14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Controls and Accessories § 23.1165 Engine ignition systems. Link to an amendment published at 76 FR 75759... discharge of any battery used for engine ignition. (e) Each turbine engine ignition system must be... ignition systems. (f) In addition, for commuter category airplanes, each turbine engine ignition system...
40 CFR 49.144 - Control equipment requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...
40 CFR 49.144 - Control equipment requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...
A sustained-arc ignition system for internal combustion engines
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1977-01-01
A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries and...
Low current extended duration spark ignition system
Waters, Stephen Howard; Chan, Anthony Kok-Fai
2005-08-30
A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.
Shen, Chih-Lung; Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.
Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption
Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372
Combustion Processes in Solid Propellant Cracks
1981-06-01
Ignition at the Closed End of an Inert Ctack . . ......................... 38 12. Block Diagram of Remotely-Controlled Ignition and Photography System ...41 13. Block Diagram of Data Acquisition System ... ........ .. 42 14. Measured Pressure-Time Traces for Crack...ignition system has been designed and fabricated. 5. Experimental firings with single-pore propellant grain have been conducted to study the effects of
Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.
Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomisawa, N.
1989-07-04
This patent describes a spark ignition timing control system for an internal combustion engine, it comprises: sensor means monitoring preselected parameters for producing a sensor signal; first means for deriving a spark ignition timing on the basis of data contained in the sensor signal; second means for detecting an engine acceleration demand for producing an accelerating condition indicative signal; and third means, responsive to the accelerating condition indicative signal, for modifying the spark ignition timing derived by the first means after expiration of a first predetermined period of time of occurence of the accelerating condition indicative signal, in such amore » manner that the spark ignition timing is advanced and retarded for suppressing cycle-to-cycle fluctuation of engine speed and for smoothly increasing engine speed.« less
40 CFR 49.4166 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...
40 CFR 49.4166 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
A micro-UAS to start prescribed fires
Beachly, Evan; Higgins, James; Laney, Christian; Elbaum, Sebastian; Detweiler, Carrick; Allen, Craig R.; Twidwell, Dirac
2017-01-01
Prescribed fires have many benefits, but existing ignition methods are dangerous, costly, or inefficient. This paper presents the design and evaluation of a micro-UAS that can start a prescribed fire from the air, while being operated from a safe distance and without the costs associated with aerial ignition from a manned aircraft. We evaluate the performance of the system in extensive controlled tests indoors. We verify the capabilities of the system to perform interior ignitions, a normally dangerous task, through the ignition of two prescribed fires alongside wildland firefighters.
Remote control flare stack igniter for combustible gases
NASA Technical Reports Server (NTRS)
Ray, W. L.
1972-01-01
Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.
Extended temperature range ACPS thruster investigation
NASA Technical Reports Server (NTRS)
Blubaugh, A. L.; Schoenman, L.
1974-01-01
The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B
2014-01-01
The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
Crank angle detecting system for engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, H.; Nishiyama, M.; Nakamura, K.
1988-05-31
An ignition system for a multi-cylinder internal combustion engine is described comprising: (a) engine cylinders in which spark plugs are installed respectively, (b) indicating means disposed so as to synchronize with an engine crankshaft and formed with a large number of slits and a small number of slits, the large number of slits being provided for indicating crankshaft angular positions and the small number of slits being provided for indicating predetermined piston strokes and wherein the small number of slits have mutually different widths from each other to distinguish between piston strokes of at least the groups of cylinders; (c)more » sensing means for sensing crankshaft angular positions in cooperation with the large number of slits of the indicating means and outputting a crank angle signal representing the crankshaft angular position and for sensing the predetermined piston strokes in cooperation with the small number of slits and outputting different width piston stroke signals corresponding to the different width slits; (d) discriminating means for identifying each cylinder group and outputting cylinder group identification signals on the basis of the different width stroke signals derived from the sensing means; (e) ignition timing determining means for generating an ignition timing signal on the basis of the crank angle signal; (f) ignition coil controlling means for generating ignition coil current signals corresponding to the cylinder group identification signals; and (g) ignition timing controlling means for generating cylinder group ignition signals in response to the ignition coil current signals and ignition timing signal so that the spark plugs of each cylinder group are ignited at a proper time.« less
Combustion characteristics in the transition region of liquid fuel sprays
NASA Technical Reports Server (NTRS)
Cernansky, N. P.; Namer, I.; Tidona, R. J.
1986-01-01
A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
Electronic circuitry development in a micropyrotechnic system for micropropulsion applications
NASA Astrophysics Data System (ADS)
Puig-Vidal, Manuel; Lopez, Jaime; Miribel, Pere; Montane, Enric; Lopez-Villegas, Jose M.; Samitier, Josep; Rossi, Carole; Camps, Thierry; Dumonteuil, Maxime
2003-04-01
An electronic circuitry is proposed and implemented to optimize the ignition process and the robustness of a microthruster. The principle is based on the integration of propellant material within a micromachined system. The operational concept is simply based on the combustion of an energetic propellant stored in a micromachined chamber. Each thruster contains three parts (heater, chamber, nozzle). Due to the one shot characteristic, microthrusters are fabricated in 2D array configuration. For the functioning of this kind of system, one critical point is the optimization of the ignition process as a function of the power schedule delivered by electronic devices. One particular attention has been paid on the design and implementation of an electronic chip to control and optimize the system ignition. Ignition process is triggered by electrical power delivered to a polysilicon resistance in contact with the propellant. The resistance is used to sense the temperature on the propellant which is in contact. Temperature of the microthruster node before the ignition is monitored via the electronic circuitry. A pre-heating process before ignition seems to be a good methodology to optimize the ignition process. Pre-heating temperature and pre-heating time are critical parameters to be adjusted. Simulation and experimental results will deeply contribute to improve the micropyrotechnic system. This paper will discuss all these point.
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
An Application Of High-Speed Photography To The Real Ignition Course Of Composite Propellants
NASA Astrophysics Data System (ADS)
Fusheng, Zhang; Gongshan, Cheng; Yong, Zhang; Fengchun, Li; Fanpei, Lei
1989-06-01
That the actual solid rocket motor behavior and delay time of the ignition of Ap/HTPB composite propellant ignited by high energy pyrotechics contained condensed particles have been investigated is the key of this paper. In experiments, using high speed camera, the pressure transducer, the photodiode and synchro circuit control system designed by us synchronistically observe and record all course and details of the ignition. And pressure signal, photodiode signal and high speed photography frame are corresponded one by one.
The National Ignition Facility: alignment from construction to shot operations
NASA Astrophysics Data System (ADS)
Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.
2010-08-01
The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50μm rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990's, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments.
2014-01-15
in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression
NASA Technical Reports Server (NTRS)
Walther, David C.; Anthenien, Ralph A.; Roslon, Mark; Fernandez-Pello, A. Carlos; Urban, David L.
1999-01-01
The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the Get Away Special Canister (GAS-CAN), an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS) which has been incorporated into the MSC experimental apparatus. Thermocouples are currently used to measure temperature and reaction front velocities. A less intrusive method is desirable, however, as smolder is a very weak reaction and it has been found that heat transfer along the thermocouple is sufficient to affect the smolder reaction. It is expected that the UIS system will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. The UIS measures line of sight permeability, providing information about the reaction front position and extent. Additionally, the ignition sequence of the MSC experiments has been optimized from previous experiments to provide longer periods of self-supported smolder. An ignition protocol of a fixed power to the igniter for a fixed time is now implemented. This, rather than a controlled temperature profile ignition protocol at the igniter surface, along with the UIS system, will allow for better study of the effect of gravity on a smolder reaction.
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
NASA Astrophysics Data System (ADS)
Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.
2017-10-01
Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
Ignition of combustible fluids by heated surfaces
NASA Astrophysics Data System (ADS)
Bennett, Joseph Michael
The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.
Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Aleksandrov, Nikolay
2016-09-01
Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.
Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak
1987-01-01
A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.
Guide for Oxygen Hazards Analyses on Components and Systems
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Dees, Jesse; Poe, Robert F.
1996-01-01
Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite at lower temperatures in an oxygen-enriched environment than in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Many metals burn violently in an oxygen-enriched environment when ignited. Lubricants, tapes, gaskets, fuels, and solvents can increase the possibility of ignition in oxygen systems. However, these hazards do not preclude the use of oxygen. Oxygen may be safely used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. These ignition and combustion hazards necessitate a proper oxygen hazards analysis before introducing a material or component into oxygen service. The objective of this test plan is to describe the White Sands Test Facility oxygen hazards analysis to be performed on components and systems before oxygen is introduced and is recommended before implementing the oxygen component qualification procedure. The plan describes the NASA Johnson Space Center White Sands Test Facility method consistent with the ASTM documents for analyzing the hazards of components and systems exposed to an oxygen-enriched environment. The oxygen hazards analysis is a useful tool for oxygen-system designers, system engineers, and facility managers. Problem areas can be pinpointed before oxygen is introduced into the system, preventing damage to hardware and possible injury or loss of life.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Remote fire stack igniter. [with solenoid-controlled valve
NASA Technical Reports Server (NTRS)
Ray, W. L. (Inventor)
1974-01-01
An igniter is described mounted on a vent stack with an upper, flame cage near the top of the stack to ignite emissions from the stack. The igniter is a tube with a lower, open, flared end having a spark plug near the lower end and a solenoid-controlled valve which supplies propane fuel from a supply tank. Propane from the tank is supplied at the top under control of a second, solenoid-controlled valve. The valve controlling the lower supply is closed after ignition at the flame cage. The igniter is economical, practical, and highly reliable.
Control and Information Systems for the National Ignition Facility
Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...
2017-03-23
Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less
Control and Information Systems for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunton, Gordon; Casey, Allan; Christensen, Marvin
Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less
The spark-ignition aircraft piston engine of the future
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.
Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.
National Ignition Facility main laser stray light analysis and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
English, R E; Miller, J L; Peterson, G
1998-06-26
Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.
NIF ICCS network design and loading analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietbohl, G; Bryant, R
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow providemore » operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).« less
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation in water. Auxiliary emission-control device means any element of design that senses temperature... suppression operations. Emission-control system means any device, system, or element of design that controls... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Definitions...
Virtual engine management simulator for educational purposes
NASA Astrophysics Data System (ADS)
Drosescu, R.
2017-10-01
This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.
V-TECS Guide for Automobile Engine Performance Technician.
ERIC Educational Resources Information Center
Meyer, Calvin F.; Benson, Robert T.
This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…
NASA Astrophysics Data System (ADS)
Huang, H.; Vong, C. M.; Wong, P. K.
2010-05-01
With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.
NASA Astrophysics Data System (ADS)
Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael
1999-07-01
The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.
National Ignition Facility Control and Information System Operational Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C D; Beeler, R G; Bowers, G A
The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
40 CFR 1054.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of this part. Auxiliary emission control device means any element of design that senses temperature... continuous mixture of those fuels. Emission control system means any device, system, or element of design... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT...
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.
14 CFR 33.37 - Ignition system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignition system. 33.37 Section 33.37... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a dual ignition system with at least two spark plugs for each...
Pulse combustor with controllable oscillations
Richards, George A.; Welter, Michael J.; Morris, Gary J.
1992-01-01
A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.
Cryogenic target system for hydrogen layering
Parham, T.; Kozioziemski, B.; Atkinson, D.; ...
2015-11-24
Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less
Carignan, Forest J.
1986-01-21
An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.
Ignition in convective-diffusive systems
NASA Astrophysics Data System (ADS)
Fotache, Catalin Grig
The main goal of this work is understanding the controlling mechanisms and responses of forced ignition in an environment where chemistry and transport phenomena are intimately coupled. To analyze systematically this interaction the well-characterized counterflow configuration is selected whereupon a cold fuel jet impinges on a heated air jet, and ignites as the air temperature is raised gradually. In this configuration the ignition response is studied experimentally and numerically with extensive variations of the fuel dilution, flow strain rate, and ambient pressure, for hydrogen and Csb1{-}Csb4 paraffins. Experimentally, the temperatures are measured by thermocouple and Raman spectroscopy, while flow strain rates are determined through laser Doppler velocimetry. The experimental envelope comprises pressures of 0.1-8.0 atm, fuel concentrations from 0 to 100%, and strain rates between 50 and 700 ssp{-1}. Computations are performed using various detailed kinetic and transport models, whose adequacy is assessed by comparison with the experimental results. Through computational simulations, the controlling ignition mechanisms are isolated and analyzed. Simplified kinetic models are derived and evaluated, by using sensitivity/flux analyses and the Computational Singular Perturbation (CSP) method. The investigation demonstrates that the coupling chemistry-transport can produce unexpected responses, even for the arguably simplest Hsb2-air kinetic system. Here, up to three stable steady-states are identified experimentally for identical boundary conditions, corresponding to the distinct regimes of frozen flow, mild oxidation, and flaming combustion, respectively. These states can be accessed in a dual-staged ignition sequence, with radical runaway followed by thermokinetic ignition. The pattern, however, depends on the imposed parameters. Specifically, three ignition limits are found when pressure is varied; the first two are characterized by radical runaway only, whereas the third is thermokinetic in character, and may involve dual-staged ignition. The similarity with homogeneous pressure-temperature explosion limits is attributed to the dominance of similar chemistry. When this involves fast kinetics only the transport effects are minimal, such as occurs within the second limit. Conversely, the other two limits are transport-sensitive because of the relatively slower dominant chemistry. The homogeneous-heterogeneous analogy persists when studying the hydrocarbons. For example, increasing pressure uniformly facilitates ignition in both systems. The transport of heat and chemical species out of the reaction zone, however, requires higher temperatures for nonpremixed ignition. Furthermore, nonpremixed ignition is affected by preferential diffusion of light species such as Hsb2. As a result, the addition of relatively small amounts of hydrogen to the fuel jet dramatically reduces the ignition temperature for low ignitability fuels, such as methane. Finally, the presence of diffusive-convective losses results in a selection of the most efficient chemical branching modes. For hydrocarbons, this selection typically implies the dominance of high temperature kinetics, although the Csb4 alkanes show possible transition to a low-to-intermediate temperature branching mode in the limit of elevated pressures. Further research is suggested in this area, as well as in other related directions.
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
NASA Astrophysics Data System (ADS)
Ispas, N.; Cofaru, C.; Aleonte, M.
2017-10-01
Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.
NASA Technical Reports Server (NTRS)
Hyman, J., Jr.
1974-01-01
A structural integrated ion thruster with 8-cm beam diameter (SIT-8) was developed for attitude control and stationkeeping of synchronous satellites. As optimized, the system demonstrates a thrust T=1.14 mlb (not corrected for beam V sub B = 1200 V (I sub sp = 2200 sec) total propellant utilization efficiency nu sub u = 59.8% (is approximately 72% without auxiliary pulse-igniter electrode), and electrical efficiency n sub E 61.9%. The thruster incorporates a wire-mesh anode and tantalum cover surfaces to control discharge chamber flake formation and employs an auxiliary pulse-igniter electrode for hollow-cathode ignition. When the SIT-8 is integrated with the compatible SIT-5 propellant tankage, the system envelope is 35 cm long by 13 cm flange bolt circle with a mass of 9.8 kg including 6.8 kg of mercury propellant. Two thrust vectoring systems which generate beam deflections in two orthogonal directions were also developed under the program and tested with the 8-cm thruster. One system vectors the beam over + or - 10 degrees by gimbaling of the entire thruster (not including tankage), while the other system vectors the beam over + or - 7 degrees by translating the accel electrode relative to the screen electrode.
Cargo Fire Hazards and Hazard Control for the Offshore Bulk Fuel Systems (OBFS).
1980-06-01
used to evaluate the probability of cargo fuel spills during different ship operational modes. An undesired hazardous event such as a spill of volume...occur. if a cargo release occurs due to either collision or hostile action the probability of ignition is very high . Ignition can be caused by the...Separate auxiliary burners independent from the ship propulsion system provide similar flue gas composition. However as noted previously, a low sulfur
Gasoline Combustion Fundamentals DOE FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekoto, Isaac W.
Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less
40 CFR Appendix I to Part 1068 - Emission-Related Components
Code of Federal Regulations, 2010 CFR
2010-07-01
... system. 2. Fuel system. 3. Ignition system. 4. Exhaust gas recirculation systems. II. The following parts.... Crankcase ventilation valves. 3. Sensors. 4. Electronic control units. III. The following parts are...
40 CFR Appendix I to Part 1068 - Emission-Related Components
Code of Federal Regulations, 2011 CFR
2011-07-01
... system. 2. Fuel system. 3. Ignition system. 4. Exhaust gas recirculation systems. II. The following parts.... Crankcase ventilation valves. 3. Sensors. 4. Electronic control units. III. The following parts are...
Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Robinson, Phillip J.; Veith, Eric M.
2006-01-01
A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) under the auspices of the Exploration Systems Mission Directorate to develop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 was issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. The preferred RCS approach for the dual thrust RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol propellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the design. GOX/Ethanol was easier to ignite, but this combination had system design implications of providing GOX for the igniters. A LOX/Ethanol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not exist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was designed to accommodate the hll LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, m. Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 R LOX to 486 R GOX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to provide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds.
General Purpose Vehicle Mechanic Career Ladder, AFSCs 47232, 47252, and 47275.
1983-03-01
general-purpose vehicles; gasoline and diesel engines; automotive electrical and emission control systems maintenance; drive trains and brake systems...OR HYDRAULIC PRESSES ELECTRONIC IGNITION TESTERS HEADLIGHT TESTERS OSCILLOSCOPES DYNAMOMETERS EXHAUST EMISSION TESTERS GAS SHIELD WELDING...collection forms; man-hour accounting forms and reports; corrosion control procedures; troubleshooting exhaust systems, and emission control systems
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...
Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems
NASA Technical Reports Server (NTRS)
Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.
2007-01-01
Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, D; Churby, A; Krieger, E
2011-07-25
The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian
2017-03-28
A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...
Potential of spark ignition engine, electronic engine and transmission control : final report
DOT National Transportation Integrated Search
1980-03-01
This report identifies, evaluates, and documents the characteristics and functions of significant electronic engine and powertrain control systems. Important considerations in the assessment are the powertrain variables controlled, the technology uti...
Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine
NASA Astrophysics Data System (ADS)
Cofaru, Corneliu
2017-10-01
This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.; Vong, C. M.; Wong, P. K.
2010-05-21
With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenancemore » (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.« less
X-33 Combustion-Wave Ignition System Tested
NASA Technical Reports Server (NTRS)
Liou, Larry C.
1999-01-01
The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxia; Cheng, Shengxian; Hu, Yan; Ye, Yinghua; Shen, Ruiqi
2018-03-01
The integration of composite energetic films (CEFs) with various types of initiators can effectively adjust their performance and represents potential applications in microscale energy-demanding systems. In this study, the Al/Bi2O3/graphene oxide (GO) CEFs were successfully integrated into copper micro-ignitors by electrophoretic deposition, a low-cost and time-saving method. The effects of the Al/Bi2O3/GO CEFs with different GO contents on exothermic performance and ignition properties of micro-ignitors were then systematically investigated in terms of heat release, activation energy, ignition duration, the maximum height of the ignition product, and ignition delay time. The results showed that the addition of GO promoted more heat releases and higher activation energies of Al/Bi2O3/GO CEFs. The addition of ≤3.5 wt. % GO prolonged the ignition duration from 450 μs to 950 μs and increased the maximum height of the ignition product from about 40 mm to 60 mm. However, the micro-ignitors with more than 3.5 wt. % GO cannot be ignited, which suggested that GO played a contradictory role in the ignition properties of micro-ignitors and the controlled GO content was a prerequisite for improved ignition performance. The ignition delay time gradually extended from 10.7 μs to 27.6 μs with increases in the GO contents of Al/Bi2O3 CEFs, revealing that an increase in the weight ratio of GO leads to lower ignition sensitivity of micro-ignitors.
33 CFR 183.440 - Secondary circuits of ignition systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Requirements § 183.440 Secondary circuits of ignition systems. (a) Each conductor in a secondary circuit of an ignition system must meet SAE Standard J557. (b) The connection of each ignition conductor to a spark plug...
33 CFR 183.440 - Secondary circuits of ignition systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements § 183.440 Secondary circuits of ignition systems. (a) Each conductor in a secondary circuit of an ignition system must meet SAE Standard J557. (b) The connection of each ignition conductor to a spark plug...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ignitions system. 33.69 Section 33.69...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignitions system. 33.69 Section 33.69...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ignitions system. 33.69 Section 33.69...
14 CFR 29.1165 - Engine ignition systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...
14 CFR 29.1165 - Engine ignition systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...
14 CFR 29.1165 - Engine ignition systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 25.1165 Section 25... Engine ignition systems. (a) Each battery ignition system must be supplemented by a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if any...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
...: Heating, ventilating, air-conditioning systems (HVAC), amplifiers, mainboards, gas control modules, hybrid airmeter electronics, hybrid ignition electronics, pressure sensors, transmission control modules, crash...
High Pressure Quick Disconnect Particle Impact Tests
NASA Technical Reports Server (NTRS)
Rosales, Keisa R.; Stoltzfus, Joel M.
2009-01-01
NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel
High Pressure Quick Disconnect Particle Impact Tests
NASA Technical Reports Server (NTRS)
Peralta, Stephen; Rosales, Keisa; Smith, Sarah R.; Stoltzfus, Joel M.
2007-01-01
To determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS), NASA Johnson Space Center requested White Sands Test Facility (WSTF) to perform particle impact testing. Testing was performed from November 2006 through May 2007 and included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This report summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs.
1997-11-24
2343 Calle Del Mundo Santa Clara, CA 95054-1008 Tel.: (408)727-8282 POC: J. A. Gotterba Durr Industries Environmental Systems Division 40600...1) LESS THAN 1 IV. FIRE AND EXPLOSION DATA FLASH POINT (TEST METHOD) ABOVE 200*P AUTO IGNITION ABOVE TEMPERATURE iJfJO’P...IST METHOD, ?oo.._r T,CCT CxriNOUISHINO Mt 01A WATER AUTO IGNITION ABOVB I rLAM**BLt »•’•’"’• TEMPERATURE ^QQly | IN AIR
Optical engine initiation: multiple compartment applications
NASA Astrophysics Data System (ADS)
Hunt, Jeffrey H.
2009-05-01
Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.
Method for operating a spark-ignition, direct-injection internal combustion engine
Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.
2015-06-02
A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.
Development and Testing of a Green Monopropellant Ignition System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Judson, Michael I.; Taylor, Terry L.
2013-01-01
This paper will detail the development and testing of a "green" monopropellant booster ignition system. The proposed booster ignition technology eliminates the need for a pre-heated catalyst bed, a high wattage power source, toxic pyrophoric ignition fluids, or a bi-propellant spark ignitor. The design offers the simplicity of a monopropellant feed system features non-hazardous gaseous oxygen (GOX) as the working fluid. The approach is fundamentally different from all other "green propellant" solutions in the aerospace in the industry. Although the proposed system is more correctly a "hybrid" rocket technology, since only a single propellant feed path is required, it retains all the simple features of a monopropellant system. The technology is based on the principle of seeding an oxidizing flow with a small amount of hydrocarbon.1 The ignition is initiated electrostatically with a low-wattage inductive spark. Combustion gas byproducts from the hydrocarbon-seeding ignition process can exceed 2400 C and the high exhaust temperature ensures reliable main propellant ignition. The system design is described in detail in the Hydrocarbon-Seeded Ignition System Design subsection.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.
2002-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.
NASA Astrophysics Data System (ADS)
Cecrle, Eric Daniel
This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent in order to prevent pre-ignition from occurring. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
14 CFR 33.37 - Ignition system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a...
The third-generation turbocharged engine for the Audi 5000 CS and 5000 CS Quattro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, D.
In September 1985 the new Audi 5000 CS Quattro was introduced to the American market. This luxurious high performance touring sedan has been equipped with a more advanced turbocharged engine with intercooler and electronic engine management giving improved performance, excellent torque, faster response and better fuel economy. The basic engine is the tried-and-tested Audi 5-cylinder unit. The turbocharged engine's ancillary systems, the electronic ignition control and fuel injection have all been newly developed, carefully optimized and well matched in the special demands of a turbocharged engine. The ignition system controls the engine and fuel injection and delivers analog and digitalmore » signals to the car's instrument panel display. The system also has an integrated self-diagnostic function.« less
Development of an instantaneous local fuel-concentration measurement probe: an engine application
NASA Astrophysics Data System (ADS)
Guibert, P.; Boutar, Z.; Lemoyne, L.
2003-11-01
This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.
Ignitability test method and apparatus
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)
1991-01-01
An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.
40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged.... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1...
EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Greene, Nate; Xu, Hua
2004-01-01
The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.
NASA Technical Reports Server (NTRS)
Deans, Matthew
2012-01-01
This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 lbf engine.
NASA Technical Reports Server (NTRS)
Deans, Matthew C.; Schneider, Steven J.
2012-01-01
This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 Ibf engine.
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
78 FR 4195 - Petition for Exemption From the Vehicle Theft Prevention Standard; Mercedes-Benz
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
..., transmitter key, electronic ignition starter switch control unit (EIS), the engine control module (ECM) and... immobilizer function. The interlinked system includes the engine, EIS, transmitter key, TCM and ECM (including...
Combustion-wave ignition for rocket engines
NASA Technical Reports Server (NTRS)
Liou, Larry C.
1992-01-01
The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marriott, Craig; Gonzalez, Manual; Russell, Durrett
2011-06-30
This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less
Fryśkowski, Bernard; Swiatek-Fryśkowska, Dorota
2014-01-01
Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed.
Thermal ignition combustion system
Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.
1988-04-19
The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.
Thermal ignition combustion system
Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.
1988-01-01
The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.
46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...
46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...
46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lubrication Pressure Low Main propulsion, controllable pitch propeller Hydraulic oil Pressure High, Low... ......ditto (3) Trial for ignition Status Failure ......ditto Control power Available (pressure) Failure (low... Activated Starting power Pressure (voltage) Low Limit (2) Location in control Status Override (6) Shaft...
40 CFR 1045.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... sensors, electronic control units, superchargers, or turbochargers, except as specified in paragraph (a)(3...
Advanced Ignition in Supersonic Airflow by Tunable Plasma System
NASA Astrophysics Data System (ADS)
Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.
2017-10-01
The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.
Ignition and combustion characteristics of metallized propellants
NASA Technical Reports Server (NTRS)
Turns, S. R.; Mueller, D. C.; Scott, M. J.
1990-01-01
Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions.
Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology
NASA Technical Reports Server (NTRS)
Bjorklund, Roy A.
1983-01-01
An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.
The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber
NASA Astrophysics Data System (ADS)
Firmansyah; Aziz, A. R. A.; Heikal, M. R.
2015-12-01
The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.
Ignitability test method and apparatus
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)
1989-01-01
An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
This paper reports on the repetitive laser ignition by optical breakdown within an experimental rocket combustion chamber. Ignition was performed by focusing a laser pulse generated by a miniaturized diode-pumped Nd:YAG laser system. The system, which delivers 33.2 mJ in 2.3 ns, was mounted directly to the combustion chamber. The ignition process and flame stabilization was investigated using an optical probe system monitoring the flame attachment across the 15 coaxial injector configuration. 1195 successful ignitions were performed proving the reliability of this laser ignition system and its applicability to the propellant combination LOX/hydrogen at temperatures of T_{{{H}_{ 2} }} = 120-282 K and T_{{{O}_{ 2} }} = 110-281 K.
Ignition improvement by injector arrangement in a multi-fuel combustor for micro gas turbine
NASA Astrophysics Data System (ADS)
Antoshkiv, O.; Poojitganont, T.; Jeansirisomboon, S.; Berg, H. P.
2018-01-01
The novel combustor design also has an impact on the ignitor arrangement. The conventional ignitor system cannot guarantee optimal ignition performance in the usual radial position. The difficult ignitability of gaseous fuels was the main challenge for the ignitor system improvement. One way to improve the ignition performance significantly is a torch ignitor system in which the gaseous fuel is directly mixed with a large amount of the combustor air. To reach this goal, the ignition process was investigated in detail. The micro gas turbine (MGT) ignition was optimised considering three main procedures: torch ignitor operation, burner ignition and flame propagation between the neighbour injectors. A successful final result of the chain of ignition procedures depends on multiple aspects of the combustor design. Performed development work shows an important step towards designing modern high-efficiency low-emission combustors.
NASA Astrophysics Data System (ADS)
Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.
2015-03-01
Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James
2003-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.
40 CFR 89.117 - Test fleet selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...
33 CFR 154.2100 - Vapor control system, general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be constructed to acceptable engineering standards and have the appropriate mechanical strength to... hazards, sources of ignition, and mechanical damage to the maximum practicable extent. Each remaining...
Development of Augmented Spark Impinging Igniter System for Methane Engines
NASA Technical Reports Server (NTRS)
Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.
2017-01-01
The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
Knock detection system to improve petrol engine performance, using microphone sensor
NASA Astrophysics Data System (ADS)
Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra
2017-01-01
An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.
Laser-assisted homogeneous charge ignition in a constant volume combustion chamber
NASA Astrophysics Data System (ADS)
Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst
2009-06-01
Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.
Development of Ionic Liquid Monopropellants for In-Space Propulsion
NASA Technical Reports Server (NTRS)
Blevins, John A.; Osborne, Robin; Drake, Gregory W.
2005-01-01
A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.
Hendrix, J.L.
1995-04-11
A laser initiated ordnance controller apparatus which provides a safe and arm scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition. 6 figures.
Hendrix, James L.
1995-01-01
A laser initiated ordnance controller apparatus which provides a safe and m scheme with no moving parts. The safe & arm apparatus provides isolation of firing energy to explosive devices using a combination of polarization isolation and control through acousto-optical deviation of laser energy pulses. The apparatus provides constant monitoring of the systems status and performs 100% built-in-test at any time prior to ordnance ignition without the risk of premature ignition or detonation. The apparatus has a computer controller, a solid state laser, an acousto-optic deflector and RF drive circuitry, built-in-test optics and electronics, and system monitoring capabilities. The optical system is completed from the laser beam power source to the pyrotechnic ordnance through fiber optic cabling, optical splitters and optical connectors. During operation of the apparatus, a command is provided by the computer controller and, simultaneous with laser flashlamp fire, the safe & arm device is opened for approximately 200 microseconds which allows the laser pulse to transmit through the device. The arm signal also energizes the laser power supply and activates the acousto-optical deflector. When the correct fire format command is received, the acousto-optic deflector moves to the selected event channel, and the channel is verified to ensure the system is pointing to the correct position. Laser energy is transmitted through the fiber where an ignitor or detonator designed to be sensitive to optical pulses is fired at the end of the fiber channel. Simultaneous event channels may also be utilized by optically splitting a single event channel. The built-in-test may be performed anytime prior to ordnance ignition.
40 CFR 90.307 - Engine cooling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 90.307 - Engine cooling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 89.329 - Engine cooling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 91.307 - Engine cooling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...
40 CFR 89.329 - Engine cooling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 89.329 - Engine cooling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 91.307 - Engine cooling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...
40 CFR 90.307 - Engine cooling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...
40 CFR 89.329 - Engine cooling system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...
Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system
NASA Technical Reports Server (NTRS)
Hamidian, J. P.; Dahlgren, J. B.
1973-01-01
Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
Nox control for high nitric oxide concentration flows through combustion-driven reduction
Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.
1989-01-01
An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.
Combustion dynamics in liquid rocket engines
NASA Technical Reports Server (NTRS)
Mclain, W. H.
1971-01-01
A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.
Research on measurement of aviation magneto ignition strength and balance
NASA Astrophysics Data System (ADS)
Gao, Feng; He, Zhixiang; Zhang, Dingpeng
2017-12-01
Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.
Magri, Renan; Masili, Mauro; Duarte, Fernanda Oliveira; Ventura, Liliane
2017-09-21
Sunglasses popularity skyrocketed since its advent. The ongoing trend led to the creation of standards to protect consumers from injuries and secondary hazards due to spectacles use. In Brazil, the corresponding standard is NBR ISO 12312-1:2015 and since there is no mandatory testing, evaluating sunglasses performance provides an insight into compliance with the standard. In a continuing revision of sunglasses standards requirements, resistance to ignition is one of the concerns, since sunglasses should be protected from burning into flames at a pre-determined temperature, which may protect user of getting their sunglasses into flames if some, cigarette sparks reaches the spectacles, as an example. This paper describes the building of a resistance to ignition system and the results of 410 samples that have been tested accordingly to ISO 12312-1. The procedure is in accordance with the resistance to ignition test. It consists of heating a steel rod to 650 °C and pressing it against the sample surface for 5 s, with a force equivalent to the rod weight. For carrying out the assessments, we have build resistance to ignition testing system and assured the testing requirements of the standard. The apparatus has an electrical furnace with a temperature acquisition circuit and electronic control that maintains the temperature of the steel rod at 650 °C. A linear actuator was designed for the project to drive the steel rod vertically and pressing it against the sunglasses samples. The control system is composed by a Freescale development board FRDM-KL25Z with an ARM Cortex-M0 embedded. We have also provided a LabView PC interface for acquiring, displaying, and storing data as well as added a physical control panel to the equipment for performing the evaluations. We assessed 410 sunglasses frames at the built apparatus, where the 410 lenses came out to be in accordance with the guidelines provided by the ignition to resistance test. Out of the 410 tested frames, 50% were made of polyamide (nylon 12); 10% were made of polyamide (nylon 11, mamona oil); 5% were made of cellulose acetate; 15% were made of ABS and 20% were made of polycarbonate. Out of the 410 tested lenses, 80% were polycarbonate; 2% were polymethyl methacrylate (PMMA); 5% CR-39 (with polarizing filter inside); 12.8% polyamide; 0.2% glass. For all the 410 tested spectacles frames and lenses, none burst into flames or continued to melt at the end of the procedure, being in compliance with ISO 12312-1:2013. The evidences show that all the tested thermoplastic and thermosetting materials are exceptionally resistant to ignition and all samples assessed comply with the resistance to ignition test. The analysis of the sunglasses made herein assures that most of sunglasses currently available to population are made of safe material.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...
Method and system for controlled combustion engines
Oppenheim, A. K.
1990-01-01
A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.
Laser ignition - Spark plug development and application in reciprocating engines
NASA Astrophysics Data System (ADS)
Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria
2018-03-01
Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.
14 CFR 33.37 - Ignition system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each engine must be equipped with an ignition system for starting the engine on the ground and in flight. An...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each engine must be equipped with an ignition system for starting the engine on the ground and in flight. An...
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Gregory T.; Sellnau, Mark C.
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
40 CFR 1042.815 - Demonstrating availability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...
40 CFR 1042.815 - Demonstrating availability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...
40 CFR 1042.815 - Demonstrating availability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...
40 CFR 1042.815 - Demonstrating availability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...
40 CFR 1042.815 - Demonstrating availability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.815 Demonstrating availability. (a) A certified remanufacturing system is considered to be available for a specific engine only if EPA has certified the...
40 CFR 94.211 - Emission-related maintenance instructions for purchasers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... filter change, fuel filter change, air filter change, cooling system maintenance, adjustment of idle... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES... at 1,500-hour intervals thereafter. (i) Exhaust gas recirculation system-related filters and coolers...
Test System to Study the Ignition of Metals by Polymers in Oxygen
NASA Technical Reports Server (NTRS)
Shoffstall, Michael S.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)
2000-01-01
A new test system that uses Laser energy to ignite a polymer promoter has been developed at the NASA White Sands Test Facility. It will facilitate the study of the spread of fire from a burning polymer material to the metal surrounding it. The system can be used to answer questions regarding the effects of configuration on ignition and combustion. The data obtained from this test could also be used to develop mathematical models for analyzing the effects of configuration on ignition and combustion. The system features a 10,000-psi (69-MPa) test chamber with sight glass windows on either end and a 25-watt carbon dioxide Laser for an ignition source. The test system can be used with gaseous oxygen, nitrogen or any mixture of the two gases. To minimize the effect of preheating the metallic, the polymer is ignited with a minimal amount of Laser energy. Igniting the polymer in this fashion also simplifies the thermodynamic analysis of the ignition and propagation reactions. The system is very robust, versatile and straightforward to use. Depending on the test pressure and configuration, the test system operator can perform as many as 20 tests per day. Test results verify that ignition and combustion of the metallic sample is not only dependent on pressure, material type and temperature, but configuration of both the polymer promoter and metallic sample. Both 6061 aluminum and 316 stainless steel 0.25-inch (6.35-mm) diameter rods with a standard 0-ring groove were tested with Buna-N, Silicone, Teflon and Viton 0-rings. The system ignited all four types of 0-rings in oxygen at pressures ranging from ambient to 10,000 psi (69 MPa). However, neither the stainless steel nor the aluminum rods on which the O-rings were mounted ignited in any test conditions. Future testing may be done on the 0.25-inch (6.35-mm) rod and O-ring configuration to evaluate the lack of ignition in these tests. Future configurations may include a plug of polymer in the base of the sample and replicas of fire-damaged components. Furthermore, the test system may be used in the future to analyze the oxidation rate of Laser-heated metals in gaseous oxygen.
1981-09-01
nitrocellulose igniter materials using the Ignition Energetics Characterization Device (IECD). The results presented herein represent Phase II eperimental ...auxiliary test cham- bcz is a combustion gas diagnostic section designed to permit determination of the composition and enthalpy level of the gases...removal/assembly and propellant loading. 2.2 Igniter Characteristics 2.2.1 Baseline Igniter The igniter system, Figure 2.3, is designed to provide overall
1981-12-01
obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of
40 CFR 1045.120 - What emission-related warranty requirements apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... purchaser that the new engine, including all parts of its emission control system, meets two conditions: (1... generous than we require. The emission-related warranty for an engine may not be shorter than any published...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
14 CFR 25.981 - Fuel tank ignition prevention.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.981 Fuel tank... system where catastrophic failure could occur due to ignition of fuel or vapors. This must be shown by... established, as necessary, to prevent development of ignition sources within the fuel tank system pursuant to...
Development of Ionic Liquid Monopropellants for In-Space Propulsion
NASA Technical Reports Server (NTRS)
Blevins, John A.; Drake, Gregory W.; Osborne, Robin J.
2005-01-01
A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner, shown schematically in Figure 1 and similar in design to apparatuses used by other researchers to study solid and liquid monopropellants, will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.
DNS and LES/FMDF of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Jaberi, Farhad
2014-11-01
The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.
Numerical simulations of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad
2013-11-01
The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.
NASA Astrophysics Data System (ADS)
Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo
2010-05-01
Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined expertise from both the Earth science and fire engineering disciplines to develop realistic ignition mechanisms and measurements of fire propagation within different levels of atmospheric oxygen. We present data from experimental burns run in the fully controlled and realistic atmospheric environment of the UCD PÉAC facility. The burns are designed to develop our understanding of ignition of fires in the natural world. We have studied ignition and propagation of fire in peat, a natural and highly flammable substance. Peat samples of approximately 100mm by 100mm in cross section and 50mm in depth were exposed to an ignition source (~100W of electric power) for 30 minutes. Thermocouples were placed throughout the sample to measure temperature changes during the initial 30 minute ignition phase and in order to observe ignition of the peat, intensity of combustion and spread of the smouldering front within the different atmospheric oxygen settings. We show that ignition and propagation of smouldering in peat does not occur below 16% atmospheric oxygen and that smouldering combustion continues for long periods (~4 hours in the size sample used) at 18% atmospheric oxygen and above. This suggests that atmospheric levels above 16% atmospheric are required to allow ignition and propagation of smouldering fires and that frequent occurrences of wildfires might only be expected in the geological past when atmospheric levels were above 18% oxygen. Fires play an important role in Earth's biogeochemical cycles; this work suggests that fire feedbacks into the Earth system would likely have been suppressed during periods of low atmospheric oxygen.
Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-12-06
suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas
Electromagnetic interference in electrical systems of motor vehicles
NASA Astrophysics Data System (ADS)
Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.
2016-09-01
Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.
NASA Technical Reports Server (NTRS)
1977-01-01
Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.
High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T.C.; Goncharov, V.N.; Radha, P.B.
The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202+-7 mg/cm^2 and 182+-7 mg/cm^2 (corresponding to estimated peak fuel densities in excess of 100 g/cm^3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accuratelymore » controlled under ignition-relevant conditions.« less
Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Popp, Christopher G.; veith, Eric M.
2007-01-01
A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) un der the auspices of the Exploration Systems Mission Directorate to de velop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for R eaction Control Subsystems (RCS). Contract NAS8-01109 was issued to A erojet to develop a dual thrust Reaction Control Engine (RCE) that ut ilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thru st level of 10 - 30 lbf. The preferred RCS approach for the dual thru st RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol pr opellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the de sign. GOX/Ethanol was easier to ignite, but this combination had syst em design implications of providing GOX for the igniters. A LOX/Ethan ol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not e xist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk m itigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successful ignition from GOX to LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was desig ned to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardwa re, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two'phase flow to subcooled LOX. The Workh orse igniter was well instrumented: Pressure and temperature instrumentation permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provide d chamber thermal profile characteristics. The cold flow chamber pres sure (Pc) for each test was determined and coupled with the igniter chamber diameter (De) to calculate the characteristic quench parameter (Pc x Dc), which was plotted as a function of core mixture ratio, MRc . Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 deg R LOX to 486 deg R GOX. Once ign ited at cold GOX conditions, combustion was continuous as the hardwar e chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to pr ovide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds. Igniter pulse tests were performed at three conditions: (1) an EPW of 0.080 se conds at 25% duty cycle for 400 pulses; (2) an EPW of 0.160 seconds a nd a 5% duty cycle for 124 pulses; (3) an EPW of 0.160 seconds and a 50% duty cycle for 380 pulses. Successful ignition of LOX/Ethanol was demonstrated over a broad range of valve inlet conditions, with the empirically determined LOX/Ethanol ignition limits extending the previous database established for GOX/Ethanol ignition limits. Although th e observed chill-in characteristics of the hardware varied significan tly with flowrate, ignition was readily achieved. Combustion was marg inal at extremely fuel-rich conditions, and it fluctuated as the oxygen passed rough the twophase flow regime during the period of hardware chill-in. Pulse testing showed good repeatability with 100 percent r e-ignition for all pulses. Certain pulse-to-pulse repeatability requirements for actual RCS operation may necessitate establishment of mini mum oxygen flow rates and engine thrust levels for satisfactory engin e performance.
Variable valve timing in a homogenous charge compression ignition engine
Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.
2004-08-03
The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.
Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems
NASA Technical Reports Server (NTRS)
Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.
2000-01-01
As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.
Analytical and experimental study of resonance ignition tubes
NASA Technical Reports Server (NTRS)
Stabinsky, L.
1973-01-01
The application of the gas-dynamic resonance concept was investigated in relation to ignition of rocket propulsion systems. Analytical studies were conducted to delineate the potential uses of resonance ignition in oxygen/hydrogen bipropellant and hydrazine monopropellant rocket engines. Experimental studies were made to: (1) optimize the resonance igniter configuration, and (2) evaluate the ignition characteristics when operating with low temperature oxygen and hydrogen at the inlet to the igniter.
The development and testing of pulsed detonation engine ground demonstrators
NASA Astrophysics Data System (ADS)
Panicker, Philip Koshy
2008-10-01
The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz on a 25 mm i.d. PDE. The dual-stage PDE was run at both 1 Hz and 10 Hz using solenoid valves. The two types of valves have their drawbacks and advantages which are discussed, along with ways to enhance their functionality. Rotary valves with stepper motor drives are recommended to be used for air flow control, while an array of solenoid injectors may be used for liquid or gaseous fuel injection. Various DDT enhancing devices were tested, including Shchelkin spirals (with varying thicknesses, lengths and pitches), grooved sleeves and converging-diverging nozzles. The Shchelkin spirals are found to be the most effective of all, at blockage ratios in the region of 50 to 55%. To improve the durability of Shchelkin spirals, it is recommended that they be grooved into the inside of tubes or inserted as replaceable sleeves. Orifice plates with high blockage ratios, in the region of 50 to 80%, are also recommended due to their simple and rugged design. All these devices along with the PDE combustor will require a strong cooling system to prevent damage from the extreme detonation temperatures. High energy (HE) and low energy (LE) ignition systems were tested and compared along with various designs of igniters and automotive spark plugs. It is concluded that while HE ignition may help unsensitized fuel-air mixtures to achieve detonations faster than LE systems, the former have severe drawbacks. The HE igniters get damaged quickly, and require large and heavy power supplies. While the HE ignition is able to reduce ignition delay in a propane-oxygen pre-detonator, it did not show a significant improvement in bringing about DDT in the main combustor using propane-air mixtures. The compact pre-detonator design with a gradual area change transitioning to a larger combustor is found to be effective for detonation initiation, but the pre-detonator concept is recommended for high-speed applications only, since higher speeds requires more sensitive, easily detonable fuels that have short ignition delays and DDT run-up distances. Dynamic pressure transducers, ion detectors and photo-detectors were compared for the diagnostics of the detonation wave. The ion detector is found to be a safe, cheap and effective choice for obtaining detonation or flame velocities, and better than the optical detector, which is not practical for long-duration PDE operations. The piezoelectric dynamic pressure transducer has problems with heating and requires an effective cooling system to enable it to function in a PDE. Other diagnostics studied include thrust measurement and mass flow rate measurement techniques. Additionally, fuel sensitizing techniques, such as hydrogen blending, along with the DDT devices can ensure that detonations are produced successfully.
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
40 CFR 1045.1 - Does this part apply for my products?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...
40 CFR 1045.1 - Does this part apply for my products?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...
40 CFR 1045.1 - Does this part apply for my products?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...
40 CFR 1045.1 - Does this part apply for my products?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...
40 CFR 1045.1 - Does this part apply for my products?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview... exhaust emissions apply to new, spark-ignition propulsion marine engines beginning with the 2010 model...
Flight set 360L001 (STS-26) igniter, post flight
NASA Technical Reports Server (NTRS)
Hale, Elgie J.
1990-01-01
Space Transportation System (STS-26) was launched from KSC pad 39B. Two of the Redesigned Solid Rocket Motors (RSRM) were part of the launch system and are designated RSRM-1A and RSRM-1B. Each of these motors were initiated by an 1U75164 igniter. The post flight condition of the igniters and associated components is documented. The overall performance of the igniter components was excellent. No damage or heat affected areas were noted. The sealing elements of the igniter functioned as expected with no evidence of erosion or blowby. The thermal protection system protected all areas adequately. No excessive erosion was noted. Corrosion was found in the special bolt holes in the igniter chamber. The corrosion will not affect refurbishment of the chamber. Beginning with flight 5 grease has been added to the chamber holes to prevent this erosion.
Process and apparatus for igniting a burner in an inert atmosphere
Coolidge, Dennis W.; Rinker, Franklin G.
1994-01-01
According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.
NASA Astrophysics Data System (ADS)
Kim, Seonguk; Min, Kyoungdoug
2008-08-01
The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.
Study of the technology of heat pipe on prevention wildfire of coal gangue hill
NASA Astrophysics Data System (ADS)
Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li
2017-04-01
Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.
Xu, Jianbing; Tai, Yu; Ru, Chengbo; Dai, Ji; Ye, Yinghua; Shen, Ruiqi; Zhu, Peng
2017-02-15
Reactive multilayer films (RMFs) can be integrated into semiconducting electronic structures with the use of microelectromechanical systems (MEMS) technology and represent potential applications in the advancement of microscale energy-demanding systems. In this study, aluminum/molybdenum trioxide (Al/MoO 3 )-based RMFs with different modulation periods were integrated on a semiconductor bridge (SCB) using a combination of an image reversal lift-off process and magnetron sputtering technology. This produced an energetic semiconductor bridge (ESCB)-chip initiator with controlled ignition performance. The effects of the Al/MoO 3 RMFs with different modulation periods on ignition properties of the ESCB initiator were then systematically investigated in terms of flame duration, maximum flame area, and the reaction ratio of the RMFs. These microchip initiators achieved flame durations of 60-600 μs, maximum flame areas of 2.85-17.61 mm 2 , and reaction ratios of ∼14-100% (discharged with 47 μF/30 V) by simply changing the modulation periods of the Al/MoO 3 RMFs. This behavior was also consistent with a one-dimensional diffusion reaction model. The microchip initiator exhibited a high level of integration and proved to have tuned ignition performance, which can potentially be used in civilian and military applications.
High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T. C.; Goncharov, V. N.; Radha, P. B.
The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJ{sub UV} OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202{+-}7 mg/cm{sup 2} and 182{+-}7 mg/cm{sup 2} (corresponding to estimated peak fuel densities in excess of 100 g/cm{sup 3}) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuelmore » adiabat can be accurately controlled under ignition-relevant conditions.« less
Preventing Accidental Ignition of Upper-Stage Rocket Motors
NASA Technical Reports Server (NTRS)
Hickman, John; Morgan, Herbert; Cooper, Michael; Murbach, Marcus
2005-01-01
A report presents a proposal to reduce the risk of accidental ignition of certain upper-stage rocket motors or other high energy hazardous systems. At present, mechanically in-line initiators are used for initiation of many rocket motors and/or other high-energy hazardous systems. Electrical shorts and/or mechanical barriers, which are the basic safety devices in such systems, are typically removed as part of final arming or pad preparations while personnel are present. At this time, static discharge, test equipment malfunction, or incorrect arming techniques can cause premature firing. The proposal calls for a modular out-of-line ignition system incorporating detonating-cord elements, identified as the donor and the acceptor, separated by an air gap. In the safe configuration, the gap would be sealed with two shields, which would prevent an accidental firing of the donor from igniting the system. The shields would be removed to enable normal firing, in which shrapnel generated by the donor would reliably ignite the acceptor to continue the ordnance train. The acceptor would then ignite a through bulkhead initiator (or other similar device), which would ignite the motor or high-energy system. One shield would be remotely operated and would be moved to the armed position when a launch was imminent or conversely returned to the safe position if the launch were postponed. In the event of failure of the remotely operated shield, the other shield could be inserted manually to safe the system.
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong
2015-01-01
In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421
LOX/Methane Main Engine Igniter Tests and Modeling
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.; Ajmani, Kumund
2008-01-01
The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.
A polar-drive shock-ignition design for the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Anderson, K. S.; Betti, R.; McKenty, P. W.; Collins, T. J. B.; Hohenberger, M.; Theobald, W.; Craxton, R. S.; Delettrez, J. A.; Lafon, M.; Marozas, J. A.; Nora, R.; Skupsky, S.; Shvydky, A.
2013-05-01
Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.
LES/FMDF of turbulent jet ignition in a rapid compression machine
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration
2015-11-01
Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.
New Technology Sparks Smoother Engines and Cleaner Air
NASA Technical Reports Server (NTRS)
2001-01-01
Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.
NASA Technical Reports Server (NTRS)
Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.
2009-01-01
Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.
Development of Augmented Spark Impinging Igniter System for Methane Engines
NASA Technical Reports Server (NTRS)
Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.
2017-01-01
The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
Space Shuttle SRM Ignition System. [Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Bolieau, C. W.; Baker, J. S.; Folkman, S. L.
1978-01-01
This paper presents the Space Shuttle SRM Ignition System, which consists of a large solid propellant main igniter, a small solid propellant initiating igniter and an electromechanical safety and arming device containing two NASA Standard Initiators and a B-KNO3 pyrotechnic booster charge. In development motors, the igniter also has a valve through which CO2 is injected for post-firing quench of the SRM. The igniter has redundant, testable seals at all pressurized joints and three major reusable components; the case, the adapter, and the S&A device. Two development problem areas are discussed. One problem area was transverse mode combustion instability in the main igniter with maximum amplitude of 340 psi peak-to-peak at a frequency of 1500 Hz, which was reduced by a propellant grain configuration change and a change from a 2% aluminum content propellant to a formulation containing 10% aluminum. The other problem area was an excessively rapid rise of thrust in the SRM, which was reduced by reducing the igniter mass flow rate. This mass flow rate reduction was accomplished by removing portions of the grain starpoints in the head end.
Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail
The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less
40 CFR 94.908 - National security exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...
40 CFR 94.908 - National security exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...
40 CFR 94.908 - National security exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...
40 CFR 94.908 - National security exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...
40 CFR 94.908 - National security exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...
Two Historians in Technology and War
1994-07-20
of cryptanalysis in the United States and Britain. The guidance mechanism on the later V-2s was the first reprogrammable electronic analog computer...reception; information storage and retrieval systems; aircraft avionics; truck and automobile ignition and fuel control units; and medical life
Laser fusion pulse shape controller
Siebert, Larry D.
1977-01-01
An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.
Inertial Confinement Fusion as an Extreme Example of Dynamic Compression
NASA Astrophysics Data System (ADS)
Moses, E.
2013-06-01
Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
1990-06-01
amplitude of the l IC actuators are set manually with no feedback of airframe response. Closed loop contrl refers to a system which utilizes response...mixture being controlled by the all position diaphragm carburetor and fuel pump . Ignition spark is ac-.cvd using " OX I mm spark plg. 28 b. Drive
Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine
Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey; ...
2017-12-21
Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate (HRR) showed a two-stage combustion phenomenon.« less
Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey
Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high-temperature combustion period, while cylinder pressure-based heat release rate (HRR) showed a two-stage combustion phenomenon.« less
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.
Improved Confinement Regimes and the Ignitor Experiment
NASA Astrophysics Data System (ADS)
Bombarda, F.; Coppi, B.; Detragiache, P.
2013-10-01
The Ignitor experiment is the only one designed and planned to reach ignition under controlled DT burning conditions. The machine prameters have been established on the basis of existing knowledge of the confinement properties of high density plasmas. The optimal plasma evolution in order to reach ignition by means of Ohmic heating only, without the contribution of transport barriers has been identified. Improved confinement regimes are expected to be accessible by means of the available ICRH additional heating power and the injection of pellets for density profile control. Moreover, ECRH of the outer edge of the (toroidal) plasma column has been proposed using very high frequency sources developed in Russia. Ignition can then be reached at slightly reduced machine parameters. Significant exploration of the behavior of burning, sub-ignited plasmas can be carried out in less demanding operational conditions than those needed for ignition with plasmas accessing the I or H-regimes. These conditions will be discussed together with the provisions made in order to maintain the required (for ignition) degree of plasma purity. Sponsored in part by the U.S. DOE.
Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azer Yalin; Bryan Willson
Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less
NASA Technical Reports Server (NTRS)
Johnson, R. J.
1972-01-01
An experimental and analytical program was conducted to evaluate catalytic igniter operational limits, igniter scaling criteria, and delivered performance of cooled, flightweight gaseous hydrogen-oxygen reaction control thrusters. Specific goals were to: (1) establish operating life and environmental effects for both Shell 405-ABSG and Engelhard MFSA catalysts, (2) provide generalized igniter design guidelines for high response without flashback, and (3) to determine overall performance of thrusters at chamber pressures of 15 and 300 psia (103 and 2068 kN/sq m) and thrust levels of 30 and 1500 lbf, respectively. The experimental results have demonstrated the feasibility of reliable, high response catalytic ignition and the effectiveness of ducted chamber cooling for a high performance flightweight thruster. This volume presents the results of the catalytic igniter and low pressure thruster evaluations are presented.
Direct electrical arc ignition of hybrid rocket motors
NASA Astrophysics Data System (ADS)
Judson, Michael I., Jr.
Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.
Performance and operational improvements made to the Waukesha AT27-GL engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbold, E.O.
1996-12-31
This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
NASA Technical Reports Server (NTRS)
Pettegrew, Richard Dale
1996-01-01
An experimental study of ignition and flame growth over a thin solid fuel in oxidizer flow speeds from 0 to 10 cm/sec concurrent flow was performed. This study examined the differences between ignition using a resistively heated wire (woven in a sawtooth pattern over the leading edge of the fuel), and a straight resistively heated wire augmented by a chemical ignitor doped onto the leading edge of the fuel. Results showed that the chemical system yielded non-uniform ignition bursts, while the system using only the hotwire gave more uniform ignition. At speeds up to 2.5 cm/sec, the chemical system yielded non-uniform pyrolysis fronts, while the hotwire system gave more uniform pyrolysis fronts. At speeds of 5 cm/sec or greater, both systems gave uniform pyrolysis fronts. The chemically-ignited flames tended to become too dim to see faster than the hotwire-ignited flames, and the flame lengths were observed to be shorter (after the initial burst subsided) for the chemical system for all speeds. Flame and pyrolysis element velocities were measured. Temperature profiles for selected tests were measured using thermocouples at the fuel surface and in the gas phase. Comparisons between the flame element velocities and peak temperatures recorded in these tests with calculated spread rates and peak temperatures from a steady-state model are presented. Agreement was found to be within 20% for most flame elements for nominal velocities of 5 cm/sec and 7.5 cm/sec.
Ignition of a granular propellant bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildegger-Gaissmaier, A.E.; Johnston, I.R.
1996-08-01
An experimental and theoretical study is reported on the ignition process of a low vulnerability ammunition (LOVA) propellant bed in a 127-mm (5-in) bore gun charge. The theoretical investigation was with a two-phase flow interior ballistics code and the model predictions showed the marked influence the igniter system can have on pressure wave development, flame spreading, and the overall interior ballistics performance. A number of different igniter systems were investigated in an empty and propellant-filled gun simulator. Pressure, flame spreading, and high-speed film records were used to analyze the ignition/combustion event. The model predictions for flame spreading were confirmed qualitativelymore » by the experimental data. Full-scale instrumented gun firings were conducted with the optimized igniter design. Pressure waves were not detected in the charge during the firings. Model predictions on overall interior ballistics performance agreed well with the firing data.« less
Ignition of contaminants by impact of high-pressure oxygen
NASA Technical Reports Server (NTRS)
Pedley, Michael D.; Pao, Jenn-Hai; Bamford, Larry; Williams, Ralph E.; Plante, Barry
1988-01-01
The ignition of oil-film contaminants in high-pressure gaseous oxygen systems, caused by rapid pressurization, was investigated using the NASA/White Sands Test Facility's large-volume pneumatic impact test system. The test section consisted of stainless steel lines, contaminated on the inside surface with known amounts of Mobil DTE 24 oil and closed at one end, which was attached to a high-pressure oxygen system; the test section was pressurized to 48 MPa by opening a high-speed valve. Ignition of the oil was detected by a photocell attached to the closed end of the line. It was found that the frequency of ignition increased as a function of both the concentration of oil and of the pressure of the impacting oxygen. The threshold of ignition was between 25 and 65 mg/sq m. The results were correlated with the present NASA and Compressed Gas Association requirements for maximum levels of organic contaminants.
Imaging strategies for the study of gas turbine spark ignition
NASA Astrophysics Data System (ADS)
Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.
1999-10-01
Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.
Catalytic ignition of hydrogen/oxygen
NASA Technical Reports Server (NTRS)
Green, James M.; Zurawski, Robert L.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.
NASA Technical Reports Server (NTRS)
Knepper, Bryan; Hwang, Soon Muk; DeWitt, Kenneth J.
2004-01-01
Minimum ignition energies of various methanol/air mixtures were measured in a temperature controlled constant volume combustion vessel using a spark ignition method with a spark gap distance of 2 mm. The minimum ignition energies decrease rapidly as the mixture composition (equivalence ratio, Phi) changes from lean to stoichiometric, reach a minimum value, and then increase rather slowly with Phi. The minimum of the minimum ignition energy (MIE) and the corresponding mixture composition were determined to be 0.137 mJ and Phi = 1.16, a slightly rich mixture. The variation of minimum ignition energy with respect to the mixture composition is explained in terms of changes in reaction chemistry.
Laser ignition of a multi-injector LOX/methane combustor
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael
2018-06-01
This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.
Laser ignition of a multi-injector LOX/methane combustor
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael
2018-02-01
This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T.T.; Keller, J.O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 10 figs.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T. Tazwell; Keller, Jay O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.
Development of a Power Electronics Unit for the Space Station Plasma Contactor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.
1994-01-01
A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.
Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-06-06
Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less
Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.
Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less
The effects of lightning on digital flight control systems
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Malloy, W. A.; Craft, J. B.
1976-01-01
Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... Marine Engine and Boat Regulations (2008 Marine SI Amendments or 2008 Amendments). CARB requested EPA... the 2008 Marine SI Amendments. DATES: EPA has tentatively scheduled a public hearing concerning CARB's...
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...
2016-08-04
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
Conceptual design studies of control and instrumentation systems for ignition experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, P.J.; Dewolf, J.B.; Heinemann, P.C.
1978-03-01
Studies at the Charles Stark Draper Laboratory in the past year were a continuation of prior studies of control and instrumentation systems for current and next generation Tokomaks. Specifically, the FY 77 effort has focused on the following two main efforts: (1) control requirements--(a) defining and evolving control requirements/concepts for a prototype experimental power reactor(s), and (b) defining control requirements for diverters and mirror machines, specifically the MX; and (2) defining requirements and scoping design for a functional control simulator. Later in the year, a small additional task was added: (3) providing analysis and design support to INESCO for itsmore » low cost fusion power system, FPC/DMT.« less
Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system
NASA Astrophysics Data System (ADS)
James, Mark D.
The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
Free-piston Stirling hydraulic engine and drive system for automobiles
NASA Technical Reports Server (NTRS)
Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.
1982-01-01
The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.
Ignition of Hydrogen-Oxygen Rocket Combustor with Chlorine Trifluoride and Triethylaluminum
NASA Technical Reports Server (NTRS)
Gregory, John W.; Straight, David M.
1961-01-01
Ignition of a nominal-125-pound-thrust cold (2000 R) gaseous-hydrogen - liquid-oxygen rocket combustor with chlorine trifluoride (hypergolic with hydrogen) and triethylaluminum (hypergolic with oxygen) resulted in consistently smooth starting transients for a wide range of combustor operating conditions. The combustor exhaust nozzle discharged into air at ambient conditions. Each starting transient consisted of the following sequence of events: injection of the lead main propellant, injection of the igniter chemical, ignition of these two chemicals, injection of the second main propellant, ignition of the two main propellants, increase in chamber pressure to its terminal value, and cutoff of igniter-chemical flow. Smooth ignition was obtained with an ignition delay of less than 100 milliseconds for the reaction of the lead propellant with the igniter chemical using approximately 0.5 cubic inch (0-038 lb) of chlorine trifluoride or 1.0 cubic inch (0-031 lb) of triethylaluminum. These quantities of igniter chemical were sufficient to ignite a 20-percent-fuel hydrogen-oxygen mixture with a delay time of less than 15 milliseconds. Test results indicated that a simple, light weight chemical ignition system for hydrogen-oxygen rocket engines may be possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Daw, C Stuart; Wagner, Robert M
2013-01-01
We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less
Homogenous charge compression ignition engine having a cylinder including a high compression space
Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.
2003-12-30
The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.
Approach to ignition of tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1981-02-01
Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup.
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...
14 CFR 25.1165 - Engine ignition systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw electrical energy from the same source. (c) The design of the engine ignition system must...
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.
2012-04-15
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less
Development of a microwave clothes dryer: Interim report III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.D.; Gerling, J.E.
Drying clothes with microwave energy combined with conventional hot air can potentially speed the drying process, improve fabric care, and increase dryer efficiency. This report describes important steps taken toward commercialization, particularly conceptualization of a highly sensitive safety sensor system. Such a system would help surmount problems arising from the heating of tramp materials, including metal items and pocket butane lighters. Hazards testing of a laboratory prototype dryer with a 915-MHz power supply initially showed that plastic butane lighters and common small metal objects such as bobby pins, nails, and bread wrapper ties do not heat sufficiently to cause anmore » ignition hazard. However, more in-depth testing of plastic lighters in the 3-kW, 915-MHz fields showed that, just as in 2450-MHz fields, the lighter posed significant hazards because it could release pressurized, combustible gas when the plastic was softened by heating. Wooden-sheathed graphite pencils could also heat to ignition in either 2450-MHz or 915-MHz fields. A detection and control system was then designed to circumvent this hazard by accurately detecting trace amounts of combustion products in the dryer exhaust. Tests in a laboratory apparatus showed that termination of microwave power was possible well before any ignition occurred.« less
Vehicle electrical system state controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissontz, Jay E.
A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches providemore » high voltage switching device protection.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
...- Ignition Engines (Renewal). ICR Numbers: EPA ICR No. 1695.10, OMB Control No. 2060-0338. ICR Status: This... Engines and Equipment, OMB Control Number 2060-0603) were incorporated into ICR 1695.10. This action was... Requirements for Nonroad Spark-Ignition Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION...
Dry low combustion system with means for eliminating combustion noise
Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.
2004-02-17
A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.
Laser Ignition Technology for Bi-Propellant Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)
2001-01-01
The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.
14 CFR 29.1165 - Engine ignition systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw from the same source. (c) The design of the engine ignition system must account for— (1) The...
14 CFR 29.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... automatically available as an alternate source of electrical energy to allow continued engine operation if any... that draw from the same source. (c) The design of the engine ignition system must account for— (1) The...
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
Ignition in an Atomistic Model of Hydrogen Oxidation.
Alaghemandi, Mohammad; Newcomb, Lucas B; Green, Jason R
2017-03-02
Hydrogen is a potential substitute for fossil fuels that would reduce the combustive emission of carbon dioxide. However, the low ignition energy needed to initiate oxidation imposes constraints on the efficiency and safety of hydrogen-based technologies. Microscopic details of the combustion processes, ephemeral transient species, and complex reaction networks are necessary to control and optimize the use of hydrogen as a commercial fuel. Here, we report estimates of the ignition time of hydrogen-oxygen mixtures over a wide range of equivalence ratios from extensive reactive molecular dynamics simulations. These data show that the shortest ignition time corresponds to a fuel-lean mixture with an equivalence ratio of 0.5, where the number of hydrogen and oxygen molecules in the initial mixture are identical, in good agreement with a recent chemical kinetic model. We find two signatures in the simulation data precede ignition at pressures above 200 MPa. First, there is a peak in hydrogen peroxide that signals ignition is imminent in about 100 ps. Second, we find a strong anticorrelation between the ignition time and the rate of energy dissipation, suggesting the role of thermal feedback in stimulating ignition.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... replenishment of the nitrogen-containing reducing agent for selective catalytic reduction (SCR) technologies... NO X reduction requirements for their diesel engines. SCR systems use a nitrogen-containing reducing... balance between the dictates of operating nonroad equipment (which requires DEF tanks of small enough...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent...
40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19... detector (HFID) for the measurement of hydrocarbons, non-dispersive infrared analyzers (NDIR) for the... converted to nitric oxide before analysis. Other types of analyzers may be used if shown to yield equivalent...
NASA Technical Reports Server (NTRS)
Hall, R. A.; Dowdy, M. W.; Price, T. W.
1978-01-01
A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability.
2006-08-01
Maneuver Ammunition Systems is acknowledged for continued support of this effort. This research was performed while the first author held a National...the ignition system (i.e., the primer in small-caliber guns, the primer and flashtube in medium-caliber guns, and the primer and igniter-tube in large...primer model that is compatible with the ARL- NGEN3 IB code is the subject of this report. The conventional ignition system for a large-caliber (120 mm
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.
Tokamak power reactor ignition and time dependent fractional power operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transportmore » power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.« less
A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol
NASA Astrophysics Data System (ADS)
Stelmasiak, Zdzisław
2011-06-01
The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.
NASA Astrophysics Data System (ADS)
Tabak, M.
2016-10-01
There is a need to develop alternate energy sources in the coming century because fossil fuels will become depleted and their use may lead to global climate change. Inertial fusion can become such an energy source, but significant progress must be made before its promise is realized. The high-density approach to inertial fusion suggested by Nuckolls et al. leads reaction chambers compatible with civilian power production. Methods to achieve the good control of hydrodynamic stability and implosion symmetry required to achieve these high fuel densities will be discussed. Fast Ignition, a technique that achieves fusion ignition by igniting fusion fuel after it is assembled, will be described along with its gain curves. Fusion costs of energy for conventional hotspot ignition will be compared with those of Fast Ignition and their capital costs compared with advanced fission plants. Finally, techniques that may improve possible Fast Ignition gains by an order of magnitude and reduce driver scales by an order of magnitude below conventional ignition requirements are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Blarigan, P. Van
1998-08-01
In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less
NASA Technical Reports Server (NTRS)
Peretz, A.; Caveny, L. H.; Kuo, K. K.; Summerfield, M.
1973-01-01
A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system.
The use of telemetry in testing in high performance racing engines
NASA Astrophysics Data System (ADS)
Hauser, E.
Telemetry measurement data in mobile application and under difficult environmental conditions were recorded. All relevant racing car and engine parameters were measured: pressure, stress, temperature, acceleration, ignition, number of revolutions, control of electronic injection, and flow measurements on the car body. The difficult measuring conditions due to high voltage ignition, mechanical loads and vibrations impose special requirements on a telemetry system built in racing cars. It has to be compact, flexible, light, and mechanically robust and has to fulfil special sheilding conditions. The measured data are transfered to a stationary measurement car via a radio line, involving RF communication problems. The measured data are directly displayed and evaluated in the measurement car.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
1999-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-17
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-24
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
2001-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
NASA Technical Reports Server (NTRS)
Tylka, Jonathan
2016-01-01
Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.
Real-time combustion controls and diagnostics sensors (CCADS)
Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas
2005-05-03
The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevik, James; Wallner, Thomas; Pamminger, Michael
The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less
75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...
Experimental and theoretical study of combustion jet ignition
NASA Technical Reports Server (NTRS)
Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.
1983-01-01
A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.
NASA Astrophysics Data System (ADS)
Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming
2009-06-01
Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
Mechanism of Electro-Static Discharge (ESD) Sensitivity of Reactive Powders and Its Mitigation
2011-03-14
motivated by both safety requirements for handling flammable gas mixtures and convenience of using spark discharge as a controlled energy igniter for...On the other hand, experimental tests of ESD ignition sensitivity for non-aerosolized powders are among the most commonly used safety assessments...materials, including nanomaterials for a variety of applications. Current protocols used for ESD ignition sensitivity testing, e.g., described in
NASA Astrophysics Data System (ADS)
Zhao, H.; Zhang, S.
2008-01-01
One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.
NASA Technical Reports Server (NTRS)
Swett, Clyde C , Jr
1949-01-01
Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.
Ignition Characterization Tests of the LOX/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Robinson, Philip J.; Veith, Eric M.
2004-01-01
A series of contracts have been issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) to explore candidate technologies considered to be important for the Next Generation Launch Technology (NGLT) effort. One aspect of the NGLT effort is to explore the potential of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 has been issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilizes liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporates a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. Aerojet has designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successfid ignition from GOX to LOX, encompassing potential two-phase flow conditions. The workhorse igniter was designed to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the inherent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the inherent heat of the test hardware would be removed and the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. Pressure and temperature instrumentation permitted oxygen state points to be determined, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, MR(sub c). Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 173 R LOX to 480 R GQX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5.
NASA Technical Reports Server (NTRS)
Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.
Recent advances in automatic alignment system for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki
2011-03-01
The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less
Catalytic Microtube Rocket Igniter
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Deans, Matthew C.
2011-01-01
Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.
Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen
NASA Technical Reports Server (NTRS)
Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.
1989-01-01
A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.
Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen
NASA Astrophysics Data System (ADS)
Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.
A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.
40 CFR 90.408 - Pre-test procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... systems. While this would typically be done before testing, it may also be done as a post-test... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures. 90.408 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test...
40 CFR 90.408 - Pre-test procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... systems. While this would typically be done before testing, it may also be done as a post-test... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures. 90.408 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test...
40 CFR 90.408 - Pre-test procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems. While this would typically be done before testing, it may also be done as a post-test... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures. 90.408 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test...
40 CFR 90.408 - Pre-test procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... systems. While this would typically be done before testing, it may also be done as a post-test... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre-test procedures. 90.408 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test...
40 CFR 90.408 - Pre-test procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... systems. While this would typically be done before testing, it may also be done as a post-test... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures. 90.408 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test...
Laser Ignition Device and Its Application to Forestry, Fire and Land Management
Michael D. Waterworth
1987-01-01
A laser ignition device for controlled burning of forest logging slash has been developed and successfully tested. The device, which uses a kilowatt class carbon dioxide laser, operates at distances of 50 to 1500 meters. Acquisition and focus control are achieved by the use of a laser rangefinder and acquisition telescope. Additional uses for the device include back...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...
Frictional Ignition Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel
2006-01-01
The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.1 Applicability. (a) Except as noted in paragraphs (b) and (c) of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, M; Kukkadapu, G; Kumar, K
The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less
Ignition system monitoring assembly
Brushwood, John Samuel
2003-11-04
An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.
Molecular dynamic simulation of thermite reaction of Al nanosphere/Fe2O3 nanotube
NASA Astrophysics Data System (ADS)
Zhu, Zhi-Yang; Ma, Bo; Tang, Cui-Ming; Cheng, Xin-Lu
2016-01-01
The letter presents thermite reactions of Al/Fe2O3 nanothermites simulated by using molecular dynamic method in combination with ReaxFF. The variations in chemical bonds are measured to elaborate reaction process and characterize ignition performance. It is found that the longer interval is, the higher ignition temperature and the longer ignition delay system has. Additionally, the heating rate has much effect on ignition temperature. Under the temperature of 1450 K, oxygen is directly released from hematite nanotube, thermite reaction is deemed as a multiphase process. And, release energy of System2 is about 3.96 kJ/g. However, much energy rises from alloy reaction. Thermite reactions do not follow the theoretical equation, but are a complicated process.
NASA Technical Reports Server (NTRS)
Lowrey, Nikki M.
2016-01-01
It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 milligrams per square meter, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems, however, vary considerably, notably within the aerospace industry. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.
NASA Technical Reports Server (NTRS)
Lowrey, Nikki M.
2016-01-01
It has been well documented in the literature that contamination within oxygen systems can create significant fire hazards. Cleanliness limits for nonvolatile residues, ranging from 10 to 500 mg/sq m, have been established for various industries and types of oxygen systems to reduce the risk of ignition of flammable organic films. Particulate cleanliness limits used for oxygen systems vary considerably. Maximum allowed particle size, quantity limits, and allocations for fibers or metallic particles are all variables seen in aerospace cleanliness limits. Particles are known to have the potential to ignite within oxygen systems and must be limited to prevent fires. Particulate contamination may also pose risks to the performance of oxygen systems that are unrelated to ignition hazards. An extensive literature search was performed to better understand the relative importance of particle ignition mechanisms versus other deleterious effects of particles on oxygen systems and to identify rationale for derivation of particulate cleanliness limits for specific systems. The identified risks of different types and sizes of particles and fibers were analyzed. This paper summarizes the risks identified and rationale that may be used to derive particulate cleanliness limits for specific oxygen systems.
Resonance tube hazards in oxygen systems. Ph.D. Thesis - Toledo Univ., 1975
NASA Technical Reports Server (NTRS)
Phillips, B. R.
1982-01-01
An experimental and analytical program was carried out to determine whether fluid dynamic oscillations could create a hazard in gaseous oxygen flow systems. The particular fluid dynamic oscillation studied was the resonance tube phenomena as it was excited in a tee-shaped configuration characteristic of configurations found in many industrial high pressure gas flow systems. The types of hazards that could be caused by the oscillations were direct heating and ignition of the piping system by the gas, the greatly augmented heating that could occur if inert contaminants were present, and the ignition of metallic contaminants. Asbestos was used as the inert contaminant; titanium, aluminum, magnesium and steel were chosen as ignitable metallic contaminants. The oscillations in the tee-shaped configuration were compared to oscillations driven by choked convergent nozzles and were found to differ markedly. Temperature generated at the end or base of the resonance tube exceeded 1089 K for both gaseous oxygen and nitrogen and reached 1645 K when asbestos was added. Aluminum in both powder and fiber form was readily ignited within the resonance tube when the supply pressures were less than 8270 kPa whereas at higher supply pressures the mixture exploded with enough violence to destory the apparatus in less than 10 sec. In addition to aluminum, magnesium, and titanium, samples of 400 series stainless steels were also ignited within the resonance tube. The ignition occurred within a few seconds after the oxygen flow began.
NASA Astrophysics Data System (ADS)
McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.
2005-10-01
Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.
Ignition study of a petrol/CNG single cylinder engine
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.
Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon
Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.
2001-01-01
Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.
NASA Technical Reports Server (NTRS)
1973-01-01
Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
2016-08-31
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
NASA Technical Reports Server (NTRS)
Tapia, Susana; Smith, Sarah; Peralta, Steve; Stoltzfus, Joel
2009-01-01
This slide presentation reviews the problem and solution of oil contamination and increased ignition hazard in oxygen systems. The experiments that were used are reviewed, and the contamination level threshold and the oxygen pressure threshold are reviewed.
Laser spark distribution and ignition system
Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV
2008-09-02
A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.
40 CFR 91.1001 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1001 Applicability. The requirements of this subpart K are applicable to all marine spark-ignition propulsion engines...
40 CFR 94.10 - Warranty period.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.10 Warranty period. (a)(1) Warranties imposed by § 94.1107 for...
Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal; J. Stephen Herring
2008-07-01
Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less
Physical characteristics of welding arc ignition process
NASA Astrophysics Data System (ADS)
Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei
2012-07-01
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair.
Ignition technique for an in situ oil shale retort
Cha, Chang Y.
1983-01-01
A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.
Progress towards ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, M. J.; Patel, P. K.; Lindl, J. D.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mgmore » of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.« less
Wang, Xizheng; Zhou, Wenbo; DeLisio, Jeffery B; Egan, Garth C; Zachariah, Michael R
2017-05-24
Nanothermites offer high energy density and high burn rates, but are mechanistically only now being understood. One question of interest is how initiation occurs and how the ignition temperature is related to microscopic controlling parameters. In this study, we explored the potential role of oxygen ion transport in Bi 2 O 3 as a controlling mechanism for condensed phase ignition reaction. Seven different doped δ-Bi 2 O 3 were synthesized by aerosol spray pyrolysis. The ignition temperatures of Al/doped Bi 2 O 3 , C/doped Bi 2 O 3 and Ta/doped Bi 2 O 3 were measured by temperature-jump/time-of-flight mass spectrometer coupled with a high-speed camera respectively. These results were then correlated to the corresponding oxygen ion conductivity (directly proportional to ion diffusivity) for these doped Bi 2 O 3 measured by impedance spectroscopy. We find that ignition of thermite with doped Bi 2 O 3 as oxidizer occurs at a critical oxygen ion conductivity (∼0.06 S cm -1 ) of doped Bi 2 O 3 in the condensed-phase so long as the aluminum is in a molten state. These results suggest that oxygen ion transport limits the condensed state Bi 2 O 3 oxidized thermite ignition. We also find that the larger oxygen vacancy concentration and the smaller metal-oxide bond energy in doped Bi 2 O 3 , the lower the ignition temperature. The latter suggests that we can consider the possibility of manipulating microscopic properties within a crystal, to tune the resultant energetic properties.
Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret Stacy; Im, Hong Geum
2016-12-16
The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the resultsmore » to practical gas turbine combustion systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin
During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.
LLE 2008 annual report, October 2007 - September 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-01-31
The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is themore » lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.« less
The effect of venting on cookoff of a melt-castable explosive (Comp-B)
Hobbs, Michael L.; Kaneshige, Michael J.
2015-03-01
Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less
Microgravity combustion experiment using high altitude balloon.
NASA Astrophysics Data System (ADS)
Kan, Yuji
In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. 1. Add a control unit. 2. Add inside batteries for control unit and heater of combustion vessel. 3. Update of the cameras for the observation. In this experiment, we heat air in the combustion vessel to 500K, before microgravity. And during microgravity, we conduct to the follows. (1) Generate five droplets on the droplets supporter. (2) Moving droplets into combustion vessel. (3) Ignition of an edge droplet of the array using igniter. And during combustion experiment, cameras take movies of combustion phenomena. We plan to conduct this experiment in May 2014.
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.4 - Treatment of confidential information.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 94.4 Section 94.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.4 Treatment of confidential information. (a) Any...
Liquid oxygen/liquid hydrogen auxiliary power system thruster investigation
NASA Technical Reports Server (NTRS)
Eberle, E. E.; Kusak, L.
1979-01-01
The design, fabrication, and demonstration of a 111 newton (25 lb) thrust, integrated auxiliary propulsion system (IAPS) thruster for use with LH2/LO2 propellants is described. Hydrogen was supplied at a temperature range of 22 to 33 K (40 to 60 R), and oxygen from 89 to 122 K (160 to 220 R). The thruster was designed to operate in both pulse mode and steady-state modes for vehicle attitude control, space maneuvering, and as an abort backup in the event of failure of the main propulsion system. A dual-sleeve, tri-axial injection system was designed that utilizes a primary injector/combustor where 100 percent of the oxygen and 8 percent of the hydrogen is introduced; a secondary injector/combustor where 45 percent of the hydrogen is introduced to mix with the primary combustor gases; and a boundary layer injector that uses the remaining 45 percent of the hydrogen to cool the thrust throat/nozzle design. Hot-fire evaluation of this thruster with a BLC injection distance of 2.79 cm (1.10 in.) indicated that a specific impulse value of 390 sec can be attained using a coated molybdenum thrust chamber. Pulse mode tests indicated that a chamber pressure buildup to 90 percent thrust can be achieved in a time on the order of 48 msec. Some problems were encountered in achieving ignition of each pulse during pulse trains. This was interpreted to indicate that a higher delivered spark energy level ( 100 mJ) would be required to maintain ignition reliability of the plasma torch ignition system under the extra 'cold' conditions resulting during pulsing.
Wavefront control of high-power laser beams in the National Ignition Facility (NIF)
NASA Astrophysics Data System (ADS)
Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.
2000-04-01
The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... the Critical Design Configuration Control Limitations (CDCCL) and in the Fuel System Limitations (FSL... necessary to maintain the design features required to preclude the existence or development of an ignition... amend this proposed AD based on those comments. We will post all comments we receive, without change, to...
49 CFR 571.126 - Standard No. 126; Electronic stability control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... driver on the previous ignition cycle that is designed for low-speed, off-road driving, or (b) the... is designed for operation at higher speeds on snow-, sand-, or dirt-packed roads and that has the... dealer, fully fueled, with a 73 kg (160 lb) driver. Standard outriggers shall be designed with a maximum...
Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy
2015-06-18
ects of broadband sooting on IRF transmittance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 xi...IndiSmart combustion analyzer. This system conducted data acquisition on various high speed sensors including in- cylinder pressure, intake pressure...Crankshaft position was measured once per revolution by a hall-e↵ect sensor connected to the ignition 56 control unit. The engines were air cooled with
Hydrogen-fueled diesel engine without timed ignition
NASA Technical Reports Server (NTRS)
Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.
1979-01-01
Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.
Operating room fire prevention: creating an electrosurgical unit fire safety device.
Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J
2014-08-01
To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P < 0.0001). The exact 95% confidence interval for absolute risk reduction of fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.
Bogin, Jr., Gregory E.; Luecke, Jon; Ratcliff, Matthew A.; ...
2016-08-21
Here, an ignition delay study investigating the reduction in low temperature heat release (LTHR) and negative temperature coefficient (NTC) region with increasing ethanol concentration in binary blends of ethanol/isooctane was conducted in the Ignition Quality Tester (IQT). The IQT is advantageous for studying multi-component fuels such as iso-octane/ethanol which are difficult to study at lower temperatures covering the NTC region in traditional systems (e.g., shock tubes, rapid compression machines, etc.). The high octane numbers and concomitant long ignition delay times of ethanol and iso-octane are ideal for study in the IQT allowing the system to reach a quasi-homogeneous mixture; allowingmore » the effect of fuel chemistry on ignition delay to be investigated with minimal impact from the fuel spray due to the relatively long ignition times. NTC behavior from iso-octane/ethanol blends was observed for the first time using an IQT. Temperature sweeps of iso-octane/ethanol volumetric blends (100/0, 90/10, 80/20, 50/50, and 0/100) were conducted from 623 to 993 K at 0.5, 1.0 and 1.5 MPa and global equivalence ratios ranging from 0.7 to 1.0. Ignition of the iso-octane/ethanol blends in the IQT was also modeled using a 0-D homogeneous batch reactor model. Significant observations include: (1) NTC behavior was observed for ethanol/ iso-octane fuel blends up to 20% ethanol. (2) Ethanol produced shorter ignition delay times than iso-octane in the high temperature region. (3) The initial increase in ethanol from 0% to 10% had a lesser impact on ignition delay than increasing ethanol from 10% to 20%. (4) The 0-D model predicts that at 0.5 and 1.0 MPa ethanol produces the shortest ignition time in the high-temperature regime, as seen experimentally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogin, Jr., Gregory E.; Luecke, Jon; Ratcliff, Matthew A.
Here, an ignition delay study investigating the reduction in low temperature heat release (LTHR) and negative temperature coefficient (NTC) region with increasing ethanol concentration in binary blends of ethanol/isooctane was conducted in the Ignition Quality Tester (IQT). The IQT is advantageous for studying multi-component fuels such as iso-octane/ethanol which are difficult to study at lower temperatures covering the NTC region in traditional systems (e.g., shock tubes, rapid compression machines, etc.). The high octane numbers and concomitant long ignition delay times of ethanol and iso-octane are ideal for study in the IQT allowing the system to reach a quasi-homogeneous mixture; allowingmore » the effect of fuel chemistry on ignition delay to be investigated with minimal impact from the fuel spray due to the relatively long ignition times. NTC behavior from iso-octane/ethanol blends was observed for the first time using an IQT. Temperature sweeps of iso-octane/ethanol volumetric blends (100/0, 90/10, 80/20, 50/50, and 0/100) were conducted from 623 to 993 K at 0.5, 1.0 and 1.5 MPa and global equivalence ratios ranging from 0.7 to 1.0. Ignition of the iso-octane/ethanol blends in the IQT was also modeled using a 0-D homogeneous batch reactor model. Significant observations include: (1) NTC behavior was observed for ethanol/ iso-octane fuel blends up to 20% ethanol. (2) Ethanol produced shorter ignition delay times than iso-octane in the high temperature region. (3) The initial increase in ethanol from 0% to 10% had a lesser impact on ignition delay than increasing ethanol from 10% to 20%. (4) The 0-D model predicts that at 0.5 and 1.0 MPa ethanol produces the shortest ignition time in the high-temperature regime, as seen experimentally.« less
46 CFR 160.022-3 - Materials, workmanship, construction, and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be protected with a watertight cover having a finish which is corrosion-resistant to salt water and... when presented with supporting data. Igniter systems shall be corrosion-resistant metal. The... container shall be covered with two coats of waterproof paint or equivalent protection system. The igniter...
The ePLAS Code for Ignition Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Rodney J
2012-09-20
Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generationmore » and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.« less
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
High load operation in a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL
2008-12-23
A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic
Investigation of Al/CuO multilayered thermite ignition
NASA Astrophysics Data System (ADS)
Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole
2017-01-01
The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena governing the ignition process of Al/CuO multilayers.
Flame ignition studies of conventional and alternative jet fuels and surrogate components
NASA Astrophysics Data System (ADS)
Liu, Ning
Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.
Primiceri, Patrizio; de Fazio, Roberto; Carlucci, Antonio Paolo; Mazzetto, Selma Elaine
2018-01-01
The aim of this work is to investigate and characterize the photo-ignition process of dry multi-walled carbon nanotubes (MWCNTs) mixed with ferrocene (FeCp2) powder, using an LED (light-emitting diode) as the light source, a combination that has never been used, to the best of our knowledge. The ignition process was improved by adding a lipophilic porphyrin (H2Pp) in powder to the MWCNTs/FeCp2 mixtures—thus, a lower ignition threshold was obtained. The ignition tests were carried out by employing a continuous emission and a pulsed white LED in two test campaigns. In the first, two MWCNT typologies, high purity (HP) and industrial grade (IG), were used without porphyrin, obtaining, for both, similar ignition thresholds. Furthermore, comparing ignition thresholds obtained with the LED source with those previously obtained with a Xenon (Xe) lamp, a significant reduction was observed. In the second test campaign, ignition tests were carried out by means of a properly driven and controlled pulsed XHP70 LED source. The minimum ignition energy (MIE) of IG-MWCNTs/FeCp2 samples was determined by varying the duration of the light pulse. Experimental results show that ignition is obtained with a pulse duration of 110 ms and a MIE density of 266 mJ/cm2. The significant reduction of the MIE value (10–40%), observed when H2Pp in powder form was added to the MWCNTs/FeCp2 mixtures, was ascribed to the improved photoexcitation and charge transfer properties of the lipophilic porphyrin molecules. PMID:29342878
Visconti, Paolo; Primiceri, Patrizio; de Fazio, Roberto; Carlucci, Antonio Paolo; Mazzetto, Selma Elaine; Mele, Giuseppe
2018-01-13
The aim of this work is to investigate and characterize the photo-ignition process of dry multi-walled carbon nanotubes (MWCNTs) mixed with ferrocene (FeCp₂) powder, using an LED (light-emitting diode) as the light source, a combination that has never been used, to the best of our knowledge. The ignition process was improved by adding a lipophilic porphyrin (H₂Pp) in powder to the MWCNTs/FeCp₂ mixtures-thus, a lower ignition threshold was obtained. The ignition tests were carried out by employing a continuous emission and a pulsed white LED in two test campaigns. In the first, two MWCNT typologies, high purity (HP) and industrial grade (IG), were used without porphyrin, obtaining, for both, similar ignition thresholds. Furthermore, comparing ignition thresholds obtained with the LED source with those previously obtained with a Xenon (Xe) lamp, a significant reduction was observed. In the second test campaign, ignition tests were carried out by means of a properly driven and controlled pulsed XHP70 LED source. The minimum ignition energy (MIE) of IG-MWCNTs/FeCp₂ samples was determined by varying the duration of the light pulse. Experimental results show that ignition is obtained with a pulse duration of 110 ms and a MIE density of 266 mJ/cm². The significant reduction of the MIE value (10-40%), observed when H₂Pp in powder form was added to the MWCNTs/FeCp₂ mixtures, was ascribed to the improved photoexcitation and charge transfer properties of the lipophilic porphyrin molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings that describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems, and exhaust and evaporative emission control systems.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Prechamber equipped laser ignition for improved performance in natural gas engines
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-04-25
Lean-burn operation of stationary natural gas engines offers lower NO x emissions and improved efficiency. A proven pathway to extend lean-burn operation has been to use laser ignition instead of standard spark ignition. However, under lean conditions, flame speed reduces thereby offsetting any efficiency gains resulting from the higher ratio of specific heats, γ. The reduced flame speeds, in turn, can be compensated with the use of a prechamber to result in volumetric ignition, and thereby lead to faster combustion. In this study, the optimal geometry of PCLI was identified through several tests in a single-cylinder engine as a compromisemore » between autoignition, NO x and soot formation within the prechamber. Subsequently, tests were conducted in a single-cylinder natural gas engine comparing the performance of three ignition systems: standard electrical spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI). Out of the three, the performance of PCLI was far superior compared to the other two. Efficiency gain of 2.1% points could be achieved while complying with EPA regulation (BSNO x < 1.34 kW-hr) and the industry standard for ignition stability (COV_IMEP < 5%). Finally, test results and data analysis are presented identifying the combustion mechanisms leading to the improved performance.« less
Detailed mechanism of toluene oxidation and comparison with benzene
NASA Technical Reports Server (NTRS)
Bittker, David A.
1988-01-01
A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.
2006-06-01
Per Year TSCA Toxic Substance Control Act TSI Thermal System Insulation UAV Unmanned Aerial Vehicle UHF Ultra High Frequency UPS Uninterruptible...Conservation and Recovery Act (RCRA) of 1976 [42 U.S.C. Sec. 6901, et seq.] • Toxic Substances Control Act (TSCA) of 1976 [15 U.S.C. Sec. 2601, et...Corporation (SAIC). Typical hazardous materials include reactive materials such as explosives, ignitables, toxics , and corrosives. Improper storage can
Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules
NASA Astrophysics Data System (ADS)
Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven
2009-11-01
Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.
Combustion in a High-Speed Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M
1933-01-01
An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.
40 CFR 94.9 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...
40 CFR 94.9 - Compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...
40 CFR 94.9 - Compliance with emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...
40 CFR 94.9 - Compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...
40 CFR 94.9 - Compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...
Evaluation of state ignition interlock programs : interlock use analyses from 28 states, 2006–2011.
DOT National Transportation Integrated Search
2015-05-01
In 2010, the Centers for Disease Control and Prevention (CDC) and NHTSA began collaborating on a project to evaluate ignition interlock programs in selected States. The purpose of the evaluation was to provide information and best practices to States...
40 CFR 89.124 - Record retention, maintenance, and submission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... construction, including a general description of the origin and buildup of the engine, steps taken to ensure... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission... manufacturer of any nonroad compression-ignition engine must maintain the following adequately organized...
NASA Astrophysics Data System (ADS)
Walton, Stephen Michael
The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the intermediates measured during methyl butanoate ignition indicated that pathways leading to the formation of small hydrocarbons are relatively well represented in the reaction mechanism. The results of this work provide archival benchmark data for improved understanding of the dominant reaction pathways and species controlling the auto-ignition of oxygenated reference fuel compounds. These data also provide a path for continued development of chemical kinetic models to optimize practical combustion systems.
Heat energy of various ignition sparks
NASA Technical Reports Server (NTRS)
Silsbee, F B; Loeb, L B; Fonseca, E L
1920-01-01
This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.
Analysis of the laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber
NASA Astrophysics Data System (ADS)
Wohlhüter, Michael; Zhukov, Victor P.; Sender, Joachim; Schlechtriem, Stefan
2017-06-01
The laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber has been investigated numerically and experimentally. The ignition test case used in the present paper was generated during the In-Space Propulsion project (ISP-1), a project focused on the operation of propulsion systems in space, the handling of long idle periods between operations, and multiple reignitions under space conditions. Regarding the definition of the numerical simulation and the suitable domain for the current model, 2D and 3D simulations have been performed. Analysis shows that the usage of a 2D geometry is not suitable for this type of simulation, as the reduction of the geometry to a 2D domain significantly changes the conditions at the time of ignition and subsequently the flame development. The comparison of the numerical and experimental results shows a strong discrepancy in the pressure evolution and the combustion chamber pressure peak following the laser spark. The detailed analysis of the optical Schlieren and OH data leads to the conclusion that the pressure measurement system was not able to capture the strong pressure increase and the peak value in the combustion chamber during ignition. Although the timing in flame development following the laser spark is not captured appropriately, the 3D simulations reproduce the general ignition phenomena observed in the optical measurement systems, such as pressure evolution and injector flow characteristics.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Bondarenko, V. P.; Dolgii, L. N.
2012-03-01
On the basis of macrokinetic calculations, the influence of the initial temperature on the impulse responses of the processes of ignition and combustion of the solid-fuel charge of the microelectromechanical system (MEMS) microthruster burning the solid fuel glycidyl azide polymer (GAP)/RDX has been investigated. It has been established that fuel heating/cooling in a wide range of temperature values from 150 to 450 K characteristic of the conditions of a satellite in orbital flight markedly affects both the thrust and the total impulse of the MEMS microthruster. In so doing, an increase in the initial temperature leads to a marked decrease in the induction period and an increase in the critical flux of fuel ignition. The influence of the change in the initial temperature on the self-ignition temperature of GAP can be neglected. To obtain stable characteristics of the microthruster, it seems expedient to use a thermostating system.
Plasma-assisted microwave processing of materials
NASA Technical Reports Server (NTRS)
Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)
1998-01-01
A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.
Motorcycle emission control demonstration. Final report April--November 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullman, T.L.; Hare, C.T.
1977-12-01
The testing of ten motorcycles for exhaust emissions of hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) is described. Emission rates in grams per kilometer are presented for the 1975 Federal Test Procedure and the Highway Fuel Economy Test, as well as in percent or parts per million for several steady-state conditions. The test motorcycles were equipped with 2-stroke, 4-stroke, and rotary engines ranging from about 100 to 1000 cc displacement. Several exhaust emission control techniques were applied, including minor and major carburetor enleanment with and without capacitive discharge ignition, secondary air injection with both pumps and reedmore » valves, port liners, thermal reactors, oxidation catalysts, rotary valve modification, a spark ignited afterburner, and a short-circuited air-fuel mixture extraction system. Driveability, performance, and maladjustment (stock only) testing were also performed. All testing was performed with low accumulated distance on the motorcycles. (Portions of this document are not fully legible)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby J. Baumgard; Richard E. Winsor
2009-12-31
The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less
Multiple Ignition, Normal and Catalytic Combustion and Quenching of Fuel/Air Mixtures.
1980-05-10
spray ignition results. Spray systems will be produced using a TSI vibrating orifice aerosol generator. From a small liquid reservoir under high pressure...Liebman used laser ignition of electromagnetically -15- levitated particles. An interesting contradiction presents itself in Figures 7 and 8. Because...the substrate surface has been developed and tested. When the experimental wall temperature is used as boundary condition for the gas- phase equations
Emission regulations to control emissions from new nonroad spark-ignition nonhandheld engines at or below 19 kilowatts (25 horsepower). These engines are used principally in lawn and garden equipment in applications such as lawnmowers and garden tractors.
49 CFR 571.126 - Standard No. 126; Electronic stability control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cycle that is designed for low-speed, off-road driving, or (b) the vehicle is in a four-wheel drive configuration selected by the driver on the previous ignition cycle that is designed for operation at higher.... Light outriggers are designed with a maximum weight of 27 kg (59.5 lb) and a maximum roll moment of...
Turbulent combustion in aluminum-air clouds for different scale explosion fields
NASA Astrophysics Data System (ADS)
Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.
2017-01-01
This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.
Engine Valve Actuation For Combustion Enhancement
Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul
2004-05-18
A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.
Engine valve actuation for combustion enhancement
Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI
2008-03-04
A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.
Bilingual Skills Training Program. Auto Mechanics. Module 2.0: Ignition System.
ERIC Educational Resources Information Center
Northern New Mexico Community Coll., El Rito.
This module on ignition systems is the second of six (CE 028 296-301) in the auto mechanics course of a bilingual skills training program. (A Vocabulary Development Workbook is available as CE 028 294.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop trade-related…
NASA Astrophysics Data System (ADS)
Vuilleumier, David Malcolm
The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.
Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine
NASA Astrophysics Data System (ADS)
Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua
2013-02-01
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni
This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.
Catalyzed Ignition of Bipropellants in Microtubes
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Boyarko, George A.; Sung, Chih-Jen
2003-01-01
This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations to more carefully characterize the measured heat transfer and pressure losses for validation purposes. Experimentally, we investigate the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter micro-tubes, with special emphases on ignition and extinction processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rises in resistively heated platinum and palladium micro-tubes are used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented.
Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi
A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2011-01-01
The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.
Flow Friction or Spontaneous Ignition?
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle
2012-01-01
"Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.
A study of ignition phenomena of bulk metals by radiant heating
NASA Technical Reports Server (NTRS)
Branch, Melvin C.; Abbud-Madrid, A.; Feiereisen, T. J.; Daily, J. W.
1993-01-01
Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions.
Laser ignition of engines: a realistic option!
NASA Astrophysics Data System (ADS)
Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.
2006-01-01
Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall
NASA Astrophysics Data System (ADS)
Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.
2016-03-01
A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.
We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less
Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.
2015-04-23
We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less
Supersonic burning in separated flow regions
NASA Technical Reports Server (NTRS)
Zumwalt, G. W.
1982-01-01
The trough vortex phenomena is used for combustion of hydrogen in a supersonic air stream. This was done in small sizes suitable for igniters in supersonic combustion ramjets so long as the boundary layer displacement thickness is less than 25% of the trough step height. A simple electric spark, properly positioned, ignites the hydrogen in the trough corner. The resulting flame is self sustaining and reignitable. Hydrogen can be injected at the base wall or immediately upstream of the trough. The hydrogen is introduced at low velocity to permit it to be drawn into the corner vortex system and thus experience a long residence time in the combustion region. The igniters can be placed on a skewed back step for angles at least up to 30 deg. without affecting the igniter performance significantly. Certain metals (platinum, copper) act catalytically to improve ignition.
Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min
The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.
BSM Delta qualification 2, volume 1
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into Booster Separation Motor (BSM) flight hardware: (1) vulcanized-in-place nozzle aft closure insulation; (2) new isostatic ATJ bulk graphite throat insert material; (3) adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; (4) deletion of the igniter adapter insulator ring; (5) deletion of igniter adapter/igniter case interface RTV; and (6) deletion of Loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM Total Quality Management (TQM) Team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing - consisting of two motors, randomly selected by USBI's onsite quality personnel from production lot AAY, which were modified to accept the enhancements - were completed to provide the final qualification of the enhancements for incorporation into flight hardware. It is concluded that all of the enhancements herein tested are qualified to be incorporated into flight hardware for the BSM.
BSM Delta Qualification 2, volume 2
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM) flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material; adhesive EA 9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor tests -- consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- were completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 2 details the environmental testing (vibration and shock) conducted at Marshall Space Flight Center (MSFC) to which the motors were subjected prior to static tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... the environmental control system (ECS). This AD results from reports of duct assemblies in the ECS... assemblies in the ECS wrapped with BMS 8-39 polyurethane foam insulation, a material of which the fire... igniting the BMS 8-39 polyurethane foam insulation on the duct assemblies of the ECS, which could propagate...
Pressure Fluctuations in a Common-Rail Fuel Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M
1931-01-01
This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.
From two competing oscillators to one coupled-clock pacemaker cell system
Yaniv, Yael; Lakatta, Edward G.; Maltsev, Victor A.
2015-01-01
At the beginning of this century, debates regarding “what are the main control mechanisms that ignite the action potential (AP) in heart pacemaker cells” dominated the electrophysiology field. The original theory which prevailed for over 50 years had advocated that the ensemble of surface membrane ion channels (i.e., “M-clock”) is sufficient to ignite rhythmic APs. However, more recent experimental evidence in a variety of mammals has shown that the sarcoplasmic reticulum (SR) acts as a “Ca2+-clock” rhythmically discharges diastolic local Ca2+ releases (LCRs) beneath the cell surface membrane. LCRs activate an inward current (likely that of the Na+/Ca2+ exchanger) that prompts the surface membrane “M-clock” to ignite an AP. Theoretical and experimental evidence has mounted to indicate that this clock “crosstalk” operates on a beat-to-beat basis and determines both the AP firing rate and rhythm. Our review is focused on the evolution of experimental definition and numerical modeling of the coupled-clock concept, on how mechanisms intrinsic to pacemaker cell determine both the heart rate and rhythm, and on future directions to develop further the coupled-clock pacemaker cell concept. PMID:25741284
Air/fuel ratio visualization in a diesel spray
NASA Astrophysics Data System (ADS)
Carabell, Kevin David
1993-01-01
To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a small pilot. This arrangement provided the best combination of short ignition delay and diffusion burn for the majority of cases.
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick
2009-11-01
A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.
Progress in Direct-Drive Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Meyerhofer, D.D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ UV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ~200 mg/cm^2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm^3 and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]—have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
Progress in direct-drive inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R. L.; Meyerhofer, D. D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results
NASA Technical Reports Server (NTRS)
Abbud-Madrid, A.; Fiechtner, G. J.; Branch, M. C.; Daily, J. W.
1994-01-01
An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented.
NASA Technical Reports Server (NTRS)
Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.
1992-01-01
The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.
Development and Testing of a Green-Propellant Micro-Hybrid Thruster with Electrostatic Ignition
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Judson, Michael D.
2012-01-01
As early as 1937 German scientists at Peenemunde experimented with highly unstable fuel blends of nitrous oxide (N2O) and ethanol. These early tests mostly resulted in explosions and destroyed rocket engines. More recently several companies have developed experimental nitrous oxide fuel blends (NOFB) with Isp exceeding 300 sec. Although NOFBx has recently been cleared for tests on the International Space Station, this propellant remains highly experimental and has not been cleared for commercial transport by the US DOT. Recent work by Karabeyoglu et al. has raised concerns about the safety risks of mixing hydrocarbons with N2O. Liquid oxidizer/fuel blends are highly explosive and require extreme care in transport and servicing. By adding small amounts of a liquid organic fuel such as alcohol or a hydrocarbon, the odds of an explosive decomposition event are significantly increased.iv The proposed solution mitigates the explosion hazards of NOFB by separating the oxidizer from the hydrocarbon fuel formed as of a small cylindrical section of ABS thermoplastic. As N2O vapor flows across the grain segment, current enters a 1000 VDC high-tension lead in the ABS fuel grain and produces an inductive spark that vaporizes a small amount of the material. The ablated fuel vapor plus residual energy from the spark seed a localized exothermic N2O dissociation that produces sufficient heat to initiate combustion. The process is also effective when gaseous oxygen is used. A low TRL (2-3) prototype demonstrating the feasibility of controlled hydrocarbon-seeding was recently tested at Utah State University.v The unit features a miniature 2.5 cm ABS fuel grain fabricated using a Stratasys Dimension 3-D printer. The 9-N thruster was pulse-fired up to 27 consecutive times on a single ABS grain segment. Ignition was achieved by as little as 12-15 Joules energy input. This value is contrasted with the typical 30-minute pre-heat requirement for the ECAPS LMP-103S ADN-based monopropellant, requiring an energy input of 14,850 Joules for catalytic dissociation. The hydrocarbon-seeded micro-hybrid was also adapted as a non-pyrotechnic ignitor for a 900 N (200-lbf) thrust hybrid motor. The motor was successfully ignited 4 consecutive times with no hardware swaps or propellant additions. The amount of ABS seed material that can be fit into the injector cap is the only limit to the number of available repeat firings. This series of tests marks the first time a hybrid motor was ever ignited by other than a solid-propellant pyrotechnic charge or bi-propellant flame ignitor. Nitrous oxide hybrid motors are typically difficult to ignite and usually require multiple solid-propellant charges to initiate combustion, so this nonpyrotechnic ignition is a significant accomplishment. The controlled hydrocarbon-seeding approach is fundamentally different from all other green propellant solutions offered by the aerospace industry. Although the proposed system is more correctly a hybrid technology; the system retains all the simple features of a monopropellant design. To date no optimization study has been performed to identify the best grain geometry for electrostatic ignition. Fortunately, because the grain segments are fabricated using rapid-prototyping technology, changing the grain geometry is as simple as modifying the 3-D printer CAD-file. Vacuum Isp exceeding 270 seconds has been demonstrated (Ref v), a value significantly higher than those offered by competing green monopropellant options. The propellants of choice, N2O/GOX and ABS are 100% non-toxic, non-explosive, and environmentally benign. Because the inert oxidizer and fuel components are mixed only within the combustion chamber, the system retains the inherent safety of a hybrid rocket and can be piggy-backed as a secondary payload with no overall mission risk increase to the primary payload, an excellent characteristic for secondary launch systems.
Conceptual design of fast-ignition laser fusion reactor FALCON-D
NASA Astrophysics Data System (ADS)
Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.
2009-07-01
A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.
NASA Astrophysics Data System (ADS)
Shlyaptsev, Vyacheslav N.; Tatchyn, Roman O.
2004-01-01
The advantages and challenges of using a powerful x-ray source for the fast ignition of compressed Inertial Confinement Fusion (ICF) targets have been considered. The requirements for such a source together with the optics to focus the x-rays onto compressed DT cores lead to a conceptual design based on Energy Recovery Linacs (ERLs) and long wigglers to produce x-ray pulses with the appropriate phase space properties. A comparative assessment of the parameters of the igniter system indicates that the technologies for building it, although expensive, are physically achievable. Our x-ray fast ignition (XFI) scheme requires substantially smaller energy for the initiation of nuclear fusion reactions than other methods.
Coating Hydrostatic Bearings To Resist Ignition In Oxygen
NASA Technical Reports Server (NTRS)
Funkhouser, Merle E.
1993-01-01
Coats of superalloy MA754 plasma-sprayed onto occasionally rubbing surfaces of hydrostatic journal bearings operating in liquid and/or gaseous oxygen, according to proposal. Prevents ignition and combustion occurring when components made of stainless steels or other conventional bearing alloys rub against each other in oxygen. Eliminates need for runner and enhances control over critical bearing clearance.
Electrically heated particulate filter enhanced ignition strategy
Gonze, Eugene V; Paratore, Jr., Michael J
2012-10-23
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
1969-07-06
The astronauts enter the spacecraft. After launch and Saturn V first-stage burnout and jettison, the S-II second stage ignites. The crew checks spacecraft systems in Earth orbit before the S-IVB third stage ignites the second time to send Apollo 11 to the Moon
Output testing of small-arms primers
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Doris, Thomas A.; Schimmel, Morry L.
1991-01-01
The performance of two standard primers for initiating small-caliber ammunition are compared to that of a primer for initiating aircraft escape-system components. Three testing methods are employed including: (1) firing the primer to measure total energy delivered; (2) monitoring output in terms of gaseous product-mass flow rate and pressure as a function of time; and (3) firing the primer onto ignition material to study gas pressure produced during ignition and burning as a function of time. The results of the test demonstrate differences in the ignitability factors of the standard primers and time peak pressures of less than 100 microseconds. One unexpected result is that two percussion primers (the FA-41 and the M42C1) developed for different applications have the same ignitability. The ignitability test method is shown to yield the most useful data and can be used to specify percussion primers and optimize their performance.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M. (Editor); Benz, Frank J. (Editor); Stradling, Jack S. (Editor)
1989-01-01
The present volume discusses the ignition of nonmetallic materials by the impact of high-pressure oxygen, the promoted combustion of nine structural metals in high-pressure gaseous oxygen, the oxygen sensitivity/compatibility ranking of several materials by different test methods, the ignition behavior of silicon greases in oxygen atmospheres, fire spread rates along cylindrical metal rods in high-pressure oxygen, and the design of an ignition-resistant, high pressure/temperature oxygen valve. Also discussed are the promoted ignition of oxygen regulators, the ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen, evolving nonswelling elastomers for high-pressure oxygen environments, the evaluation of systems for oxygen service through the use of the quantitative fault-tree analysis, and oxygen-enriched fires during surgery of the head and neck.
ERIC Educational Resources Information Center
Underwood, Earl
An instructor's manual and student activity guide on the ignition system of small engines are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…
Localized microwave pulsed plasmas for ignition and flame front enhancement
NASA Astrophysics Data System (ADS)
Michael, James Bennett
Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.
On the critical flame radius and minimum ignition energy for spherical flame initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zheng; Burke, M. P.; Ju, Yiguang
2011-01-01
Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less
BSM Delta Qualification 2, volume 3, book 2
NASA Technical Reports Server (NTRS)
1994-01-01
This report, presented in three volumes, provides the results of a two-motor Delta Qualification 2 program conducted in 1993 to certify the following enhancements for incorporation into booster separation motor (BSM0 flight hardware: vulcanized-in-place nozzle aft closure insulation; new iso-static ATJ bulk graphite throat insert material, adhesive EA9394 for bonding the nozzle throat, igniter grain rod/centering insert/igniter case; deletion of the igniter adapter insulator ring; deletion of the igniter adapter/igniter case interface RTV; and deletion of loctite from igniter retainer plate threads. The enhancements above directly resulted from (1) the BSM total quality management (TQM) team initiatives to enhance the BSM producibility, and (2) the necessity to qualify new throat insert and adhesive systems to replace existing materials that will not be available. Testing was completed at both the component and motor levels. Component testing was accomplished to screen candidate materials (e.g., throat materials, adhesive systems) and to optimize processes (e.g., aft closure insulator vulcanization approach) prior to their incorporation into the test motors. Motor testing--consisting of two motors, randomly selected by USBI's on-site quality personnel from production lot AAY, which were modified to accept the enhancements -- was completed to provide the final qualification of the enhancements for incorporation into flight hardware. Volume 3, Book 2 provides various supporting documentation to the previous volumes with regards to the testing of the two Delta qualification units: data acceptance records, thermal conditioning analysis, igniter adapter thermal flake analysis, laboratory adhesive (EA-9394) qualification report, throat insert thermal/structural analysis, Delta Qualification Nonconformance Reports (NCR's), O-ring seating tests, and interim test report for vulcanization process qualification.
The national ignition facility: path to ignition in the laboratory
NASA Astrophysics Data System (ADS)
Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.
2007-08-01
The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.
Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A
2016-10-01
Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native plants growing beneath shrubs are "igniters" of dead Larrea branches. Once burning, flames produced by dead branches engulf the entire shrub, resulting in locally intense fires without historical precedent in this system. We suggest that fire models and conservation-focused management could be improved by incorporating the distinct flammability characteristics and spatial distributions of spreaders, igniters, and keystone shrubs. © 2016 by the Ecological Society of America.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuelsmore » such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most significant impact on each target. The results were further assessed by investigating the impact of individual parameter variations on the targets. Overall, it was demonstrated that GSA can be an effective tool in understanding parameters sensitive to a low temperature combustion concept with novel fuels.« less
Ignition and Combustion of Bulk Metals in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Branch, M. C.; Daily, J. W.; Abbud-Madrid, A.
1996-01-01
This annual report summarizes the latest results obtained in a NASA-supported project to investigate the effect of gravity on the ignition and combustion of bulk metals. The experimental arrangement used for this purpose consists of a 1000-W xenon lamp that irradiates the top surface of cylindrical titanium and magnesium specimens, 4 mm in diameter and 4 mm in height, in a quiescent, pure-oxygen environment at 1 atm. Reduced gravity is obtained from the NASA LeRC DC-9 aircraft flying parabolic trajectories. Values of critical and ignition temperatures are obtained from thermocouple records. Qualitative observations and propagation rates are extracted from high-speed cinematography. Emission spectra of gas-phase reactions are obtained with an imaging spectrograph/diode array system. It was found that high applied heating rates and large internal conduction losses generate critical and ignition temperatures that are several hundred degrees above the values obtained from isothermal experiments. Because of high conduction and radiation heat losses, no appreciable effect on ignition temperatures with reduced convection in low gravity is detected. Lower propagation rates of the molten interface on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicates the importance of the influence of natural convection-enhanced oxygen transport on combustion rates. Lower oxygen flux and lack of oxide product removal in the absence of convective currents appear to be responsible for longer burning times of magnesium diffusion flames at reduced gravity. The accumulation of condensed oxide particles in the flame front at low gravity produces a previously unreported unsteady explosion phenomenon in bulk magnesium flames. This spherically symmetric explosion phenomenon seems to be driven by increased radiation heat transfer from the flame front to an evaporating metal core covered by a porous, flexible oxide coating. These important results have revealed the significant role of gravity on the burning of metals, and are now being used as the database for future experiments to be conducted with different metals at various pressures, oxygen concentrations and gravity levels.
Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems
NASA Astrophysics Data System (ADS)
Shmatov, M. L.
The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.
National Ignition Facility Laser System Performance
Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...
2017-03-23
The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min
2016-09-01
The probabilistic ignition thresholds of pressed granular Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine explosives with average grain sizes between 70 μm and 220 μm are computationally predicted. The prediction uses material microstructure and basic constituent properties and does not involve curve fitting with respect to or prior knowledge of the attributes being predicted. The specific thresholds predicted are James-type relations between the energy flux and energy fluence for given probabilities of ignition. Statistically similar microstructure sample sets are computationally generated and used based on the features of micrographs of materials used in actual experiments. The predicted thresholds are in general agreement with measurements from shock experiments in terms of trends. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. For example, 50% ignition threshold of the material with an average grain size of 220 μm is approximately 1.4-1.6 times that of the material with an average grain size of 70 μm in terms of energy fluence. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.5 and 4.0 km/s, constituent elasto-viscoplasticity, fracture, post-fracture contact and friction along interfaces, bulk inelastic heating, interfacial frictional heating, and heat conduction. The constitutive behavior of the materials is described using a finite deformation elasto-viscoplastic formulation and the Birch-Murnaghan equation of state. The ignition thresholds are determined via an explicit analysis of the size and temperature states of hotspots in the materials and a hotspot-based ignition criterion. The overall ignition threshold analysis and the microstructure-level hotspot analysis also lead to the definition of a macroscopic ignition parameter (J) and a microscopic ignition risk parameter (R) which are statistically related. The relationships between these parameters are established and delineated.
Auto-ignition of hydrocarbons behind reflected shock waves.
NASA Technical Reports Server (NTRS)
Vermeer, D. J.; Meyer, J. W.; Oppenheim, A. K.
1972-01-01
The paper reports on the study of auto-ignition of hydrocarbon-oxygen mixtures behind reflected shock waves. Because of their bearing on the problem of knock in internal combustion engines, n-heptane and iso-octane were chosen as the combustible species. Their stoichiometric mixtures with oxygen had to be diluted with 70% argon to reduce the influence of the boundary layer. Photographic records demonstrated the existence of two different modes of ignition, as has been previously established for the hydrogen-oxygen system. The pressure-temperature limits between these regions of mild and strong ignition were determined. From the same experimental tests, induction time data were obtained over the pressure range of 1-4 atm and the temperature interval of 1200-1700 K.
Mobile Source Emissions Regulatory Compliance Data Inventory
The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea
NASA Astrophysics Data System (ADS)
Różowicz, Sebastian
2018-03-01
The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1936-01-01
An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.
Co-Optimization of Internal Combustion Engines and Biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert L.
2016-03-08
The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to bemore » realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.« less
NASA Astrophysics Data System (ADS)
Curnock, Barry
Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Whitney, E G
1931-01-01
An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.