsed MM) (P<0.001). These results suggest that a decrease in the PCAI may be a factor in the progression from MGUS to SMM to overt MM. PMID:10027725

  14. Human red blood cells' physiological water exchange with the plasma.

    PubMed

    Kargol, M; Kargol, A; Przestalski, M; Siedlecki, J; Karpińska, M; Rogowski, M

    2005-01-01

    In the present paper, fundamental issues related to the mechanisms of human red blood cells' physiological water exchange with the plasma (for the stationary conditions) have been discussed. It has been demonstrated, on the basis of mechanistic transport equations for membrane transport that red blood cells are capable of exchanging considerable amounts of water with the plasma. Water absorption is osmosis-driven, and its removal occurs according to the hydromechanics principle, i.e. is driven by the turgor pressure of red blood cells. This newly-acquired knowledge of these issues may appear highly useful for clinical diagnosis of blood diseases and blood circulation failures. PMID:16358974

  15. Plasma cell granuloma of the lung (inflammatory pseudotumor).

    PubMed

    Fassina, A S; Rugge, M; Scapinello, A; Viale, G; Dell'Orto, P; Ninfo, V

    1986-10-31

    A case of plasma cell granuloma (PCG) of the lung in a 54-year old man is reported. PCG is a rare benign lesion that usually presents as a solitary nodule in the lung (coin lesion) at routine X-ray examination. Microscopically it consists of a granulomatous tissue where the major components are mature plasma cells. The immunohistochemical demonstration of polyclonality of plasma cells, excluding the diagnosis of plasmacytoma, confirms the inflammatory pseudotumoral nature of this lesion, although the etiology remains obscure. The presence of lymphocytes, histiocytes, macrophages, blood vessels with prominent endothelial cells and peripheral sclero-hyalinized connective tissue may pose problems in the differential diagnosis with sclerosing hemangioma, pseudolymphoma, nodular amyloidosis, pulmonary hyalinizing granuloma, chronic abscess and neoplasms of true histiocytic origin. The term inflammatory pseudotumor is preferable in describing this type of lesion. PMID:3798575

  16. Dry plasma processing for industrial crystalline silicon solar cell production

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Rentsch, J.; Preu, R.

    2010-10-01

    This paper gives an overview on the standard crystalline silicon solar cell manufacturing processes typically applied in industry. Main focus has been put on plasma processes which can replace existing, mainly wet chemical processes within the standard process flow. Finally, additional plasma processes are presented which are suited for higher-efficient solar cells, i.e. for the “passivated emitter and rear cell” concept (PERC) or the “heterojunction with intrinsic thin layer” approach (HIT). Plasma processes for the deposition of thin dielectric or semiconducting layers for surface passivation, emitter deposition or anti-reflective coating purposes are presented. Plasma etching processes for the removal of phosphorus silicate glass or parasitic emitters, for wafer cleaning and masked and mask-free surface texturisation are discussed.

  17. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients.

    PubMed

    Rousselot, P; Labaume, S; Marolleau, J P; Larghero, J; Noguera, M H; Brouet, J C; Fermand, J P

    1999-03-01

    Recent data have renewed the interest for arsenic-containing compounds as anticancer agents. In particular, arsenic trioxide (As2O3) has been demonstrated to be an effective drug in the treatment of acute promyelocytic leukemia by inducing programmed cell death in leukemic cells both in vitro and in vivo. This prompted us to study the in vitro effects of As2O3 and of another arsenical derivative, the organic compound melarsoprol, on human myeloma cells and on the plasma cell differentiation of normal B cells. At pharmacological concentrations (10(-8) to 10(-6) mol/L), As2O3 and melarsoprol caused a dose- and time-dependent inhibition of survival and growth in myeloma cell lines that was, in some, similar to that of acute promyelocytic leukemia cells. Both arsenical compounds induced plasma cell apoptosis, as assessed by 4',6-diamidino-2-phenylindole staining, detection of phosphatidylserine at the cell surface using annexin V, and by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. As2O3 and melarsoprol also inhibited viability and growth and induced apoptosis in plasma-cell enriched preparations from the bone marrow or blood of myeloma patients. In nonseparated bone marrow samples, both arsenical compounds triggered death in myeloma cells while sparing most myeloid cells, as demonstrated by double staining with annexin V and CD38 or CD15 antibodies. In primary myeloma cells as in cell lines, interleukin 6 did not prevent arsenic-induced cell death or growth inhibition, and no synergistic effect was observed with IFN-alpha. In contrast to As2O3, melarsoprol only slightly reduced the plasma cell differentiation of normal B cells induced by pokeweed mitogen. Both pokeweed mitogen-induced normal plasma cells and malignant plasma cells showed a normal nuclear distribution of PML protein, which was disrupted by As2O3 but not by melarsoprol, suggesting that the two arsenical derivatives acted by different mechanisms. These results point to the

  18. Does ATP cross the cell plasma membrane.

    PubMed Central

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes. PMID:7051582

  19. Plasma cell-free DNA in patients needing mechanical ventilation

    PubMed Central

    2011-01-01

    Introduction Concentrations of plasma cell-free DNA are increased in various diseases and have shown some prognostic value in many patient groups, including critically ill patients. Pathophysiological processes behind the need for mechanical ventilation and the treatment itself could raise plasma levels of cell-free DNA. We evaluated levels of plasma cell-free DNA and their prognostic value in patients needing mechanical ventilation. Methods We studied prospectively 580 mechanically ventilated critically ill patients. Blood samples were taken at study admission (Day 0) and on Day 2. Plasma cell-free DNA concentrations were measured by real-time quantitative PCR assay for the β-globin gene and are expressed as genome equivalents (GE)/ml. Results Median (interquartile range, IQR) plasma cell-free DNA concentration was 11,853 GE/ml (5,304 to 24,620 GE/mL) at study admission, and 11,610 GE/mL (6,411 to 21,558 GE/mL) on Day 2. Concentrations at admission were significantly higher in 90-day non-survivors than survivors, 16,936 GE/mL (7,262 to 46,866 GE/mL) versus 10,026 GE/mL (4,870 to 19,820 GE/mL), P < 0.001. In a multivariate logistic regression analysis plasma cell-free DNA concentration over 16,000 GE/ml remained an independent predictor of 90-day mortality (adjusted odds ratio 2.16, 95% confidence interval CI 1.37 to 3.40). Positive likelihood ratio of plasma cell-free DNA at admission for the prediction of 90-day mortality was 1.72 (95% CI 1.40 to 2.11). Conclusions Plasma levels of cell-free DNA were significantly higher in non-survivors than survivors. Plasma DNA level at baseline was an independent predictor of 90-day mortality. However, its clinical benefit as a prognostic marker seems to be limited. PMID:21838858

  20. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  1. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  2. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    PubMed Central

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  3. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells.

    PubMed

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity.

  4. Localized plasma irradiation through a micronozzle for individual cell treatment

    NASA Astrophysics Data System (ADS)

    Shimane, Ryutaro; Kumagai, Shinya; Hashizume, Hiroshi; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru; Sasaki, Minoru

    2014-11-01

    A micronozzle device was fabricated for the localized plasma treatment of a cell. The device was attached to the tips of two ϕ1.5 mm capillary tubes injecting and evacuating the discharging plasma gas. At the bottom of the channel where the discharging gas flows, nozzle holes (ϕ2-30 µm) were prepared. Controlling the injecting and evacuating gas flows made the pressure in the channel negative or positive relative to the atmosphere. The cells were trapped or released through the nozzle holes. When the cells were trapped, the nozzle hole also defined the area of plasma treatment. An atmospheric-pressure microplasma was generated (He: 0.3 L/min, power: 30 W) for localized treatment. The test specimen was a plant cell, lily pollen (length: 100-140 µm). No burning of the pollen was observed during the 10 min plasma treatment. Only part of the surface reacted with the plasma irradiation. The depth of removal was about 1.5 µm.

  5. Probing cell migration in confined environments by plasma lithography.

    PubMed

    Junkin, Michael; Wong, Pak Kin

    2011-03-01

    Cellular processes are regulated by various mechanical and physical factors in their local microenvironment such as geometric confinements, cell-substrate interactions, and cell-cell contact. Systematic elucidation of these regulatory mechanisms is crucial for fundamental understanding of cell biology and for rational design of biomedical devices and regenerative medicine. Here, we report a generally applicable plasma lithography technique, which performs selective surface functionalization on large substrate areas, for achieving long-term, stable confinements with length scales from 100 nm to 1 cm toward the investigation of cell-microenvironment interactions. In particular, we applied plasma lithography for cellular confinement of neuroblastomas, myoblasts, endothelial cells, and mammary gland epithelial cells, and examined the motion of mouse embryonic fibroblasts in directionality-confined environments for studying the effect of confinements on migratory behavior. In conjunction with live cell imaging, the distance traveled, velocity, and angular motion of individual cells and collective cell migration behaviors were measured in confined environments with dimensions comparable to a cell. A critical length scale that a cell could conceivably occupy and migrate to was also identified by investigating the behaviors of cells using confined environments with subcellular length scales.

  6. Collision Tumor With Renal Cell Carcinoma and Plasmacytoma: Further Evidence of a Renal Cell and Plasma Cell Neoplasm Relationship?

    PubMed Central

    Berquist, Sean W.; Hassan, Abd-elrahman Said; Miakicheva, Olga; Dufour, Catherine; Hamilton, Zachary; Shabaik, Ahmed; Derweesh, Ithaar H.

    2016-01-01

    Renal solitary extramedullary plasmacytomas belong to a group of plasma cell neoplasms, which generally have been associated with renal cell carcinoma. We present a case report of a patient with collision tumor histology of extramedullary plasmacytoma and clear cell renal cell carcinoma, the first in the known literature. Standard work-up for a plasma cell neoplasm was conducted and the mass was resected. The patient remains disease-free at 28 months post-surgery. The report calls into question pre-surgical renal mass biopsy protocol and suggests a relationship between renal cell carcinoma and plasma cell neoplasms. PMID:27175345

  7. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed Central

    Yu, Q. C.; McNeil, P. L.

    1992-01-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 11 Figure 6 Figure 8 PMID:1466399

  8. Plasma-cell gingivitis. Report of a case.

    PubMed

    Lubow, R M; Cooley, R L; Hartman, K S; McDaniel, R K

    1984-04-01

    A well-documented case of plasma-cell gingivitis is presented. When viewed in a total perspective, the clinical examination, history of usage of a popular mint , laboratory data and histologic examination provide support for this diagnosis. This patient did not exhibit any evidence of glossitis or cheilitis as is often reported in the literature; however, a positive history to psoriasis was noted. The occurrence of plasma-cell gingivitis in a patient with documented psoriasis provides some interesting speculation regarding the etiologic picture of this condition. PMID:6585542

  9. Plasma Treatment of Single-Cell Niobium SRF Cavities

    SciTech Connect

    J. Upadhyay, M. Nikolić, S. Popović, L. Vušković, H.L. Phillips, A-M. Valente-Feliciano

    2011-03-01

    Superconducting radio frequency cavities of bulk Niobium are integral components of particle accelerators based on superconducting technology. Wet chemical processing is the commonly used procedure for impurities and surface defects removal and surface roughness improvement , both required to improve the RF performance of the cavity. We are studying plasma etching as an alternate technique to process these cavities. The uniformity of the plasma sheath at the inner wall of the cavity is one prerequisite for its uniform etching. We are developing electro-optic diagnostic techniques to assess the plasma uniformity. Multiple electro-optical probes are placed at different locations of the single cell cavity to diagnose the electrical and optical properties of the plasma. The electrical parameters are required to understand the kinetic nature of the plasma and the optical emission spectroscopy provides the spatial distribution of radicals in the plasma. The spatial variation of the plasma parameters inside the cavity and their effect on the etching of niobium samples placed at different locations in the cavity will be presented.

  10. T cell-dependent survival of CD20+ and CD20- plasma cells in human secondary lymphoid tissue.

    PubMed

    Withers, David R; Fiorini, Claudia; Fischer, Randy T; Ettinger, Rachel; Lipsky, Peter E; Grammer, Amrie C

    2007-06-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified.

  11. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  12. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  13. Potassium plasma cell facilitates thermionic energy conversion process

    NASA Technical Reports Server (NTRS)

    Richards, H. K.

    1967-01-01

    Thermionic energy converter converts nuclear generated heat directly into high frequency and direct current output. It consists of a potassium plasma cell, a tantalum emitter, and a silver plated copper collector. This conversion process eliminates the steam interface usually required between the atomic heat source and the electrical conversion system.

  14. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  15. Plasma Texturing of Silicon Solar Cells

    SciTech Connect

    Narayanan, Mohan; Roy, Madhu; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texture promotes enhanced light absorption in Si solar cells. The quality of lower cost multicrystalline-silicon (mc-Si) has increased to the point that its cell performance is close to that of single c-Si cells, with the major difference resulting from the inability to texture mc-Si affordably. This has reduced the cost-per-watt advantage of mc-Si. Surface texturing aimed at enhanced absorption in Si has been historically obtained by creating multimicrometer-sized pyramids using anisotropic wet etchants on single-crystalline silicon that take advantage of its single crystalline orientation. Since the surface feature sizes are several times the length of the incident solar wavelengths involved, the optical analysis of the reflected and absorbed light can be understood using geometrical optics. Geometrical textures reduce reflection and improve absorption by double-bounce and oblique light coupling into the semiconductor. However, geometrical texturing suffers from several disadvantages that limit its effectiveness. Some of these are listed below: (a) Wet-chemical anisotropic etching used to form random pyramids on <100> crystal orientation is not effective in the texturing of low-cost multicrystalline wafers, (b) Anti-reflection films deposited on random features to reduce reflection have a resonant structure limiting their effectiveness to a narrow range of angles and wavelengths. Various forms of surface texturing have been applied to mc-Si in research, including laser-structuring, mechanical grinding, porous-Si etching, and photolithographically defined etching. However, these may be too costly to ever be used in large-scale production. A Japanese firm has reported the development of an RIE process using Cl{sub 2} gas, which textures multiple wafers per batch, making it attractive for mass-production [1]. Using this process, they have produced a 17.1% efficient 225-cm{sup 2} mc-Si cell, which is the highest efficiency mc-Si cell of its size ever reported

  16. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts

    PubMed Central

    1996-01-01

    Plasma cells represent the final stage of B lymphocyte differentiation. Most plasma cells in secondary lymphoid tissues live for a few days, whereas those in the lamina propria of mucosa and in bone marrow live for several weeks. To investigate the regulation of human plasma cell survival, plasma cells were isolated from tonsils according to high CD38 and low CD20 expression. Tonsillar plasma cells express CD9, CD19, CD24, CD37, CD40, CD74, and HLA-DR, but not CD10, HLA-DQ, CD28, CD56, and Fas/CD95. Although plasma cells express intracytoplasmic Bcl-2, they undergo swift apoptosis in vitro and do not respond to CD40 triggering. Bone marrow fibroblasts and rheumatoid synoviocytes, however, prevented plasma cells from undergoing apoptosis in a contact- dependent fashion. These data indicate that fibroblasts may form a microenvironment favorable for plasma cell survival under normal and pathological conditions. PMID:8551226

  17. Treatment of prostate cancer cell lines and primary cells using low temperature plasma

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.

    2014-10-01

    The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.

  18. Effects of plasma etching solar cell front surfaces

    SciTech Connect

    Taylor, W.E.; Bunyan, S.M.; Olson, C.E.

    1980-01-01

    A front surface plasma etch with Freon 14+8% O/sub 2/ or sulfur hexafluoride (SF/sub 6/) was found to improve terrestrial solar cell output. SEM studies of these samples revealed surface pitting on Freon 14 etched samples. About 50% of the improvement from Freon etched samples can be attributed to the light capturing effects of surface pits. Output increases from SF/sub 6/ plasma etched cells were found to be comparable with Freon etched cells after subtraction of the light trapping effects. The excess output improvement might be attributed to reduced junction depth or removal of near surface lattice damage. Investigations attempting to identify the cause are described. 1 ref.

  19. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells.

    PubMed

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atmospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy.

  20. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells

    PubMed Central

    GUERRERO-PRESTON, RAFAEL; OGAWA, TAKENORI; UEMURA, MAMORU; SHUMULINSKY, GARY; VALLE, BLANCA L.; PIRINI, FRANCESCA; RAVI, RAJANI; SIDRANSKY, DAVID; KEIDAR, MICHAEL; TRINK, BARRY

    2014-01-01

    The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min−1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines. PMID:25050490

  1. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells.

    PubMed

    Guerrero-Preston, Rafael; Ogawa, Takenori; Uemura, Mamoru; Shumulinsky, Gary; Valle, Blanca L; Pirini, Francesca; Ravi, Rajani; Sidransky, David; Keidar, Michael; Trink, Barry

    2014-10-01

    The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min-1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines.

  2. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  3. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Haleem, N. A.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-01

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, ϕ = 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10-100 kHz), at a definite pressure of ˜0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N2 revealed the increase of electron density at distinct tube regions by one order to attain 1013/cm3. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N2 gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred

  4. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions

  5. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  6. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  7. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  8. Sclerostin is overexpressed by plasma cells from multiple myeloma patients.

    PubMed

    Brunetti, Giacomina; Oranger, Angela; Mori, Giorgio; Specchia, Giorgina; Rinaldi, Erminia; Curci, Paola; Zallone, Alberta; Rizzi, Rita; Grano, Maria; Colucci, Silvia

    2011-11-01

    Sclerostin, an osteocyte-expressed negative regulator of bone formation, is one of the inhibitors of Wnt signaling that is a critical pathway in the correct process of osteoblast differentiation. It has been demonstrated that Wnt signaling through the secretion of Wnt inhibitors, such as DKK1, sFRP-2, and sFRP-3, plays a key role in the decreased osteoblast activity associated with multiple myeloma (MM) bone disease. We provide evidence that sclerostin is expressed by myeloma cells that are human myeloma cell lines and plasma cells (CD138(+) cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. Moreover, we show that there are no differences in sclerostin serum levels between MM patients and controls. Thus, our data indicate that MM cells, as a sclerostin source in the BM, could create a microenvironment with high sclerostin concentration that could contribute toward inhibiting osteoblast differentiation.

  9. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  10. Blimp-1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response

    PubMed Central

    Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L

    2015-01-01

    Plasma cell differentiation requires silencing of B cell transcription, while establishing antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for plasma cell generation, however their function in mature plasma cells has remained elusive. We have found that while IRF4 was essential for plasma cell survival, Blimp-1 was dispensable. Blimp-1-deficient plasma cells retained their transcriptional identity, but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap of Blimp-1 and XBP-1 function was restricted to the UPR, with Blimp-1 uniquely regulating mTOR activity and plasma cell size. Thus, Blimp-1 is required for the unique physiological capacity of plasma cells that enables the secretion of protective antibody. PMID:26779600

  11. Nanodomain stabilization dynamics in plasma membranes of biological cells

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  12. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  13. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    NASA Astrophysics Data System (ADS)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  14. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  15. Fat, Stem Cells, and Platelet-Rich Plasma.

    PubMed

    James, Isaac B; Coleman, Sydney R; Rubin, J Peter

    2016-07-01

    The ideal filler for aesthetic surgery is inexpensive and easy to obtain, natural in appearance and texture, immunologically compatible, and long lasting without risk of infection. By most metrics, autologous fat grafts meet these criteria perfectly. Although facial fat grafting is now a commonly accepted surgical procedure, there has been a wave of activity applying stem cells and platelet-rich plasma (PRP) therapies to aesthetic practice. This article addresses technical considerations in the use of autologous fat transfer for facial rejuvenation, and also explores the current evidence for these stem cell and PRP therapies in aesthetic practice.

  16. The effect of jet and DBD plasma on NCI-78 blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Kaushik, Neha; Choi, Eun Ha

    2013-06-01

    In this study we describe the effects of a nonthermal jet and dielectric barrier discharge (DBD) plasma on the T98G brain cancer cell line. The results of this study reveal that the jet and DBD plasma inhibits NCI-78 blood cancer cells growth efficiently with the loss of metabolic viability of cells. The main goal of this study is to induce cell death in NCI-78 blood cancer cells by the toxic effect of jet and DBD plasma.

  17. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    PubMed

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  18. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  19. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  20. The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability

    PubMed Central

    Cheng, Xiaoqian; Sherman, Jonathan; Murphy, William; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-01-01

    Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition. In order to determine the threshold of plasma treatment on U87, normal human astrocytes (E6/E7) were used as the comparison cell line. Our data showed that the 30 sec plasma treatment caused 3-fold cell death in the U87 cells compared to the E6/E7 cells. All the other compositions of cold plasma were performed based on this result: plasma treatment time was maintained at 30 s per well while other plasma characteristics such as voltage, flow rate of source gas, and composition of source gas were changed one at a time to vary the intensity of the reactive species composition in the plasma jet, which may finally have various effect on cells reflected by cell viability. We defined a term “plasma dosage” to summarize the relationship of all the characteristics and cell viability. PMID:24878760

  1. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2.

    PubMed

    Winkelmann, Rebecca; Sandrock, Lena; Porstner, Martina; Roth, Edith; Mathews, Martina; Hobeika, Elias; Reth, Michael; Kahn, Mark L; Schuh, Wolfgang; Jäck, Hans-Martin

    2011-01-11

    Krüppel-like factor 2 (KLF2) controls T lymphocyte egress from lymphoid organs by regulating sphingosin-1 phosphate receptor 1 (S1Pr1). Here we show that this is not the case for B cells. Instead, KLF2 controls homeostasis of B cells in peripheral lymphatic organs and homing of plasma cells to the bone marrow, presumably by controlling the expression of β(7)-integrin. In mice with a B cell-specific deletion of KLF2, S1Pr1 expression on B cells was only slightly affected. Accordingly, all splenic B cell subsets including B1 cells were present, but their numbers were increased with a clear bias for marginal zone (MZ) B cells. In contrast, fewer peyers patches harboring fewer B cells were found, and fewer B1 cells in the peritoneal cavity as well as recirculating B cells in the bone marrow were detected. Upon thymus-dependent immunization, IgG titers were diminished, and antigen-specific plasma cells were absent in the bone marrow, although numbers of antigen-specific splenic plasmablasts were normal. KLF2 plays also a role in determining the identity of follicular B cells, as KLF2-deficient follicular B cells showed calcium responses similar to those of MZ B cells and failed to down-regulate MZ B cell signature genes, such as CD21 and CXCR7. PMID:21187409

  2. An antigenic study of human plasma cells in normal tissue and in myeloma: identification of a novel plasma cell associated antigen.

    PubMed Central

    Nathan, P D; Walker, L; Hardie, D; Richardson, P; Khan, M; Johnson, G D; Ling, N R

    1986-01-01

    A mouse monoclonal antibody named BU11 which detects an antigen strongly expressed on human plasma cells is described. The antibody stains plasma cells in tonsil sections, fresh and cultured plasmacytoid cells from the bone marrow of patients with multiple myeloma and cells of the plasmacytoid cell line RPMI 8226 used as the immunogen. In vitro studies of pokeweed mitogen (PWM) stimulated peripheral blood B cells and Epstein-Barr virus (EBV) stimulated tonsil B cells show that the antigen is present mainly on cells coexpressing the OKT10 antigen and containing cytoplasmic immunoglobulin (cIg). The BU11 antigen is expressed weakly on some normal B cells and is not present on T cells, monocytes or granulocytes. The antigen is of molecular weight 58kD under reducing conditions and is biochemically distinct from previously described plasma cell antigens. Images Fig. 4 PMID:3024883

  3. High-contrast plasma-electrode Pockels cell.

    PubMed

    Kruschwitz, B E; Kelly, J H; Shoup Iii, M J; Waxer, L J; Cost, E C; Green, E T; Hoyt, Z M; Taniguchi, J; Walker, T W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP) laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density. PMID:17318253

  4. Plasma and red blood cell fatty acids in peroxisomal disorders.

    PubMed

    Moser, A B; Jones, D S; Raymond, G V; Moser, H W

    1999-02-01

    The demonstration of abnormal levels of fatty acids or plasmalogens in plasma or red blood cells is key to the diagnosis of peroxisomal disorders. We report the levels of 62 fatty acids and plasmalogens in patients with X-linked adrenoleukodystrophy (X-ALD), Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), both at baseline and after dietary interventions. "Lorenzo's Oil" therapy in X-ALD normalizes the levels of saturated very long chain fatty acids in plasma, but leads to reduced levels of omega 6 and other omega 3 fatty acids, and requires monitoring and appropriate dietary supplements. Patients with ZS, NALD and IRD have reduced levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) which can be normalized by the oral administration of microencapsulated DHA and AA.

  5. High-contrast plasma-electrode Pockels cell

    SciTech Connect

    Kruschwitz, B. E.; Kelly, J. H.; Shoup, M. J. III; Waxer, L. J.; Cost, E. C.; Green, E. T.; Hoyt, Z. M.; Taniguchi, J.; Walker, T. W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP)laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density.

  6. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  7. Regulation of germinal center responses, memory B cells and plasma cell formation-an update.

    PubMed

    Corcoran, Lynn M; Tarlinton, David M

    2016-04-01

    Progress in understanding humoral immunity has been accelerated by the powerful experimental approaches of genetics, genomics and imaging. Excellent reviews of these advances appeared in 2015 in celebration of the 50th anniversary of the discovery of B cell and T cell lineages in the chicken. Here we provide a contemporary model of B cell differentiation, highlighting recent publications illuminating germinal center (GC), memory B cell and antibody-secreting plasma cell biology. The important contributions of CD4T cells to antibody responses have been thoroughly reviewed elsewhere.

  8. Ulcerative Colitis and Immunoglobulin G4

    PubMed Central

    Kuwata, Go; Koizumi, Koichi; Tabata, Taku; Hara, Seiichi; Kuruma, Sawako; Fujiwara, Takashi; Chiba, Kazuro; Egashira, Hideto; Fujiwara, Junko; Arakawa, Takeo; Momma, Kumiko; Horiguchi, Shinichiro

    2014-01-01

    Background/Aims Ulcerative colitis (UC) is sometimes associated with autoimmune pancreatitis (AIP). Infiltration of immunoglobulin G4 (IgG4)-positive plasma cells is sometimes detected in the colonic mucosa of AIP or UC patients. This study aimed to clarify the relation between UC and IgG4. Methods Associations with UC were reviewed in 85 AIP patients. IgG4 immunostaining was performed on biopsy specimens from the colonic mucosa of 14 AIP and 32 UC patients. Results UC was confirmed in two cases (type 1 AIP, n=1; suspected type 2 AIP, n=1). Abundant infiltration of IgG4-positive plasma cells in the colonic mucosa was detected in the case of suspected type 2 AIP with UC and two cases of type 1 AIP without colitis. Abundant infiltration of IgG4-positive plasma cells was detected in 10 UC cases (IgG4-present, 31%). Although 72% of IgG4-absent UC patients showed mild disease activity, 70% of IgG4-present patients showed moderate to severe disease activity (p<0.05). Conclusions UC is sometimes associated with AIP, but it seems that UC is not a manifestation of IgG4-related disease. Infiltration of IgG4-positive plasma cells is sometimes detectable in the colonic mucosa of UC patients and is associated with disease activity. PMID:24516698

  9. Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells.

    PubMed

    Caron, Gersende; Hussein, Mourad; Kulis, Marta; Delaloy, Céline; Chatonnet, Fabrice; Pignarre, Amandine; Avner, Stéphane; Lemarié, Maud; Mahé, Elise A; Verdaguer-Dot, Núria; Queirós, Ana C; Tarte, Karin; Martín-Subero, José I; Salbert, Gilles; Fest, Thierry

    2015-11-01

    Molecular mechanisms underlying terminal differentiation of B cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels, but followed by a committal step in which an S phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity. Downregulation of both TGF-?1/SMAD3 signaling and p53 pathway supported this final step, allowing the emergence of a CD23-negative subpopulation in transition from B cells to plasma cells. Remarkably, hydroxymethylation of PRDM1, a gene essential for plasma cell fate, was coupled to progression in S phase, revealing an intricate connection among cell cycle, DNA (hydroxy)methylation, and cell fate determination.

  10. Micro-Biocidal Activity of Yeast Cells by Needle Plasma Irradiation at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurumi, Satoshi; Takahashi, Hideyuki; Taima, Tomohito; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    In this study, we report on the biocidal activity technique by needle helium plasma irradiation at atmospheric pressure using borosilicate capillary nozzle to apply for the oral surgery. The diameter of needle plasma was less than 50 µm, and temperature of plasma irradiated area was less than body temperature. Needle plasma showed emission due to OH and O radical. Raman spectra and methylene blue stain showed yeast cells were inactivated by needle plasma irradiation.

  11. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  12. Identification of Ly-6K as a novel marker for mouse plasma cells.

    PubMed

    von Allmen, Caroline E; Bauer, Monika; Dietmeier, Klaus; Buser, Regula B; Gwerder, Myriam; Muntwiler, Simone; Utzinger, Stephan; Saudan, Philippe; Bachmann, Martin F; Beerli, Roger R

    2008-05-01

    Plasma cells are the main producers of antibody and key effector cells of the immune system. Despite their importance, analytics of plasma cells still suffers from the limited availability of specific markers. Currently, plasma cell identification relies on the expression of a single marker, CD138/syndecan-1. However, syndecan-1 is widely expressed on various cell types outside the hematopoietic compartment, and furthermore, not expressed on all subsets of plasma cells. To discover novel surface markers, a differential screening followed by signal sequence trap cloning was developed, leading to the identification of mouse Ly-6K (mLy-6K). Expression profiling confirmed that mLy-6K is expressed by plasma cells but not B cells or tissues not containing plasma cells. Expression at the surface of plasma cells isolated from spleen, lymph node, bone marrow, and lamina propria of the small intestine was demonstrated at the protein level using a polyclonal rabbit antibody. This novel plasma cell marker shows promise to help broaden our understanding of plasma cell differentiation and function.

  13. Plasma etching, texturing, and passivation of silicon solar cells

    SciTech Connect

    Ruby, D.S.; Yang, P.; Zaidi, S.; Brueck, S.; Roy, M.; Narayanan, S.

    1998-11-01

    The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. The authors used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. They also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.

  14. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  15. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1985-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occasionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  16. The effect of plasma on solar cell array arc characteristics

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.; Tyree, E.

    1984-01-01

    The influence from the ambient plasma on the arc characteristics of a negatively biased solar cell array was investigated. The arc characteristics examined were the peak current during an arc, the decay time as the arc terminates, and the charge lost during the arc. These arc characteristics were examined in a nitrogen plasma with charge densities ranging from 15,000 to 45,000 cu cm. Background gas pressures ranged from 8x1,000,000 to 6x100,000 torr. Over these ranges of parameters no significant effect on the arc characteristics were seen. Arc characteristics were also examined for three gas species: helium, nitrogen and argon. The helium arcs have higher peak currents and shorter decay times than nitrogen and argon arcs. There are slight differences in the arc characteristics between nitrogen and argon. These differences may be caused by the differences in mass of the respective species. Also, evidence is presented for an electron emission mechanism appearing as a precursor to solar array arcs. Occassionally the plasma generator could be turned off, and currents could still be detected in the vacuum system. When these currents are presented, arcs may occur.

  17. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells.

    PubMed

    Kim, Sun Ja; Chung, T H

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma-cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ(0) cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2(-)) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells.

  18. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  19. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Kwon, Seyeoul; Bahn, Jae Hoon; Lee, Keunho; Jun, Seung Ik; Rack, Philip D.; Baek, Seung Joon

    2010-06-01

    The effect that the gas content and plasma power of atmospheric, nonthermal plasma has on the invasion activity in colorectal cancer cells has been studied. Helium and helium plus oxygen plasmas were induced through a nozzle and operated with an ac power of less than 10 kV which exhibited a length of 2.5 cm and a diameter of 3-4 mm in ambient air. Treatment of cancer cells with the plasma jet resulted in a decrease in cell migration/invasion with higher plasma intensity and the addition of oxygen to the He flow gas.

  20. Differential gene expression in pulmonary artery endothelial cells exposed to sickle cell plasma.

    PubMed

    Klings, Elizabeth S; Safaya, Surinder; Adewoye, Adeboye H; Odhiambo, Adam; Frampton, Garrett; Lenburg, Marc; Gerry, Norman; Sebastiani, Paola; Steinberg, Martin H; Farber, Harrison W

    2005-05-11

    Clinical variability in sickle cell disease (SCD) suggests a role for extra-erythrocytic factors in the pathogenesis of vasoocclusion. We hypothesized that endothelial cell (EC) dysfunction, one possible modifier of disease variability, results from induction of phenotypic changes by circulating factors. Accordingly, we analyzed gene expression in cultured human pulmonary artery ECs (HPAEC) exposed to plasma from 1) sickle acute chest syndrome (ACS) patients, 2) SCD patients at steady state, 3) normal volunteers, and 4) serum-free media, using whole genome microarrays (U133A-B GeneChip, Affymetrix). Data were analyzed by Bayesian analysis of differential gene expression (BADGE). Differential expression was defined by the probability of >1.5 fold change in signal intensity greater than 0.999 and a predicted score of 70-100, measured by cross-validation. Compared with normal plasma, plasma from SCD patients (steady state) resulted in differential expression of 50 genes in HPAEC. Of these genes, molecules involved in cholesterol biosynthesis and lipid transport, the cellular stress response, and extracellular matrix proteins were most prominent. Another 58 genes were differentially expressed in HPAEC exposed to plasma from ACS patients. The pattern of altered gene expression suggests that plasma from SCD patients induces an EC phenotype which is anti-apoptotic and favors cholesterol biosynthesis. An altered EC phenotype elicited by SCD plasma may contribute to the pathogenesis of sickle vasoocclusion.

  1. Development of plasma cleaning and plasma enhanced close space sublimation hardware for improving CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew

    A scalable photovoltaic manufacturing process that employs a heated pocket deposition technique has been developed at Colorado State University. It allows for the economical manufacturing of single-junction thin-film CdTe solar cells with efficiencies over 13%. New techniques that further increase cell efficiency and reduce production expenses are required to make solar energy more affordable. To address this need a hollow-cathode plasma source was added to the load-lock region of the CSU single-vacuum in-line CdTe-cell fabrication system. This plasma source is used to clean the transparent-conductive-oxide layer of the cell prior to the deposition of the CdS and CdTe layers. Plasma cleaning enables a reduction in CdS thickness by approximately 20 nm, while maintaining an improved cell voltage. Cell current was improved and cell efficiency was increased by 1.5%. Maps generated by scanning white-light interferometry, electroluminescence, and light-beam-induced current all show uniformity improvement with plasma cleaning treatment. To further increase cell efficiency a hollow-cathode plasma-enhanced close space sublimation (PECSS) source was utilized to modify the CdS window layer material as it was being deposited. This was done by integrating PECSS into the CSU inline CdS/CdTe-cell fabricating system and by sublimating the CdS semiconductor material through a plasma discharge. To date oxygenated CdS (CdS:O) cells have been grown by sublimating CdS through a PECSS source operated on oxygen. Data are presented showing that PECSS CdS:O films have increased the band gap of the window layer therefore reducing absorption loss, increasing cell current, and improving efficiency by 1.2%.

  2. Autoimmune pancreatitis: a systemic immune complex mediated disease.

    PubMed

    Deshpande, Vikram; Chicano, Sonia; Chiocca, Sonia; Finkelberg, Dmitry; Selig, Martin K; Mino-Kenudson, Mari; Brugge, William R; Colvin, Robert B; Lauwers, Gregory Y

    2006-12-01

    Autoimmune pancreatitis (AIP) is a mass forming inflammatory pancreatobiliary-centric disease. Recent reports of multiorgan inflammatory mass forming lesions with increased numbers of IgG4 positive plasma cells suggest that AIP may have a systemic component. In this study, we explore the systemic nature of AIP, investigate the relevance of subtyping AIP, perform a systematic study of tissue IgG4 immunoperoxidase, and ultrastructurally evaluate the presence of immune complexes. Our study group consisted of 36 patients with AIP, 21 of whom underwent a Whipple procedure. On the basis of the pattern of inflammation, pancreatic involvement was subtyped as ductocentric (AIP-D) or lobulocentric (AIP-L). Extrapancreatic lesions included bile duct (n=3), salivary glands (n=3), lung (n=2), gallbladder (n=11), and kidney (n=4). Clinical and radiologic data was recorded. Immunohistochemistry for IgG4 was performed on both pancreatic and extrapancreatic tissues and the numbers of IgG4 positive plasma cells were semiquantitatively scored. A control cohort composed of pancreatic adenocarcinoma (n=19) and chronic pancreatitis-not otherwise specified (NOS) (n=14) was also evaluated. Eleven pancreatic specimens, including 2 cases of chronic pancreatitis-NOS and 4 kidneys were evaluated ultrastructurally. The pancreas, bile duct, gall bladder, salivary gland, kidney, and lung lesions were characterized by dense lymphoplasmacytic infiltrates with reactive fibroblasts and venulitis. IgG4 positive plasma cells were identified in all pancreatic and extrapancreatic lesions. The AIP cases showed significantly more pancreatic IgG4 positive plasma cells than chronic pancreatitis-NOS or adenocarcinoma (P=0.001). However, IgG4 positive cells were identified in 57.1% of chronic pancreatitis-NOS and 47.4% of ductal adenocarcinoma. Fifteen of 21 resected cases were classified as AIP-D, and 6 as AIP-L, the latter notably showing significantly more IgG4 positive plasma cells than the former (P=0

  3. Increased CXCR3 Expression of Infiltrating Plasma Cells in Hunner Type Interstitial Cystitis

    PubMed Central

    Akiyama, Yoshiyuki; Morikawa, Teppei; Maeda, Daichi; Shintani, Yukako; Niimi, Aya; Nomiya, Akira; Nakayama, Atsuhito; Igawa, Yasuhiko; Fukayama, Masashi; Homma, Yukio

    2016-01-01

    An up-regulated CXCR3 pathway and affluent plasma cell infiltration are characteristic features of Hunner type interstitial cystitis (HIC). We further examined these two features using bladder biopsy samples taken from 27 patients with HIC and 15 patients with non-IC cystitis as a control. The number of CD3-positive T lymphocytes, CD20-positive B lymphocytes, CD138-positive plasma cells, and CXCR3-positive cells was quantified by digital image analysis. Double-immunofluorescence for CXCR3 and CD138 was used to detect CXCR3 expression in plasma cells. Correlations between CXCR3 positivity and lymphocytic and plasma cell numbers and clinical parameters were explored. The density of CXCR3-positive cells showed no significant differences between HIC and non-IC cystitis specimens. However, distribution of CXCR3-positivity in plasma cells indicated co-localization of CXCR3 with CD138 in HIC specimens, but not in non-IC cystitis specimens. The number of CXCR3-positive cells correlated with plasma cells in HIC specimens alone. Infiltration of CXCR3-positive cells was unrelated to clinical parameters of patients with HIC. These results suggest that infiltration of CXCR3-positive plasma cells is a characteristic feature of HIC. The CXCR3 pathway and specific immune responses may be involved in accumulation/retention of plasma cells and pathophysiology of the HIC bladder. PMID:27339056

  4. Simplex-in-cell technique for collisionless plasma simulations

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian; Totorica, Samuel; Zrake, Jonathan; Abel, Tom

    2016-01-01

    We extend the simplex-in-cell (SIC) technique recently introduced in the context of collisionless dark matter fluids [1,2] to the case of collisionless plasmas. The six-dimensional phase space distribution function f (x , v) is represented by an ensemble of three-dimensional manifolds, which we refer to as sheets. The electric potential field is obtained by solving the Poisson equation on a uniform mesh, where the charge density is evaluated by a spatial projection of the phase space sheets. The SIC representation of phase space density facilitates robust, high accuracy numerical evolution of the Vlasov-Poisson system using significantly fewer tracer particles than comparable particle-in-cell (PIC) approaches by reducing the numerical shot-noise associated with the latter. We introduce the SIC formulation and describe its implementation in a new code, which we validate using standard test problems including plasma oscillations, Landau damping, and two stream instabilities in one dimension. Merits of the new scheme are shown to include higher accuracy and faster convergence rates in the number of particles. We finally motivate and outline the efficient application of SIC to higher dimensional problems.

  5. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  6. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  7. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells

    PubMed Central

    Kim, Sun Ja; Chung, T. H.

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306

  8. Induction of angiogenesis by normal and malignant plasma cells.

    PubMed

    Hose, Dirk; Moreaux, Jérôme; Meissner, Tobias; Seckinger, Anja; Goldschmidt, Hartmut; Benner, Axel; Mahtouk, Karène; Hillengass, Jens; Rème, Thierry; De Vos, John; Hundemer, Michael; Condomines, Maud; Bertsch, Uta; Rossi, Jean-François; Jauch, Anna; Klein, Bernard; Möhler, Thomas

    2009-07-01

    Abundant bone marrow angiogenesis is present in almost all myeloma patients requiring therapy and correlated to treatment response and survival. We assessed the expression of 402 angiogenesis-associated genes by Affymetrix DNA microarrays in 466 samples, including CD138-purified myeloma cells (MMCs) from 300 previously untreated patients, in vivo microcirculation by dynamic contrast-enhanced magnetic resonance imaging, and in vitro angiogenesis (AngioKit-assay). Normal bone marrow plasma cells (BMPCs) express a median of 39 proangiogenic (eg, VEGFA, ADM, IGF-1) and 28 antiangiogenic genes (eg, TIMP1, TIMP2). Supernatants of BMPCs unlike those of memory B cells induce angiogenesis in vitro. MMCs do not show a significantly higher median number of expressed proangiogenic (45) or antiangiogenic (31) genes, but 97% of MMC samples aberrantly express at least one of the angiogenic factors HGF, IL-15, ANG, APRIL, CTGF, or TGFA. Supernatants of MMCs and human myeloma cell lines induce significantly higher in vitro angiogenesis compared with BMPCs. In conclusion, BMPCs express a surplus of proangiogenic over antiangiogenic genes transmitting to the ability to induce in vitro angiogenesis. Aberrant expression of proangiogenic and down-regulation of antiangiogenic genes by MMCs further increases the angiogenic stimulus, together leading to bone marrow angiogenesis at various degrees in all myeloma patients.

  9. Graphene Oxide Modulates B Cell Surface Phenotype and Impairs Immunoglobulin Secretion in Plasma Cell.

    PubMed

    Xu, Shaohai; Xu, Shengmin; Chen, Shaopeng; Fan, Huadong; Luo, Xun; Yang, Xiaoyao; Wang, Jun; Yuan, Hang; Xu, An; Wu, Lijun

    2016-04-01

    Since discovery, graphene oxide (GO) has been used in all aspects of human life and revealed promising applications in biomedicine. Nevertheless, the potential risks of GO were always being revealed. Although GO was found to induce immune cell death and innate immune response, little is known regarding its toxicity to the specific adaptive immune system that is crucial for protecting against exotic invasion. The B-cell mediated adaptive immune system, which composed of highly specialized cells (B and plasma cell) and specific immune response (antibody response) is the focus in our present study. Using diverse standard immunological techniques, we found that GO modulated B cell surface phenotype, both costimulatory molecules (CD80, CD86 and especially CD40) and antigen presenting molecules (both classical and nonclassical) under the condition without causing cell death. Meanwhile, the terminal differentiated immunoglobulin (Ig) secreting plasma cell was affected by GO, which displayed a less secretion of Ig and more severe ER stress caused by the retention of the secreted form of Ig in cell compartment. The combined data reveal that GO has a particular adverse effect to B cell and the humoral immunity, directly demonstrating the potential risk of GO to the specific adaptive immunity. PMID:27451788

  10. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells.

    PubMed

    Bekeschus, S; Kolata, J; Winterbourn, C; Kramer, A; Turner, R; Weltmann, K D; Bröker, B; Masur, K

    2014-05-01

    Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma-skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma-cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells. PMID:24528134

  11. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.

    PubMed

    Barwick, Benjamin G; Scharer, Christopher D; Bally, Alexander P R; Boss, Jeremy M

    2016-10-01

    The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.

  12. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation.

    PubMed

    Carotta, Sebastian; Willis, Simon N; Hasbold, Jhagvaral; Inouye, Michael; Pang, Swee Heng Milon; Emslie, Dianne; Light, Amanda; Chopin, Michael; Shi, Wei; Wang, Hongsheng; Morse, Herbert C; Tarlinton, David M; Corcoran, Lynn M; Hodgkin, Philip D; Nutt, Stephen L

    2014-10-20

    Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell-promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1-IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.

  13. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    NASA Astrophysics Data System (ADS)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  14. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  15. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    SciTech Connect

    Yang, H.; Gan, L.; Yang, X. E-mail: yangxl@mail.hust.edu.cn; Lu, R.; Xian, Y.; Lu, X. E-mail: yangxl@mail.hust.edu.cn

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  16. Plasma RF Switching Elements for Cell Phone Applications

    NASA Astrophysics Data System (ADS)

    Linardakis, Peter; Borg, Gerard G.; Harris, Jeffrey H.

    2002-10-01

    The functionality of modern multi-band, multi-system cell phones is provided by a large number of RF switches. Future phones will require an even greater number of these switches to implement hardware such as agile antennas. The ever increasing need for higher performance and lower power consumption have brought the RF PIN diode to the edge of its capabilities in these applications. RF micro-electromechanical (MEMS) switches can easily provide the required low insertion loss, low inter-modulation and low power consumption combination, but their reliability limits are not yet satisfactory to industry. In conjunction with Motorola Personal Communications Sector (PCS), PRL is undertaking a project to examine the possibility of using plasma in a completely novel type of RF switch. A basic concept of variable ``plasma capacitors'' constructed from DC commercial fluorescent tubes has been analyzed up to 1.3 GHz. The four different configurations tested show some consistent behavior and a definite impedance change between the on and off states. A simple model reliant on RF sheath theory also shows some agreement.

  17. Pulsed Power Aspects of the NIF Plasma Electrode Pockels Cell

    SciTech Connect

    Arnold, P A; Ollis, C W; Hinz, A F; Barbosa, F; Fulkerson, E S

    2005-06-09

    The Plasma Electrode Pockels Cell (PEPC) embodies technology essential to the National Ignition Facility (NIF). Together with a thin-film polarizer, PEPC functions as an optical switch for the main amplifier cavity, allowing optical pulses to be trapped, and then released, and enabling NIF to take advantage of the attendant gain and cost-savings. Details of the genesis, development, and prototyping of the PEPC are well documented. After moving from its laboratory setting to the NIF facility, PEPC--via its performance during the two-year NIF Early Light (NEL) campaign and its ongoing operation during facility build-out--has proven to be a fully functional system. When complete, NIF will accommodate 192 beams, capable of delivering 1.8 MJ to a fusion target. Forty-eight Plasma Electrode Pockels--driven by nearly 300 high-power, high-voltage pulse generators--will support this complement of beams. As deployed, PEPC is a complex association of state-of-the-art optics; low-voltage and high-voltage electronics; and mechanical, gas, and vacuum subsystems--all under computer control. In this paper, we briefly describe each of these elements, but focus on the pulse power aspects of the PEPC system.

  18. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed Central

    Farinas, J; Verkman, A S

    1996-01-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water

  19. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  20. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    SciTech Connect

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  1. Evaluation of the effects of a plasma activated medium on cancer cells

    NASA Astrophysics Data System (ADS)

    Mohades, S.; Laroussi, M.; Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-01

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  2. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    SciTech Connect

    Huang Jun; Chen Wei; Li Hui; Wang Xingquan; Lv Guohua; Wang Pengye; Khohsa, M. Latif; Guo Ming; Feng Kecheng; Yang Size

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  3. Evaluation of the effects of a plasma activated medium on cancer cells

    SciTech Connect

    Mohades, S.; Laroussi, M. Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  4. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  5. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  6. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  7. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome

    NASA Astrophysics Data System (ADS)

    Sysolyatina, E.; Vasiliev, M.; Kurnaeva, M.; Kornienko, I.; Petrov, O.; Fortov, V.; Gintsburg, A.; Petersen, E.; Ermolaeva, S.

    2016-07-01

    The purpose of this work was to establish the influence of a regime of cold microwave argon plasma treatments on the physiological characteristics of human fibroblasts and keratinocytes. We used three regimes of plasma application: a single treatment, double treatment with a 48 h interval, and daily treatments for 3 d. Cell proliferation after plasma application was quantified in real time, and immunohistochemistry was used to establish the viability of the cells and determine changes in their physiology. It was established that the frequency of cell treatments is important for the outcome. In the samples treated with single plasma application and double plasma applications with a 48 h interval, a 42.6% and 32.0% increase was observed in the number of cells, respectively. In addition, there were no signs of deoxyribonucleic acid breaks immediately after plasma application. In contrast, plasma application increased the accumulation of cells in the active phases of the cell cycle. The activation of proliferation correlated with a decrease in the level of β-galactosidase, a senescence marker. This could be due to cell renovation after plasma application. Daily treatment decreased cell proliferation up to 29.1% in comparison with the control after 3 d.

  8. T cell–dependent survival of CD20+ and CD20− plasma cells in human secondary lymphoid tissue

    PubMed Central

    Withers, David R.; Fiorini, Claudia; Fischer, Randy T.; Ettinger, Rachel; Grammer, Amrie C.

    2007-01-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified. PMID:17299094

  9. Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells.

    PubMed

    Corti, Davide; Lanzavecchia, Antonio

    2014-10-01

    In this article, we highlight the advantages of isolating human monoclonal antibodies from the human memory B cells and plasma cell repertoires by using high-throughput cellular screens. Memory B cells are immortalized with high efficiency using Epstein-Barr virus (EBV) in the presence of a toll-like receptor (TLR) agonist, while plasma cells are maintained in single-cell cultures by using interleukin 6 (IL-6) or stromal cells. In both cases, multiple parallel assays, including functional assays, can be used to identify rare cells that produce antibodies with unique properties. Using these methods, we have isolated potent and broadly neutralizing antibodies against a variety of viruses, in particular, a pan-influenza-A-neutralizing antibody and an antibody that neutralizes four different paramyxoviruses. Given the high throughput and the possibility of directly screening for function (rather than just binding), these methods are instrumental to implement a target-agnostic approach to identify the most effective antibodies and, consequently, the most promising targets for vaccine design. This approach is exemplified by the identification of unusually potent cytomegalovirus-neutralizing antibodies that led to the identification of the target, a pentameric complex that we are developing as a candidate vaccine. PMID:26104354

  10. Induction of growth arrest in colorectal cancer cells by cold plasma and gold nanoparticles

    PubMed Central

    Irani, Shiva; Shahmirani, Zhohreh; Mirpoor, Shahriar

    2015-01-01

    Introduction Guided treatments with nanoparticles and cold atmospheric plasma are a new approach in cancer therapy. Plasma is an ionized gas that has reactive and energetic particles and can be produced in the laboratory by different methods. Material and methods Plasma jet therapy was employed to irradiate HCT-116 cells (human colorectal cancer cells) which were cultured in the presence of gold nanoparticles (GNPs). Cell cytotoxicity was tested with 3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT), and cancerous cell apoptosis was shown by 4’,6-diamidino-2-phenylindole (DAPI) staining. Results The results showed that cell death was increased significantly with p < 0.001 by cold atmospheric plasma in the presence of gold nanoparticles. Conclusions It appears that non-thermal plasma and gold nanoparticles synergism is a promising approach in colon cancer therapy. PMID:26788092

  11. Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression.

    PubMed

    Schmidlin, Heike; Diehl, Sean A; Nagasawa, Maho; Scheeren, Ferenc A; Schotte, Remko; Uittenbogaart, Christel H; Spits, Hergen; Blom, Bianca

    2008-09-01

    The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19(+) B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell-associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiation.

  12. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment

    PubMed Central

    Cousty, Sarah; Cambus, Jean-Pierre; Valentin, Alexis

    2015-01-01

    Introduction Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial. Methods and Results Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells. Conclusion These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy. PMID:26275141

  13. Efficient Plasma Cell Differentiation and Trafficking Require Cxcr4 Desensitization.

    PubMed

    Biajoux, Vincent; Natt, Jessica; Freitas, Christelle; Alouche, Nagham; Sacquin, Antoine; Hemon, Patrice; Gaudin, Françoise; Fazilleau, Nicolas; Espéli, Marion; Balabanian, Karl

    2016-09-27

    CXCR4 plays a central role in B cell immune response, notably by promoting plasma cell (PC) migration and maintenance in the bone marrow (BM). Gain-of-function mutations in CXCR4 affecting receptor desensitization have been reported in the rare immunodeficiency called WHIM syndrome (WS). Despite lymphopenia, patients mount an immune response but fail to maintain it over time. Using a knockin mouse model phenocopying WS, we showed that, counter-intuitively, a gain of Cxcr4 function inhibited the maintenance of antibody titers after immunization. Although the Cxcr4 mutation intrinsically and locally promoted germinal center response and PC differentiation, antigen-specific PCs were barely detected in the BM, a defect mirrored by early accumulation of immature plasmablasts potentially occupying the survival niches for long-lived PCs. Therefore, fine-tuning of Cxcr4 desensitization is critically required for efficient PC differentiation and maintenance, and absence of such a regulatory process may account for the defective humoral immunity observed in WS patients. PMID:27681431

  14. Identification of human plasma cells with a lamprey monoclonal antibody

    PubMed Central

    Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho; Tong, Jiefei; Li, Zhihua; Shi, Mengyao; Davani, Dariush; Parsons, Marion; Khan, Srijit; Zhan, Wei; Kyu, Shuya; Grunebaum, Eyal; Campisi, Paolo; Propst, Evan J.; Jaye, David L.; Trudel, Suzanne; Moran, Michael F.; Ostrowski, Mario; Herrin, Brantley R.; Lee, F. Eun-Hyung; Sanz, Ignacio; Cooper, Max D.; Ehrhardt, Götz R.A.

    2016-01-01

    Ab-producing plasma cells (PCs) serve as key participants in countering pathogenic challenges as well as being contributors to autoimmune and malignant disorders. Thus far, only a limited number of PC–specific markers have been identified. The characterization of the unique variable lymphocyte receptor (VLR) Abs that are made by evolutionarily distant jawless vertebrates prompted us to investigate whether VLR Abs could detect novel PC antigens that have not been recognized by conventional Abs. Here, we describe a monoclonal lamprey Ab, VLRB MM3, that was raised against primary multiple myeloma cells. VLRB MM3 recognizes a unique epitope of the CD38 ectoenzyme that is present on plasmablasts and PCs from healthy individuals and on most, but not all, multiple myelomas. Binding by the VLRB MM3 Ab coincides with CD38 dimerization and NAD glycohydrolase activity. Our data demonstrate that the lamprey VLRB MM3 Ab is a unique reagent for the identification of plasmablasts and PCs, with potential applications in the diagnosis and therapeutic intervention of PC or autoimmune disorders. PMID:27152361

  15. Long and short term effects of plasma treatment on meristematic plant cells

    NASA Astrophysics Data System (ADS)

    Puač, N.; Živković, S.; Selaković, N.; Milutinović, M.; Boljević, J.; Malović, G.; Petrović, Z. Lj.

    2014-05-01

    In this paper, we will present results of plasma treatments of meristematic cells of Daucus carota. Plasma needle was used as an atmospheric pressure/gas composition source of non-equilibrium plasma in all treatments. Activity of antioxidant enzymes superoxide dismutase and catalase was measured immediately after plasma treatment and after two weeks following the treatment. Superoxide dismutase activity was increased in samples immediately after the plasma treatment. On the other hand, catalase activity was much higher in treated samples when measured two weeks after plasma treatment. These results show that there is a direct proof of the triggering of signal transduction in the cells by two reactive oxygen species H2O2 and O2-, causing enzyme activity and short and long term effects even during the growth of calli, where the information is passed to newborn cells over the period of two weeks.

  16. Transcriptional control of MHC class II gene expression during differentiation from B cells to plasma cells.

    PubMed

    Dellabona, P; Latron, F; Maffei, A; Scarpellino, L; Accolla, R S

    1989-04-15

    In this study we investigated the molecular mechanisms responsible for the extinction of the constitutive MHC class II gene expression of human B cells on somatic cell hybridization with murine plasmocytoma cells. We found that this event is due to trans-acting suppressor functions of mouse origin pre-existing in the plasmocytoma cells and acting at transcriptional level. Transcription of the entire family of human class II genes is suppressed, including genes as DO beta for which a distinct regulation of expression in B cells had been previously demonstrated. Suppression appears specific for class II genes because in the hybrids expression of MHC class I genes of mouse is unaffected and of human only partially reduced. Interestingly, also murine invariant chain gene is expressed in both parental plasmocytoma and hybrid cells although at reduced amounts as compared to a murine class II positive B cell line. The class II negative phenotype of hybrid cells and parental plasmocytoma cells is highly stable and unaffected by treatment with protein synthesis inhibitors, suggesting that the transcriptional suppressor function is not mediated by rapid, labile turning-over proteins. Possible mechanisms responsible for transcriptional regulation of MHC class II gene expression during terminal differentiation of B cells to plasma cells are discussed. PMID:2495328

  17. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    NASA Astrophysics Data System (ADS)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  18. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    PubMed

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  19. Effect of Cold Plasma on Glial Cell Morphology Studied by Atomic Force Microscopy

    PubMed Central

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment. PMID:25803024

  20. A rare case of plasma cell leukemia in a 35 year old.

    PubMed

    Dosi, Rupal V; Ambaliya, Annirudh; Patell, Rushad D; Joshi, Harshal J

    2010-06-01

    Plasma cell leukemia is a rare, aggressive form of multiple myeloma. A 35-year-old male presented with backache, generalized weakness, and facial puffiness. His complete blood count showed anemia and a high WBC count with atypical cells on peripheral smear. Bone marrow examination showed more than 90% of atypical plasma cells, confirming a diagnosis of plasma cell leukemia. Patient also had azotemia, hypercalcemia, and hyperuricemia. The patient was started on chemotherapy along with supportive care. Patient improved dramatically and he was discharged on regular follow-up.

  1. Increased IgG4 responses to multiple food and animal antigens indicate a polyclonal expansion and differentiation of pre-existing B cells in IgG4-related disease

    PubMed Central

    Culver, Emma L; Vermeulen, Ellen; Makuch, Mateusz; van Leeuwen, Astrid; Sadler, Ross; Cargill, Tamsin; Klenerman, Paul; Aalberse, Rob C; van Ham, S Marieke; Barnes, Eleanor; Rispens, Theo

    2015-01-01

    Background IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory condition, characterised by an elevated serum IgG4 concentration and abundant IgG4-positive plasma cells in the involved organs. An important question is whether the elevated IgG4 response is causal or a reflection of immune-regulatory mechanisms of the disease. Objectives To investigate if the IgG4 response in IgG4-RD represents a generalised polyclonal amplification by examining the response to common environmental antigens. Methods Serum from 24 patients with IgG4-RD (14 treatment-naive, 10 treatment-experienced), 9 patients with primary sclerosing cholangitis and an elevated serum IgG4 (PSC-high IgG4), and 18 healthy controls were tested against egg white and yolk, milk, banana, cat, peanut, rice and wheat antigens by radioimmunoassay. Results We demonstrated an elevated polyclonal IgG4 response to multiple antigens in patients with IgG4-RD and in PSC-high IgG4, compared with healthy controls. There was a strong correlation between serum IgG4 and antigen-specific responses. Responses to antigens were higher in treatment-naive compared with treatment-experienced patients with IgG4-RD. Serum electrophoresis and immunofixation demonstrated polyclonality. Conclusions This is the first study to show enhanced levels of polyclonal IgG4 to multiple antigens in IgG4-RD. This supports that elevated IgG4 levels reflect an aberrant immunological regulation of the overall IgG4 response, but does not exclude that causality of disease could be antigen-driven. PMID:25646372

  2. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes. PMID:27067049

  3. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes.

  4. Characterization of plasma cell populations at autopsy after human allogeneic bone marrow transplantation.

    PubMed Central

    Cousineau, S.; Belanger, R.; Perreault, C.

    1986-01-01

    Postmortem fixed tissue sections of the lymphoid and digestive systems of eight consecutive leukemic patients dying of various diseases after bone marrow transplantation (BMT) were analyzed for the presence of the heavy chains gamma, alpha, mu, delta, and epsilon and light chains kappa and lambda, with the use of a standard immunoperoxidase method. Two distinct types of plasma cell populations were found. The first type was a widely distributed polyclonal plasma cell population, lacking IgD-positive plasma cells and germinal centers. The second type of plasma cell population, found in 6 of 8 patients, was a group of monoclonal plasma cell populations positive for the heavy chains gamma, alpha, mu, or delta. Recent immunohistologic observations of the human lymph node suggest that the first type of polyclonal plasma cell population could arise from a nonspecific expansion of sIgM+, sIgD- B lymphocytes. The lack of germinal centers, a structure closely involved in specific-antibody production, may correlate with the poor specific-antibody response documented in patients after BMT. The monoclonal plasma cell populations, found with an unexpectedly high frequency, are probably related to a functional T-cell defect. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3089020

  5. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  6. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium

    PubMed Central

    UTSUMI, FUMI; KAJIYAMA, HIROAKI; NAKAMURA, KAE; TANAKA, HIROMASA; MIZUNO, MASAAKI; TOYOKUNI, SHINNYA; HORI, MASARU; KIKKAWA, FUMITAKA

    2016-01-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma-activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related PMID:27035127

  7. Low Temperature Plasma Causes Double-Strand Break DNA Damage in Primary Epithelial Cells Cultured from a Human Prostate Tumour

    PubMed Central

    Hirst, Adam M.; Frame, Fiona M.; Maitland, Norman J.; O’Connell, Deborah

    2016-01-01

    Research in the new field of plasma medicine continues to demonstrate the efficacy of low temperature plasmas for numerous biomedical applications. Responses such as reduction in cell viability and cell death for cancer therapy, cell proliferation for wound healing, and bacterial inactivation have been observed as a result of plasma treatment. In this study we applied low temperature plasma to prostate cancer primary cells and tissue to inflict irreparable DNA damage. PMID:26819484

  8. Sustained secretion of immunoglobulin by long-lived human tonsil plasma cells.

    PubMed

    van Laar, Jacob M; Melchers, Marc; Teng, Y K Onno; van der Zouwen, Boris; Mohammadi, Rozbeh; Fischer, Randy; Margolis, Leonid; Fitzgerald, Wendy; Grivel, Jean-Charles; Breedveld, Ferdinand C; Lipsky, Peter E; Grammer, Amrie C

    2007-09-01

    Immunoglobulin-secreting cells comprise both short-lived proliferating plasmablasts and long-lived nonproliferating plasma cells. To determine the phenotype and functional activity of Ig-secreting cells in human lymphoid tissue, we used a tonsillar organ culture model. A significant proportion of IgA and IgG secretion was shown to be mediated by long-lived, nonproliferating plasma cells that coexpressed high levels of CD27 and CD38. The presence of such cells was further corroborated by the finding of enhanced expression in the CD19(+) B-cell population of XBP-1, IRF-4, and particularly Blimp-1 genes involved in the differentiation of plasma cells. Intact tissue seemed to be necessary for optimal functional activity of plasma cells. A strong correlation was found between concentrations of interleukin-6 and IgA or IgG, but not IgM, in culture supernatants suggesting a role for interleukin-6 in the survival of long-lived plasma cells. Taken together, the present study demonstrates that human lymphoid tissue harbors a population of nonproliferating plasma cells that are dependent on an intact microenvironment for ongoing Ig secretion.

  9. Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury.

    PubMed

    Ye, Fagang; Li, Haiyan; Qiao, Guangxi; Chen, Feng; Tao, Hao; Ji, Aiyu; Hu, Yanling

    2012-10-15

    Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-rich plasma and Schwann cell-like cells were mixed in suspension at a density of 1 × 10(6) cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote peripheral nerve regeneration. PMID:25538751

  10. Sustained Secretion of Immunoglobulin by Long-Lived Human Tonsil Plasma Cells

    PubMed Central

    van Laar, Jacob M.; Melchers, Marc; Teng, Y. K. Onno; van der Zouwen, Boris; Mohammadi, Rozbeh; Fischer, Randy; Margolis, Leonid; Fitzgerald, Wendy; Grivel, Jean-Charles; Breedveld, Ferdinand C.; Lipsky, Peter E.; Grammer, Amrie C.

    2007-01-01

    Immunoglobulin-secreting cells comprise both short-lived proliferating plasmablasts and long-lived nonproliferating plasma cells. To determine the phenotype and functional activity of Ig-secreting cells in human lymphoid tissue, we used a tonsillar organ culture model. A significant proportion of IgA and IgG secretion was shown to be mediated by long-lived, nonproliferating plasma cells that coexpressed high levels of CD27 and CD38. The presence of such cells was further corroborated by the finding of enhanced expression in the CD19+ B-cell population of XBP-1, IRF-4, and particularly Blimp-1 genes involved in the differentiation of plasma cells. Intact tissue seemed to be necessary for optimal functional activity of plasma cells. A strong correlation was found between concentrations of interleukin-6 and IgA or IgG, but not IgM, in culture supernatants suggesting a role for interleukin-6 in the survival of long-lived plasma cells. Taken together, the present study demonstrates that human lymphoid tissue harbors a population of nonproliferating plasma cells that are dependent on an intact microenvironment for ongoing Ig secretion. PMID:17690187

  11. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  12. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    PubMed

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  13. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    Non-thermal plasma surface modifications have become indispensable processing steps in various industry and research sectors. Applications range from semiconductor processing to biotechnology and recently, plasma medicine. Non-thermal plasma sources have the advantage that a number of electron-driven chemical reactions can be produced while maintaining the gas (heavy species) temperature low, thus enabling the treatment of temperature-sensitive surfaces such as polymers, tissues and live cells. In the fields of biology and medicine, non-thermal plasmas have been primarily used for the deposition or modification of biocompatible polymers and for sterilization. Recently, non-thermal plasmas have been used to treat tissues and cells. A new field of research has emerged, Plasma Medicine, which studies the effects of non-thermal plasmas on cells and tissues for clinical applications. The Atmospheric Pressure Glow Discharge torch (APGD-t), a non-thermal plasma source, built in our laboratory was used to study the effects of non-thermal plasmas on mammalian cells. In its first application, we indirectly used the APGD-t to deposit a plasma-polymer on a glass surface and studied its effects on cultured cells. It was shown that the cells grew preferentially on the plasma-polymer, and their proliferation rate increased. The second application of the APGD-t was to further investigate previous observations of cell permeabilization obtained by plasma treatments and to apply non-thermal plasmas to cell transfection. It was demonstrated that the APGD-t is able to locally transfect adherent cells. We estimated the diameter of the pores created to be below 10 nm and that the pores remain open for less than 5 seconds. However, while investigating the mechanisms involved in cell transfection we observed that the use of higher gas flows in the negative controls (using the APGD-t but with the plasma turned off) also resulted in cell transfection. To further study this phenomena, we

  14. Plasmolysis, red blood cell partitioning, and plasma protein binding of etofibrate, clofibrate, and their degradation products.

    PubMed

    Altmayer, P; Garrett, E R

    1983-11-01

    Etofibrate (I), the ethylene glycol diester of clofibric and nicotinic acids, degrades almost equally through both half-esters with half-lives of approximately 10 and 1 min in fresh dog and human plasma, respectively. The nicotinate V degrades with half-lives of approximately 12 hr and 50 min in fresh dog and human plasma, respectively. Ester III and clofibrate VI degrade by saturable Michaelis-Menten kinetics in fresh human plasma, with similar maximum initial rates and respective terminal first-order half-lives of 12 and 26 min. Tetraethyl pyrophosphate at 100 micrograms/ml inhibited human plasma and red blood cell esterases permitting plasma protein binding and red blood cell partitioning studies. The red blood cell-plasma water partition coefficient was 5.4 for 0.2-80 micrograms/ml of I. Clofibrate (VI) showed a saturable erythrocyte partitioning that decreased from 7.8 (10 micrograms/ml) to 1 (50 micrograms/ml). The strong binding of I and VI to ultrafiltration membranes necessitated the determination of their plasma protein binding by the method of variable plasma concentrations of erythrocyte suspensions to give 96.6% (0.2-80 micrograms/ml) and 98.2% (13.6-108.4 micrograms/ml) binding, respectively. Methods for the determination of the parameters of saturable and nonsaturable plasma protein binding for unstable and membrane-binding drugs by the method of variable plasma concentrations in partitioning erythrocyte suspensions are presented.

  15. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage.

    PubMed

    Kvam, Erik; Davis, Brian; Mondello, Frank; Garner, Allen L

    2012-04-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or "cold" plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log(10) kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices.

  16. Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage

    PubMed Central

    Davis, Brian; Mondello, Frank; Garner, Allen L.

    2012-01-01

    Plasma, a unique state of matter with properties similar to those of ionized gas, is an effective biological disinfectant. However, the mechanism through which nonthermal or “cold” plasma inactivates microbes on surfaces is poorly understood, due in part to challenges associated with processing and analyzing live cells on surfaces rather than in aqueous solution. Here, we employ membrane adsorption techniques to visualize the cellular effects of plasma on representative clinical isolates of drug-resistant microbes. Through direct fluorescent imaging, we demonstrate that plasma rapidly inactivates planktonic cultures, with >5 log10 kill in 30 s by damaging the cell surface in a time-dependent manner, resulting in a loss of membrane integrity, leakage of intracellular components (nucleic acid, protein, ATP), and ultimately focal dissolution of the cell surface with longer exposure time. This occurred with similar kinetic rates among methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. We observed no correlative evidence that plasma induced widespread genomic damage or oxidative protein modification prior to the onset of membrane damage. Consistent with the notion that plasma is superficial, plasma-mediated sterilization was dramatically reduced when microbial cells were enveloped in aqueous buffer prior to treatment. These results support the use of nonthermal plasmas for disinfecting multidrug-resistant microbes in environmental settings and substantiate ongoing clinical applications for plasma devices. PMID:22232292

  17. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage.

    PubMed

    Rawstron, A C; Owen, R G; Davies, F E; Johnson, R J; Jones, R A; Richards, S J; Evans, P A; Child, J A; Smith, G M; Jack, A S; Morgan, G J

    1997-04-01

    The aim of this study was to develop a flow cytometric test to quantitate low levels of circulating myeloma plasma cells, and to determine the relationship of these cells with disease stage. Cells were characterized using five-parameter flow cytometric analysis with a panel of antibodies, and results were evaluated by comparison with fluorescent consensus-primer IgH-PCR. Bone marrow myeloma plasma cells, defined by high CD38 and Syndecan-1 expression, did not express CD10, 23, 30, 34 or 45RO, and demonstrated weak expression of CD37 and CD45. 65% of patients had CD19- 56+ plasma cells, 30% CD19- 56(low), and 5% CD19+ 56+, and these two antigens discriminated myeloma from normal plasma cells, which were all CD19+ 56(low). Peripheral blood myeloma plasma cells had the same composite phenotype, but expressed significantly lower levels of CD56 and Syndecan-1, and were detected in 75% (38/51) of patients at presentation, 92% (11/12) of patients in relapse, and 40% (4/10) of stem cell harvests. Circulating plasma cells were not detectable in patients in CR (n = 9) or normals (n = 10), at a sensitivity of up to 1 in 10,000 cells. There was good correlation between the flow cytometric test and IgH-PCR results: myeloma plasma cells were detectable by flow cytometry in all PCR positive samples, and samples with no detectable myeloma plasma cells were PCR negative. Absolute numbers decreased in patients responding to treatment, remained elevated in patients with refractory disease, and increased in patients undergoing relapse. We conclude that flow cytometry can provide an effective aternative to IgH-PCR that will allow quantitative assessment of low levels of residual disease.

  18. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  19. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    PubMed

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  20. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  1. Plasma treatment of biomaterials to direct the differentiation of embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Hanley, Erik

    In this work, we explore how embryonic stem (ES) cell differentiation patterns are affected by surface interactions with plasma-processed materials. We hypothesize that mouse embryonic stem-cell exposure to certain plasma-polymerized tetraglyme surfaces will direct their differentiation into endothelial cells. R1 mouse embryonic stem (ES) cells were plated on surfaces onto which tetraglyme was deposited by plasma polymerization. In addition, tissue-treated polystyrene and control glass cover slips were also examined. Some samples were fixed three days after plating and immunofluorescence stained with platelet endothelial-cell adhesion molecule, while the others were fixed seven days after plating and immunofluorescence stained with von Willebrand Factor. Positive results seen by ES cell derivatives precociously expressing the vWF and PECAM genetic markers on the plasma-polymerized tetraglyme treated surfaces suggest that the plasma-polymerized surfaces direct differentiation of ES cells into endothelial cells. Research goals of this dissertation include: characterization of the material properties of the plasma-polymerized tetraglyme surfaces that induce directed differentiation of ES cells into endothelial cells, optimization of the plasma-polymerization process to maximize the number of endothelial cells derived from R1 ES cells, and biological experimentation to characterize properties of the mechanism of directed differentiation. A potential application of this work is in the design and construction of an artificial blood vessel. Current small-scale arterial substitutes have proved inadequate because of thrombogenicity and infection. Moreover, the lower blood flow velocities of smaller vessels pose a different set of design criteria and introduce new problems not encountered in large arterial substitutes. By utilizing a tissue engineering approach that incorporates embryonic stem cell-derived endothelial cells, the longevity of the prosthesis can be ensured.

  2. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  3. Plasma cell neoplasms in US solid organ transplant recipients.

    PubMed

    Engels, Eric A; Clarke, Christina A; Pfeiffer, Ruth M; Lynch, Charles F; Weisenburger, Dennis D; Gibson, Todd M; Landgren, Ola; Morton, Lindsay M

    2013-06-01

    Transplant recipients have elevated risk for plasma cell neoplasms (PCNs, comprising multiple myeloma and plasmacytoma), but little is known about risk factors in the transplant setting. Through linkage of the US solid organ transplant registry with 15 state/regional cancer registries, we identified 140 PCNs in 202 600 recipients (1987-2009). PCN risk was 1.8-fold increased relative to the general population (standardized incidence ratio [SIR] 1.80, 95%CI 1.51-2.12). Among cases, 102 were multiple myeloma (SIR 1.41) and 38 were plasmacytoma (SIR 7.06). PCN incidence increased with age, but due to the rarity of PCNs in younger people in the general population, SIRs were highest in younger transplant recipients (p = 0.03). PCN risk was especially high in recipients who were Epstein-Barr virus (EBV) seronegative at transplantation (SIR 3.93). EBV status was known for 18 tumors, of which 7 (39%) were EBV positive. Following liver transplantation, PCN risk was higher in recipients with cholestatic liver disease (SIR 2.78); five of these cases had primary biliary cirrhosis (PBC). A role for primary EBV infection after transplantation is supported by the increased PCN risk in young EBV seronegative recipients and the presence of EBV in tumors. PBC may be another risk factor, perhaps by causing chronic immune activation. PMID:23635036

  4. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  5. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    SciTech Connect

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  6. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  7. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  8. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  9. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  10. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays.

    PubMed

    De Vos, John; Thykjaer, Thomas; Tarte, Karin; Ensslen, Matthias; Raynaud, Pierre; Requirand, Guilhem; Pellet, Florence; Pantesco, Véronique; Rème, Thierry; Jourdan, Michel; Rossi, Jean-François; Ørntoft, Torben; Klein, Bernard

    2002-10-01

    The DNA microarray technology enables the identification of the large number of genes involved in the complex deregulation of cell homeostasis taking place in cancer. Using Affymetrix microarrays, we have compared the gene expression profiles of highly purified malignant plasma cells from nine patients with multiple myeloma (MM) and eight myeloma cell lines to those of highly purified nonmalignant plasma cells (eight samples) obtained by in vitro differentiation of peripheral blood B cells. Two unsupervised clustering algorithms classified these 25 samples into two distinct clusters: a malignant plasma cell cluster and a normal plasma cell cluster. Two hundred and fifty genes were significantly up-regulated and 159 down-regulated in malignant plasma samples compared to normal plasma samples. For some of these genes, an overexpression or downregulation of the encoded protein was confirmed (cyclin D1, c-myc, BMI-1, cystatin c, SPARC, RB). Two genes overexpressed in myeloma cells (ABL and cystathionine beta synthase) code for enzymes that could be a therapeutic target with specific drugs. These data provide a new insight into the understanding of myeloma disease and prefigure that the development of DNA microarray could help to develop an 'à la carte' treatment in cancer disease.

  11. Generation of a novel, multi-stage, progressive, and transplantable model of plasma cell neoplasms

    PubMed Central

    Asai, Takashi; Hatlen, Megan A.; Lossos, Chen; Ndiaye-Lobry, Delphine; Deblasio, Anthony; Murata, Kazunori; Fleisher, Martin; Cortizas, Elena M.; Verdun, Ramiro E.; Petrini, John; Nimer, Stephen D.

    2016-01-01

    Multiple myeloma is a plasma cell neoplasm with an extremely variable clinical course. Animal models are needed to better understand its pathophysiology and for preclinical testing of potential therapeutic agents. Hematopoietic cells expressing the hypermorphic Rad50s allele show hematopoietic failure, which can be mitigated by the lack of a transcription factor, Mef/Elf4. However, we find that 70% of Mef−/−Rad50s/s mice die from multiple myeloma or other plasma cell neoplasms. These mice initially show an abnormal plasma cell proliferation and monoclonal protein production, and then develop anemia and a decreased bone mineral density. Tumor cells can be serially transplanted and according to array CGH and whole exome sequencing, the pathogenesis of plasma cell neoplasms in these mice is not linked to activation of a specific oncogene, or inactivation of a specific tumor suppressor. This model recapitulates the systemic manifestations of human plasma cell neoplasms, and implicates cooperativity between the Rad50s and Mef/Elf4 pathways in initiating myelomagenic mutations that promote plasma cell transformation. PMID:26961797

  12. Plasma cell morphology in multiple myeloma and related disorders.

    PubMed

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  13. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    PubMed

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  14. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  15. Functional granulocyte/macrophage colony stimulating factor receptor is constitutively expressed on neoplastic plasma cells and mediates tumour cell longevity.

    PubMed

    Villunger, A; Egle, A; Kos, M; Egle, D; Tinhofer, I; Henn, T; Uberall, F; Maly, K; Greil, R

    1998-09-01

    It has been shown that granulocyte/macrophage colony stimulating factor (GM-CSF) is able to support myeloma cell propagation in cooperation with interleukin (IL)-6, the major growth factor for malignant plasma cells, although the biological mechanisms involved remain unknown. Therefore we investigated (i) the expression levels of the GM-CSF receptor (GM-CSFR) constituents in three malignant plasma cell lines and in native malignant plasma cells, (ii) the ability of the receptor to mediate common signalling pathways regulating proliferation and cell survival in malignant plasma cell lines, and (iii) the effects of GM-CSF on tumour cell biology. The GM-CSFRalpha subunit was detected in the malignant plasma cell lines RPMI-8226, MC/CAR, IM-9 as well as 6/6 native myeloma cell samples derived from the bone marrow of patients with overt disease. Furthermore, GM-CSFR expression was also detected in the CD19+ fraction from 2/3 bone marrow samples and 5/8 peripheral blood samples derived from patients with malignant plasma cell disorders, but not in the CD19+ fraction of peripheral blood from healthy donors. The expressed cytokine receptor alpha-subunit was able to constitute a functional signalling complex with the ubiquitously expressed GM-CSFRbeta subunit, as demonstrated by the fact that GM-CSF induced the p21-ras/mitogen-activated protein kinase (MAPK) signalling cascade in malignant plasma cell lines. Since this signalling cascade plays an essential role in the mediation of both proliferation and cell survival, we investigated the impact of GM-CSF on these two events. Application of GM-CSF led to an increase of DNA-synthesis in MC/CAR, IM-9 and RPMI-8226 cells. Furthermore, it increased longevity of these malignant plasma cell lines by reducing the rates of spontaneous apoptosis. We conclude that (i) the functional GM-CSFR is commonly expressed on malignant plasma cells and that (ii) GM-CSF promotes the clonal expansion of myeloma cells by inhibiting spontaneous

  16. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  17. The connection of cytoskeletal network with plasma membrane and the cell wall.

    PubMed

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-04-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

  18. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  19. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing.

    PubMed

    Yamada, Tomoyoshi; Kuroda, Katsushi; Jitsuyama, Yutaka; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2002-09-01

    In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, both chilling-sensitive and chilling-resistant plant cells were supercooled. Upon freezing at -2 degrees C, by contrast, intracellular freezing occurred in Saintpaulia leaf cells, frost plasmolysis followed by intracellular freezing occurred in mungbean seedling cells, and extracellular freezing (cytorrhysis) occurred in orchid leaf cells. We postulate that chilling-related destabilization of membranes might result in the loss of the ability of the plasma membrane to act as a barrier against the propagation of extracellular ice in chilling-sensitive plant cells. We also examined the role of cell walls in the response to freezing using cells in which the plasma membrane had been disrupted by repeated freezing and thawing. In chilling-sensitive Saintpaulia and mungbean cells, the cells with a disrupted plasma membrane responded to freezing at -2 degrees C by intracellular freezing. By contrast, in chilling-resistant orchid cells, as well as in other cells of chilling-resistant and freezing-resistant plant tissues, including leaves of orchard grass ( Dactylis glomerata L.), leaves of Arabidopsis thaliana (L.) Heynh. and cortical tissues of mulberry ( Morus

  20. Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Kim, Sun Ja; Chung, T. H.; Leem, S. H.

    2013-09-01

    Atmospheric pressure plasma jets employing nitrogen, helium, or argon gases driven by low-frequency (several tens of kilohertz) ac voltage and pulsed dc voltage were fabricated and characterized. The changes in discharge current, optical emission intensities from reactive radicals, gas temperature, and plume length of plasma jets with the control parameters were measured and compared. The control parameters include applied voltage, working gas, and gas flow rate. As an application to plasma-cancer cell interactions, the effects of atmospheric pressure plasma jet on the morphology and intracellular reactive oxygen species (ROS) level of human lung adenocarcinoma cell (A549) and human bladder cancer cell (EJ) were explored. The experimental results show that the plasma can effectively control the intracellular concentrations of ROS. Although there exist slight differences in the production of ROS, helium, argon, or nitrogen plasma jets are found to be useful in enhancing the intracellular ROS concentrations in cancer cells.

  1. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  2. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    PubMed

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-01-01

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  3. Galvanic cell having a saturated fluorocarbon plasma-treated sealing gasket

    SciTech Connect

    Yasuda, H.; van Lier, J. A.

    1985-02-26

    Galvanic cells employing compressible gaskets having at least a portion of the sealing areas of such gaskets coated with plasma deposited fluorine atoms demonstrate increased resistance to electrolyte leakage.

  4. AT14A mediates the cell wall-plasma membrane-cytoskeleton continuum in Arabidopsis thaliana cells.

    PubMed

    Lü, Bing; Wang, Juan; Zhang, Yu; Wang, Hongcheng; Liang, Jiansheng; Zhang, Jianhua

    2012-06-01

    AT14A has a small domain that has sequence similarities to integrins from animals. Integrins serve as a transmembrane linker between the extracellular matrix and the cytoskeleton, which play critical roles in a variety of biological processes. Because the function of AT14A is unknown, Arabidopsis thaliana AT14A, which is a transmembrane receptor for cell adhesion molecules and a middle member of the cell wall-plasma membrane-cytoskeleton continuum in plants, has been described. AT14A, co-expressed with green fluorescent protein (GFP), was found to localize mainly to the plasma membrane. The mutant Arabidopsis at14a-1 cells exhibit various phenotypes with cell shape, cell cluster size, thickness, and cellulose content of cell wall, the adhesion between cells, and the adhesion of plasma membrane to cell wall varied by plasmolysis. Using direct staining of filamentous actin and indirect immunofluorescence staining of microtubules, cortical actin filaments and microtubules arrays were significantly altered in cells, either where AT14A was absent or over-expressed. It is concluded that AT14A may be a substantial middle member of the cell wall-plasma membrane-cytoskeleton continuum and play an important role in the continuum by regulating cell wall and cortical cytoskeleton organization. PMID:22456678

  5. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  6. Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma.

    PubMed

    Okada, Tomohiro; Chang, Chun-Yao; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru; Kumagai, Shinya

    2016-09-01

    We have developed a micro electromechanical systems (MEMS) device which enables plasma treatment for cells cultured in media. The device, referred to as the plasma-on-chip, comprises microwells and microplasma sources fabricated together in a single chip. The microwells have through-holes between the microwells and microplasma sources. Each microplasma source is located on the backside of each microwells. The reactive components generated by the microplasma sources pass through the through-holes and reach cells cultured in the microwells. In this study, a plasma-on-chip device was modified for a stable plasma treatment. The use of a dielectric barrier discharge (DBD) technique allowed a stable plasma treatment up to 3 min. The plasma-on-chip with the original electrode configuration typically had the maximum stable operation time of around 1 min. Spectral analysis of the plasma identified reactive species such as O and OH radicals that can affect the activity of cells. Plasma treatment was successfully performed on yeast (Saccharomyces cerevisiae) and green algae (Chlorella) cells. While no apparent change was observed with yeast, the treatment degraded the activity of the Chlorella cells and decreased their fluorescence. The device has the potential to help understand interactions between plasma and cells.

  7. Interaction of cold plasmas with biological cells: What we have learned so far

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir

    2006-10-01

    In the last two decades, non-equilibrium, low temperature, atmospheric pressure plasmas have gained acceptance as an attractive technological solution in industrial applications such as the surface modification of polymers and the cleaning of flue gases. As more reliable ``cold'' plasma sources are developed, new and interesting applications continue to emerge. Amongst the more recent applications, the use of atmospheric pressure cold plasmas in the biomedical field is presently experiencing a heightened interest from the plasma science research community. This is due to promising possibilities to use these plasmas in medical research such as wound healing, tissue engineering, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments. However, before any of these exciting possibilities become reality, an in-depth understanding of the effects of plasma on the cellular and sub-cellular levels has to be achieved. In this paper, a review of the knowledge that has been gained during the last few years will be presented. First an overview of research efforts on the inactivation of bacterial cells will be presented. This includes the evaluation of the inactivation kinetics and the roles played by the various plasma agents (such as UV photons and free radicals) in the inactivation process. In the second part of this talk, plasma sub-lethal effects on both prokaryotic and eukaryotic cells will be discussed. Finally, the prospects of the use of ``cold'' plasmas in the biomedical field are outlined.

  8. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Neoplasms for more information. High-dose chemotherapy with stem cell transplant This treatment is a way of giving ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  9. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    MedlinePlus

    ... Neoplasms for more information. High-dose chemotherapy with stem cell transplant This treatment is a way of giving ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  10. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    MedlinePlus

    ... Neoplasms for more information. High-dose chemotherapy with stem cell transplant This treatment is a way of giving ... blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood ...

  11. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    NASA Astrophysics Data System (ADS)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  12. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  13. Differential Plasma-cell evolution is linked with Dermatophagoides pteronyssinus immunotherapy response

    PubMed Central

    Fernández, Tahia D.; Gómez, Enrique; Doña, Inmaculada; Campo, Paloma; Rondon, Carmen; Gonzalez, Miguel; Gomez, Francisca; Palomares, Francisca; Salas, Maria; Blanca, Miguel; Mayorga, Cristobalina; Torres, Maria J.

    2015-01-01

    Allergic rhinitis is highly prevalent worldwide. Immunotherapy has been shown to control its symptoms, however, up to 30% of patients may not respond. Previous studies of the immunological mechanisms involved in allergen-immunotherapy (AIT) have focused on the humoral and T-cell response and several studies have evaluated some B-cell subpopulations during AIT and their role in immunological tolerance. However, although B and plasma-cell subpopulations are two of the most important cellular subtypes involved in allergic reactions, their relation with AIT efficacy remains unelucidated. The objective was to analyze the effects of immunotherapy on different B and plasma-cell subpopulations and whether these changes correlate with the clinical response to the treatment. Although no changes are found in B-cell subpopulations, responder patients show increased levels of memory B-cells even before the beginning of treatment. Changes in plasma-cell subpopulations are found, mainly in circulating inflammatory plasma-cells that could affect the response to the allergen. Moreover, an early increase of specific-IgG4 and IgG4 secreting-cells was found. All these suggest that the determination of the memory B-cells before the initiation of the treatment, and the quantification of IgG4 and IgG4-secreting-cells in the first months of immunotherapy, could serve as markers for the clinical response to treatment. PMID:26416023

  14. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  15. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  16. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment

    SciTech Connect

    Ma Ruonan; Zhang Qian; Feng Hongqing; Liang Yongdong; Li Fangting; Zhu Weidong; Zhang Jue; Fang Jing; Becker, Kurt H.

    2012-03-19

    With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

  17. Syntaxin-4 is essential for IgE secretion by plasma cells

    SciTech Connect

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben; Loughran, Sinéad T.; Walls, Dermot; Loscher, Christine E.

    2013-10-11

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.

  18. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  19. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  20. Mechanisms of interaction of non-thermal plasma with living cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer Ulhas

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces various highly active molecules and atoms without heat. As a result, its effects on living cells and tissues could be selective and tunable. This makes non-thermal plasma very attractive for medical applications. However, despite several interesting demonstrations of non-thermal plasma in blood coagulation and tissue sterilization, the biological and physical mechanisms of its interaction with living cells are still poorly understood impeding further development of non-thermal plasma as a clinical tool. Although several possible mechanisms of interaction have been suggested, no systematic experimental work has been performed to verify these hypotheses. Using cells in culture, it is shown in this work that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects ranging from increasing cell proliferation to inducing apoptosis which are consistent with the effects of oxidative stress. DNA damage is chosen as a marker to assess the effects of oxidative stress in a quantitative manner. It is demonstrated here that plasma induced DNA damage as well as other effects ranging from cell proliferation to apoptosis are indeed due to production of intracellular reactive oxygen species (ROS). We found that DNA damage is initiated primarily by plasma generated active neutral species which cannot be attributed to ozone alone. Moreover, it is found that extracellular media and its components play a critical role in the transfer of the non-thermal plasma initiated oxidative stress into cells. Specifically, it is found that the peroxidation efficiency of amino acids is the sole predictor of the ability of the medium to transfer the oxidative stress induced by non-thermal plasma. Phosphorylation of H2AX, a DNA damage marker, following plasma treatment is found to be ATR dependent and ATM

  1. Red cell volume with changes in plasma osmolarity during maximal exercise.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.

    1973-01-01

    The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.

  2. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  3. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane.

    PubMed

    Jokhadar, Špela Zemljič; Derganc, Jure

    2015-04-01

    Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure. PMID:25395197

  4. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  5. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  6. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  7. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H.; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option. PMID:26042423

  8. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells.

    PubMed

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified "cellular movement, connective tissue development and function, tissue development" and "cell-to-cell signaling and interaction, cell death and survival, cellular development" as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.

  9. The effect of hemolysis on plasma oxidation and nitration in patients with sickle cell disease.

    PubMed

    Kupesiz, Alphan; Celmeli, Gamze; Dogan, Serdar; Antmen, Bulent; Aslan, Mutay

    2012-07-01

    This study aimed to determine the effect of haemolysis on plasma oxidation and nitration in sickle cell disease (SCD) patients. Blood was collected from haemoglobin (Hb)A volunteers and homozygous HbSS patients who had not received blood transfusions in the last 3 months. Haemolysis was characterised by low levels of haemoglobin and haptoglobin and high levels of reticulocyte, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), plasma cell-free haemoglobin, bilirubin, total lactate dehydrogenase (LDH) and dominance of LDH-1 isoenzyme. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were measured to evaluate oxidised lipids, oxidised and nitrated proteins, respectively. Plasma nitrite-nitrate levels were also determined to assess nitric oxide (NO) production in both SCD patients and controls. Markers of haemolysis were significantly evident in SCD patients compared to controls. Plasma 8-isoprostane, protein carbonyl and nitrotyrosine levels were markedly elevated in SCD patients compared to controls. Linear regression analysis revealed a significant inverse correlation between haemoglobin and reticulocyte counts and a significant positive correlation of plasma cell-free haemoglobin with protein carbonyl and nitrotyrosine levels. The obtained data shows that increased haemolysis in SCD increases plasma protein oxidation and nitration.

  10. IgG4 related sclerosing mastitis: expanding the morphological spectrum of IgG4 related diseases.

    PubMed

    Chougule, Abhijit; Bal, Amanjit; Das, Ashim; Singh, Gurpreet

    2015-01-01

    IgG4 related disease (IgG4RD) is a recently recognised condition characterised by mass forming lesions associated with storiform fibrosis, obliterative phlebitis, lymphoplasmacytic infiltrate rich in IgG4 positive plasma cells and elevated serum IgG4 levels. Although rare, mammary involvement has been reported as IgG4 related sclerosing mastitis, the morphological counterpart of a growing family of IgG4 related diseases. A total of 17 cases belonging to mass forming benign inflammatory breast lesions such as plasma cell mastitis, granulomatous lobular mastitis, non-specific mastitis and inflammatory pseudotumour were investigated as a possible member of IgG4 related sclerosing mastitis. Clinical, radiological, histopathological and immunohistochemistry findings were noted in all cases. Cases diagnosed as inflammatory pseudotumour showed all the histopathological features of IgG4RD along with increased number of IgG4 positive plasma cells and IgG4/IgG ratio >40%. However, only a few IgG4 positive cells were seen in plasma cell mastitis, granulomatous lobular mastitis and non-specific mastitis cases. These cases also did not fulfill the morphological criteria for the diagnosis of IgG4 related diseases. IgG4RD should be excluded in plasma cell rich lesions diagnosed on core biopsies by IgG4 immunostaining. This can avoid unnecessary surgery as IgG4 related diseases respond to simple and effective steroid treatment.

  11. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  12. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy

    SciTech Connect

    Kim, Kangil; Kim, Geunyoung; Yang, Sang Sik; Choi, Jae Duk; Hong, Yong Cheol; Noh, Eun Joo; Lee, Jong-Soo

    2011-02-14

    We propose a plasma-jet device with a micrometer-sized nozzle array for use in a cancer therapy. Also, we show the biological effects of atmospheric-pressure plasma on living cells. Nitrogen-plasma activated a surrogate DNA damage signal transduction pathway, called the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 pathway, suggesting that the nitrogen-plasma generates DNA double-strand breaks. Phosphorylation of H2AX and p53 was detected in the plasma-treated cells, leading to apoptotic cell death. Thus, an effect for the nitrogen plasma in the control of apoptotic cell death provides insight into the how biological effects of the nitrogen-plasma can be applied to the control of cell survival, a finding with potential therapeutic implications.

  13. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Choi, Jae Duk; Hong, Yong Cheol; Kim, Geunyoung; Noh, Eun Joo; Lee, Jong-Soo; Yang, Sang Sik

    2011-02-01

    We propose a plasma-jet device with a micrometer-sized nozzle array for use in a cancer therapy. Also, we show the biological effects of atmospheric-pressure plasma on living cells. Nitrogen-plasma activated a surrogate DNA damage signal transduction pathway, called the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 pathway, suggesting that the nitrogen-plasma generates DNA double-strand breaks. Phosphorylation of H2AX and p53 was detected in the plasma-treated cells, leading to apoptotic cell death. Thus, an effect for the nitrogen plasma in the control of apoptotic cell death provides insight into the how biological effects of the nitrogen-plasma can be applied to the control of cell survival, a finding with potential therapeutic implications.

  14. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  15. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane.

    PubMed Central

    Luzio, J P; Newby, A C; Hales, C N

    1976-01-01

    1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5'-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 mum-adrenaline. Images PLATE 1 PMID:776177

  16. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil.

    PubMed Central

    Sehested, M.; Skovsgaard, T.; van Deurs, B.; Winther-Nielsen, H.

    1987-01-01

    Numerous studies have indicated that the plasma membrane plays an important role in the development of resistance to anthracycline and vinca alkaloid drugs (pleiotropic resistance). We have previously shown that pleiotropically resistant Ehrlich ascites tumour cells, which are of epithelial origin, have a significantly increased plasma membrane traffic (endo/exocytosis) to the endosomal compartment compared to sensitive cells. The present study, using the same ultrastructural morphometric technique, has demonstrated a similar significant difference in plasma membrane traffic between daunorubicin resistant and sensitive P388 cell lines (which are of lymphoid origin). Furthermore, we have shown that this difference between the P388 sublines is accompanied by an approximately 4 fold increase in the plasma membrane area participating in recycling together with an increased endosomal volume, number and membrane area in resistant cells. Plasma membrane traffic in resistant cells was significantly inhibited by the calcium channel blocker verapamil, a well known modulator of anthracycline resistance, but unaffected by daunorubicin itself. The confirmation of this phenotype in an additional pleiotropically resistant cell type with a different histogenesis further supports a hypothesis of endosomal drug trapping and vesicular extrusion as a possible resistance mechanism. Images Figure 1 Figure 2 Figure 3 PMID:3435701

  17. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  18. DEVELOPMENT OF SOLID-STATE DRIVERS FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    SciTech Connect

    Barbosa, F; Arnold, P A; McHale, G B; James, G; Brown, G; Cook, E G; Hickman, B C

    2008-05-14

    Large aperture Plasma Electrode Pockels Cells (PEPC) are an enabling technology in the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. The Pockels cell allows the NIF laser to take advantage of multipass amplifier architecture, thus reducing costs and physical size of the facility. Each Pockels cell comprises four 40-cm x 40-cm apertures arranged in a 4 x 1 array. The combination of the Pockels cell and a thin-film polarizer, configured in a 4 x 1 array, form an optical switch that is key to achieving multi-pass operation. Solid-state Plasma Pulse Generators (PPGs) and high current high voltage solid-state Switch Pulse Generators (SPGs) have been developed for use in the PEPC. The solid-state plasma pulse generators initiate and maintain plasma within the cells; each pulser is capable of delivering 60J of energy to each plasma channel. Deployment of the solid-state PPGs has been completed in NIF. The MOSFET-switched SPG is capable of delivering a requisite fast rise time, 17kV flattop pulse to the cells nonlinear crystals. A complete software and hardware control system has been developed and is currently being tested for use on the solid-state SPGs. Also a transmission line modeling, development, and testing effort is in process, in support of NIFs Advanced Radiographic Capabilities (ARC). Work is scheduled for completion by the end of the calendar year.

  19. Influence of plasma decay on emission of 147-nm ultraviolet light from discharge cells in the plasma display panel

    SciTech Connect

    Uhm, Han S.; Yoo, Naleum; Choi, Eun H.

    2007-04-15

    The time profile of 147-nm light emission from a cell discharge of the plasma display panel is investigated in terms of the xenon mole fraction {chi} and the gas pressure p, including the important influences of the diffusion loss of the plasma and the three-body collisions of excited xenon atoms in the resonance state. The light emission profile dY/dt in time is analytically expressed in terms of the gas pressure and xenon mole fraction. The theoretical analysis indicates that the emission intensity increases from zero, reaches its peak, and then decreases, as time goes by. The peak emission intensity (dY/dt){sub p} and the corresponding emission time t{sub p} are obtained analytically in terms of the gas pressure p and xenon mole fraction {chi}. The total emission Y of 147-nm light during each discharge in the cells is proportional to the plasma decay time {tau}. The experimental data are remarkably consistent with the theoretical predictions.

  20. Low-temperature plasma needle effects on cultured metastatic breast cancer cells

    NASA Astrophysics Data System (ADS)

    Knecht, Sean; Bilen, Sven; Micci, Michael; Brubaker, Timothy; Wilson, Michael; Cook, Ian; Czesak, Nicholas; Hipkins, Garret

    2015-11-01

    The Penn State Low-Temperature Plasma group is presently investigating the applications of low-temperature plasma for biomedical applications, including the effects on MDA-MB-231 metastatic breast cancer cells. A plasma needle system has been designed and constructed that consists of a 22-gauge stainless steel syringe needle, which acts as the high-voltage electrode, covered with PEEK tubing as the dielectric with a ring ground electrode on the outside. The system is driven by a low-frequency AC voltage amplifier, with typical operating conditions of 2-5 kV peak voltage at 5 kHz. Helium is used as the working fluid and produces a plasma jet with ~ cm's visible extent. Cultured breast cancer cells were provided by our collaborator and exposed to the plasma needle for varying doses and detachment of cells was observed. The effects are attributed to reactive oxygen and nitrogen species generation and transport through the cell culture medium. Plasma needle characterization and the results of the breast cancer experiments will be presented.

  1. The interleukin-6 receptor alpha-chain (CD126) is expressed by neoplastic but not normal plasma cells.

    PubMed

    Rawstron, A C; Fenton, J A; Ashcroft, J; English, A; Jones, R A; Richards, S J; Pratt, G; Owen, R; Davies, F E; Child, J A; Jack, A S; Morgan, G

    2000-12-01

    Interleukin-6 (IL-6) is reported to be central to the pathogenesis of myeloma, inducing proliferation and inhibiting apoptosis in neoplastic plasma cells. Therefore, abrogating IL-6 signaling is of therapeutic interest, particularly with the development of humanized anti-IL-6 receptor (IL-6R) antibodies. The use of such antibodies clinically requires an understanding of IL-6R expression on neoplastic cells, particularly in the cycling fraction. IL-6R expression levels were determined on plasma cells from patients with myeloma (n = 93) and with monoclonal gammopathy of undetermined significance (MGUS) or plasmacytoma (n = 66) and compared with the levels found on normal plasma cells (n = 11). In addition, 4-color flow cytometry was used to assess the differential expression by stage of differentiation and cell cycle status of the neoplastic plasma cells. IL-6R alpha chain (CD126) was not detectable in normal plasma cells, but was expressed in approximately 90% of patients with myeloma. In all groups, the expression levels showed a normal distribution. In patients with MGUS or plasmacytoma, neoplastic plasma cells expressed significantly higher levels of CD126 compared with phenotypically normal plasma cells from the same marrow. VLA-5(-) "immature" plasma cells showed the highest levels of CD126 expression, but "mature" VLA-5(+) myeloma plasma cells also overexpressed CD126 when compared with normal subjects. This study demonstrates that CD126 expression is restricted to neoplastic plasma cells, with little or no detectable expression by normal cells. Stromal cells in the bone marrow microenvironment do not induce the overexpression because neoplastic cells express higher levels of CD126 than normal plasma cells from the same bone marrow in individuals with MGUS. (Blood. 2000;96:3880-3886)

  2. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    PubMed

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  3. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah

    2013-03-01

    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  4. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  5. Two Dimensional Particle-In-Cell Code for Simulation of Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Decyk, V. K.; Tonge, J.; Dauger, D. E.

    2002-11-01

    We have developed a two dimensional code for simulating quantum plasmas (1). This unique code propagates many quantum particles forward in time self-consistently using the semi-classical approximation. Because of this it can model the statistical properties of interacting quantum particles. We are currently testing this code using small numbers of particles with model problems which we can use to verify the accuracy of the code. The goal is to model from first principles the statistical properties of plasmas where quantum mechanics plays a role such as hot high density plasmas found in stellar interiors (2). (1) D. Dauger, Semiclassical Modeling of Quantum-Mechanical Multiparticle Systems using Parallel Particle-In-Cell Methods, PHD Thesis (2) M. Opher et. al. , Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Physics of Plasma, 8, No. 5, p. 2454 Sponsored by NSF

  6. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    SciTech Connect

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-15

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 10{sup 5} H{sup +} ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  7. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  8. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage.

  9. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  10. Behavior of the plasma in the anchor cell of the GAMMA 10 tandem mirror

    SciTech Connect

    Islam, Md. Khairul; Nakashima, Yousuke; Higashizono, Yuta; Cho, Teruji

    2006-08-01

    Anchor cells of the GAMMA 10 tandem mirror are composed of minimum-B magnetic field configuration. Behavior of the plasma in the anchor cell is studied using puffing gas flow rate (PGFR) modulation and by covering some parts of the flux tube of each anchor cell by conducting plates (APs). Ambient neutral pressure is decreased by PGFR modulation during axial/potential confinement in both cases without and with APs and it is found that both line density (nl{sub EA}) and diamagnetism (dm{sub EA}) of the anchor cell plasma increase. Lower neutral pressure in the minimum-B region is investigated during the floated APs and significant improvement of the GAMMA 10 plasma parameters is observed. Possible explanations of the experimental results are given from the viewpoint of ambient neutral pressure oriented anchor plasma behavior. Probable reasons of enhanced ambient neutral pressure in the anchor cell and adverse effects of these neutrals on GAMMA 10 plasma parameters are also pointed out.

  11. With regards to the presence of iron granules in plasma cells.

    PubMed

    D'Angelo, G; Giardini, C; Zanco, M D

    1991-12-01

    We report on the occasional presence of iron granules in plasma cells in two male patients respectively 64 and 71 years old, both with excessive drinking habits. One patient also had liver cirrhosis. In both patients the bone-marrow biopsy showed a macrocytic anemia without megaloblasts. We refer the morphologic data because the cases reported are not many and the presence of iron granules in plasma cells was a curious and rare aspect. The most important feature appearing from the data issued is the gap concerning both the source and mechanism that cause this phenomenon. Some investigations have suggested that the plasma cell iron is located in mitochondria, others have noted that iron granules were located between the Golgi region and the rough endoplasmic reticulum. Moreover, the morphologic data are not related to the number of plasma cells in the bone-marrow and there is no causal relation between alcoholic abuse and plasma cell iron. The first problem is common, the second is rare.

  12. The effect of plasma-nitrided titanium surfaces on osteoblastic cell adhesion, proliferation, and differentiation.

    PubMed

    Ferraz, Emanuela P; Sa, Juliana C; de Oliveira, Paulo T; Alves, Clodomiro; Beloti, Marcio M; Rosa, Adalberto L

    2014-04-01

    In this study, we evaluated the effect of new plasma-nitrided Ti surfaces on the progression of osteoblast cultures, including cell adhesion, proliferation and differentiation. Ti surfaces were treated using two plasma-nitriding protocols, hollow cathode for 3 h (HC 3 h) and 1 h (HC 1 h) and planar for 1 h. Untreated Ti surfaces were used as control. Cells derived from human alveolar and rat calvarial bones were cultured on Ti surfaces for periods of up to 14 days and the following parameters were evaluated: cell morphology, adhesion, spreading and proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and gene expression of key osteoblast markers. Plasma-nitriding treatments resulted in Ti surfaces with distinct physicochemical characteristics. The cell adhesion and ALP activity were higher on plasma-nitrided Ti surfaces compared with untreated one, whereas cell proliferation and extracellular matrix mineralization were not affected by the treatments. In addition, the plasma-nitrided Ti surfaces increased the ALP, reduced the osteocalcin and did not affect the Runx2 gene expression. We have shown that HC 3 h and planar Ti surfaces slightly favored the osteoblast differentiation process, and then these surfaces should be considered for further investigation using preclinical models.

  13. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Miletić, M.; Mojsilović, S.; Okić Đorđević, I.; Maletić, D.; Puač, N.; Lazović, S.; Malović, G.; Milenković, P.; Petrović, Z. Lj; Bugarski, D.

    2013-08-01

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications.

  14. Inertial Alfven-Wave-Driven Convective Cells in Low-Density Plasmas

    SciTech Connect

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Stenflo, L.; Balikhin, M.A.

    2005-10-15

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained. The relevance of our theory to spacecraft measurements in the Earth's ionosphere is discussed.

  15. Implementations of mesh refinement schemes for particle-in-cell plasma simulations

    SciTech Connect

    Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.

    2003-10-20

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.

  16. General protocol for the culture of cells on plasma-coated electrospun scaffolds.

    PubMed

    Guex, A Géraldine; Fortunato, Giuseppino; Hegemann, Dirk; Tevaearai, Hendrik T; Giraud, Marie-Noëlle

    2013-01-01

    As opposed to culture on standard tissue-treated plastic, cell culture on three-dimensional scaffolds impedes additional challenges with respect to substrate preparation, cell seeding, culture maintenance, and analysis. We herewith present a general route for the culture of primary cells, differentiated cells, or stem cells on plasma-coated, electrospun scaffolds. We describe a method to prepare and fix the scaffolds in culture wells and discuss a convenient method for cell seeding and subsequent analysis by scanning electron microscopy or immunohistology.

  17. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content.

    PubMed

    Aureli, Massimo; Bassi, Rosaria; Prinetti, Alessandro; Chiricozzi, Elena; Pappalardi, Brigida; Chigorno, Vanna; Di Muzio, Nadia; Loberto, Nicoletta; Sonnino, Sandro

    2012-12-01

    We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

  18. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells.

    PubMed

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jéro Me; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-01-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  19. Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells.

    PubMed Central

    Karimi, S. T.; Schloemer, R. H.; Wilde, C. E.

    1989-01-01

    The presence of a chlamydia-specified antigen associated with the plasma membrane of infected cell lines was demonstrated by indirect immunofluorescence staining with a monoclonal antibody, designated 47A2, specific for the chlamydial genus-specific lipopolysaccharide (LPS) antigen. Staining of HeLa, L-929, and McCoy cells infected with the L2 or F serovar of Chlamydia trachomatis was observed either without fixation or following aldehyde fixation and brief drying. The 47A2-reactive antigen appeared to be present on the plasma membrane, on bleb-like structures on the host cell surface, and on proximal processes of neighboring uninfected cells. Antibodies to chlamydial protein antigens such as the major outer membrane protein produced no surface staining under similar conditions. Membrane vesicles elaborated from infected cells were enriched for the 47A2-reactive antigen. Superinfection of chlamydia-infected cells with vesicular stomatitis virus, an enveloped virus which buds from the plasma membrane, allowed purification of progeny virions that were enriched with chlamydial LPS. These results are consistent with the presence of chlamydial LPS in the plasma membranes of infected host cells. Images PMID:2470679

  20. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  1. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  2. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    PubMed

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  3. Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-10-01

    Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily in the lower phase, microsomal/mitchrondrial-rich fraction.

  4. A fluorescent cholesterol analogue for observation of free cholesterol in the plasma membrane of live cells.

    PubMed

    Ogawa, Yoshikatsu; Tanaka, Mutsuo

    2016-01-01

    Free cholesterol in mammalian cells resides mostly in the plasma membrane, where it plays an important role in cellular homeostasis. We synthesized a new fluorescent cholesterol analogue that retained an intact alkyl chain and the sterane backbone of cholesterol. The hydroxyl group of cholesterol was converted into an amino group that was covalently linked to the fluorophore tetramethylrhodamine to retain the ability to form hydrogen bonds with adjacent molecules. Incubating live MDCK (Madin-Darby canine kidney) cells with our fluorescent cholesterol analogue resulted in the generation of intense signals that were detected by microscopy at the plasma membrane. Incubation with the analogue exerted minimal, if any, influence on cell growth, indicating that it could serve as a useful tool for analyzing free cholesterol at the plasma membrane.

  5. Transport of endocannabinoids across the plasma membrane and within the cell.

    PubMed

    Fowler, Christopher J

    2013-05-01

    Endocannabinoids are readily accumulated from the extracellular space by cells. Although their uptake properties have the appearance of a process of facilitated diffusion, it is by no means clear as to whether there is a plasma membrane transporter dedicated to this task. Intracellular carrier proteins that shuttle the endocannabinoid anandamide from the plasma membrane to its intracellular targets such as the metabolic enzyme, fatty acid amide hydrolase, have been identified. These include proteins with other primary functions, such as fatty-acid-binding proteins and heat shock protein 70, and possibly a fatty acid amide hydrolase-like anandamide transporter protein. Thus, anandamide uptake can be adequately described as a diffusion process across the plasma membrane followed by intracellular carrier-mediated transport to effector molecules, catabolic enzymes and sequestration sites, although it is recognized that different cells are likely to utilize different mechanisms of endocannabinoid transport depending upon the utility of the endocannabinoid for the cell in question. PMID:23441874

  6. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    NASA Astrophysics Data System (ADS)

    Cabarrocas, Pere Roca i.; Chaâbane, N.; Kharchenko, A. V.; Tchakarov, S.

    2004-12-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics.

  7. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    SciTech Connect

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S. )

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with ({sup 14}C)sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans.

  8. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  9. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    PubMed

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  10. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  11. Control of the Proliferation of Mammalian Cells by the Non-Thermal Atmospheric Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Ha, Chang Seung; Ma, Yonghao; Lee, Jungyeol; Song, Kiwon

    2012-10-01

    Recent development of the atmospheric pressure plasmas (APPs) reported dramatic achievement on the applications to sterilization, wound healing, blood coagulation, and so on. These effects are coming from the abundant electrons, various ions, radicals, and neutral atoms which cause specific interactions with cells. However, the application of APPs to human cells has been mainly focused on cell death, but not so much on cell proliferation. In this study, the effects of a non-thermal dielectric barrier discharge (DBD) were investigated for three different human cell lines. It was observed that the exposure of APP to human adipose-derived stem cells (ASC) and the primary lung fibroblast IMR-90 cells induced increased cell proliferation in a specific condition. On the other hand, the same exposure of APP to HeLa cells dramatically decreased their viability. These observations suggest that different types of human cells differentially respond to the exposure of APP.

  12. Identification of DNA-binding proteins on human umbilical vein endothelial cell plasma membrane.

    PubMed Central

    Chan, T M; Frampton, G; Cameron, J S

    1993-01-01

    The binding of anti-DNA antibodies to the endothelial cell is mediated through DNA, which forms a bridge between the immunoglobulin and the plasma membrane. We have shown that 32P-labelled DNA bound to the plasma membrane of human umbilical vein endothelial cells (HUVEC) by a saturable process, which could be competitively inhibited by non-radiolabelled DNA. In addition, DNA-binding was enhanced in HUVEC that had been treated with IL-1 alpha or tumour necrosis factor-alpha (TNF-alpha). DNA-binding proteins of mol. wt 46,000, 92,000, and 84,000 were identified by the binding of 32P-labelled DNA to plasma membrane proteins separated on SDS-PAGE. DNA-binding proteins of mol. wt 46,000 and 84,000 were also present in the cytosol and nucleus. Murine anti-DNA MoAb410 bound to a single band, at mol. wt 46,000, of plasma membrane protein, in the presence of DNA. Our results showed that DNA-binding proteins are present in different cellular fractions of endothelial cells. DNA-binding proteins on the cell membrane could participate in the in situ formation of immune deposits; and their presence in the cell nucleus suggests a potential role in the modulation of cell function. Images Fig. 3 Fig. 4 PMID:8419070

  13. Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma.

    PubMed

    Atyabi, Seyed Mohammad; Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Mivehchi, Houri; Nagheh, Zahra

    2016-06-01

    The field of tissue engineering is an emerging discipline which applies the basic principles of life sciences and engineering to repair and restore living tissues and organs. The purpose of this study was to investigate the effect of cold and non-thermal plasma surface modification of poly (ϵ-caprolactone) (PCL) scaffolds on fibroblast cell behavior. Nano-fiber PCL was fabricated through electrospinning technique, and some fibers were then treated by cold and non-thermal plasma. The cell-biomaterial interactions were studied by culturing the fibroblast cells on nano-fiber PCL. Scaffold biocompatibility test was assessed using an inverted microscope. The growth and proliferation of fibroblast cells on nano-fiber PCL were analyzed by MTT viability assay. Cellular attachment on the nano-fiber and their morphology were evaluated using scanning electron microscope. The result of cell culture showed that nano-fiber could support the cellular growth and proliferation by developing three-dimensional topography. The present study demonstrated that the nano-fiber surface modification with cold plasma sharply enhanced the fibroblast cell attachment. Thus, cold plasma surface modification greatly raised the bioactivity of scaffolds.

  14. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  15. Cold plasma selectivity in the interaction with various types of the cells

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2011-10-01

    Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.

  16. Power source effects of soft plasma jet and the differential response of skin cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Taylor, Nathaniel; Dobrynin, Danil; Fridman, Alexander; Choi, Eun Ha

    2014-10-01

    The effects of pulsed power direct current energy sources were compared using an indirect discharge plasma jet applied to treat cancerous and normal skin cells. Two power supplies with different voltage and current profiles were compared and optimized through the measurement of physical parameters and evaluated through the treatment of skin cells using an atmospheric pressure nitrogen gas plasma jet. Plasma density and temperature, power output, gas output temperature, and reactive species production were measured. Cell morphology, viability, and ROS generation were investigated using staining. A differential response has been shown between the normal and cancerous cell lines. The cancer cells viability reduced while normal cells did not over the same treatment time.

  17. IgG4(+) plasma cells in sclerosing variant of mucoepidermoid carcinoma.

    PubMed

    Tian, Wei; Yakirevich, Evgeny; Matoso, Andres; Gnepp, Douglas R

    2012-07-01

    IgG4-related sclerosing disease is a recently described syndrome with unique histologic features characterized by intense lymphoplasmacytic infiltrates with increased IgG4 plasma cells and dense stromal sclerosis. The disease spectrum frequently includes benign inflammatory diseases, such as autoimmune pancreatitis, cholangitis, and chronic sclerosing sialadenitis (CSS). Mucoepidermoid carcinoma (MEC) is the most common primary malignancy in the salivary gland. The rare sclerosing variant of MEC is characterized by dense stromal sclerosis and lymphoplasmacytic infiltrates. Our goal was to further characterize lymphoplasmacytic infiltrates with respect to IgG4 expression. Six sclerosing MECs from our pathology service over the past 20 years were selected. In addition, 11 regular MECs with lymphoplasmacytic infiltrates, 4 CSS cases, and 12 nonsclerosing chronic sialadenitis cases were evaluated. None of the sclerosing MEC patients had IgG4-related sclerosing disease. The absolute number of IgG4 plasma cells was significantly increased in sclerosing MEC as compared with the regular type (75 vs. 20 per image field; P<0.05). Furthermore, the proportion of IgG4/IgG plasma cells was markedly elevated in sclerosing MEC as compared with the regular type (46.5% vs. 17%; P<0.05). In CSS, IgG4/IgG ratio was significantly increased as compared with nonsclerosing chronic sialadenitis (54% vs. 6.73%; P<0.01). This study is the first to demonstrate increased IgG4 plasma cells in sclerosing MEC. The association of elevated IgG4 plasma cells with increased fibrosis in the sclerosing variant of MEC suggests a role of IgG4 plasma cells in fibrogenesis and may be a new concept related to sclerosis in cancer.

  18. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  19. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Gabriel, Onno; Kirner, Simon; Klick, Michael; Stannowski, Bernd; Schlatmann, Rutger

    2014-02-01

    A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD) of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  20. Role of Flow Cytometry in the Diagnosis and Prognosis of Plasma Cell Myeloma.

    PubMed

    Olteanu, Horatiu

    2016-03-01

    This article provides an overview of the role of flow cytometry in the diagnosis and follow-up of plasma cell myeloma. A brief introduction to the general immunophenotypic features of normal and myeloma plasma cells is provided, followed by a discussion of technical issues as they relate to the application of flow cytometry in this entity. The prognostic and therapeutic utility of flow cytometric immunophenotyping in myeloma is also analyzed, with an emphasis on the growing role of minimal residual analysis as potential biomarker for evaluating treatment efficacy and for tailoring risk-adapted treatment, in prospective clinical trials. PMID:26940271

  1. State-of-the-Art Imaging and Staging of Plasma Cell Dyscrasias.

    PubMed

    Amini, Behrang; Yellapragada, Sarvari; Shah, Shetal; Rohren, Eric; Vikram, Raghunandan

    2016-05-01

    Monoclonal gammopathy of unknown significance (MGUS) is a clinically asymptomatic premalignant clonal plasma cell or lymphoplasmacytic proliferative disorder. Smoldering multiple myeloma, also called asymptomatic multiple myeloma, is an intermediate stage between MGUS and symptomatic multiple myeloma. As the name implies, extraosseous or extramedullary myeloma refers to the presence of myeloma deposits outside the skeletal system. Waldenström macroglobulinemia is a distinct subtype of plasma cell dyscrasia characterized by lymphoplasmacytic lymphoma in the bone marrow with an associated IgM monoclonal gammopathy. Amyloidosis is a condition characterized by extracellular deposition of fibrils composed of a variety of normal serum proteins. PMID:27153790

  2. Outcome after autologous stem cell transplantation for multiple myeloma in patients with preceding plasma cell disorders.

    PubMed

    Kumar, Shaji K; Dingli, David; Lacy, Martha Q; Dispenzieri, Angela; Hayman, Suzanne R; Buadi, Francis K; Rajkumar, S Vincent; Litzow, Mark R; Gertz, Morie A

    2008-04-01

    A third of patients with multiple myeloma (MM) have a preceding diagnosis of plasma cell proliferative disorder (PCPD), mostly monoclonal gammopathy of undetermined significance (MGUS), smoldering MM (SMM) or plasmacytoma. While autologous stem cell transplantation (SCT) improves survival in MM, it is not clear if patients with preceding PCPD have a different outcome. We identified 151 patients with preceding PCPD from among 804 patients undergoing SCT, and their outcomes were compared. The response rates, including complete responses, were similar between the groups. Patients with a preceding diagnosis of MGUS had longer time to progression (TTP; 27.5 months vs. 17.2 months, P = 0.01), and longer overall survival (OS) from transplant (80.2 months vs. 48.3 months, P = 0.03) compared to those with de novo myeloma. However no differences were seen among those with a preceding diagnosis of SMM or plasmacytoma in terms of TTP or OS from transplant when compared to those with de novo myeloma. Multivariate analysis indicated that the presence of MGUS prior to myeloma was prognostic for post-transplant relapse independent of other known risk factors. Patients with pre-existing MGUS prior to myeloma diagnosis have a better outcome following HDT, reflecting more indolent disease and a favourable biology than those presenting with de novo myeloma. PMID:18318761

  3. Influence of plasma etching in a multi chamber system on a-Si solar cell performance

    NASA Astrophysics Data System (ADS)

    Kausche, H.; Moeller, M.; Plaettner, R.

    The plasma-CVD deposition system consisting of two chambers and developed at Siemens can deposit 9 pin solar cells of 100 sq cm simultaneously. Cleaning of the internal surfaces coated with a-Si is performed by plasma etching. The etch gases CF4+O2, SF6 and NF3 were investigated with respect to their etch rates, their efficacy in cleaning 'hidden' parts in the chamber, and with respect to the etching reaction products affecting the performance of the subsequently deposited cells. Mass spectrometric cell performance measurements were therefore taken. The sequence of etching with CF4+O2 or NF3, glow discharge in Ar+H2, pre-deposition of a-Si and cell deposition proved to be a suitable method for achieving high cell performance.

  4. IgG4-related disease of the rectum

    PubMed Central

    Choi, Sung-Bong; Lim, Chul-Hyun; Cha, Myung-Guen

    2016-01-01

    IgG4-related disease is a relatively new disease entity characterized by elevated serum IgG4 levels and marked infiltration of IgG4-positive plasma cells in lesions. Organ enlargement or nodular lesions consisting of abundant infiltration of lymphocytes and IgG4-positive plasma cells and fibrosis are seen in various organs throughout. We encountered a patient with an inflammatory pseudotumor of the rectum, which was histopathologically confirmed to be an IgG4-related disease. The patient was a 28-year-old woman who had constipation for 3 months. The endoluminal ultrasonography showed a lesion that was heterogeneous and low echogenic in lower rectum. The result of colonoscopic biopsy findings was of chronic proctitis with lymphoid aggregates. For a confirmative diagnosis, excision was performed. Histopathological examination represented plasma cell infiltration and fibrosis. Immunohistochemistry revealed prominence of IgG4-positive plasma cells and confirmed the diagnosis of IgG4-related disease. The patient is currently under observation on low-dose oral prednisolone without relapse. PMID:27186575

  5. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma

    PubMed Central

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-01-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients. PMID:27599779

  6. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines.

    PubMed Central

    Landmann, R M; Müller, F B; Perini, C; Wesp, M; Erne, P; Bühler, F R

    1984-01-01

    Lymphocyte subpopulations were measured before and after physical and psychological stress in 15 healthy subjects and correlated with plasma catecholamine and cortisol levels. During psychological stress monocytes (P less than 0.05), NK (P less than 0.01), B cells (P less than 0.05) and heart rate (P less than 0.001) increased, while catecholamines remained unchanged. With physical stress granulocytes, monocytes and all lymphocyte subsets increased significantly, although B cells rose more than T cells and T (suppressor) cells more than T (helper) cells. Thus the ratio of T/B cells and of Th/Ts cells decreased (P less than 0.001 and P less than 0.01). Adrenaline and noradrenaline concentrations increased (P less than 0.001), while cortisol remained unchanged. There was a negative relationship between adrenaline and the Th/Ts cell ratio before and after stress (P less than 0.05). Lymphocyte subpopulations from a different group of 4 healthy subjects were analysed before and after isoproterenol infusion. There was a small increase in Ts and B cells only (P less than 0.1) and a decrease of the T/B cell ratio (P less than 0.05). The predominant enrichment of circulating B, Ts and NK cells during short lasting adrenergic activation, as well as the relationship of the T cell changes to plasma adrenaline, suggest an immunoregulatory effect of the sympathetic nervous system in stress. PMID:6478647

  7. Optical methods for measuring plasma membrane osmotic water permeability in cell layers

    NASA Astrophysics Data System (ADS)

    Farinas, Javier Anibal

    Optical methods were developed to measure water permeability in cell layers and used to characterize water channel transfected cells and measure individual plasma membrane water permeabilities of epithelial cells. The general approach was to measure the rate of change of cell volume in response to osmotic gradients. Changes in solute concentration resulting from cell volume changes were used to generate optical signals. Because of the high data acquisition rates obtainable with optical instruments, very high water permeabilities found in cells containing water channels can be measured. Total internal reflection microfluorimetry was used to measure water permeability in cells grown on transparent, solid supports. The fluorescence measured from cells containing a cytosolic fluorophore was inversely proportional to cell volume. The method was applied to transfected cells which expressed water channels and to investigate a cell model of the vasopressin-regulated shuttling of AQP2. Interferometry was used to measure cell volume and water permeability in adherent or non-adherent epithelial cell layers. Volume changes were shown to alter the optical path length of light passing through a cell layer. An interferometer was used to convert the small changes in optical path length to measurable changes in intensity. Cell membrane osmotic water permeability was determined from the time course of interference signal in response to osmotic gradients. Individual plasma membrane water permeabilities of epithelial cells were measured. To overcome the difficulties associated with interferometry, a spatial filtering microscopy method was developed based on changes in transmitted light intensity in a phase contrast microscope occurring after volume changes induced by osmotic gradients. A theory based on the refractive index changes observed in cells by interferometry was developed to explain the dependence of transmitted light intensity on cell volume. The method was applied to

  8. Iron stimulates plasma-activated medium-induced A549 cell injury

    PubMed Central

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD+ and ATP, and elevations in intracellular Ca2+. The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  9. Simulation of the Radiative Emission from Plasmas Based on LSP Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, Igor; Woodruff, Pamela; Welch, Dale; Thoma, Carston; Witherspoon, Douglas

    2009-11-01

    Particle-in-cell (PIC) simulation codes are valuable tools in simulating the physical properties of plasmas in a wide variety of high energy density laboratory plasma experiments. Two examples of this are short-pulse laser experiments, which are used to study the fast ignition concept for inertial fusion, and plasma jet experiments, which are of interest to magnetic fusion and mageto-inertial fusion studies. The LSP code is a widely-used PIC simulation code that computes the detailed characteristics of electron and ion particle distributions in such experiments. To compute the radiative emission characteristics of plasmas based on PIC simulation predictions, we use the SPECT3D multi-dimensional collisional-radiative package to generate high-resolution spectra and images which can be compared with experimental measurements. SPECT3D includes the effects of energetic particles (including relativistic electrons) in computing non-LTE atomic level populations, emergent spectra, and images for the target plasma. We will present results for the radiative characteristics of plasmas created in short-pulse laser and plasma jet experiments.

  10. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    PubMed Central

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382

  11. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    PubMed

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  12. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  13. Particle-In-Cell simulations of high pressure plasmas using graphics processing units

    NASA Astrophysics Data System (ADS)

    Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter

    2009-10-01

    Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.

  14. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  15. Cellular and transcriptomic analysis of human mesenchymal stem cell response to plasma-activated hydroxyapatite coating.

    PubMed

    Tan, Fei; O'Neill, Feidhlim; Naciri, Mariam; Dowling, Denis; Al-Rubeai, Mohamed

    2012-04-01

    Atmospheric pressure plasma has recently emerged as a technique with a promising future in the medical field. In this work we used the technique as a post-deposition modification process as a means to activate hydroxyapatite (HA) coatings. Contact angle goniometry, optical profilometry, scanning electron microscopy morphology imaging and X-ray photoelectron spectroscopy analysis demonstrate that surface wettability is improved after treatment, without inducing any concomitant damage to the coating. The protein adsorption pattern has been found to be preferable for MSC, and this may result in greater cell attachment and adhesion to plasma-activated HA than to untreated samples. Cell cycle distribution analysis using flow cytometry reveals a faster transition from G(1) to S phase, thus leading to a faster cell proliferation rate on plasma-activated HA. This indicates that the improvement in surface wettability independently enhances cell attachment and cell proliferation, which is possibly mediated by FAK phosphorylation. Pathway-specific polymerase chain reaction arrays revealed that wettability has a substantial influence on gene expression during osteogenic differentiation of human MSC. Plasma-activated HA tends to enhance this process by systemically deregulating multiple genes. In addition, the majority of these deregulated genes had been appropriately translated, as confirmed by ELISA protein quantification. Lastly, alizarin red staining showed that plasma-activated HA is capable of improving mineralization for up to 3 weeks of in vitro culture. It was concluded from this study that atmospheric pressure plasma is a potent tool for modifying the biological function of a material without causing thermal damage, such that adhesion molecules and drugs might be deposited on the original coating to improve performance.

  16. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency.

  17. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.

    PubMed

    Xiang, Nan; Ni, Zhonghua

    2015-12-01

    Herein, we explored the blood cell focusing and plasma isolation using a spiral inertial microfluidic device. First, the flow-rate and concentration effects on the migration dynamics of blood cells were systematically investigated to uncover the focusing mechanisms and steric crowding effects of cells in Dean-coupled inertial flows. A novel phenomenon that the focusing status of discoid red blood cells (RBCs) changes according to the channel height was discovered. These experimental data may provide valuable insights for the high-throughput processing of blood samples using inertial microfluidics. On the basis of the improved understandings on blood cell focusing, efficient isolation of plasma from whole blood with a 20-fold dilution was achieved at a throughput up to 700 μl/min. The purity of the isolated blood plasma was close to 100 %, and the plasma yield was calculated to be 38.5 %. As compared with previously-reported devices, our spiral inertial microfluidic device provides a balanced overall performance, and has overriding advantages in terms of processing throughput and operating efficiency. PMID:26553099

  18. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  19. Asymmetry of plasma membrane lipid order in Madin-Darby Canine Kidney cells.

    PubMed

    Le Grimellec, C; Friedlander, G; Giocondi, M C

    1988-07-01

    Fluorescence anisotropy experiments have been done to estimate, in situ, the lipid order of the plasma membrane of polarized Madin-Darby Canine Kidney cells (MDCK) grown on glass cover slips and labeled by 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), a specific marker of the plasma membrane of living cells. Fluorescence microscopy, back-exchange, and quenching experiments indicated that TMA-DPH labeled the highly ordered (r greater than or equal to 0.32, 37 degrees C) apical domain of the plasma membrane of confluent monolayers. Opening of tight junctions or addition of the probe to cell suspensions resulted in a homogeneous distribution of TMA-DPH over the cell surface and in a marked decrease in anisotropy (0.27 less than or equal to r less than or equal to 0.29) that was due neither to a direct effect of Ca2+ on the probe nor to a change in fluorescence lifetime. Our data indicate that the apical domain, likely the external leaflet, of the plasma membrane of polarized MDCK cells is much more ordered than its basolateral counterpart.

  20. A case of tubulointerstitial nephritis in IgG4-related systemic disease with markedly enlarged kidneys.

    PubMed

    Mise, Naobumi; Tomizawa, Yutaka; Fujii, Akiko; Yamaguchi, Yutaka; Sugimoto, Tokuichiro

    2009-06-01

    IgG4-related systemic disease, including autoimmune pancreatitis, is a multi-organ disorder characterized by elevated serum immunoglobulin G4 (IgG4) concentration and IgG4-positive plasma cell infiltration. We report the case of a 67-year-old man with IgG4-related tubulointerstitial nephritis, presenting with markedly enlarged kidneys and renal dysfunction. The serum IgG4 level was elevated with 4200 mg/dl and pathological examination revealed patchy, clearly fringed areas of IgG4-positive plasma cell infiltration and advanced fibrosis in the renal parenchyma, perirenal tissue and lymph nodes. With oral prednisolone at a dose of 60 mg daily, a contraction of the kidneys and an improvement of renal function were observed. No recurrence of the disease was observed during the reduction of prednisolone to 2 mg daily over 4 years.

  1. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  2. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing

    PubMed Central

    Leone, Patrizia; Berardi, Simona; Frassanito, Maria Antonia; Ria, Roberto; De Re, Valli; Cicco, Sebastiano; Battaglia, Stefano; Ditonno, Paolo; Dammacco, Franco; Vacca, Angelo

    2015-01-01

    Many researchers have speculated that the clinical progression from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) is driven by defects in dendritic cell (DC) function. However, evidence supporting this assumption is controversial, and no mechanism for the putative DC dysfunction has been demonstrated thus far. We studied DC subsets from the bone marrow of MM patients compared with those of MGUS patients and control subjects. We found that myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) accumulate in the bone marrow during the MGUS-to-MM progression. After engulfment of apoptotic tumor plasma cells via CD91, bone marrow mDCs and pDCs mature and are able to activate tumor-specific CD8+ T cells. However, by interacting directly with CD28 on live (nonapoptotic) tumor plasma cells, bone marrow mDCs downregulate the expression of proteasome subunits in these cells, thus enabling their evasion from human leukocyte antigen (HLA) class I–restricted CD8+ T-cell killing. These results suggest that DCs play a dual, but opposing, role in MM: for one, DCs activate CD8+ T cells against tumor plasma cells and, for the other, DCs protect tumor plasma cells from CD8+ T-cell killing. This information should be taken into account in designing immunotherapy approaches to enhance immune surveillance in MGUS and to break down immune tolerance in MM. PMID:26185130

  3. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  4. Fas apoptosis inhibitory molecule enhances CD40 signaling in B cells and augments the plasma cell compartment.

    PubMed

    Kaku, Hiroaki; Rothstein, Thomas L

    2009-08-01

    Fas apoptosis inhibitory molecule (FAIM) was cloned as a mediator of Fas resistance that is highly evolutionarily conserved but contains no known effector motifs. In this study, we report entirely new functions of FAIM that regulate B cell signaling and differentiation. FAIM acts to specifically enhance CD40 signaling for NF-kappaB activation, IRF-4 expression, and BCL-6 down-regulation in vitro, but has no effect on its own or in conjunction with LPS or anti-Ig stimulation. In keeping with its effects on IRF-4 and BCL-6, FAIM overexpression augments the plasma cell compartment in vivo. These results indicate that FAIM is a new player on the field of B cell differentiation and acts as a force multiplier for a series of events that begins with CD40 engagement and ends with plasma cell differentiation.

  5. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    PubMed Central

    2012-01-01

    Background The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. Methods We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. Results TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Conclusions Our data suggest possible future intra

  6. Participation of functionally active plasma cells in acute rejection and response to therapy in renal allografts.

    PubMed

    Bhat, Zeenat Yousuf; Bostwick, David G; Hossain, Deloar; Zeng, Xu

    2014-07-01

    Acute rejection (AR) includes T-cell-mediated and antibody-mediated rejection. The inflammatory infiltrate comprised not only T cells but also varying amounts of B cells (CD20(+)) and plasma cells (CD138(+)). The latter are associated with poor clinical outcomes, but their functional status is not clear. The phosphorylation of the S6 ribosomal protein (p-S6RP) is present in cells that are metabolically active, thus identifying functionally active antibody-secreting plasma cells. This study was designed to evaluate the clinical significance of functionally active p-S6RP plasma cells in AR in renal allografts. Renal allografts with biopsy evidence of AR during 2006-2009 were included. Immunohistochemistry staining for CD20, CD138, and p-S6RP was performed on paraffin-embedded slides and scaled as 0-6. The response to antirejection treatment was assessed by the serum creatinine ratio (CrR) at rejection episode (time 0) and following treatment (4 and 12 weeks). Patients with lower scores (0-2) were compared with a higher scored group (3-6). The T-test was conducted using statistical significance of p<0.05. A total of 28 patients (40.7 ± 14.3 year; M:F=15:13) were diagnosed with acute T-cell-mediated rejection (I and II). The p-S6RP staining in the high-score group had a significantly higher CrR (p<0.05) than the low-score group at the time of biopsy, 4 and 12 weeks following treatment. There was no significant difference in the CrR between groups for CD20 or CD138 staining. Functional antibody-secreting p-S6RP plasma cells are actively participating in AR and associated with poor response to treatment in renal allografts. PMID:24684655

  7. Bystander responses in low dose irradiated cells treated with plasma from gamma irradiated blood

    NASA Astrophysics Data System (ADS)

    Acheva, A.; Georgieva, R.; Rupova, I.; Boteva, R.; Lyng, F.

    2008-02-01

    There are two specific low-dose radiation-induced responses that have been the focus of radiobiologists' interest in recent years. These are the bystander effect in non-irradiated cells and the adaptive response to a challenge dose after prior low dose irradiation. In the present study we have investigated if plasma from irradiated blood can act as a 'challenge dose' on low dose irradiated reporter epithelial cells (HaCaT cell line). The main aim was to evaluate the overall effect of low dose irradiation (0.05 Gy) of reporter cells and the influence of bystander factors in plasma from 0.5 Gy gamma irradiated blood on these cells. The effects were estimated by clonogenic survival of the reporter cells. We also investigated the involvement of reactive oxygen species (ROS) as potential factors involved in the bystander signaling. Calcium fluxes and mitochondrial membrane potential (MMP) depolarization were also examined as a marker for initiation of apoptosis in the reporter cells. The results show that there are large individual differences in the production of bystander effects and adaptive responses between different donors. These may be due to the specific composition of the donor plasma. The observed effects generally could be divided into two groups: adaptive responses and additive effects. ROS appeared to be involved in the responses of the low dose pretreated reporter cells. In all cases there was a significant decrease in MMP which may be an early event in the apoptotic process. Calcium signaling also appeared to be involved in triggering apoptosis in the low dose pretreated reporter cells. The heterogeneity of the bystander responses makes them difficult to be modulated for medical uses. Specific plasma characteristics that cause these large differences in the responses would need to be identified to make them useful for radiotherapy.

  8. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films

    NASA Astrophysics Data System (ADS)

    Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan

    2012-02-01

    For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.

  9. Systems analysis of endothelial cell plasma membrane proteome of rat lung microvasculature

    PubMed Central

    2011-01-01

    Background Endothelial cells line all blood vessels to form the blood-tissue interface which is critical for maintaining organ homeostasis and facilitates molecular exchange. We recently used tissue subcellular fractionation combined with several multi-dimensional mass spectrometry-based techniques to enhance identification of lipid-embedded proteins for large-scale proteomic mapping of luminal endothelial cell plasma membranes isolated directly from rat lungs in vivo. The biological processes and functions of the proteins expressed at this important blood-tissue interface remain unexplored at a large scale. Results We performed an unbiased systems analysis of the endothelial cell surface proteome containing over 1800 proteins to unravel the major functions and pathways apparent at this interface. As expected, many key functions of plasma membranes in general (i.e., cell surface signaling pathways, cytoskeletal organization, adhesion, membrane trafficking, metabolism, mechanotransduction, membrane fusion, and vesicle-mediated transport) and endothelial cells in particular (i.e., blood vessel development and maturation, angiogenesis, regulation of endothelial cell proliferation, protease activity, and endocytosis) were significantly overrepresented in this proteome. We found that endothelial cells express multiple proteins that mediate processes previously reported to be restricted to neuronal cells, such as neuronal survival and plasticity, axon growth and regeneration, synaptic vesicle trafficking and neurotransmitter metabolic process. Surprisingly, molecular machinery for protein synthesis was also detected as overrepresented, suggesting that endothelial cells, like neurons, can synthesize proteins locally at the cell surface. Conclusion Our unbiased systems analysis has led to the potential discovery of unexpected functions in normal endothelium. The discovery of the existence of protein synthesis at the plasma membrane in endothelial cells provides new insight

  10. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.

    PubMed

    Bulychev, Alexander A; Kamzolkina, Natalia A

    2006-10-01

    Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.

  11. Peroxidase-positive Auer bodies in plasma cells in multiple myeloma: a case report

    PubMed Central

    Zhu, Lin; An, Li; Zhang, Xiao-Yan; Ren, Xue-Rui; Song, Jing-Wen

    2015-01-01

    Reports of clinical cases with Auer bodies in the plasma cells in multiple myeloma (MM) are rare; however, most of those reported contain peroxidase (POX)-negative Auer bodies rather than the POX-positive Auer bodies observed in myeloid progenitors, indicating differences in their chemical properties. Furthermore, the cases with POX-positive Auer bodies similar to those observed in myeloid cells are extremely rare in non-myeloid cells. Here, we report the clinical features, laboratory investigations, diagnosis and treatment of a case of MM with POX-positive Auer bodies in plasma cells and review related the literature to advance the prognostic evaluation, diagnosis and treatment of similar cases. PMID:26823884

  12. Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water.

    PubMed

    Chen, Zhitong; Lin, Li; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Nonthermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. The authors report on a NTAP argon solution generated in deionized (DI) water for treating human gastric cancer cells (NCI-N87). Our findings show that the plasma generated in DI water with 30-min duration has the strongest effect on apoptosis in precultured human gastric cancer cells. This result can be attributed to the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data show that the elevated levels of RNS may play a more significant role than ROS in the rate of cell death. PMID:27604078

  13. Splenic Long-Lived Plasma Cells Promote the Development of Follicular Helper T Cells during Autoimmune Responses.

    PubMed

    Jang, Eunkyeong; Cho, Wang Sik; Oh, Yeon-Kyung; Cho, Mi-La; Kim, Jung Mogg; Paik, Doo-Jin; Youn, Jeehee

    2016-02-01

    Long-lived plasma cells (LLPCs) develop under the help of follicular helper T (Tfh) cells and reside mainly in the bone marrow. However, these cells are unusually abundant in the spleen of several autoimmune models including K/BxNsf mice, yet their pathogenic impact remains unknown. To investigate a previously unappreciated role of splenic LLPCs, we sorted splenic plasma cells (PCs) from K/BxNsf and K/BxN mice, corresponding to LLPCs and conventional short-lived PCs, respectively, and compared their phenotypes and ability to prime and induce the differentiation of naive CD4(+) T cells into effector cells in vitro and in vivo. We found that K/BxNsf PCs had lower levels of the Ag presentation machinery and costimulators than K/BxN PCs, and also a lower CD4(+) T cell priming capacity. Autoantigen-pulsed K/BxNsf PCs selectively polarized cognate CD4(+) T cells toward the expression of molecules necessary for Tfh development and function. As a result, the K/BxNsf PC-primed CD4(+) T cells were more effective in stimulating B cells to produce autoantigen-specific IgGs than K/BxN PCs or even dendritic cells. Adoptive transfer of K/BxNsf PCs, but not K/BxN PCs, to K/BxN mice increased numbers of Tfh cells in draining lymph nodes. These results propose that abnormal accumulation of LLPCs in the spleen of autoimmune models drives the differentiation of autoantigen-primed CD4(+) T cells to Tfh cells. This positive feedback loop between splenic LLPCs and Tfh cells may contribute to the persistence of humoral autoimmunity. PMID:26729802

  14. Circumorificial plasmacytosis/plasma cell orificial mucositis: a case series and a review of the literature.

    PubMed

    Galvin, Sheila; Bowe, Conor; O Regan, Esther M; Conlon, Niall; Flint, Stephen R; Healy, Claire M

    2016-09-01

    Circumorificial plasmacytosis is a rare plasma cell proliferative disorder of the orificial mucous membranes. The etiology is unknown, and there are no reported effective treatments to date. We report three cases of idiopathic circumorificial plasmacytosis with varying clinical presentations and responses to treatment, including a first reported case of resolution with adalimumab therapy. PMID:27544398

  15. THz spectroscopy of whole blood, plasma and cells in mice of SHR line with various pathology

    NASA Astrophysics Data System (ADS)

    Panchenko, A.; Tyndyk, M.; Smolyanskaya, O.; Sulatskiy, M.; Kravtsenyuk, O.; Balbekin, N.; Khodzitsky, M.

    2016-08-01

    This paper is devoted to studying of optical properties of whole blood and blood plasma in SHR mice grafted Ehrlich's carcinoma and mice with chronic inflammation at the terahertz frequency range. Additionally physiological saline solution suspension of ascites Ehrlich's carcinoma cells was explored.

  16. Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts

    NASA Astrophysics Data System (ADS)

    Shi, Xingmin; Cai, Jingfen; Xu, Guimin; Ren, Hongbin; Chen, Sile; Chang, Zhengshi; Liu, Jinren; Huang, Chongya; Zhang, Guanjun; Wu, Xili

    2016-04-01

    An argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro. Experimental results showed that, compared with the control cells, the treatment of fibroblasts with 15 s of plasma led to a significant increase of cell viability and collagen synthesis, while the treatment of 25 s plasma resulted in a remarkable decrease. Exploration of related mechanisms suggested that cold plasma could up-regulate CyclinD1 gene expression and down-regulate p27 gene expression at a low dose, while it could down-regulate CyclinD1 expression and up-regulate p27 expression at a higher dose, thus altering the cell cycle progression, and then affecting cell viability and collagen synthesis of fibroblasts. supported partly by National Natural Science Foundation of China (Nos. 81372076, 51307133 and 51221005), China National Funds for Distinguished Young Scientists (No. 51125029), the Sci-Tech Project of Shaanxi Province of China (No. 2010K16-04), and the Fundamental Research Funds for the Central Universities of China (No. xkjc2013004)

  17. Increased plasma levels of CK-18 as potential cell death biomarker in patients with HELLP syndrome

    PubMed Central

    John, K; Wielgosz, S; Schulze-Osthoff, K; Bantel, H; Hass, R

    2013-01-01

    HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome represents a life-threatening pregnancy disorder with high fetal and maternal mortality, but its underlying molecular mechanisms remain unknown. Although apoptosis has been implicated in HELLP syndrome, its pathogenic role remains largely unclear. In the present study, we investigated whether the detection of apoptosis by novel plasma biomarkers is of diagnostic value in HELLP patients. For this purpose, we analyzed two biomarkers that specifically detect apoptosis or overall cell death of epithelial cells, such as hepatocytes or placental trophoblasts, through the release of caspase-cleaved or total (caspase-cleaved and uncleaved) cytokeratin-18 (CK-18) in plasma of HELLP patients compared with pregnant as well as non-pregnant healthy women. In addition, caspase activation and cell death were determined in placental tissues of HELLP patients and individuals with normal pregnancy. In contrast to pregnant or non-pregnant healthy controls, we observed significantly increased levels of both caspase-cleaved and total CK-18 in plasma of HELLP patients. Following delivery, CK-18 levels rapidly decreased in HELLP patients. Caspase activation and cell death were also elevated in placental tissues from HELLP patients compared with healthy pregnant women. These data demonstrate not only that apoptosis is increased in HELLP syndrome, but also that caspase-cleaved or total CK-18 are promising plasma biomarkers to identify patients with HELLP syndrome. Thus, further studies are warranted to evaluate the utility of these biomarkers for monitoring disease activity in HELLP syndrome. PMID:24157880

  18. Membranous nephropathy as a rare renal manifestation of IgG4-related disease

    PubMed Central

    Kurien, A. A.; Raychaudhury, A.; Walker, P. D.

    2015-01-01

    IgG4-related disease, a newly described immune-mediated disorder with tissue infiltration of IgG4-positive plasma cells, has been reported in nearly every organ. In the kidney, it manifests as IgG4-related tubulointerstitial nephritis (TIN) but may also present as membranous nephropathy. We report a patient with IgG4 renal disease who had membranous nephropathy as well as TIN. PMID:26060366

  19. Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Richardson, J. Paul; Dobbs, Fred C.

    2002-07-01

    To date, most research on the interaction of nonequilibrium, atmospheric pressure plasma discharges with bacteria has concentrated on the germicidal effects. Therefore, published results deal mainly with killing efficacy and little attention is given to physical mechanisms and biochemical pathways and their potential alterations when cells of microorganisms are exposed to the plasma. In this letter, an attempt to investigate the effects of plasma exposure on the biochemical pathways of bacteria is presented. In addition, using electron microscopy, we investigate if any gross morphological changes take place when cells are exposed to a lethal dose of plasma. We are testing the hypothesis that disruption of the cell membrane, sometimes to the point of cell lysis, is the mechanism whereby plasma kills cells.

  20. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors.

    PubMed

    Franco, Rodrigo; Panayiotidis, Mihalis I; de la Paz, Lenin D Ochoa

    2008-07-01

    Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters. PMID:18300263

  1. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    SciTech Connect

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.; Zaidi, S.H.

    2000-07-18

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF{sub 6} or a combination of SF{sub 6} and O{sub 2}. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  2. Spatially-Selective Membrane Permeabilization Induced by Cell-Solution Electrode Atmospheric Pressure Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro

    2015-09-01

    Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.

  3. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  4. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2016-05-01

    The use of atmospheric pressure plasma jets (APPJs) in plasma medicine have produced encouraging results in wound treatment, surface sterilization, deactivation of bacteria, and treatment of cancer cells. It is known that many of the reactive oxygen and nitrogen species produced by the APPJ are critical to these processes. Other key components to treatment include the ion and photon fluxes, and the electric fields produced in cells by the ionization wave of the APPJ striking in the vicinity of the cells. These relationships are often complicated by the cells being covered by a thin liquid layer—wet cells. In this paper, results from a computational investigation of the interaction of APPJs with tissue beneath a liquid layer are discussed. The emphasis of this study is the delivery of electric fields by an APPJ sustained in He/O2  =  99.8/0.2 flowing into humid air to cells lying beneath water with thickness of 200 μm. The water layer represents the biological fluid typically covering tissue during treatment. Three voltages were analyzed—two that produce a plasma effluent that touches the surface of the water layer and one that does not touch. The effect of the liquid layer thickness, 50 μm to 1 mm, was also examined. Comparisons were made of the predicted intracellular electric fields to those thresholds used in the field of bioelectronics.

  5. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    SciTech Connect

    Daniel S. Clark; Nathaniel J. Fisch

    2003-06-27

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of {approx}10{sup 17}W/cm{sup 2} by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function.

  6. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer.

    PubMed Central

    Baró, L.; Hermoso, J. C.; Núñez, M. C.; Jiménez-Rios, J. A.; Gil, A.

    1998-01-01

    We evaluated total plasma fatty acid concentrations and percentages, and the fatty acid profiles for the different plasma lipid fractions and red blood cell lipids, in 17 patients with untreated colorectal cancer and 12 age-matched controls with no malignant diseases, from the same geographical area. Cancer patients had significantly lower total plasma concentrations of saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives than healthy controls; when the values were expressed as relative percentages, cancer patients had significantly higher proportions of oleic acid and lower levels of linoleic acid than controls. With regard to lipid fractions, cancer patients had higher proportions of oleic acid in plasma phospholipids, triglycerides and cholesterol esters, and lower percentages of linoleic acid and its derivatives. On the other hand, alpha-linolenic acid was significantly lower in triglycerides from cancer patients and tended to be lower in phospholipids. Its derivatives also tended to be lower in phospholipids and triglycerides from cancer patients. Our findings suggest that colorectal cancer patients present abnormalities in plasma and red blood cell fatty acid profiles characterized by lower amounts of most saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives, especially members of the n-6 series, than their healthy age-matched counterparts. These changes are probably due to metabolic changes caused by the illness per se but not to malnutrition. PMID:9667678

  7. Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy.

    PubMed

    Lärmer, J; Schneider, S W; Danker, T; Schwab, A; Oberleithner, H

    1997-07-01

    We combined the patch-clamp technique with atomic force microscopy (AFM) to visualize plasma membrane proteins protruding from the extracellular surface of cultured kidney cells (MDCK cells). To achieve molecular resolution, patches were mechanically isolated from whole MDCK cells by applying the patch-clamp technique. The excised inside-out patches were transferred on freshly cleaved mica and imaged with the AFM in air and under physiological conditions (i. e. in fluid). Thus, the resolution could be increased considerably (lateral and vertical resolutions 5 and 0.1 nm, respectively) as compared to experiments on intact cells, where plasma membrane proteins were hardly detectable. The apical plasma membrane surface of the MDCK cells showed multiple protrusions which could be identified as membrane proteins through the use of pronase. These proteins had a density of about 90 per micron(2), with heights between 1 and 9 nm, and lateral dimensions of 20-60 nm. Their frequency distribution showed a peak value of 3 nm for the protein height. A simplified assumption - modelling plasma membrane proteins as spherical structures protruding from the lipid bilayer - allowed an estimation of the possible molecular weights of these proteins. They range from 50 kDa to 710 kDa with a peak value of 125 kDa. We conclude that AFM can be used to study the molecular structures of membranes which were isolated with the patch-clamp technique. Individual membrane proteins and protein clusters, and their arrangement and distribution in a native plasma membrane can be visualized under physiological conditions, which is a first step for their identification. PMID:9178623

  8. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  9. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  10. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  11. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells

    PubMed Central

    1984-01-01

    In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution. PMID:6501415

  12. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  13. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.

    PubMed

    Alves, Catarina M; Yang, Y; Carnes, D L; Ong, J L; Sylvia, V L; Dean, D D; Agrawal, C M; Reis, R L

    2007-01-01

    The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50wt%), ethylene vinyl alcohol (SEVA-C; 50/50wt%) and polycaprolactone (SPCL; 30/70wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment. PMID:17011619

  14. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.

    PubMed

    Alves, Catarina M; Yang, Y; Carnes, D L; Ong, J L; Sylvia, V L; Dean, D D; Agrawal, C M; Reis, R L

    2007-01-01

    The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. Biodegradable polymeric blends of cornstarch with cellulose acetate (SCA; 50/50wt%), ethylene vinyl alcohol (SEVA-C; 50/50wt%) and polycaprolactone (SPCL; 30/70wt%) were studied. SCA and SCA reinforced with 10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and control solutions were used to incubate with the characterized SBB and, following this, MG63 osteoblast-like osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the protein system, while onto SPCL it was mainly affected by the plasma treatment.

  15. Aberrant expression of the neuronal transcription factor FOXP2 in neoplastic plasma cells.

    PubMed

    Campbell, Andrew J; Lyne, Linden; Brown, Philip J; Launchbury, Rosalind J; Bignone, Paola; Chi, Jianxiang; Roncador, Giovanna; Lawrie, Charles H; Gatter, Kevin C; Kusec, Rajko; Banham, Alison H

    2010-04-01

    FOXP2 mutation causes a severe inherited speech and language defect, while the related transcription factors FOXP1, FOXP3 and FOXP4 are implicated in cancer. FOXP2 mRNA and protein expression were characterised in normal human tissues, haematological cell lines and multiple myeloma (MM) patients' samples. FOXP2 mRNA and protein were absent in mononuclear cells from different anatomical sites, lineages and stages of differentiation. However, FOXP2 mRNA and protein was detected in several lymphoma (8/20) and all MM-derived cell lines (n = 4). FOXP2 mRNA was expressed in bone marrow samples from 96% of MM patients (24/25), 66.7% of patients with the pre-neoplastic plasma cell proliferation monoclonal gammopathy of undetermined significance (MGUS) (6/9), but not in reactive plasma cells. The frequency of FOXP2 protein expression in CD138(+) plasma cells was significantly higher in MGUS (P = 0.0005; mean 46.4%) and MM patients (P < or = 0.0001; mean 57.3%) than in reactive marrows (mean 2.5%). FOXP2 (>10% nuclear positivity) was detectable in 90.2% of MM (55/61) and 90.9% of MGUS (10/11) patients, showing more frequent expression than CD56 and labelling 75% of CD56-negative MM (9/12). FOXP2 represents the first transcription factor whose expression consistently differentiates normal and abnormal plasma cells and FOXP2 target genes are implicated in MM pathogenesis.

  16. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  17. Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells.

    PubMed

    Cleary, A L

    2001-01-01

    Tradescantia virginiana leaf epidermal cells were plasmolysed by sequential treatment with 0.8 M and 0.3 M sucrose. Plasmolysis revealed adhesion of the plasma membrane to the cell wall at sites coinciding with cytoskeletal arrays involved in the polarisation of cells undergoing asymmetric divisions--cortical actin patch--and in the establishment and maintenance of the division site--preprophase band of microtubules and filamentous (F) actin. The majority of cells retained adhesions at the actin patch throughout mitosis. However, only approximately 13% of cells formed or retained attachments at the site of the preprophase band. After the breakdown of the nuclear envelope, plasmolysis had a dramatic effect on spindle orientation, cell plate formation, and the plane of cytokinesis. Spindles were rotated at abnormal angles including tilted into the plane of the epidermis. Cell plates formed but were quickly replaced by vacuole-like intercellular compartments containing no Tinopal-stainable cell wall material. This compartment usually opened to the apoplast at one side, and cytokinesis was completed by the furrow extending across the protoplast. This atypical cytokinesis was facilitated by a phragmoplast containing microtubules and F-actin. Progression of the furrow was unaffected by 25 micrograms of cytochalasin B per ml but inhibited by 10 microM oryzalin. Phragmoplasts were contorted and misguided and cytokinesis prolonged, indicating severe disruption to the guidance mechanisms controlling phragmoplast expansion. These results are discussed in terms of cytoskeleton-plasma membrane-cell wall connections that could be important to the localisation of plasma membrane molecules defining the cortical division site and hence providing positional information to the cytokinetic apparatus, and/or for providing an anchor for cytoplasmic F-actin necessary to generate tension on the phragmoplast and facilitate its directed, planar expansion.

  18. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  19. Resynthesis of sphingomyelin from plasma-membrane phosphatidylcholine in BHK cells treated with Staphylococcus aureus sphingomyelinase.

    PubMed Central

    Allan, D; Quinn, P

    1988-01-01

    About 60-65% of the total sphingomyelin in intact BHK cells is in a readily accessible pool which is rapidly degraded by Staphylococcus aureus sphingomyelinase. No more sphingomyelin is broken down in cells which have been fixed with glutaraldehyde or lysed with streptolysin O, suggesting that all the sphingomyelin which is available to the enzyme is on the cell surface. The inaccessible pool of sphingomyelin does not equilibrate with the plasma-membrane pool, even after prolonged incubation. Experiments using [3H]-choline show that much more phosphocholine is released from the intact cells treated with sphingomyelinase than can be accounted for by breakdown of the original cell-surface pool of sphingomyelin; the excess appears to be a consequence of the breakdown of sphingomyelin newly resynthesized at the expense of a pool of phosphatidylcholine which represents about 8% of total cell phosphatidylcholine and may reside in the plasma membrane. This would be consistent with resynthesis of cell-surface sphingomyelin by the phosphatidylcholine: ceramide phosphocholinetransferase pathway, which has previously been shown to be localized in the plasma membrane. However, in [3H]palmitate-labelled cells there appeared to be no accumulation of the diacylglycerol expected to be produced by this reaction, and no enhanced synthesis of phosphatidate or phosphatidylinositol; instead there was an increased synthesis of triacylglycerol. A similar increase in labelling of triacylglycerol was seen in enzyme-treated cells where the sphingomyelinase was subsequently removed, allowing resynthesis of sphingomyelin which occurred at a rate of about 25% of total sphingomyelin/h. Treatment of BHK cells with sphingomyelinase caused no change in the rates of fluid-phase endocytosis or exocytosis as measured with [3H]inulin. PMID:2848498

  20. A particle-in-cell model of the Langmuir probe immersed in Xe plasma under conditions corresponding to those of Hall effect thruster plasma

    NASA Astrophysics Data System (ADS)

    Cenian, Adam; Chernukho, Andrey; Rachubiński, Hubert; Dudeck, Michel

    2014-05-01

    Hall effect thrusters (HETs) are efficient propulsion devices for the station-keeping of geostationary satellites. However, a further efficiency increase requires better knowledge of plasma and plasma-wall interactions. Electric probes are often used for diagnosing HET plasmas but the existing semi-analytical theories, used for the interpretation of probe characteristics, could only be applied with caution. Therefore, in this work a particle-in-cell model of the Langmuir probe immersed in plasma under conditions corresponding to those of HET plasma is developed. It was found that materials with a predominant elastic contribution to secondary electron emission (SEE) will generally lead to lower power deposition on a surface. In the case of inelastic and true SEE processes, the power deposited on a wall depends on the ratio of the sum of secondary electron energies to the electron impact energy. The axial magnetic field also leads to substantial reduction of power deposition on the probe.

  1. Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas

    SciTech Connect

    Shadwick, B. A.; Schroeder, C. B.

    2009-01-22

    The connection between macro-particle shape functions and non-physical phase-space 'heating' in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phase-space structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.

  2. Physical Fidelity in Particle-In-Cell Modeling of Small Debye-Length Plasmas

    SciTech Connect

    Shadwick, B.A.; Schroeder, C.B.

    2008-08-01

    The connection between macro-particle shape functions and non-physical phase-space"heating" in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phasespace structures starting from a cold initial condition is shown to be related to spatial correlations in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC algorithm from a cold initial condition leads to a state that is not consistent with that of a thermal plasma.

  3. Structure-Function Relationships of ErbB RTKs in the Plasma Membrane of Living Cells

    PubMed Central

    Arndt-Jovin, Donna J.; Botelho, Michelle G.; Jovin, Thomas M.

    2014-01-01

    We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field. PMID:24691959

  4. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  5. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  6. Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell.

    PubMed

    Kim, Sung-Kyoung; Rose, Rebecca; Choksawangkarn, Waeowalee; Graham, Lauren; Hu, Junkai; Fenselau, Catherine; Lee, Sang Bok

    2013-12-01

    A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.

  7. Irvalec Inserts into the Plasma Membrane Causing Rapid Loss of Integrity and Necrotic Cell Death in Tumor Cells

    PubMed Central

    Molina-Guijarro, José M.; Macías, Álvaro; García, Carolina; Muñoz, Eva; García-Fernández, Luis F.; David, Miren; Núñez, Lucía; Martínez-Leal, Juan F.; Moneo, Victoria; Cuevas, Carmen; Lillo, M. Pilar; Villalobos Jorge, Carlos; Valenzuela, Carmen; Galmarini, Carlos M.

    2011-01-01

    Irvalec is a marine-derived antitumor agent currently undergoing phase II clinical trials. In vitro, Irvalec induces a rapid loss of membrane integrity in tumor cells, accompanied of a significant Ca2+ influx, perturbations of membrane conductivity, severe swelling and the formation of giant membranous vesicles. All these effects are not observed in Irvalec-resistant cells, or are significantly delayed by pretreating the cells with Zn2+. Using fluorescent derivatives of Irvalec it was demonstrated that the compound rapidly interacts with the plasma membrane of tumor cells promoting lipid bilayer restructuration. Also, FRET experiments demonstrated that Irvalec molecules localize in the cell membrane close enough to each other as to suggest that the compound could self-organize, forming supramolecular structures that likely trigger cell death by necrosis through the disruption of membrane integrity. PMID:21556352

  8. Dynamic Organization of Myristoylated Src in the Live Cell Plasma Membrane.

    PubMed

    Smith, Adam W; Huang, Hector H; Endres, Nicholas F; Rhodes, Christopher; Groves, Jay T

    2016-02-11

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell-cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10-80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Taken together, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane. PMID:26771210

  9. C-src Enriched Serum Microvesicles Are Generated in Malignant Plasma Cell Dyscrasia

    PubMed Central

    Zendrini, Andrea; Radeghieri, Annalisa; Caimi, Luigi; Ricotta, Doris

    2013-01-01

    Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies such as Multiple Myeloma (MM). MM accounts for 15% of all hematologic cancers, and those diagnosed with MM typically become severely ill and have a low life expectancy. Monoclonal immunoglobulin Free Light Chains (FLC) are present in the serum and urine of many patients with plasma cell diseases. The biological differences between monoclonal FLCs, produced under malignant or benign dyscrasias, has not yet been characterized. In the present study, we show that endothelial and heart muscle cell lines internalize kappa and lambda FLCs. After internalization, FLCs are rerouted in the extracellular space via microvesicles and exosomes that can be re-internalized in contiguous cells. Only FLCs secreted from malignant B Lymphocytes were carried in Hsp70, annexin V, and c-src positive vesicles. In both MM and AL Amyloidosis patients we observed an increase in microvesicle and exosome production. Isolated serum vesicles from MM, AL Amyloidosis and monoclonal gammopathy of undetermined significance (MGUS) patients contained FLCs. Furthermore MM and AL amyloidosis vesicles were strongly positive for Hsp70, annexin V, and c-src compared to MGUS and control patients. These are the first data implying that FLCs reroute via microvesicles in the blood stream, and also suggest a potential novel mechanism of c-src activation in plasma cell dyscrasia. PMID:23940647

  10. R-phycoerythrin-conjugated antibodies are inappropriate for intracellular staining of murine plasma cells.

    PubMed

    Kim, Myun Soo; Kim, Tae Sung

    2013-05-01

    Phycoerythrin (PE) is a type of phycobiliproteins found in cyanobacteria and red algae. PE-conjugated antibodies are broadly used for flow cytometry and immunofluorescence microscopy. Because nonspecific binding of antibodies results in decreased analytic accuracy, numerous efforts have been made to unveil cases and mechanisms of nonspecific bindings. However, nonspecific binding of specific cell types by a fluorescent dye-conjugated form of antibody has been rarely reported. In the present study, we discovered that PE-conjugated antibodies, but not FITC- or APC-antibodies, selectively stained lamina propria plasma cells (LP-PCs) from the murine small intestine after membrane permeabilization. We demonstrated that LP-PC-selective staining with PE-antibodies was not due to interactions of antibody-epitope or antibody-Fc receptor. This unexpected staining by PE-antibody was not dependent on the mouse strain of LP-PCs, experimental methods, or origin species of the antibody, but dependent on PE itself. This phenomenon was also observed in plasma cells isolated from bone marrow, spleen, and mesenteric lymph nodes. Furthermore, in vitro activated B cells and in vivo generated LP-PCs were also selectively stained by PE-conjugated antibodies. Taken together, these results show that PE-conjugated antibodies are inappropriate for intracellular staining of murine plasma cells.

  11. Strategies to target long-lived plasma cells for treating hemophilia A inhibitors.

    PubMed

    Liu, Chao Lien; Lyle, Meghan J; Shin, Simon C; Miao, Carol H

    2016-03-01

    Long-lived plasma cells (LLPCs) can persistently produce anti-factor VIII (FVIII) antibodies which disrupt therapeutic effect of FVIII in hemophilia A patients with inhibitors. The migration of plasma cells to BM where they become LLPCs is largely controlled by an interaction between the chemokine ligand CXCL12 and its receptor CXCR4. AMD3100 combined with G-CSF inhibit their interactions, thus facilitating the mobilization of CD34(+) cells and blocking the homing of LLPCs. These reagents were combined with anti-CD20 to reduce B-cells and the specific IL-2/IL-2mAb (JES6-1) complexes to induce Treg expansion for targeting anti-FVIII immune responses. Groups of mice primed with FVIII plasmid and protein respectively were treated with the combined regimen for six weeks, and a significant reduction of anti-FVIII inhibitor titers was observed, associated with the dramatic decrease of circulating and bone marrow CXCR4(+) plasma cells. The combination regimens are highly promising in modulating pre-existing anti-FVIII antibodies in FVIII primed subjects.

  12. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  13. Search for neutron flux generation in a plasma discharge electrolytic cell

    NASA Astrophysics Data System (ADS)

    Faccini, R.; Pilloni, A.; Polosa, A. D.; Angelone, M.; Castagna, E.; Lecci, S.; Pietropaolo, A.; Pillon, M.; Sansovini, M.; Sarto, F.; Violante, V.; Bedogni, R.; Esposito, A.

    2014-06-01

    Following some recent unexpected hints of neutron production in high-voltage atmospheric discharges, we present a measurement of the neutron flux in plasma discharges in electrolytic cells. We use two different types of neutron detectors, polyallyl diglycol carbonate (PADC, aka CR-39) tracers and indium disks. At 95 % C.L. we provide an upper limit of 1.5 neutrons cm s for the thermal neutron flux at cm from the center of the cell. Allowing for a higher energy neutron component, the largest allowed flux is 64 neutrons cm s. This upper limit is two orders of magnitude smaller than the signal previously claimed in an electrolytic cell plasma discharge experiment. Furthermore the behavior of the CR-39 is discussed to point out possible sources of spurious signals.

  14. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    SciTech Connect

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J.

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  15. Osteoblastic cell response and bone formation of phosphate ion coated on plasma polymerized Ti surface.

    PubMed

    Yang, Seong-Won; Lee, Kang; Kim, Byung-Hoon

    2013-01-01

    This study examined the bone formation ability and cell response on a phosphate (PO3(4-)) ion exchanged amine plasma polymerized titanium (Ti) surface. The enhanced bone-like apatite (hydroxyapatite, HAp)-forming ability was attributed to the PO3(4-) ion exchanged amine plasma polymerized Ti (P/NH2/Ti) surface, which was formed by the reduction of PO3(4-) ions. PO3(4-) ions promote HAp nucleation and growth on Ti in SBF, and PO3(4-) ions improve the crystallinity of the HAp deposited layer. The cell viability tests revealed significantly greater cell viability on the P/NH2/Ti surfaces than on the other surfaces.

  16. Pediatric Pharyngeal IgD-positive Monoclonal Plasmacytoid and Plasma Cell Neoplasm.

    PubMed

    Zhang, Shanxiang; Long, Catherine

    2015-11-01

    Pediatric neoplasm with monoclonal proliferation of lymphoplasmacytoid lymphocytes and plasma cells is exceedingly rare and has essentially never been reported in immunocompetent children. Here, we report a previously healthy 13-year-old girl with a pharyngeal mass and enlarged cervical lymph nodes. The pharyngeal mass was composed of CD138, CD79a, MUM-1, IgD, CD20, PAX-5, CD43, λ-restricted monoclonal plasmacytoid, and plasma cells. Scattered CD20, PAX-5 B cells were present in the background. The patient was treated as localized non-Hodgkin lymphoma (stage II) with cyclophosphamide, doxorubicin, vincristine, and prednisone and is in complete remission at 17 months from the last chemotherapy. PMID:25851555

  17. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance

    PubMed Central

    Hsu, Alan Yi-Hui; Wu, Shang-Rung; Tsai, Jih-Jin; Chen, Po-Lin; Chen, Ya-Ping; Chen, Tsai-Yun; Lo, Yu-Chih; Ho, Tzu-Chuan; Lee, Meed; Chen, Min-Ting; Chiu, Yen-Chi; Perng, Guey Chuen

    2015-01-01

    The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a “sunny-side up egg” appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development. PMID:26657027

  18. Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds.

    PubMed

    Domingos, M; Intranuovo, F; Gloria, A; Gristina, R; Ambrosio, L; Bártolo, P J; Favia, P

    2013-04-01

    Cellular adhesion and proliferation inside three-dimensional synthetic scaffolds represent a major challenge in tissue engineering. Besides the surface chemistry of the polymers, it is well recognized that scaffold internal architecture, namely pore size/shape and interconnectivity, has a strong effect on the biological response of cells. This study reports for the first time how polycaprolactone (PCL) scaffolds with controlled micro-architecture can be effectively produced via bioextrusion and used to enhance the penetration of plasma deposited species. Low-pressure nitrogen-based coatings were employed to augment cell adhesion and proliferation without altering the mechanical properties of the structures. X-ray photoelectron spectroscopy carried out on different sections of the scaffolds indicates a uniform distribution of nitrogen-containing groups throughout the entire porous structure. In vitro biological assays confirm that plasma deposition sensitively promotes the activity of Saos-2 osteoblast cells, leading to a homogeneous colonization of the PCL scaffolds.

  19. Infectious dengue vesicles derived from CD61+ cells in acute patient plasma exhibited a diaphanous appearance.

    PubMed

    Hsu, Alan Yi-Hui; Wu, Shang-Rung; Tsai, Jih-Jin; Chen, Po-Lin; Chen, Ya-Ping; Chen, Tsai-Yun; Lo, Yu-Chih; Ho, Tzu-Chuan; Lee, Meed; Chen, Min-Ting; Chiu, Yen-Chi; Perng, Guey Chuen

    2015-12-11

    The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a "sunny-side up egg" appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development.

  20. Complement activation by necrotic cells in normal plasma environment compares to that by late apoptotic cells and involves predominantly IgM.

    PubMed

    Ciurana, Caroline L F; Zwart, Bas; van Mierlo, Gerard; Hack, C Erik

    2004-09-01

    Necrotic cells are generally considered to stimulate inflammation, whereas apoptotic cells should not. However, apoptotic cells have pro-inflammatory properties since they can activate complement. To what extent this activation compares to that by necrotic cells is not known. We compared complement activation by necrotic cells and apoptotic cells in plasma. Jurkat cells were made apoptotic or necrotic by incubation with etoposide or by heat shock, respectively. Cells incubated in recalcified plasma were tested for C3 and C4 fixation and fluid phase generation of complement activation products. Fixation of C3 and C4 to necrotic cells occurred mainly via the classical pathway, independent from the method of necrosis induction and the cell type. Depletion of IgM from plasma almost completely abrogated complement fixation by necrotic cells, which was restored by supplementation with purified IgM. Complement activation by late apoptotic cells was comparable to that by necrotic cells regarding the extent and dependence on IgM. Moreover, incubation of plasma with necrotic or late apoptotic cells led to the generation of comparable amounts of complement activation products. These results indicate that late apoptotic and necrotic cells employ similar complement activation mechanisms in the plasma environment.

  1. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  2. Cilengitide restrains the osteoclast-like bone resorbing activity of myeloma plasma cells.

    PubMed

    Tucci, Marco; Stucci, Stefania; Felici, Claudia; Cafforio, Paola; Resta, Leonardo; Rossi, Roberta; Silvestris, Franco

    2016-04-01

    Cilengitide (CLG) is an inhibitor of both αv β3 and αv β5 integrins, with a defined anti-tumour effect in glioblastoma. Pre-clinical studies demonstrate its ability to restrain the bone resorbing property of metastatic osteotropic tumours and we have previously shown that the disablement of αv β3 in multiple myeloma (MM) plasma cells results in exhaustion of their in vitro osteoclast (OC)-like activity on bone substrate. Here, we investigated the effect of CLG on this functional property of MM cells. Both αv β3 and αv β5 were measured on primary marrow MM cells from 19 patients, and the effect of CLG on proliferation, apoptosis and adhesion was investigated in parallel with MM cell lines and OCs from healthy donors. In addition, the effect of CLG on the capability of malignant plasma cells to produce erosive lacunae on calcium phosphate was explored in relation to the activation of intracellular kinases of molecular pathways of both integrins. Ultrastructural microscopy was used to evaluate the morphological changes in MM cells due to the effect of CLG on cell adhesion. The data from our study demonstrate that CLG restrains the bone resorbing function of MM cells by disabling their adhesion properties. Further investigations in pre-clinical studies of osteotropic tumours are warranted.

  3. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy

    PubMed Central

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-01-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  4. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  5. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation.

    PubMed

    Antonini, V; Torrengo, S; Marocchi, L; Minati, L; Dalla Serra, M; Bao, G; Speranza, G

    2014-01-01

    Plasma enhanced physical vapor depositions are extensively used to fabricate substrates for cell culture applications. One peculiarity of the plasma processes is the possibility to deposit thin films with reproducible chemical and physical properties. In the present work, a combinatorial plasma polymerization process was used to deposit thin carbon based films to promote cell adhesion, in the interest of testing cell proliferation as a function of the substrate chemical properties. Peculiarity of the combinatorial approach is the possibility to produce in just one deposition experiment, a set of surfaces of varying chemical moieties by changing the precursor composition. A full characterization of the chemical, physical and thermodynamic properties was performed for each set of the synthesized surfaces. X-ray photoelectron spectroscopy was used to measure the concentration of carboxyl, hydroxyl and amine functional groups on the substrate surfaces. A perfect linear trend between polar groups' density and precursors' concentration was found. Further analyses reveled that also contact angles and the correspondent surface energies of all deposited thin films are linearly dependent on the precursor concentration. To test the influence of the surface composition on the cell adhesion and proliferation, two cancer cell lines were utilized. The cell viability was assessed after 24 h and 48 h of cell culture. Experiments show that we are able to control the cell adhesion and proliferation by properly changing the thin film deposition conditions i.e. the concentration and the kind of chemical moiety on the substrate surface. The results also highlight that physical and chemical factors of biomaterial surface, including surface hydrophobicity and free energy, chemical composition, and topography, can altered cell attachment.

  6. Evaluation of materials proposed for the construction of the plasma electrode Pockels cell (PEPC) on beamlet

    SciTech Connect

    Roberts, D.; Robb, C.; DeYoreo, J.; Atherton, J.

    1992-11-01

    The proposed upgrade of the NOVA laser system at Lawrence Livermore National Laboratory employs a multipass architecture that requires an optical switch to emit the laser light at the appropriate fluence. This Pockels cell-based optical switch does not use traditional ring or thin-film electrodes because of the large aperture and high fluence of the laser system. Rather, it uses a plasma electrode Pockels cell with a KD*P crystal as the electro-optical medium. A discharge plasma is formed on each side of the electro-optic crystal and high voltage is applied across the crystal through the plasma electrode to initiate optical switching. In October 1991 we began evaluating materials suggested for the large aperture plasma electrode optical switch. Previous experiments suggested that switching performance could be significantly affected by the deterioration of cell materials. The final prototype switch tested used polyethylene for the switch body, Mykroy for the mid-plane and a silicone vulcanite to encapsulate the KD*P crystal. The encapsulant easily compensated for the effect of assembling the optical switch and we measured no strain-induced birefringence in the crystal after encapsulation. Oxygen was eventually added to the plasma to react with the sputtered carbon from the cathode and produce a gaseous effluent. As an added benefit, the production of ozone absorbed most of the ultra violet radiation affecting the encapsulant. All the materials tested decomposed and produced volatiles, although we have seen no change in the damage threshold of exposed optical surfaces tested to date. The following is an evaluation of the recommended materials for major cell components using published manufacturers data, experimental results from our Material Evaluation Apparatus, and outgassing performance and sputtering data produced at the Laboratory`s Vacuum Process Lab.

  7. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  8. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization

    PubMed Central

    Bemark, Mats; Hazanov, Helena; Strömberg, Anneli; Komban, Rathan; Holmqvist, Joel; Köster, Sofia; Mattsson, Johan; Sikora, Per; Mehr, Ramit; Lycke, Nils Y.

    2016-01-01

    Understanding how memory B cells are induced and relate to long-lived plasma cells is important for vaccine development. Immunity to oral vaccines has been considered short-lived because of a poor ability to develop IgA B-cell memory. Here we demonstrate that long-lived mucosal IgA memory is readily achieved by oral but not systemic immunization in mouse models with NP hapten conjugated with cholera toxin and transfer of B1-8high/GFP+ NP-specific B cells. Unexpectedly, memory B cells are poorly related to long-lived plasma cells and less affinity-matured. They are α4β7-integrin+CD73+PD-L2+CD80+ and at systemic sites mostly IgM+, while 80% are IgA+ in Peyer's patches. On reactivation, most memory B cells in Peyer's patches are GL7−, but expand in germinal centres and acquire higher affinity and more mutations, demonstrating strong clonal selection. CCR9 expression is found only in Peyer's patches and appears critical for gut homing. Thus, gut mucosal memory possesses unique features not seen after systemic immunization. PMID:27596266

  9. Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization.

    PubMed

    Bemark, Mats; Hazanov, Helena; Strömberg, Anneli; Komban, Rathan; Holmqvist, Joel; Köster, Sofia; Mattsson, Johan; Sikora, Per; Mehr, Ramit; Lycke, Nils Y

    2016-01-01

    Understanding how memory B cells are induced and relate to long-lived plasma cells is important for vaccine development. Immunity to oral vaccines has been considered short-lived because of a poor ability to develop IgA B-cell memory. Here we demonstrate that long-lived mucosal IgA memory is readily achieved by oral but not systemic immunization in mouse models with NP hapten conjugated with cholera toxin and transfer of B1-8(high)/GFP(+) NP-specific B cells. Unexpectedly, memory B cells are poorly related to long-lived plasma cells and less affinity-matured. They are α4β7-integrin(+)CD73(+)PD-L2(+)CD80(+) and at systemic sites mostly IgM(+), while 80% are IgA(+) in Peyer's patches. On reactivation, most memory B cells in Peyer's patches are GL7(-), but expand in germinal centres and acquire higher affinity and more mutations, demonstrating strong clonal selection. CCR9 expression is found only in Peyer's patches and appears critical for gut homing. Thus, gut mucosal memory possesses unique features not seen after systemic immunization. PMID:27596266

  10. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  11. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D.; Lyubin, Evgeny V.; Priezzhev, Alexander V.; Meglinski, Igor; Fedyanin, Andrey A.

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  12. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    PubMed

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  13. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin

    2016-03-01

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

  14. ELECTRON TEMPERATURE ANISOTROPY IN AN EXPANDING PLASMA: PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Camporeale, E.; Burgess, D.

    2010-02-20

    We perform fully kinetic particle-in-cell simulations of a hot plasma that expands radially in a cylindrical geometry. The aim of the paper is to study the consequent development of the electron temperature anisotropy in an expanding plasma flow as found in a collisionless stellar wind. Kinetic plasma theory and simulations have shown that the electron temperature anisotropy is controlled by fluctuations driven by electromagnetic kinetic instabilities. In this study, the temperature anisotropy is driven self-consistently by the expansion. While the expansion favors an increase of parallel anisotropy (T{sub ||} > T{sub perpendicular}), the onset of the fire-hose instability will tend to decrease it. We show the results for supersonic, subsonic, and static expansion flows and suggest possible applications of the results for the solar wind and other stellar winds.

  15. Kinetics of Circulating Plasma Cell-Free DNA in Paediatric Classical Hodgkin Lymphoma

    PubMed Central

    Primerano, Simona; Burnelli, Roberta; Carraro, Elisa; Pillon, Marta; Elia, Caterina; Farruggia, Piero; Sala, Alessandra; Vinti, Luciana; Buffardi, Salvatore; Basso, Giuseppe; Mascarin, Maurizio; Mussolin, Lara

    2016-01-01

    Levels of plasma cell-free DNA (cfDNA) of a large series of children with classical Hodgkin lymphoma (cHL) were evaluated and analyzed at diagnosis and during chemotherapy treatment in relation with clinical characteristics. CfDNA levels in cHL patients were significantly higher compared with controls (p=0.002). CfDNA at diagnosis was correlated with presence of B symptoms (p=0.027) and high erythrocyte sedimentation rate (p=0.049). We found that the increasing of plasma cfDNA after first chemotherapy cycle seems to be associated with a worse prognosis (p=0.049). Levels of plasma cfDNA might constitute an interesting non-invasive tool in cHL patients' management. PMID:26918050

  16. Safety and efficient ex vivo expansion of stem cells using platelet-rich plasma technology.

    PubMed

    Anitua, Eduardo; Prado, Roberto; Orive, Gorka

    2013-09-01

    The goal of this Review is to provide an overview of the cell culture media supplements used in the ex vivo expansion of stem cells intended for cell therapy. Currently, the gold standard is the culture supplemented with fetal bovine serum, however, their use in cell therapy raises many concerns. The alternatives to its use are presented, ranging from the use of human serum to platelet-rich plasma (PRP), to serum-free media or extracellular matrix components. Finally, various growth factors present in PRP are described, which make it a safe and effective stem cell expansion supplement. These growth factors could be responsible for their efficiency, as they increase both stem cell proliferation and survival. The different PRP formulations are also discussed, as well as the need for protocol standardization.

  17. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma.

    PubMed

    Jayasena, Tharusha; Poljak, Anne; Braidy, Nady; Smythe, George; Raftery, Mark; Hill, Mark; Brodaty, Henry; Trollor, Julian; Kochan, Nicole; Sachdev, Perminder

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.

  18. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  19. Plasma miRNA-506 as a Prognostic Biomarker for Esophageal Squamous Cell Carcinoma

    PubMed Central

    Li, Shu-Ping; Su, Hong-Xin; Zhao, Da; Guan, Quan-Lin

    2016-01-01

    Background MicroRNAs (miRNAs) are responsible for regulating proliferation, differentiation, apoptosis, invasion, and metastasis in tumor cells. miRNA-506 is abnormally expressed in multiple tumors, indicating that it might be oncogenic or tumor-suppressive. However, little is known about the association between miRNA-506 expression and esophageal squamous cell carcinoma (ESCC). Material/Methods We examined the expression of miRNA-506 in the plasma of ESCC patients using quantitative real-time polymerase chain reaction (qRT-PCR) to determine the association between miRNA-506 expression and clinicopathological features of ESCC. ROC curves were produced for ESCC diagnosis by plasma miRNA-506 and the area under curve was calculated to explore its diagnostic value. Results Average miRNA-506 expression levels were remarkably higher in the plasma of ESCC patients than in healthy volunteers (P<0.001). The expression of miRNA-506 in the plasma was closely associated with lymph node status (P=0.004), TNM stage (P=0.031), and tumor length (P<0.001). According to ROC curves, the area under the curve for plasma miRNA-506 was 0.835, indicating statistical significance for ESCC diagnosis by plasma miRNA-506 (P<0.001). Kaplan-Meier analysis showed that patients with high miRNA-506 expression had significantly shorter survival time than those with low miRNA-506 expression. Cox regression analysis demonstrated that T stage, N stage, tumor length, and miRNA-506 expression levels were significantly correlated with prognosis in ESCC patients. Conclusions miRNA-506 can serve as an important molecular marker for diagnosis and prognostic prediction of ESCC. PMID:27345473

  20. GEC Student Award for Excellence Finalist: Interaction of Non-Thermal Dielectric Barrier Discharge Plasma with DNA inside Cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer; Kelly, Crystal; Fridman, Gregory; Clifford-Azizkhan, Jane; Fridman, Alexander; Friedman, Gary

    2008-10-01

    Direct non-thermal plasma is now being widely considered for various medical applications, viz; cancer treatment, coagulation, wound healing. However, the understanding of the interaction between non-thermal plasma and cells is lacking. Here we study the possibility that effects of the plasma treatment can penetrate though cellular membranes without destroying them. One of the most important of such effects to investigate would be DNA double strand breaks (DSB's) since these are some of the important events in a cell's life cycle. We measured DNA DSB's in mammalian cells using immunofluorescence and western blots. Hydrogen peroxide treatment was used as a positive control since it is known to induce massive DNA double strand breaks. The results indicate that short (5 seconds) direct plasma treatment at low power (0.2 W/cm^2) does produce DNA DSB's in mammalian cells. This means that somehow plasma penetrates inside the cells. Several questions arise about what is the mechanism of penetration and do the cells repair the DNA DSB's. We show that the cells do repair the DNA DSB's produced by short exposure of low power plasma. Although the detailed mechanisms are being investigated we confirmed that reactive oxygen species mediate interaction between plasma and DNA.

  1. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer.

    PubMed

    Schuster, Matthias; Seebauer, Christian; Rutkowski, Rico; Hauschild, Anna; Podmelle, Fred; Metelmann, Camilla; Metelmann, Bibiana; von Woedtke, Thomas; Hasse, Sybille; Weltmann, Klaus-Dieter; Metelmann, Hans-Robert

    2016-09-01

    The aim of the study was to learn, whether clinical application of cold atmospheric pressure plasma (CAP) is able to cause (i) visible tumor surface effects and (ii) apoptotic cell kill in squamous cell carcinoma and (iii) whether CAP-induced visible tumor surface response occurs as often as CAP-induced apoptotic cell kill. Twelve patients with advanced head and neck cancer and infected ulcerations received locally CAP followed by palliative treatment. Four of them revealed tumor surface response appearing 2 weeks after intervention. The tumor surface response expressed as a flat area with vascular stimulation (type 1) or a contraction of tumor ulceration rims forming recesses covered with scabs, in each case surrounded by tumor tissue in visible progress (type 2). In parallel, 9 patients with the same kind of cancer received CAP before radical tumor resection. Tissue specimens were analyzed for apoptotic cells. Apoptotic cells were detectable and occurred more frequently in tissue areas previously treated with CAP than in untreated areas. Bringing together both findings and placing side by side the frequency of clinical tumor surface response and the frequency of analytically proven apoptotic cell kill, detection of apoptotic cells is as common as clinical tumor surface response. There was no patient showing signs of an enhanced or stimulated tumor growth under influence of CAP. CAP was made applicable by a plasma jet, kINPen(®) MED (neoplas tools GmbH, Greifswald, Germany). PMID:27499516

  2. The interaction of the carbon nanoparticles with human cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Overchuk, M.; Prylutska, S.; Bilyy, Rostyslav; Prylutsky, Yu.; Ritter, U.

    2013-09-01

    The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers. In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.

  3. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation.

  4. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness.

    PubMed

    Tobita, Morikuni; Tajima, Satoshi; Mizuno, Hiroshi

    2015-11-05

    Because of their ease of isolation and relative abundance, adipose-derived mesenchymal stem cells (ASCs) are a particularly attractive autologous cell source for various therapeutic purposes. ASCs retain a high proliferation capacity in vitro and have the ability to undergo extensive differentiation into multiple cell lineages. Moreover, ASCs secrete a wide range of growth factors that can stimulate tissue regeneration. Therefore, the clinical use of ASCs is feasible. However, the potential of ASCs differs depending on the donor's medical condition, including diseases such as diabetes. Recent studies demonstrated that ASCs from diabetic donors exhibit reduced proliferative potential and a smaller proportion of stem cell marker-positive cells. Therefore, to ensure the success of regenerative medicine, tissue engineering methods must be improved by the incorporation of factors that increase the proliferation and differentiation of stem/progenitor cells when autologous cells are used. Platelet-rich plasma (PRP), which contains high levels of diverse growth factors that can stimulate stem cell proliferation and cell differentiation in the context of tissue regeneration, has recently been identified as a biological material that could be applied to tissue regeneration. Thus, co-transplantation of ASCs and PRP represents a promising novel approach for cell therapy in regenerative medicine. In this review, we describe the potential benefits of adding PRP to ASCs and preclinical and clinical studies of this approach in various medical fields. We also discuss the mechanisms of PRP action and future cell-based therapies using co-transplantation of ASCs and PRP.

  5. Sockeye Salmon Retain Immunoglobulin-Secreting Plasma Cells Throughout Their Spawning Journey And Post-spawning

    PubMed Central

    Schouten, Jonathan; Clister, Terri; Bruce, Amber; Epp, Lidia; Zwollo, Patty

    2013-01-01

    Antibody-producing plasma cells are a major source of protective immunity in vertebrates, including salmon. During the spawning phase, salmon undergo drastic, hormonally driven changes in their physiology, including elevated levels of cortisol, which are known to suppress the immune system. As adult fish need to survive their long journey to the spawning grounds, we hypothesized that humoral immunity, in the form of IgM-secreting plasma cells, remains functional until post-spawning. This was investigated by measuring changes in membrane and secreted immunoglobulin heavy chain mu and Pax5 transcripts in spleen and kidney from migrating sockeye salmon, using real-time qPCR. As an additional measurement, the abundance of developing B, mature B, and plasma cells was determined in spawning fish, using flow cytometry. Immune tissue samples were collected from fish from the Kenai River drainage and Main Bay, Prince William Sound. Our results reveal that spawning fish express high levels of secreted heavy chain mu transcripts in their spleen and anterior kidney throughout the spawning journey. Furthermore, we show that IgM-secreting PCs (HCmu++/Pax5−) remain abundant in anterior kidney and spleen of post-spawning sockeye salmon, with a concomitant loss in developing B cells (HCmu−/Pax5+). This suggests that successful spawners retain their PCs throughout the spawning journey and post-spawning. PMID:23434463

  6. Sockeye salmon retain immunoglobulin-secreting plasma cells throughout their spawning journey and post-spawning.

    PubMed

    Schouten, Jonathan; Clister, Terri; Bruce, Amber; Epp, Lidia; Zwollo, Patty

    2013-06-01

    Antibody-producing plasma cells are a major source of protective immunity in vertebrates, including salmon. During the spawning phase, salmon undergo drastic, hormonally driven changes in their physiology, including elevated levels of cortisol, which are known to suppress the immune system. As adult fish need to survive their long journey to the spawning grounds, we hypothesized that humoral immunity, in the form of IgM-secreting plasma cells, remains functional until post-spawning. This was investigated by measuring changes in membrane and secreted immunoglobulin heavy chain mu and Pax5 transcripts in spleen and kidney from migrating sockeye salmon, using real-time qPCR. As an additional measurement, the abundance of developing B, mature B, and plasma cells was determined in spawning fish, using flow cytometry. Immune tissue samples were collected from fish from the Kenai River drainage and Main Bay, Prince William Sound. Our results reveal that spawning fish express high levels of secreted heavy chain mu transcripts in their spleen and anterior kidney throughout the spawning journey. Furthermore, we show that IgM-secreting PCs (HCmu++/Pax5-) remain abundant in anterior kidney and spleen of post-spawning sockeye salmon, with a concomitant loss in developing B cells (HCmu-/Pax5+). This suggests that successful spawners retain their PCs throughout the spawning journey and post-spawning. PMID:23434463

  7. Particle-in-Cell Simulation of a Micro ECR Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Ueno, Keisuke; Mori, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2015-09-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have developed a new type of electromagnetic micro plasma thruster using electron cyclotron resonance (ECR) discharges. The microthruster consists of a microwave antenna and a quartz microplasma chamber 4.15 mm in inner diameter surrounded by two permanent magnet rings. The plasma is generated by 4-GHz microwaves of < 10 W with a propellant gas of Xe, where the ions are accelerated through divergent magnetic fields and the resulting ambipolar electric fields generated. To investigate plasma characteristics of the thruster, we simulated the plasma density, electrostatic potential, and ion velocity in the exhaust area by the particle-in-cell (PIC) method with a Monte Carlo calculation for particle collisions, where the electrostatic field and the ion velocity were obtained by solving the Poisson equation and the equation of motion, respectively. The numerical results showed that the ions generated in the plasma are well confined by the applied magnetic fields and diffuse out of the discharge tube, then being accelerated by a potential drop of ~7 V through divergent magnetic fields from < 1000 to > 3000 m/s (< 0 . 7 to > 6 eV) in the axial direction.

  8. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper. PMID:26233368

  9. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  10. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  11. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  12. Cell-free plasma hemoglobin removal by dialyzers with various permeability profiles.

    PubMed

    Hulko, Michael; Kunz, Melanie; Yildirim, Mehmet; Homeyer, Sandra; Amon, Oliver; Krause, Bernd

    2015-11-10

    The release of hemoglobin from mechanically stressed erythrocytes into plasma is a general side effect of extracorporeal therapies, such as extracorporeal membrane oxygenation or hemodialysis. In many reported cases dialysis patients showed elevated cell-free plasma hemoglobin (CPH) levels which are associated with pathophysiological effects. In this in vitro study, the CPH clearance capacity of various filters with different permeability profiles was measured. Simulated dialysis treatments were conducted and clearance was calculated from variations in CPH concentrations over time by measuring plasma absorbance at 405 nm. Conventional high-flux filters exhibited no detectable clearance of CPH. High-flux filters with extended permeability exhibited clearances between 5.8 ± 1.2 and 12.7 ± 1.7 ml/min when tested with plasma and between 5.8 ± 1.2 and 11.3 ± 1.6 ml/min when tested with whole blood. septeX high-cutoff filters had clearances between 13.8 ± 1.8 and 15.5 ± 1.7 ml/min when tested with plasma and of 22.6 ± 2.9 ml/min when tested with whole blood. This study demonstrated that filters with extended permeability and the septeX filter enable CPH removal when used as in chronic and acute settings.

  13. Genotypic tropism prediction from paired cell and plasma using single and replicate sequences.

    PubMed

    Coelho, Luana Portes Ozório; Ferreira, João Leandro de Paula; Cabral, Gabriela Bastos; Guimarães, Paula Morena de Souza; Brigido, Luis Fernando de Macedo

    2014-07-01

    HIV-1 tropism determination is necessary prior to CCR5 antagonist use as antiretroviral therapy. Genotypic prediction of coreceptor use is a practical alternative to phenotypic tests. Cell DNA and plasma RNA-based prediction has shown discordance in many studies. We evaluate paired cell and plasma either as single or replicate V3 sequences to assess prediction comparability. The HIV-1 partial env region was sequenced and tropism was predicted using geno2pheno and position-specific scoring matrices (PSSM). Nucleotide ambiguities at V3 were quantified and genetic distance (Protdist) was determined using BioEdit. Wilcoxon signed-rank test, t tests, and Spearman correlation were performed with Prism GraphPad5.0. Results are expressed as medians, with a level of significance of p<0.05, two tailed. Single (n=28) or replicate (n=26) paired cell/plasma sequences were obtained from 54 patients. Although the clonalfalse-positive rate (FPR) value from both compartments strongly correlated (r=0.86 p<0.0001), discordance in tropism prediction was observed in both singles and replicates using geno2pheno or PSSM. Applying clonalFPR(10%) 46% (25/54) were X4 tropic, with a plasma/cell discordance of 11% in singles and 23% in replicates. Genetic distance (p<0.0001) and clonalFPR value dispersion (p=0.003) were significantly higher among replicate sequences from cells. Discordance of viral tropism prediction is not uncommon and the use of replicates does not decrease its occurrence, but improves X4 sensitivity. Sequences from provirus had greater genetic distance and dispersion of clonalFPR values. This may suggest that DNA replicate assays may better represent the diversity of HIV-1 variants, but the clinical significance of these findings needs further evaluation.

  14. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.

    PubMed

    Gray, Joshua P; Eisen, Timothy; Cline, Gary W; Smith, Peter J S; Heart, Emma

    2011-07-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells.

  15. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.

    PubMed

    Gray, Joshua P; Eisen, Timothy; Cline, Gary W; Smith, Peter J S; Heart, Emma

    2011-07-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells. PMID:21505151

  16. Cytogenetic profiles in multiple myeloma and monoclonal gammopathy of undetermined significance: a study in highly purified aberrant plasma cells

    PubMed Central

    Schmidt-Hieber, Martin; Gutiérrez, María Laura; Pérez-Andrés, Martin; Paiva, Bruno; Rasillo, Ana; Tabernero, Maria Dolores; Sayagués, José Maria; Lopez, Antonio; Bárcena, Paloma; Sanchez, María Luz; Gutiérrez, Norma C.; San Miguel, Jesus F.; Orfao, Alberto

    2013-01-01

    Cytogenetic studies in clonal plasma cell disorders have mainly been done in whole bone marrow or CD138+ microbead-enriched plasma cells and suggest that recurrent immunoglobulin heavy chain translocations - e.g. t(4;14) -are primary oncogenetic events. The aim of this study was to determine cytogenetic patterns of highly purified aberrant plasma cells (median purity ≥98%) in different clonal plasma cell disorders. We analyzed aberrant plasma cells from 208 patients with multiple myeloma (n=148) and monoclonal gammopathy of undetermined significance (n=60) for the presence of del(13q14), del(17p13) and t(14q32) using multicolor interphase fluorescence in situ hybridization. Additionally, immunoglobulin heavy chain gene arrangements were analyzed and complementarity determining region 3 was sequenced in a subset of patients and combined multicolor interphase fluorescence in situ hybridization/immunofluorescent protein staining analyses were performed in selected cases to confirm clonality and cytogenetic findings. At diagnosis, 96% of cases with multiple myeloma versus 77% of monoclonal gammopathy of undetermined significance cases showed at least one cytogenetic alteration and/or hyperdiploidy. The cytogenetic heterogeneity of individual cases reflected coexistence of cytogenetically-defined aberrant plasma cell clones, and led to the assumption that karyotypic alterations were acquired stepwise. Cases of multiple myeloma and monoclonal gammopathy of undetermined significance frequently showed different but related cytogenetic profiles when other cytogenetic alterations such as deletions/gains of the immunoglobulin heavy chain or the fibroblast growth factor receptor 3 were additionally considered. Interestingly, in 24% of multiple myeloma versus 62% of monoclonal gammopathy of undetermined significance patients with an immunoglobulin heavy chain translocation, aberrant plasma cells with and without t(14q32) coexisted in the same patient. Our data suggest that

  17. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  18. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  19. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells.

    PubMed

    Vieceli Dalla Sega, Francesco; Zambonin, Laura; Fiorentini, Diana; Rizzo, Benedetta; Caliceti, Cristiana; Landi, Laura; Hrelia, Silvana; Prata, Cecilia

    2014-04-01

    In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.

  20. Biocompatible, smooth, plasma-treated nickel-titanium surface--an adequate platform for cell growth.

    PubMed

    Chrzanowski, W; Szade, J; Hart, A D; Knowles, J C; Dalby, M J

    2012-02-01

    High nickel content is believed to reduce the number of biomedical applications of nickel-titanium alloy due to the reported toxicity of nickel. The reduction in nickel release and minimized exposure of the cell to nickel can optimize the biocompatibility of the alloy and increase its use in the application where its shape memory effects and pseudoelasticity are particularly useful, e.g., spinal implants. Many treatments have been tried to improve the biocompatibility of Ni-Ti, and results suggest that a native, smooth surface could provide sufficient tolerance, biologically. We hypothesized that the native surface of nickel-titanium supports cell differentiation and insures good biocompatibility. Three types of surface modifications were investigated: thermal oxidation, alkali treatment, and plasma sputtering, and compared with smooth, ground surface. Thermal oxidation caused a drop in surface nickel content, while negligible chemistry changes were observed for plasma-modified samples when compared with control ground samples. In contrast, alkali treatment caused significant increase in surface nickel concentration and accelerated nickel release. Nickel release was also accelerated in thermally oxidized samples at 600 °C, while in other samples it remained at low level. Both thermal oxidation and alkali treatment increased the roughness of the surface, but mean roughness R(a) was significantly greater for the alkali-treated ones. Ground and plasma-modified samples had 'smooth' surfaces with R(a)=4 nm. Deformability tests showed that the adhesion of the surface layers on samples oxidized at 600 °C and alkali treatment samples was not sufficient; the layer delaminated upon deformation. It was observed that the cell cytoskeletons on the samples with a high nickel content or release were less developed, suggesting some negative effects of nickel on cell growth. These effects were observed primarily during initial cell contact with the surface. The most favorable

  1. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    PubMed

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-01-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. PMID:27479506

  2. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    PubMed

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD.

  3. Plasma membrane and cytoskeleton dynamics during single-cell wound healing.

    PubMed

    Boucher, Eric; Mandato, Craig A

    2015-10-01

    Wounding leads not only to plasma membrane disruption, but also to compromised cytoskeleton structures. This results not only in unwarranted exchanges between the cytosol and extracellular milieu, but also in loss of tensegrity, which may further endanger the cell. Tensegrity can be described as the interplay between the tensile forces generated by the apparent membrane tension, actomyosin contraction, and the cytoskeletal structures resisting those changes (e.g., microtubules). It is responsible for the structural integrity of the cell and for its ability to sense mechanical signals. Recent reviews dealing with single-cell healing mostly focused on the molecular machineries controlling the traffic and fusion of specific vesicles, or their role in different pathologies. In this review, we aim to take a broader view of the different modes of single cell repair, while focussing on the different ways the changes in plasmalemma surface area and composition, plasmalemma tension, and cytoskeletal dynamics may influence and affect single-cell repair.

  4. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    SciTech Connect

    Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana; Hernandez, Raquel; Brown, Dennis

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  5. Plasma membrane and cytoskeleton dynamics during single-cell wound healing.

    PubMed

    Boucher, Eric; Mandato, Craig A

    2015-10-01

    Wounding leads not only to plasma membrane disruption, but also to compromised cytoskeleton structures. This results not only in unwarranted exchanges between the cytosol and extracellular milieu, but also in loss of tensegrity, which may further endanger the cell. Tensegrity can be described as the interplay between the tensile forces generated by the apparent membrane tension, actomyosin contraction, and the cytoskeletal structures resisting those changes (e.g., microtubules). It is responsible for the structural integrity of the cell and for its ability to sense mechanical signals. Recent reviews dealing with single-cell healing mostly focused on the molecular machineries controlling the traffic and fusion of specific vesicles, or their role in different pathologies. In this review, we aim to take a broader view of the different modes of single cell repair, while focussing on the different ways the changes in plasmalemma surface area and composition, plasmalemma tension, and cytoskeletal dynamics may influence and affect single-cell repair. PMID:26209916

  6. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  7. Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams

    SciTech Connect

    Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I.

    2003-11-04

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

  8. An unusual clinical presentation of plasma cell gingivitis related to "Acacia" containing herbal toothpaste.

    PubMed

    Makkar, Anjali; Tewari, Shikha; Kishor, Kamal; Kataria, Santprakash

    2013-07-01

    A 17-year-old female patient presented with unusual enlargement of the gingiva with generalized alveolar bone loss. In spite of periodontal therapy, including plaque control, scaling, root planning and surgical treatment, recurrence with the same degree of the gingival enlargement and further loss of attachment level occurred. Biopsy revealed dense infiltration of normal plasma cells separated by collagenous stroma. Discontinuation of herbal toothpaste resulted in remarkable remission of the gingival enlargement within 2 weeks. Enzyme-linked immunosorbent assay of toothpaste components disclosed "Acacia" as an etiologic antigenic agent and confirmed the diagnosis of plasma cell gingivitis (PCG). Usually, PCG is not associated with the loss of attachment. This case report appears to be the first publication to document an atypical presentation of PCG with generalized aggressive periodontitis related to the use of herbal toothpaste containing "Acacia" extract from the tree "Acacia Arabica." PMID:24174738

  9. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    Packard, B.S.; Saxton, M.J.; Bissell, M.J.; Klein, M.P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters (percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)) connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters. 35 references, 3 figures, 1 table.

  10. An unusual clinical presentation of plasma cell gingivitis related to "Acacia" containing herbal toothpaste.

    PubMed

    Makkar, Anjali; Tewari, Shikha; Kishor, Kamal; Kataria, Santprakash

    2013-07-01

    A 17-year-old female patient presented with unusual enlargement of the gingiva with generalized alveolar bone loss. In spite of periodontal therapy, including plaque control, scaling, root planning and surgical treatment, recurrence with the same degree of the gingival enlargement and further loss of attachment level occurred. Biopsy revealed dense infiltration of normal plasma cells separated by collagenous stroma. Discontinuation of herbal toothpaste resulted in remarkable remission of the gingival enlargement within 2 weeks. Enzyme-linked immunosorbent assay of toothpaste components disclosed "Acacia" as an etiologic antigenic agent and confirmed the diagnosis of plasma cell gingivitis (PCG). Usually, PCG is not associated with the loss of attachment. This case report appears to be the first publication to document an atypical presentation of PCG with generalized aggressive periodontitis related to the use of herbal toothpaste containing "Acacia" extract from the tree "Acacia Arabica."

  11. Plasma absorption and ultrastructural changes of rat testicular cells induced by lindane.

    PubMed

    Suwalsky, M; Villena, F; Marcus, D; Ronco, A M

    2000-09-01

    This paper describes, for the first time, how topical application in rats of a commercial preparation of lindane widely used in public health, at similar doses and routes of administration as in humans, leads to rapid absorption and accumulation of lindane in the testes. An early peak of absorption was detected in plasma 6 h after topical treatment of male Wistar rats with a commercial preparation of 1% lindane (Plomurol). Higher plasma levels were observed after repetitive doses of 60 mg/kg b.w., the amount recommended for the treatment of scabies and pediculosis in humans in several countries. A residue level of 7.4 +/- 0.67 microg/g was found in testicular tissue 6 h after a single daily topical application for 4 consecutive days. The ultrastructural study of testicular interstitial cells exposed to dermal application of lindane (Plomurol) revealed widespread damage of a great number of Leydig cells, some of which were completely disintegrated. PMID:11204556

  12. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  13. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine.

    PubMed

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-07-30

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL).

  14. Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine

    PubMed Central

    Simeon, Vittorio; Todoerti, Katia; La Rocca, Francesco; Caivano, Antonella; Trino, Stefania; Lionetti, Marta; Agnelli, Luca; De Luca, Luciana; Laurenzana, Ilaria; Neri, Antonino; Musto, Pellegrino

    2015-01-01

    Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL). PMID:26263974

  15. Plasma Cell Leukemia Presenting as a Chest Wall Mass: A Case Report

    PubMed Central

    Ali, Ahmed; Paul, Yonette; Nwabudike, Stanley Madu; Ogbonna, Onyekachi; Grantham, Mica; Taddesse-Heath, Lekidelu

    2016-01-01

    Plasma cell leukemia (PCL) is an uncommon neoplasm of plasma cells, with an aggressive clinical course and poor outcome, even with current standard of care. It can occur either de novo (primary PCL) or as a progression of multiple myeloma (MM). This disease has unique diagnostic criteria but certain genetic markers and clinical features may overlap with MM. Due to the low prevalence of PCL, guidelines on its management are extrapolated from the management of MM and based on small retrospective studies and cases reports/series. We present an interesting case of PCL in a middle-aged African-American male, who was diagnosed incidentally after chest wall imaging for an unrelated complaint. The diagnostic approach, management and outcomes of PCL are discussed. PMID:27462235

  16. Plasma Cell Leukemia Presenting as a Chest Wall Mass: A Case Report.

    PubMed

    Ali, Ahmed; Paul, Yonette; Nwabudike, Stanley Madu; Ogbonna, Onyekachi; Grantham, Mica; Taddesse-Heath, Lekidelu

    2016-01-01

    Plasma cell leukemia (PCL) is an uncommon neoplasm of plasma cells, with an aggressive clinical course and poor outcome, even with current standard of care. It can occur either de novo (primary PCL) or as a progression of multiple myeloma (MM). This disease has unique diagnostic criteria but certain genetic markers and clinical features may overlap with MM. Due to the low prevalence of PCL, guidelines on its management are extrapolated from the management of MM and based on small retrospective studies and cases reports/series. We present an interesting case of PCL in a middle-aged African-American male, who was diagnosed incidentally after chest wall imaging for an unrelated complaint. The diagnostic approach, management and outcomes of PCL are discussed. PMID:27462235

  17. Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation

    NASA Astrophysics Data System (ADS)

    Miura, Taichi; Hamaguchi, Satoshi; Nishihara, Shoko

    2016-04-01

    Recently, various effects of low-temperature atmospheric-pressure plasma irradiation on living cells have been demonstrated, such as tissue sterilization, blood coagulation, angiogenesis, wound healing, and tumor elimination. However, the effect of plasma-irradiation on the differentiation of mouse embryonic stem cells (mESCs) has not yet been clarified. A large number of reactive species are generated by plasma-irradiation in medium, of which hydrogen peroxide (H2O2) is one of the main species generated. Here, we investigated the effect of plasma-irradiation on the differentiation of mESCs using an embryoid body (EB) formation assay with plasma-irradiated medium or H2O2-supplemented non-irradiated medium. Our findings demonstrated that plasma-irradiated medium potently inhibits the differentiation from mESCs to mesoderm and endoderm by inhibiting Wnt signaling as determined by quantitative polymerase chain reaction and immunoblotting analyses. In contrast, both the plasma-irradiated medium and H2O2-supplemented non-irradiated medium enhanced the differentiation to epiblastoid, ectodermal, and neuronal lineages by activation of fibroblast growth factor 4 (FGF4) signaling, suggesting that these effects are caused by the H2O2 generated by plasma-irradiation in medium. However, in each case, the differentiation to glial cells remained unaffected. This study is the first demonstration that plasma-irradiation affects the differentiation of mESCs by the regulation of Wnt and FGF4 signaling pathways.

  18. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    PubMed

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface.

  19. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    PubMed

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. PMID:27612809

  20. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis.

    PubMed

    Liu, Yang; Zhang, Jian; Zhou, Yu-Hui; Jiang, Yi-Na; Zhang, Wei; Tang, Xiao-Jiang; Ren, Yu; Han, Shui-Ping; Liu, Pei-Jun; Xu, Jing; He, Jian-Jun

    2015-01-01

    Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.

  1. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  2. Low temperature plasma processing for cell growth inspired carbon thin films fabrication.

    PubMed

    Kumar, Manish; Piao, Jin Xiang; Jin, Su Bong; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Han, Jeon Geon

    2016-09-01

    The recent bio-applications (i.e. bio-sensing, tissue engineering and cell proliferation etc.) are driving the fundamental research in carbon based materials with functional perspectives. High stability in carbon based coatings usually demands the high density deposition. However, the standard techniques, used for the large area and high throughput deposition of crystalline carbon films, often require very high temperature processing (typically >800 °C in inert atmosphere). Here, we present a low temperature (<150 °C) pulsed-DC plasma sputtering process, which enables sufficient ion flux to deposit dense unhydrogenated carbon thin films without any need of substrate-bias or post-deposition thermal treatments. It is found that the control over plasma power density and pulsed frequency governs the density and kinetic energy of carbon ions participating during the film growth. Subsequently, it controls the contents of sp(3) and sp(2) hybridizations via conversion of sp(2) to sp(3) hybridization by ion's energy relaxation. The role of plasma parameters on the chemical and surface properties are presented and correlated to the bio-activity. Bioactivity tests, carried out in mouse fibroblast L-929 and Sarcoma osteogenic (Saos-2) bone cell lines, demonstrate promising cell-proliferation in these films. PMID:27036854

  3. Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells.

    PubMed

    Lam, Wing Y; Becker, Amy M; Kennerly, Krista M; Wong, Rachel; Curtis, Jonathan D; Llufrio, Elizabeth M; McCommis, Kyle S; Fahrmann, Johannes; Pizzato, Hannah A; Nunley, Ryan M; Lee, Jieun; Wolfgang, Michael J; Patti, Gary J; Finck, Brian N; Pearce, Erika L; Bhattacharya, Deepta

    2016-07-19

    Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity. PMID:27396958

  4. Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes

    NASA Astrophysics Data System (ADS)

    Guidotti, R. A.; Reinhardt, F. W.; Dai, J.; Reisner, D. E.

    Cathodes for thermally activated ("thermal") batteries based on CoS 2 and LiCl-LiBr-LiF electrolyte and FeS 2 (pyrite) and LiCl-KCl eutectic were prepared by thermal spraying catholyte mixtures onto graphite-paper substrates. Composite separator-cathode deposits were also prepared in the same manner by sequential thermal spraying of LiCl-KCl-based separator material onto a pyrite-cathode substrate. These materials were then tested in single cells over a temperature range of 400-600 °C and in 5-cell and 15-cell batteries. A limited number of battery tests were conducted with the separator-cathode composites and plasma-sprayed Li(Si) anodes-the first report of an all-plasma-sprayed thermal battery. Thermal-spraying offers distinct advantages over conventional pressed-powder parts for fabrication of thin electrodes for short-life thermal batteries. The plasma-sprayed electrodes have lower impedances than the corresponding pressed-powder parts due to improved particle-particle contact.

  5. Particle-in-cell simulation of an electronegative plasma under direct current bias studied in a large range of electronegativity

    SciTech Connect

    Oudini, N.; Raimbault, J.-L.; Chabert, P.; Aanesland, A.; Meige, A.

    2013-04-15

    A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths within the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).

  6. Molecular Characterization of Circulating Plasma Cells in Patients with Active Systemic Lupus Erythematosus

    PubMed Central

    Lugar, Patricia L.; Love, Cassandra; Grammer, Amrie C.; Dave, Sandeep S.; Lipsky, Peter E.

    2012-01-01

    Systemic lupus erythematosus (SLE) is a generalized autoimmune disease characterized by abnormal B cell activation and the occurrence of increased frequencies of circulating plasma cells (PC). The molecular characteristics and nature of circulating PC and B cells in SLE have not been completely characterized. Microarray analysis of gene expression was used to characterize circulating PC in subjects with active SLE. Flow cytometry was used to sort PC and comparator B cell populations from active SLE blood, normal blood and normal tonsil. The gene expression profiles of the sorted B cell populations were then compared. SLE PC exhibited a similar gene expression signature as tonsil PC. The differences in gene expression between SLE PC and normal tonsil PC and tonsil plasmablasts (PB) suggest a mature Ig secreting cell phenotype in the former population. Despite this, SLE PC differed in expression of about half the genes from previously published gene expression profiles of normal bone marrow PC, indicating that these cells had not achieved a fully mature status. Abnormal expression of several genes, including CXCR4 and S1P1, suggests a mechanism for the persistence of SLE PC in the circulation. All SLE B cell populations revealed an interferon (IFN) gene signature previously only reported in unseparated SLE peripheral blood mononuclear cells. These data indicate that SLE PC are a unique population of Ig secreting cells with a gene expression profile indicative of a mature, but not fully differentiated phenotype. PMID:23028528

  7. Molecular characterization of circulating plasma cells in patients with active systemic lupus erythematosus.

    PubMed

    Lugar, Patricia L; Love, Cassandra; Grammer, Amrie C; Dave, Sandeep S; Lipsky, Peter E

    2012-01-01

    Systemic lupus erythematosus (SLE) is a generalized autoimmune disease characterized by abnormal B cell activation and the occurrence of increased frequencies of circulating plasma cells (PC). The molecular characteristics and nature of circulating PC and B cells in SLE have not been completely characterized. Microarray analysis of gene expression was used to characterize circulating PC in subjects with active SLE. Flow cytometry was used to sort PC and comparator B cell populations from active SLE blood, normal blood and normal tonsil. The gene expression profiles of the sorted B cell populations were then compared. SLE PC exhibited a similar gene expression signature as tonsil PC. The differences in gene expression between SLE PC and normal tonsil PC and tonsil plasmablasts (PB) suggest a mature Ig secreting cell phenotype in the former population. Despite this, SLE PC differed in expression of about half the genes from previously published gene expression profiles of normal bone marrow PC, indicating that these cells had not achieved a fully mature status. Abnormal expression of several genes, including CXCR4 and S1P(1), suggests a mechanism for the persistence of SLE PC in the circulation. All SLE B cell populations revealed an interferon (IFN) gene signature previously only reported in unseparated SLE peripheral blood mononuclear cells. These data indicate that SLE PC are a unique population of Ig secreting cells with a gene expression profile indicative of a mature, but not fully differentiated phenotype.

  8. Effects of Caffeine Supplementation on Plasma and Blood Mononuclear Cell Interleukin-10 Levels After Exercise.

    PubMed

    Tauler, Pedro; Martinez, Sonia; Martinez, Pau; Lozano, Leticia; Moreno, Carlos; Aguiló, Antoni

    2016-02-01

    This study compared the response of interleukin (IL)-10, and also of IL-6 and IL-12 p40, to exercise and caffeine supplementation between plasma and blood mononuclear cells (BMNCs). Participants in the study (n = 28) were randomly allocated in a double-blind fashion to either caffeine (n = 14) or placebo (n = 14) treatments. One hour before completing a 15-km run competition, athletes took 6 mg/kg body mass of caffeine or a placebo. Plasma and BMNCs were purified from blood samples taken before and after competition. Concentrations of interleukins (IL-10, IL-6, and IL-12 p40), cyclic adenosine monophosphate (cAMP), caffeine, adrenaline, and cortisol were measured in plasma. IL-10, IL-6, and IL-12 p40 and cAMP levels were also determined in BMNCs. Exercise induced significant increases in IL-6 and IL-10 plasma levels, with higher increases in the caffeine-supplemented group. After 2-hr recovery, these levels returned to almost preexercise values. However, no effect of caffeine on BMNC cytokines was observed. IL-10, IL-6, and IL-12 p40 levels in BMNCs increased mainly at 2 hr postexercise. cAMP levels increased postexercise in plasma and after recovery in BMNCs, but no effects of caffeine were observed. In conclusion, caffeine did not modify cytokine levels in BMNCs in response to exercise. However, higher increases of IL-10 were observed in plasma after exercise in the supplemented participants, which could suppose an enhancement of the anti-inflammatory properties of exercise.

  9. Plasma circulating cell-free mitochondrial DNA in the assessment of Friedreich's ataxia.

    PubMed

    Dantham, Subrahamanyam; Srivastava, Achal K; Gulati, Sheffali; Rajeswari, Moganty R

    2016-06-15

    Friedreich's ataxia (FRDA) is one of the most devastating childhood onset neurodegenerative disease affecting multiple organs in the course of progression. FRDA is associated with mitochondrial dysfunction due to deficit in a nuclear encoded mitochondrial protein, frataxin. Identification of disease-specific biomarker for monitoring the severity remains to be a challenging topic. This study was aimed to identify whether circulating cell-free nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in blood plasma can be a potential biomarker for FRDA. Clinical information was assessed using International Cooperative Ataxia Rating Scale and the disease was confirmed using Long-range PCR for GAA repeat expansion within the gene encoding frataxin. The frataxin expression was measured using Western blot. Plasma nDNA and mtDNA levels were quantified by Multiplex real-time PCR. The major observation is that the levels of nDNA found to be increased, whereas mtDNA levels were reduced significantly in the plasma of FRDA patients (n=21) as compared to healthy controls (n=21). Further, plasma mtDNA levels showed high sensitivity (90%) and specificity (76%) in distinguishing from healthy controls with optimal cutoff indicated at 4.1×10(5)GE/mL. Interestingly, a small group of follow-up patients (n=9) on intervention with, a nutrient supplement, omega-3 fatty acid (a known enhancer of mitochondrial metabolism) displayed a significant improvement in the levels of plasma mtDNA, supporting our hypothesis that plasma mtDNA can be a potential monitoring or prognosis biomarker for FRDA.

  10. Effects of Caffeine Supplementation on Plasma and Blood Mononuclear Cell Interleukin-10 Levels After Exercise.

    PubMed

    Tauler, Pedro; Martinez, Sonia; Martinez, Pau; Lozano, Leticia; Moreno, Carlos; Aguiló, Antoni

    2016-02-01

    This study compared the response of interleukin (IL)-10, and also of IL-6 and IL-12 p40, to exercise and caffeine supplementation between plasma and blood mononuclear cells (BMNCs). Participants in the study (n = 28) were randomly allocated in a double-blind fashion to either caffeine (n = 14) or placebo (n = 14) treatments. One hour before completing a 15-km run competition, athletes took 6 mg/kg body mass of caffeine or a placebo. Plasma and BMNCs were purified from blood samples taken before and after competition. Concentrations of interleukins (IL-10, IL-6, and IL-12 p40), cyclic adenosine monophosphate (cAMP), caffeine, adrenaline, and cortisol were measured in plasma. IL-10, IL-6, and IL-12 p40 and cAMP levels were also determined in BMNCs. Exercise induced significant increases in IL-6 and IL-10 plasma levels, with higher increases in the caffeine-supplemented group. After 2-hr recovery, these levels returned to almost preexercise values. However, no effect of caffeine on BMNC cytokines was observed. IL-10, IL-6, and IL-12 p40 levels in BMNCs increased mainly at 2 hr postexercise. cAMP levels increased postexercise in plasma and after recovery in BMNCs, but no effects of caffeine were observed. In conclusion, caffeine did not modify cytokine levels in BMNCs in response to exercise. However, higher increases of IL-10 were observed in plasma after exercise in the supplemented participants, which could suppose an enhancement of the anti-inflammatory properties of exercise. PMID:26132827

  11. Plasma circulating cell-free mitochondrial DNA in the assessment of Friedreich's ataxia.

    PubMed

    Dantham, Subrahamanyam; Srivastava, Achal K; Gulati, Sheffali; Rajeswari, Moganty R

    2016-06-15

    Friedreich's ataxia (FRDA) is one of the most devastating childhood onset neurodegenerative disease affecting multiple organs in the course of progression. FRDA is associated with mitochondrial dysfunction due to deficit in a nuclear encoded mitochondrial protein, frataxin. Identification of disease-specific biomarker for monitoring the severity remains to be a challenging topic. This study was aimed to identify whether circulating cell-free nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) in blood plasma can be a potential biomarker for FRDA. Clinical information was assessed using International Cooperative Ataxia Rating Scale and the disease was confirmed using Long-range PCR for GAA repeat expansion within the gene encoding frataxin. The frataxin expression was measured using Western blot. Plasma nDNA and mtDNA levels were quantified by Multiplex real-time PCR. The major observation is that the levels of nDNA found to be increased, whereas mtDNA levels were reduced significantly in the plasma of FRDA patients (n=21) as compared to healthy controls (n=21). Further, plasma mtDNA levels showed high sensitivity (90%) and specificity (76%) in distinguishing from healthy controls with optimal cutoff indicated at 4.1×10(5)GE/mL. Interestingly, a small group of follow-up patients (n=9) on intervention with, a nutrient supplement, omega-3 fatty acid (a known enhancer of mitochondrial metabolism) displayed a significant improvement in the levels of plasma mtDNA, supporting our hypothesis that plasma mtDNA can be a potential monitoring or prognosis biomarker for FRDA. PMID:27206881

  12. An Advanced Model to Precisely Estimate the Cell-Free Fetal DNA Concentration in Maternal Plasma

    PubMed Central

    Xu, Huixin; Jiang, Haojun; Xie, Weiwei; Chen, Fang; Zeng, Peng; Li, Xuchao; Xie, Yifan; Liu, Hongtai; Huang, Guodong; Chen, Dayang; Liu, Ping; Jiang, Hui; Zhang, Xiuqing

    2016-01-01

    Background With the speedy development of sequencing technologies, noninvasive prenatal testing (NIPT) has been widely applied in clinical practice for testing for fetal aneuploidy. The cell-free fetal DNA (cffDNA) concentration in maternal plasma is the most critical parameter for this technology because it affects the accuracy of NIPT-based sequencing for fetal trisomies 21, 18 and 13. Several approaches have been developed to calculate the cffDNA fraction of the total cell-free DNA in the maternal plasma. However, most approaches depend on specific single nucleotide polymorphism (SNP) allele information or are restricted to male fetuses. Methods In this study, we present an innovative method to accurately deduce the concentration of the cffDNA fraction using only maternal plasma DNA. SNPs were classified into four maternal-fetal genotype combinations and three boundaries were added to capture effective SNP loci in which the mother was homozygous and the fetus was heterozygous. The median value of the concentration of the fetal DNA fraction was estimated using the effective SNPs. A depth-bias correction was performed using simulated data and corresponding regression equations for adjustments when the depth of the sequencing data was below 100-fold or the cffDNA fraction is less than 10%. Results Using our approach, the median of the relative bias was 0.4% in 18 maternal plasma samples with a median sequencing depth of 125-fold. There was a significant association (r = 0.935) between our estimations and the estimations inferred from the Y chromosome. Furthermore, this approach could precisely estimate a cffDNA fraction as low as 3%, using only maternal plasma DNA at the targeted region with a sequencing depth of 65-fold. We also used PCR instead of parallel sequencing to calculate the cffDNA fraction. There was a significant association (r = 98.2%) between our estimations and those inferred from the Y chromosome. PMID:27662469

  13. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  14. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  15. Oxide Solar Cells Fabricated Using Zinc Oxide and Plasma-Oxidized Cuprous Oxide

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Ming; Wu, Ya-Ting; Jou, Shyankay

    2012-12-01

    Oxide heterojunction solar cells composed of an n-type Al-doped ZnO (AZO) thin film on the surfaces of p-type Cu2O films were fabricated. The Cu2O films of about 0.34 to 1.67 µm thickness were grown by partial oxidation of a Cu sheet using microwave plasma. The AZO film of 400 nm thickness was deposited by magnetron sputtering. Energy conversion efficiencies of 0.12 to 0.30% were obtained in AZO/Cu2O cells under AM1.5 solar illumination.

  16. Locally conformal finite-difference time-domain techniques for particle-in-cell plasma simulation

    NASA Astrophysics Data System (ADS)

    Clark, R. E.; Welch, D. R.; Zimmerman, W. R.; Miller, C. L.; Genoni, T. C.; Rose, D. V.; Price, D. W.; Martin, P. N.; Short, D. J.; Jones, A. W. P.; Threadgold, J. R.

    2011-02-01

    The Dey-Mittra [S. Dey, R. Mitra, A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects, IEEE Microwave Guided Wave Lett. 7 (273) 1997] finite-difference time-domain partial cell method enables the modeling of irregularly shaped conducting surfaces while retaining second-order accuracy. We present an algorithm to extend this method to include charged particle emission and absorption in particle-in-cell codes. Several examples are presented that illustrate the possible improvements that can be realized using the new algorithm for problems relevant to plasma simulation.

  17. Tissue augmentation by white blood cell-containing platelet-rich plasma.

    PubMed

    Kawazoe, Takeshi; Kim, Hak Hee

    2012-01-01

    Platelet-rich plasma (PRP) is a matrix of fibrin and platelets that releases cytokines that are important in wound healing. PRP is produced from the patient's blood and therefore has less risk of allergic reaction and infection. We have obtained PRP with an enhanced white blood cell component (W-PRP) by optimizing the centrifugal separation of PRP from plasma. Here we show that injection of W-PRP into the auricle of nude mice gave greater tissue augmentation compared to PRP. Further augmentation occurred when bFGF was added to W-PRP, and there was a significant increase in the number of α-smooth muscle actin-positive cells in mice treated with W-PRP+bFGF. Our results suggest that W-PRP may have value in cosmetic surgery aimed at rejuvenation of wrinkled and sagging skin. W-PRP injection constitutes a new concept in cell transplantation, in which cells required for tissue regeneration are induced by cytokines released from the transplanted cells. PMID:22793069

  18. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    PubMed

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems.

  19. Motility voltage sensor of the outer hair cell resides within the lateral plasma membrane.

    PubMed Central

    Huang, G; Santos-Sacchi, J

    1994-01-01

    The outer hair cell (OHC) from the organ of Corti is believed to be responsible for the mammal's exquisite sense of hearing. A membrane-based motile response of this cell underlies the initial processing of acoustic energy. The voltage-dependent capacitance of the OHC, possibly reflecting charge movement of the motility voltage sensor, was measured in cells during intracellular dialysis of trypsin under whole cell voltage clamp. Within 10 min after dialysis, light and electron microscopic examination revealed that the subplasmalemmal structures, including the cytoskeletal framework and subsurface cisternae, were disrupted and/or detached from adjacent plasma membrane. Dialysis of heat-inactivated trypsin produced no changes in cell structure. Simultaneous measures of linear and nonlinear membrane capacitance revealed minimal changes, indicating that contributions by subsurface structures to the generation of the nonlinear capacitance are unlikely. This study strongly suggests that voltage-dependent charge movement in the OHC reflects properties of the force generator's voltage sensor and that the sensor/motor resides solely within the lateral plasma membrane. Images PMID:7991617

  20. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  1. Putting J chain back on the map: how might its expression define plasma cell development?

    PubMed

    Castro, Caitlin D; Flajnik, Martin F

    2014-10-01

    Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.

  2. Red blood cell engineering in stroma and serum/plasma-free conditions and long term storage.

    PubMed

    Kim, Hyun Ok; Baek, Eun Jung

    2012-01-01

    In vitro generation of artificial red blood cells (RBCs) is very important to overcome insufficient and unsafe blood supply. Despite recent progresses in RBCs engineering from several stem cell sources, none of them could succeed in generation of functional RBCs in the absence of serum/plasma and feeder cells. Without the elimination of serum and plasma, human RBC engineering in a large scale is impossible, especially for the future bioreactor system. Using an appropriate combination of cost-effective and safe reagents, the present study demonstrated the terminal maturation of hematopoietic stem cells into enucleated RBCs, which were functional comparable to donated human RBCs. Surprisingly, the viability of erythroid cells was higher in our serum- and feeder-free culture condition than in the previous serum-added condition. This was possible by supplementation with vitamin C in media and hypothermic conditions. Also, our report firstly presents the storability of artificial RBCs, which possibility is essential for clinical application. In summary, our report demonstrates engineering of human applicable RBCs with a dramatically enhanced viability and shelf-life in both serum- and stroma-free conditions. This innovative culture technology could contribute to the realization of the large-scale pharming of human RBCs using bioreactor systems. PMID:21902543

  3. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  4. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma.

    PubMed

    Köritzer, Julia; Boxhammer, Veronika; Schäfer, Andrea; Shimizu, Tetsuji; Klämpfl, Tobias G; Li, Yang-Fang; Welz, Christian; Schwenk-Zieger, Sabina; Morfill, Gregor E; Zimmermann, Julia L; Schlegel, Jürgen

    2013-01-01

    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.

  5. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  6. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  7. Plasma membrane domains participate in pH banding of Chara internodal cells.

    PubMed

    Schmölzer, Patric M; Höftberger, Margit; Foissner, Ilse

    2011-08-01

    We investigated the identity and distribution of cortical domains, stained by the endocytic marker FM 1-43, in branchlet internodal cells of the characean green algae Chara corallina and Chara braunii. Co-labeling with NBD C(6)-sphingomyelin, a plasma membrane dye, which is not internalized, confirmed their location in the plasma membrane, and co-labelling with the fluorescent pH indicator Lysotracker red indicated an acidic environment. The plasma membrane domains co-localized with the distribution of an antibody against a proton-translocating ATPase, and electron microscopic data confirmed their identity with elaborate plasma membrane invaginations known as charasomes. The average size and the distribution pattern of charasomes correlated with the pH banding pattern of the cell. Charasomes were larger and more frequent at the acidic regions than at the alkaline bands, indicating that they are involved in outward-directed proton transport. Inhibition of photosynthesis by DCMU prevented charasome formation, and incubation in pH buffers resulted in smaller, homogenously distributed charasomes irrespective of whether the pH was clamped at 5.5 or 8.5. These data indicate that the differential size and distribution of charasomes is not due to differences in external pH but reflects active, photosynthesis-dependent pH banding. The fact that pH banding recovered within several minutes in unbuffered medium, however, confirms that pH banding is also possible in cells with evenly distributed charasomes or without charasomes. Cortical mitochondria were also larger and more abundant at the acid bands, and their intimate association with charasomes and chloroplasts suggests an involvement in carbon uptake and photorespiration.

  8. Arcing of negatively biased solar cells in a plasma environment. I - Experimental observations

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Marinelli, W. J.; Weyl, G.; Carleton, K. L.; Aifer, E.

    1992-01-01

    A variety of experiments have been performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells operating in a low earth orbit plasma environment. These efforts have led to a reduction of greater than a factor of 100 in the arc frequency of a single cells following proper remeditation procedures. Experiments naturally led to and focused on the adhesive/encapsulating that is used to bond the protective cover slip to the solar cell. An image-intensified CCD camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude.

  9. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    PubMed

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  10. QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas

    SciTech Connect

    Huang, C. . E-mail: huangck@ee.ucla.edu; Decyk, V.K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W.B.; Cooley, J.H.; Antonsen, T.M.; Katsouleas, T.

    2006-09-20

    A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static or frozen field approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computational time by 2-3 orders of magnitude. Comparison between the new algorithm and conventional fully explicit models (OSIRIS) is presented. The agreement is excellent for problems of interest. Direction for future work is also presented.

  11. Particle-in-cell/Monte Carlo simulation of capacitively coupled chlorine plasmas

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenji; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of capacitively coupled plasmas (CCP) is still important, because of the development of dual-frequency CCP discharges, and also of the CCP mode that occurs in inductively coupled plasma discharges at low rf powers. This paper presents a two-dimensional particle-in-cell/Monte Carlo (PIC/MC) simulation of CCP chlorine discharges in an asymmetric parallel-plate rf plasma reactor. The model includes an external electrical circuit with a blocking capacitor and an rf power supply, which gives self-consistently the dc self-bias voltages on the powered electrode. Four charged species (e-, Cl2+, Cl+, Cl-) are taken into account in uniformly distributed Cl2 neutral backgrounds, together with electron-neutral elastic collision and ionization, dissociative attachment, positive ion-neutral elastic collision and charge transfer, and electron-ion and ion-ion recombination. The results indicated that the population of negative ions dominates that of electrons, which governs the plasma discharge and sheath dynamics, and thus the dynamics of incoming ion fluxes onto the powered electrode.

  12. Plasma volume during stress in man - Osmolality and red cell volume

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Mangseth, G. R.

    1979-01-01

    The purpose was (1) to test the hypothesis that in man there is a range of plasma osmolality within which the red cell volume (RCV) and mean corpuscular volume (MCV) remain essentially constant and (2) to determine the upper limit of this range. During a variety of stresses - submaximal and maximal exercise, heat and altitude exposure, +Gz acceleration, and tilting - changes in plasma osmolality between -1 and +13 mosmol/kg resulted in essentially no change in the regression of percent change in plasma volume (PV) calculated from a change in hematocrit (Hct) on that calculated from a change in Hct + hemoglobin (Hb), i.e., the RCV and MCV were constant. Factors that do not influence RCV are the level of metabolism, heat exposure at rest, and short-term orthostasis (heat-to-foot acceleration). Factors that may influence RCV are exposure to high altitude and long-term orthostasis (head-up tilting). Factors that definitely influence RCV are prior dehydration and extended periods of stress. Thus, either the Hct or the Hct + Hb equations can be used to calculate percent changes in PV under short-term periods of stress when the change in plasma osmolality is less than 13 mosmol/kg.

  13. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    SciTech Connect

    Daniel S. Clark; Nathaniel J. Fisch

    2003-06-27

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I {approx} 10{sup 17} W/cm{sup 2} by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated.

  14. Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms

    NASA Astrophysics Data System (ADS)

    Thurgood, J. O.; Tsiklauri, D.

    2015-12-01

    Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that

  15. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  16. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma.

    PubMed

    Nakai, Naoya; Fujita, Ryo; Kawano, Fuminori; Takahashi, Kazuo; Ohira, Takashi; Shibaguchi, Tsubasa; Nakata, Ken; Ohira, Yoshinobu

    2014-09-01

    As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells.

  17. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  18. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    NASA Astrophysics Data System (ADS)

    Derbouz, K.; Michel, T.; De Moro, F.; Spiegel, Y.; Torregrosa, F.; Belouet, C.; Slaoui, A.

    2013-09-01

    In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template) using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD) or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  19. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  20. BK Virus-Associated Nephropathy with Plasma Cell-Rich Infiltrates Treated by Bortezomib-Based Regimen.

    PubMed

    Wu, Di; Zhang, Ming-chao; Chen, Jin-song; Li, Xue; Cheng, Dong-rui; Xie, Ke-nan; Ji, Shu-ming; Liu, Zhi-hong; Wen, Ji-qiu

    2015-12-01

    BK virus infection accompanied with plasma cell-rich infiltrates is a dilemma in renal transplant recipients. One young female patient diagnosed as BK virus-associated nephropathy with plasma cell-rich infiltrates at 16 months after renal transplant was treated with bortezomib and a sequential immuno-suppressive protocol of tacrolimus combined with leflunomide. After a short period of reduction, her serum creatinine increased slowly with stable BK viruria. The patient underwent repeat biopsy. The histologic changes showed a decrease in plasma cells and CD20+ cells in the allograft, but the other mononuclear cells showed no difference from the first biopsy. The immunosuppressive protocol was converted to tacrolimus combined with enteric-coated mycophenolate sodium. Her serum creatinine decreased gradually during 6 months of follow-up. We speculate that bortezomib can be used in BK virus-associated nephropathy accompanied with plasma cell-rich infiltrates, and this effect might be mediated through a decrease of plasma cells and CD20+ cells in the allograft. The dosage and time of therapy need to be explored in the future; additional studies of large samples are needed.

  1. Adipose-derived stem cells and platelet-rich plasma: the keys to functional periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-09-01

    Numerous different types of periodontal tissue regeneration therapies have been developed clinically with variable outcomes and serious limitations. A key goal of periodontal therapy is to regenerate the destroyed periodontal tissues including alveolar bone, cementum and periodontal ligament. The critical factors in attaining successful periodontal tissue regeneration are the correct recruitment of cells to the site and the production of a suitable extra cellular matrix consistent with the periodontal tissues. Adipose tissue, from which mesenchymal stem cells can be harvested easily and safely, is an especially attractive stem cell source, because adipose-derived stem cells have a strong potential for cell differentiation and growth factor secretion. Meanwhile, the usefulness of platelet-rich plasma in the field of dental surgery has attracted attention. Therapeutic effects of platelet-rich plasma are believed to occur through the provision of concentrated levels of platelet-derived growth factors. Further, recent reports suggested the effect of platelet-rich plasma on mesenchymal stem cell proliferation, differentiation and survival rate. Therefore, the admixture of mesenchymal stem cells and platelet-rich plasma may indicate the great potential for tissue regenerations including periodontal tissue regeneration. In this review, the potential of adipose-derived stem cells and platelet-rich plasma is introduced. Of particular interest, the usefulness in periodontal tissue regeneration and future perspective is discussed.

  2. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    NASA Astrophysics Data System (ADS)

    Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter

    2016-11-01

    This paper reports Ar gas, Ar + O2, Ar + O2 + N2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O2 + N2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O2 + N2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.

  3. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    PubMed Central

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  4. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma.

    PubMed

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs' antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2(-) and NO3(-) can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2(-), but not NO3(-), acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2(-) in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2(-) and NO3(-) in solution.

  5. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells

    PubMed Central

    Jaiswal, Jyoti K.; Lauritzen, Stine P.; Scheffer, Luana; Sakaguchi, Masakiyo; Bunkenborg, Jakob; Simon, Sanford M.; Kallunki, Tuula; Jäättelä, Marja; Nylandsted, Jesper

    2014-01-01

    Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein up-regulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells. Plasma membrane injury-induced entry of calcium into the cell triggers recruitment of S100A11 and Annexin A2 to the site of injury. We show that S100A11 in a complex with Annexin A2 helps reseal the plasma membrane by facilitating polymerization of cortical F-actin and excision of the damaged part of the plasma membrane. These data reveal plasma membrane repair in general and S100A11 and Annexin A2 in particular, as new targets for the therapy of metastatic cancers. PMID:24806074

  6. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma.

    PubMed

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs' antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2(-) and NO3(-) can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2(-), but not NO3(-), acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2(-) in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2(-) and NO3(-) in solution. PMID:27364563

  7. Osteoblast-like cell behavior on plasma deposited micro/nanopatterned coatings.

    PubMed

    Intranuovo, Francesca; Favia, Pietro; Sardella, Eloisa; Ingrosso, Chiara; Nardulli, Marina; d'Agostino, Riccardo; Gristina, Roberto

    2011-02-14

    The behavior of cells in terms of cell-substrate and cell-cell interaction is dramatically affected by topographical characteristics as shape, height, and distance, encountered in their physiological environment. The combination of chemistry and topography of a biomaterial surface influences in turns, important biological responses as inflammatory events at tissue-implant interface, angiogenesis, and differentiation of cells. By disentangling the effect of material chemistry from the topographical one, the possibility of controlling the cell behavior can be provided. In this paper, surfaces with different roughness and morphology were produced by radiofrequency (RF, 13.56 MHz) glow discharges, fed with hexafluoropropylene oxide (C(3)F(6)O), in a single process. Coatings with different micro/nanopatterns and the same uppermost chemical composition were produced by combining two plasma deposition processes, with C(3)F(6)O and tetrafluoroethylene (C(2)F(4)), respectively. The behavior of osteoblast-like cells toward these substrates clearly shows a strict dependence of cell adhesion and proliferation on surface roughness and morphology.

  8. The forkhead transcription factor FOXP1 represses human plasma cell differentiation.

    PubMed

    van Keimpema, Martine; Grüneberg, Leonie J; Mokry, Michal; van Boxtel, Ruben; van Zelm, Menno C; Coffer, Paul; Pals, Steven T; Spaargaren, Marcel

    2015-10-29

    Expression of the forkhead transcription factor FOXP1 is essential for early B-cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma, being associated with poor prognosis. Here, by gene expression analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation and sequencing, we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs, but expression strongly decreases during PC differentiation. Moreover, as compared with immunoglobulin (Ig) M(+) MBCs, IgG(+) MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B-cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant expression of FOXP1 might contribute to lymphomagenesis by blocking this terminal B-cell differentiation. PMID:26289642

  9. The forkhead transcription factor FOXP1 represses human plasma cell differentiation

    PubMed Central

    van Keimpema, Martine; Grüneberg, Leonie J.; Mokry, Michal; van Boxtel, Ruben; van Zelm, Menno C.; Coffer, Paul; Pals, Steven T.

    2015-01-01

    Expression of the forkhead transcription factor FOXP1 is essential for early B-cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma, being associated with poor prognosis. Here, by gene expression analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation and sequencing, we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs, but expression strongly decreases during PC differentiation. Moreover, as compared with immunoglobulin (Ig) M+ MBCs, IgG+ MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B-cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant expression of FOXP1 might contribute to lymphomagenesis by blocking this terminal B-cell differentiation. PMID:26289642

  10. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future

    PubMed Central

    Lehmann, Guillermo L.; Benedicto, Ignacio; Philp, Nancy J.; Rodriguez-Boulan, Enrique

    2015-01-01

    The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin–Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity. PMID:25152359

  11. Multifunctional Transmembrane Protein Ligands for Cell-Specific Targeting of Plasma Membrane-Derived Vesicles.

    PubMed

    Zhao, Chi; Busch, David J; Vershel, Connor P; Stachowiak, Jeanne C

    2016-07-01

    Liposomes and nanoparticles that bind selectively to cell-surface receptors can target specific populations of cells. However, chemical conjugation of ligands to these particles is difficult to control, frequently limiting ligand uniformity and complexity. In contrast, the surfaces of living cells are decorated with highly uniform populations of sophisticated transmembrane proteins. Toward harnessing cellular capabilities, here it is demonstrated that plasma membrane vesicles (PMVs) derived from donor cells can display engineered transmembrane protein ligands that precisely target cells on the basis of receptor expression. These multifunctional targeting proteins incorporate (i) a protein ligand, (ii) an intrinsically disordered protein spacer to make the ligand sterically accessible, and (iii) a fluorescent protein domain that enables quantification of the ligand density on the PMV surface. PMVs that display targeting proteins with affinity for the epidermal growth factor receptor (EGFR) bind at increasing concentrations to breast cancer cells that express increasing levels of EGFR. Further, as an example of the generality of this approach, PMVs expressing a single-domain antibody against green fluorescence protein (eGFP) bind to cells expressing eGFP-tagged receptors with a selectivity of ≈50:1. The results demonstrate the versatility of PMVs as cell targeting systems, suggesting diverse applications from drug delivery to tissue engineering. PMID:27294846

  12. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings.

    PubMed

    Testrich, H; Rebl, H; Finke, B; Hempel, F; Nebe, B; Meichsner, J

    2013-10-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ-irradiation.

  13. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation

    PubMed Central

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-01-01

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3′ untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3′ UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production—both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes. PMID:25825742

  14. Dielectric barrier discharge plasma in Ar/O{sub 2} promoting apoptosis behavior in A549 cancer cells

    SciTech Connect

    Huang Jun; Li Hui; Chen Wei; Lv Guohua; Wang Xingquan; Zhang Guoping; Wang Pengye; Ostrikov, Kostya; Yang Size

    2011-12-19

    The Ar/O{sub 2} plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4', 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O{sub 2} plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.

  15. Characterization of the plasma membrane localization and orientation of HPV16 E5 for cell-cell fusion

    SciTech Connect

    Hu Lulin; Ceresa, Brian P.

    2009-10-10

    Human papillomavirus (HPV) is a non-enveloped DNA virus with an approx 8000 base pair genome. Infection with certain types of HPV is associated with cervical cancer, although the molecular mechanism by which HPV induces carcinogenesis is poorly understood. Three genes encoded by HPV16 are regarded as oncogenic - E5, E6, and E7. The role of E5 has been controversial. Expression of HPV16 E5 causes cell-cell fusion, an event that can lead to increased chromosomal instability, particularly in the presence of cell cycle checkpoint inhibitors like HPV16 E6 and E7. Using biochemical and cell biological assays to better understand HPV16 E5, we find that HPV16 E5 localizes to the plasma membrane with an intracellular amino terminus and an extracellular carboxyl-terminus. Further, HPV16 E5 must be expressed on both cells for cell fusion to occur. When the extracellular epitope of HPV16 E5 is targeted with an antibody, the number of bi-nucleated cells decreases.

  16. KDEL-Containing Auxin-Binding Protein Is Secreted to the Plasma Membrane and Cell Wall.

    PubMed Central

    Jones, A. M.; Herman, E. M.

    1993-01-01

    The auxin-binding protein ABP1 has been postulated to mediate auxin-induced cellular changes associated with cell expansion. This protein contains the endoplasmic reticulum (ER) retention signal, the tetrapeptide lysine-aspartic acid-glutamic acid-leucine (KDEL), at its carboxy terminus, consistent with previous subcellular fractionation data that indicated an ER location for ABP1. We used electron microscopic immunocytochemistry to identify the subcellular localization of ABP1. Using maize (Zea mays) coleoptile tissue and a black Mexican sweet (BMS) maize cell line, we found that ABP1 is located in the ER as expected, but is also on or closely associated with the plasma membrane and within the cell wall. Labeling of the Golgi apparatus suggests that the transport of ABP1 to the cell wall occurs via the secretory system. Inhibition of secretion of an ABP homolog into the medium of BMS cell cultures by brefeldin A, a drug that specifically blocks secretion, is consistent with this secretion pathway. The secreted protein was recognized by an anti-KDEL peptide antibody, strongly supporting the interpretation that movement of this protein out of the ER does not involve loss of the carboxy-terminal signal. Cells starved for 2,4-dichlorophenoxyacetic acid for 72 h retained less ABP in the cell and secreted more of it into the medium. The significance of our observations is 2-fold. We have identified a KDEL-containing protein that specifically escapes the ER retention system, and we provide an explanation for the apparent discrepancy that most of the ABP is located in the ER, whereas ABP and auxin act at the plasma membrane. PMID:12231715

  17. Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated.

    PubMed

    Kidane, Theodros Z; Farhad, Ramin; Lee, Kyoung Jin; Santos, Abraham; Russo, Eric; Linder, Maria C

    2012-08-01

    Plasma proteins rather than amino acid chelates are the direct sources of copper for mammalian cells. In continuing studies on the mechanisms by which albumin and transcuprein deliver copper and the potential involvement of CTR1, rates of uptake from these proteins and Cu-histidine were compared in cells with/without CTR1 knockdown or knockout. siRNA knocked down expression of CTR1 mRNA 60-85% in human mammary epithelial and hepatic cell models, but this had little or no effect on uptake of 1 μM Cu(II) attached to pure human albumin or alpha-2-macroglobulin. Mouse embryonic fibroblasts that did/did not express Ctr1 took up Cu(II) bound to albumin about as readily as from the histidine complex at physiological concentrations and by a single saturable process. Uptake from mouse albumin achieved a 2-