C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise
2017-01-01
A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...
Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.; ...
2018-03-20
This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.
This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less
On thermonuclear ignition criterion at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming
2014-10-15
Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirementsmore » of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.« less
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.
2004-02-01
The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.
Ignition study of a petrol/CNG single cylinder engine
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.
A Study of Flame Physics and Solid Propellant Rocket Physics
2007-10-01
and ellipsoids, and the packing of pellets relevant to igniter modeling. Other topics are the instabilities of smolder waves, premixed flame...instabilities in narrow tubes, and flames supported by a spinning porous plug burner . Much of this work has been reported in the high-quality archival...perchlorate in fuel binder, the combustion of model propellant packs of ellipses and ellipsoids, and the packing of pellets relevant to igniter modeling
2016-10-05
describes physics of a nanosecond surface dielectric barrier discharge (SDBD) at ambient gas temperature and high pressures (1-6 bar) in air. Details about...the ignition by a nanosecond discharge. Chapter 7 presents the high pressure high temperature reactor built recently at Laboratory for Plasma Physics ...livelink.ebs.afrl.af.mil/livelink/llisapi.dll Laboratory for Physics of Plasma, Ecole Polytechnique Plasma Assisted Ignition and Combustion at Low Initial Gas
Scaling laws for ignition at the National Ignition Facility from first principles.
Cheng, Baolian; Kwan, Thomas J T; Wang, Yi-Ming; Batha, Steven H
2013-10-01
We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.
NASA Astrophysics Data System (ADS)
McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.
2005-10-01
Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.
Physical characteristics of welding arc ignition process
NASA Astrophysics Data System (ADS)
Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei
2012-07-01
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
The National Ignition Facility and Industry
NASA Astrophysics Data System (ADS)
Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.
1994-09-01
The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.
Mokrani, Nabil; Gillard, Philippe
2018-03-26
This paper presents a physical and statistical approach to laser-induced breakdown in n-decane/N 2 + O 2 mixtures as a function of incident or absorbed energy. A parametric study, with pressure, fuel purity and equivalence ratio, was conducted to determine the incident and absorbed energies involved in producing breakdown, followed or not by ignition. The experiments were performed using a Q-switched Nd-YAG laser (1064 nm) inside a cylindrical 1-l combustion chamber in the range of 1-100 mJ of incident energy. A stochastic study of breakdown and ignition probabilities showed that the mixture composition had a significant effect on ignition with large variation of incident or absorbed energy required to obtain 50% of breakdown. It was observed that the combustion products absorb more energy coming from the laser. The effect of pressure on the ignition probabilities of lean and near stoichiometric mixtures was also investigated. It was found that a high ignition energy E50% is required for lean mixtures at high pressures (3 bar). The present study provides new data obtained on an original experimental setup and the results, close to laboratory-produced laser ignition phenomena, will enhance the understanding of initial conditions on the breakdown or ignition probabilities for different mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Inertial confinement fusion ablator physics experiments on Saturn and Nova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.E.; Porter, J.L.; Chandler, G.A.
1997-05-01
The Saturn pulsed power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense} Z-{ital pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. {bold 28}, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those thatmore » would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas {bold 2}, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
Progress and prospects for an FI relevant point design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, M; Amendt, P; Bellei, C
The physics issues involved in scaling from sub ignition to high gain fast ignition are discussed. Successful point designs must collimate the electrons and minimize the stand off distance to avoid multi mega-joule ignition energies. Collimating B field configurations are identified and some initial designs are explored.
A numerical investigation of the interplay between fireline length, geometry, and rate of spread
J. M. Canfield; R. R. Linn; J. A. Sauer; M. Finney; J. Forthofer
2014-01-01
The current study focuses on coupled dynamics and resultant geometry of fireline segments of various ignition lengths. As an example, for ignition lines of length scales typical for field experiments, fireline curvature is the result of a competition between the head fire and the flanks of the fire. A number of physical features (i.e. buoyancy and wind field divergence...
NASA Astrophysics Data System (ADS)
Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan
2017-05-01
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.
Cheng, B. L.; Kwan, T. J. T.; Wang, Y. M.; ...
2018-05-18
In the last five years, large amounts of high quality experimental data in inertial confinement fusion (ICF) were produced at the National Ignition Facility (NIF). From the NIF data, we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition in ICF and identified the critical physical issues important to achieve ignition, such as implosion energetics, pusher adiabat, tamping effects in fuel confinement, and confinement time. In this article, we will present recently developed TN ignition theory and implosion scaling laws [1, 2] characterizing the thermodynamic properties of the hot spot and the TN ignition metrics atmore » NIF. We compare our theoretical predictions with NIF data with good agreement between theory and experiments. We will also demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium and on the neutron yields of ICF capsules. Applications [3–5] to NIF experiments and physical explanations of the discrepancies among theory, data and simulations will be presented. In our theory, the actual adiabat of the cold DT fuel can be inferred from neutron image data of a burning capsule. With the experimentally inferred hot spot mix, the CH mix in the cold fuel could be estimated, as well as the preheat. Finally, possible path forwards to reach high yields are discussed.« less
Low Convergence path to Fusion I: Ignition physics and high margin design
NASA Astrophysics Data System (ADS)
Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.
2016-10-01
A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinak, M; Lamb, D
2012-07-03
This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtold, J.K.; Booty, M.R.; Kriegsmann, G.A.
1996-12-31
In recent years, microwave heating has been proposed as an alternative to ignite materials during the process of self-propagating high-temperature synthesis. The microwave heating and ignition of a combustible material is modeled and analyzed in the small Biot number and large activation energy regimes. Both the temporal and spatial evolution of the temperature within the material are described. The ignition characteristics are determined by a localized equation for the perturbation to the inert temperature, which is shown to exhibit thermal runaway behavior. Analysis of this local equation provides explicit ignition conditions in terms of the physical parameters in the problem.
Heating and ignition of small wood cylinders
Wallace L. Fons
1950-01-01
The literature provides limited information on the time of ignition of wood under conditions of rapid heating such as occur in forest and structure fires. An investigation was made of ease of ignition as affected by such physical properties of wood as initial temperature, size, and moisture content and by temperature of ambient gas or rate of heating. Temperature-time...
Capsule implosion optimization during the indirect-drive National Ignition Campaign
NASA Astrophysics Data System (ADS)
Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.
2011-05-01
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.
Physics evaluation of compact tokamak ignition experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uckan, N.A.; Houlberg, W.A.; Sheffield, J.
1985-01-01
At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Consideringmore » both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.« less
Capsule Performance Optimization in the National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O L; MacGowan, B J; Haan, S W
2009-10-13
A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting themore » key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less
Capsule performance optimization in the national ignition campaign
NASA Astrophysics Data System (ADS)
Landen, O. L.; MacGowan, B. J.; Haan, S. W.; Edwards, J.
2010-08-01
A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.
NASA Astrophysics Data System (ADS)
Chen, Zhi; Ruan, Shaohong; Swaminathan, Nedunchezhian
2016-07-01
Three-dimensional (3D) unsteady Reynolds-averaged Navier-Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.
The National Direct-Drive Program: OMEGA to the National Ignition Facility
Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; ...
2017-12-28
The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less
The National Direct-Drive Program: OMEGA to the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Goncharov, V. N.; Sangster, T. C.
The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less
Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Tarraf Kojok, Ali
This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.
Gain curves and hydrodynamic modeling for shock ignition
NASA Astrophysics Data System (ADS)
Lafon, M.; Ribeyre, X.; Schurtz, G.
2010-05-01
Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.
DNS and LES/FMDF of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Jaberi, Farhad
2014-11-01
The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.
Numerical simulations of turbulent jet ignition and combustion
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad
2013-11-01
The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.
Capsule implosion optimization during the indirect-drive National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O. L.; Edwards, J.; Haan, S. W.
2011-05-15
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analyticmore » models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.« less
Approach to ignition of tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1981-02-01
Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup.
The Effect of Particle Properties on Hot Particle Spot Fire Ignition
NASA Astrophysics Data System (ADS)
Zak, Casey David
The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental data. Model simulations identify the important physics controlling ignition for different sized particles and clarify many of the experimental trends. The results show a hyperbolic relationship between particle size and temperature, with the larger particles requiring lower temperatures to ignite the cellulose than the smaller particles. For very small spheres, the temperature required for ignition is very sensitive to particle size, while for very large spheres, ignition temperature shows only a weak dependence on that variable. Flaming ignition of powdered cellulose by particles ≤ 11 mm in size requires particle temperatures of at least 600°C. Ignition has not been observed for 2 mm particles at temperatures up to 1100°C, but the statistical analysis indicates that ignition by particles 2 mm and smaller may be possible at temperatures above 950°C. No clear trend is observed with particle metal type, but copper particles require slightly higher ignition temperatures and seem more sensitive to experimental variation, likely due to their relatively high thermal conductivity. High-speed Schlieren images taken during the ignition experiments show that once particles land, they volatilize the powdered cellulose and the fuel vapor diffuses out into the surrounding air. Ignition occurs in the mixing layer between the vapor and the air, either during the initial expansion of the pyrolyzate away from the particle, or after a stable plume of volatiles has formed. Modeling results indicate that in the large-particle, high-conductivity limit, the particle's surface temperature remains close to its impact temperature over the timescales of ignition. As a result, particle thermal properties are unimportant and ignition occurs when heat generation in the mixing layer overcomes losses to the surrounding air. When the large-particle limit does not apply, the particle cools upon impact with the fuel bed. In addition to the losses to the surrounding air, the reaction zone experiences losses to the cooling particle and must generate a larger amount of heat for ignition to occur. Because cooling is so important, the initial bulk energy is more useful than impact temperature for predicting ignition by smaller particles. Along those lines, the additional heat of melting available to molten particles helps to resist particle cooling; as such, molten aluminum particles 3.5 -- 7 mm in diameter can ignite at lower temperatures than solid particles of the same size with similar thermal properties. Decreasing volumetric heat capacity does increase minimum ignition temperature somewhat, but this effect is reduced for larger particles. Emissivity does not appear to have a significant effect on ignition propensity, suggesting that, over the timescales of ignition, radiation heat transfer is small relative to other modes of particle heat loss.
Capsule performance optimization in the National Ignition Campaigna)
NASA Astrophysics Data System (ADS)
Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.
2010-05-01
A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.
Capsule performance optimization in the National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O. L.; Bradley, D. K.; Braun, D. G.
2010-05-15
A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition designmore » and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less
Type Ia Supernovae: Nature's Grandest Thermonuclear Explosions
NASA Astrophysics Data System (ADS)
Woosley, Stan
2003-10-01
When carbon fusion ignites near the center of an accreting white dwarf near the Chandrasekhar Mass, an irreversible series of events is initiated that ultimately leads to the complete disruption of the star and a bright display powered by radioactive decay. Though studied for over 40 years, the details of how this happens remain elusive. Three areas of uncertainty will be discussed: 1) the "ignition" of the bomb: one point or many, central or off-center; 2) the propagation of an unconfined Rayleigh-Taylor unstable burning front - does a robust transition to detonation occur as the front moves into a regime of ``distributed burning"? 3) the generation of the light curve and the Philipps relation. Studies of question 1), equally critical to the other two, suggest a dipolar flow at ignition time and off-center ignition. There may be an uncontrolable degree of chaos in the peak brightness resulting from the ignition process that will affect how SN Ia are used for cosmology. Question 2) is a frontier subject in the chemical combustion community. Results of new multi-dimensional studies will be presented. Question 3) involves atomic physics more than hydrodynamics, but current views suggest that SN Ia light curves should be characterized, at some level, by more than a single parameter.
Spray ignition measurements in a constant volume combustion vessel under engine-relevant conditions
NASA Astrophysics Data System (ADS)
Ramesh, Varun
Pressure-based and optical diagnostics for ignition delay (ID) measurement of a diesel spray from a multi-hole nozzle were investigated in a constant volume combustion vessel (CVCV) at conditions similar to those in a conventional diesel engine at the start of injection (SOI). It was first hypothesized that compared to an engine, the shorter ID in a CVCV was caused by NO, a byproduct of premixed combustion. The presence of a significant concentration of NO+NO2 was confirmed experimentally and by using a multi-zone model of premixed combustion. Experiments measuring the effect of NO on ID were performed at conditions relevant to a conventional diesel engine. Depending on the temperature regime and the nature of the fuel, NO addition was found to advance or retard ignition. Constant volume ignition simulations were capable of describing the observed trends; the magnitudes were different due to the physical processes involved in spray ignition, not modeled in the current study. The results of the study showed that ID is sensitive to low NO concentrations (<100 PPM) in the low-temperature regime. A second source of uncertainty in pressure-based ID measurement is the systematic error associated with the correction used to account for the speed of sound. Simultaneous measurements of volumetric OH chemiluminescence (OHC) and pressure during spray ignition found the OHC to closely resemble the pressure-based heat release rate for the full combustion duration. The start of OHC was always found to be shorter than the pressure-based ID for all fuels and conditions tested by 100 ms. Experiments were also conducted measuring the location and timing of high-temperature ignition and the steady-state lift-off length by high-speed imaging of OHC during spray ignition. The delay period calculated using the measured ignition location and the bulk average speed of sound was in agreement with the delay between OHC and the pressure-based ID. Results of the study show that start of OHC is coupled to detectable heat release and the two measurements are correlated by the time required for the pressure wave to propagate at the speed of sound between the ignition site and the transducer.
The first experiments on the national ignition facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.
2006-06-01
A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.
Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"
DOE Office of Scientific and Technical Information (OSTI.GOV)
STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang
The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation throughmore » high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components—resources, facilities, and personnel—necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort that is far greater than the sum of its parts. The results of this work have firmly strengthened the scientific foundation from which the viability of FI and other applications can be evaluated. Program execution has also led to improved diagnostics for probing dense, hot plasmas, detailed understanding of high-current, relativistic electron energy generation and transport across boundaries and into dense plasmas, and greatly enhanced predictive modeling capabilities. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. During the entire 8 years of FI and ACE project period since 2005, more than fifteen graduate students completed their doctoral dissertations including three from OSU and two from UCSD in last three years. This project generated an impressive forty articles in high quality journals including nine (including two under review) in Physical Review Letters during the last funding period since 2011.« less
Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C
2013-12-06
An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15) W/cm2, or short pulses with intensities up to 5×10(16) W/cm2 as well as with 2D particle-in-cell simulations.
LES/FMDF of turbulent jet ignition in a rapid compression machine
NASA Astrophysics Data System (ADS)
Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration
2015-11-01
Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.
Simulations of electron transport and ignition for direct-drive fast-ignition targets
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2008-11-01
The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.
Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.
1995-01-01
This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion stages of the metal specimen. This paper summarizes the results obtained to date from experiments conducted under normal and high-gravity conditions.
Inertial Confinement Fusion as an Extreme Example of Dynamic Compression
NASA Astrophysics Data System (ADS)
Moses, E.
2013-06-01
Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.
The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000,more » renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.« less
NASA Astrophysics Data System (ADS)
Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer
2018-05-01
In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.
Laser-direct-drive program: Promise, challenge, and path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Laser-direct-drive program: Promise, challenge, and path forward
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...
2017-03-19
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
NASA Astrophysics Data System (ADS)
Shlyaptsev, Vyacheslav N.; Tatchyn, Roman O.
2004-01-01
The advantages and challenges of using a powerful x-ray source for the fast ignition of compressed Inertial Confinement Fusion (ICF) targets have been considered. The requirements for such a source together with the optics to focus the x-rays onto compressed DT cores lead to a conceptual design based on Energy Recovery Linacs (ERLs) and long wigglers to produce x-ray pulses with the appropriate phase space properties. A comparative assessment of the parameters of the igniter system indicates that the technologies for building it, although expensive, are physically achievable. Our x-ray fast ignition (XFI) scheme requires substantially smaller energy for the initiation of nuclear fusion reactions than other methods.
Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).
Nunes, A N; Lourenço, L; Meira, A C Castro
2016-12-15
Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.
A review of laser-plasma interaction physics of indirect-drive fusion
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.
2013-10-01
The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.
National Ignition Facility Laser System Performance
Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...
2017-03-23
The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, C. J.; Radha, P. B.; Knauer, J. P.
In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less
Forrest, C. J.; Radha, P. B.; Knauer, J. P.; ...
2017-03-03
In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less
Kinetic physics in ICF: present understanding and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...
2018-03-19
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.
2018-06-01
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.
Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...
2015-11-06
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.
2009-08-07
This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less
Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi
2015-06-01
A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.
Flame ignition studies of conventional and alternative jet fuels and surrogate components
NASA Astrophysics Data System (ADS)
Liu, Ning
Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.
STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition
NASA Astrophysics Data System (ADS)
Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.
2011-10-01
The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
Ignition and flame characteristics of cryogenic hydrogen releases
Panda, Pratikash P.; Hecht, Ethan S.
2017-01-01
In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less
Ignition of combustible fluids by heated surfaces
NASA Astrophysics Data System (ADS)
Bennett, Joseph Michael
The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.
Fluid-solid coupled simulation of the ignition transient of solid rocket motor
NASA Astrophysics Data System (ADS)
Li, Qiang; Liu, Peijin; He, Guoqiang
2015-05-01
The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.
Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; ...
2014-09-09
Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less
Particle Effects On The Extinction And Ignition Of Flames In Normal- And Micro-Gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2003-01-01
Reacting dusty flows have been studied to lesser extent than pure gas phase flows and sprays. Particles can significantly alter the ignition, burning and extinction characteristics of the gas phase due to the dynamic, thermal, and chemical couplings between the phases. The understanding of two-phase flows can be attained in stagnation flow configurations, which have been used to study spray combustion [e.g. 1] as well as reacting dusty flows [e.g. 2]. The thermal coupling between inert particles and a gas, as well as the effect of gravity, were studied in Ref. 3. It was also shown that the gravity can substantially affect parameters such as the particle velocity, number density, mass flux, and temperature. In Refs. 4 and 5, the effects of inert particles on the extinction of strained premixed and nonpremixed flames were studied both experimentally and numerically at 1-g and m-g. It was shown that large particles can cool flames more effectively than smaller particles. The effects of flame configuration and particle injection orientation were also addressed. It was shown that it was not possible to obtain a simple and still meaningful scaling that captured all the pertinent physics due to the complexity of the couplings between parameters. Also, the cooling by particles is more profound in the absence of gravity as gravity works to reduce the particle number density in the neighborhood of the flame. The efforts were recently shifted towards the understanding of the effects of combustible particles on extinction [6], the gas-phase ignition by hot particle injection [7], and the hot gas ignition of flames in the presence of particles that are not hot enough to ignite the gas phase by themselves.
A Survey of Studies on Ignition and Burn of Inertially Confined Fuels
NASA Astrophysics Data System (ADS)
Atzeni, Stefano
2016-10-01
A survey of studies on ignition and burn of inertial fusion fuels is presented. Potentials and issues of different approaches to ignition (central ignition, fast ignition, volume ignition) are addressed by means of simple models and numerical simulations. Both equimolar DT and T-lean mixtures are considered. Crucial issues concerning hot spot formation (implosion symmetry for central ignition; igniting pulse parameters for fast ignition) are briefly discussed. Recent results concerning the scaling of the ignition energy with the implosion velocity and constrained gain curves are also summarized.
MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...
2014-03-13
Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less
National Ignition Facility: Experimental plan
NASA Astrophysics Data System (ADS)
1994-05-01
As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.
Thermite combustion enhancement resulting from biomodal luminum distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K. M.; Pantoya, M.; Son, S. F.
2004-01-01
In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less
Modeling firebrand transport in wildfires using HIGRAD/FIRETEC
Eunmo Koo; Rodman R. Linn; Patrick J. Pagni; Carleton B. Edminster
2012-01-01
Firebrand transport is studied for disc and cylindrical firebrands by modelling their trajectories with a coupled-physics fire model, HIGRAD/FIRETEC. Through HIGRAD/FIRETEC simulations, the size of possible firebrands and travelled distances are analysed to assess spot ignition hazard. Trajectories modelled with and without the assumption that the firebrands'...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
Forced Ignition Study Based On Wavelet Method
NASA Astrophysics Data System (ADS)
Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.
2011-05-01
The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.
Oxidation kinetics of hydride-bearing uranium metal corrosion products
NASA Astrophysics Data System (ADS)
Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.
The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.
Analytical and experimental study of resonance ignition tubes
NASA Technical Reports Server (NTRS)
Stabinsky, L.
1973-01-01
The application of the gas-dynamic resonance concept was investigated in relation to ignition of rocket propulsion systems. Analytical studies were conducted to delineate the potential uses of resonance ignition in oxygen/hydrogen bipropellant and hydrazine monopropellant rocket engines. Experimental studies were made to: (1) optimize the resonance igniter configuration, and (2) evaluate the ignition characteristics when operating with low temperature oxygen and hydrogen at the inlet to the igniter.
Yang, Kun; Wu, Yanqing; Huang, Fenglei; Li, Ming
2017-09-05
An effective computational model is required to accurately predict the dynamic responses in accidental initiations of explosives. The present work uses a series of two-dimensional mechanical-chemical simulations performed via a hydrodynamic-code, DREXH-2D, to efficiently describe the mechanical and ignition-deflagration responses of cased cylindrical polymer-bonded explosives (PBXs) undergoing a low-to-medium-level impact (70-350m/s) in longitudinal direction. The ignition response was predicted based on an ignition criterion of effective plastic work. Slow burning and its growth to deflagration were described through a pressure-dependent reaction rate equation. The extreme value of effective plastic work was found to be useful to determine the ignition threshold velocity for PBXs. For low-level velocity impact, the incident stress wave reflection from lateral surfaces contributed to the formation of ignition regions. After the ignition, the deflagration was induced in the medium-level impact, and its violence was related to the shock strength. However, the low-strength stress wave only induced reaction at local regions, and sequent burning was no longer sensitive to the strength of incident wave. The predicted pressure and temperature results of PBXs were consistent with the medium-level impact tests performed by China Academy of Engineering Physics. Copyright © 2017 Elsevier B.V. All rights reserved.
An ignition-temperature model with two free interfaces in premixed flames
NASA Astrophysics Data System (ADS)
Brauner, Claude-Michel; Gordon, Peter V.; Zhang, Wen
2016-11-01
In this paper we consider an ignition-temperature zero-order reaction model of thermo-diffusive combustion. This model describes the dynamics of thick flames, which have recently received considerable attention in the physical and engineering literature. The model admits a unique (up to translations) planar travelling wave solution. This travelling wave solution is quite different from those usually studied in combustion theory. The main qualitative feature of this travelling wave is that it has two interfaces: the ignition interface where the ignition temperature is attained and the trailing interface where the concentration of deficient reactants reaches zero. We give a new mathematical framework for studying the cellular instability of such travelling front solutions. Our approach allows the analysis of a free boundary problem to be converted into the analysis of a boundary value problem having a fully nonlinear system of parabolic equations. The latter is very suitable for both mathematical and numerical analysis. We prove the existence of a critical Lewis number such that the travelling wave solution is stable for values of Lewis number below the critical one and is unstable for Lewis numbers that exceed this critical value. Finally, we discuss the results of numerical simulations of a fully nonlinear system that describes the perturbation dynamics of planar fronts. These simulations reveal, in particular, some very interesting 'two-cell' steady patterns of curved combustion fronts.
ERIC Educational Resources Information Center
Linker, Jenny M.; Ford, Kristen M.; Knutson, Julie M.; Goplen, Hailey A.
2018-01-01
Physical educators have been identified as ideal school champions to lead comprehensive school physical activity program (CSPAP) efforts within their schools. As such, they should be adequately prepared to take on this role. Faculty from three physical and health education teacher education programs have collaboratively developed the…
Hot-spot contributions in shocked high explosives from mesoscale ignition models
NASA Astrophysics Data System (ADS)
Levesque, G.; Vitello, P.; Howard, W. M.
2013-06-01
High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.
Recent Advances in Cigarette Ignition Propensity Research and Development
O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.
2009-01-01
Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669
Virtual engine management simulator for educational purposes
NASA Astrophysics Data System (ADS)
Drosescu, R.
2017-10-01
This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.
Indirect drive ignition at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.
This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less
NASA Astrophysics Data System (ADS)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.
2018-07-01
In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.
Indirect drive ignition at the National Ignition Facility
Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...
2016-10-27
This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less
Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; Chang, P. Y.; Anderson, K. S.
2010-05-15
The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less
Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.
Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572
NASA Technical Reports Server (NTRS)
Eskridge, R. H.; Mccay, T. D.; Vanzandt, D. M.
1987-01-01
The rudiments of a rocket thruster, which receives its enthalpy from an energy source which is remotely beamed from a laser, is described. An experimental study, now partially complete, is discussed which will eventually provide a detailed understanding of the physics for assessing the feasibility of using hydrogen plasmas for accepting and converting this energy to enthalpy. A plasma ignition scheme which uses a pulsed CO2 laser was develped and the properites of the ignition spark documented, including breakdown intensities in hydrogen. A complete diagnostic system capable of determining plasma temperature and the plasma absorptivitiy for subsequent steady-state absorption of a high power CO2 laser beam are developed and demonstrative use is discussed for the preliminary case study, a two atmosphere laser supported argon plasma.
NASA Astrophysics Data System (ADS)
Sato, Humitaka
2010-06-01
Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.
NASA Astrophysics Data System (ADS)
Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin
2012-10-01
We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.
NASA Astrophysics Data System (ADS)
Skiff, Fred; Davidson, Ronald C.
2013-05-01
Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.
ERIC Educational Resources Information Center
Aldridge, Bill G.; And Others
Presented is a technical physics module designed to meet objectives in electricity and magnetism for students in an introductory physics course and emphasizing laboratory work. Included are basic text materials, prerequisites, objectives, a posttest, experiments, and a teacher's guide. The module is designed to be used on an individual instruction…
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1979-01-01
Six different pieces of physics apparatus are described: Telsa Coil for instant ignition of sodium arc lamps, Timekube, Magnetic Maps of the United States, a slinky with vertical mounting, a wave generator power supply, and a long-period timer power switch. Price and supplier are included. (BT)
Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong
2015-01-01
In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421
The single-zone numerical model of homogeneous charge compression ignition engine performance
NASA Astrophysics Data System (ADS)
Fedyanov, E. A.; Itkis, E. M.; Kuzmin, V. N.; Shumskiy, S. N.
2017-02-01
The single-zone model of methane-air mixture combustion in the Homogeneous Charge Compression Ignition engine was developed. First modeling efforts resulted in the selection of the detailed kinetic reaction mechanism, most appropriate for the conditions of the HCCI process. Then, the model was completed so as to simulate the performance of the four-stroke engine and was coupled by physically reasonable adjusting functions. Validation of calculations against experimental data showed acceptable agreement.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek
2017-01-01
We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Pratikash P.; Hecht, Ethan S.
In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less
Progress in Fast Ignition Studies with Electrons and Protons
NASA Astrophysics Data System (ADS)
MacKinnon, A. J.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Chen, H.; Chen, S.; Chowdhury, E.; Fedosejevs, R.; Freeman, R. R.; Hey, D.; Higginson, D.; Key, M. H.; King, J. A.; Link, A.; Ma, T.; MacPhee, A. G.; Offermann, D.; Ovchinnikov, V.; Pasley, J.; Patel, P. K.; Ping, Y.; Schumacher, D. W.; Stephens, R. B.; Tsui, Y. Y.; Wei, M. S.; Van Woerkom, L. D.
2009-09-01
Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) concept for initiating burn in a fusion capsule. In order to investigate critical aspects needed for a FI point design, experiments were performed to study 1) laser-to-electrons or protons conversion issues and 2) laser-cone interactions including prepulse effects. A large suite of diagnostics was utilized to study these important parameters. Using cone—wire surrogate targets it is found that pre-pulse levels on medium scale lasers such as Titan at Lawrence Livermore National Laboratory produce long scale length plasmas that strongly effect coupling of the laser to FI relevant electrons inside cones. The cone wall thickness also affects coupling to the wire. Conversion efficiency to protons has also been measured and modeled as a function of target thickness, material. Conclusions from the proton and electron source experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed. In conclusion, a program of study will be presented based on understanding the fundamental physics of the electron or proton source relevant to FI.
Proceedings of the twelfth target fabrication specialists` meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-04-01
Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less
Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak
1987-01-01
A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.
Automobile Ignition System Minicourse, Career Oriented Pre-Technical Physics. Preliminary Edition.
ERIC Educational Resources Information Center
Bullock, Bob; And Others
This minicourse was prepared for use with secondary physics students in the Dallas Independent School District and is one option in a physics program which provides for the selection of topics on the basis of student career needs and interests. This minicourse was aimed at providing the student with a basic understanding of the construction and…
Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.
2011-06-01
High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Done, Bogdan
2017-10-01
Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.
A new technique for fire risk estimation in the wildland urban interface
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Qu, J. J.; Hao, X.
A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER
Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Town, R J; Rosen, M D; Michel, P A
2010-11-22
A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys ofmore » Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.« less
NASA Astrophysics Data System (ADS)
Klouda, Petr; Moni, Vlastimil; Řehoř, Michal; Blata, Jan; Helebrant, František
2018-06-01
The article is a summary of information about evaluation of a risk degree for a brown coal spontaneous ignition which is realized on the base of a database analysis of information about the development of stative quantities and desorbated gases in the stored bodies of the brown coal. The data were gained from the long term complex measurements which were realized at chosen companies during the coal mining in the previous parts of the project. In the last part of the project, we examined results of temperature models from thermographs with results of gasses and coal samples from the mines. Then, the influence of atmospheric conditions (insolation, water downfall, changes of barometric pressure etc.), the influence of coal mass degradation, the influence of physical and chemical factors, and the influence of other defective factors on the process of the coal spontaneous ignition. The gasmetry was assess with gas in-situ samples and laboratory gas models of indicative gasses for the spontaneous ignition, which were taken from the method of the thermic oxidation with the aim of the correlation finding for an epicentre of temperature within the spontaneous ignition.
High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA
NASA Astrophysics Data System (ADS)
Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.
2015-11-01
Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; Chang, P.Y.; Spears, B.K.
2010-04-23
The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less
Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser
2010-12-01
important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for
Fundamental ignition study for material fire safety improvement, part 1
NASA Technical Reports Server (NTRS)
Paciorek, K. L.; Zung, L. B.
1970-01-01
The investigation of preignition, ignition, and combustion characteristics of Delrin (acetate terminated polyformaldehyde) and Teflon (polytetrafluoroethylene) resins in air and oxygen are presented. The determination of ignition limits and their dependence on temperature and the oxidizing media, as well as the analyses of the volatiles produced, were studied. Tests were conducted in argon, an inert medium in which only purely pyrolytic reactions can take place, using the stagnation burner arrangement designed and constructed for this purpose. A theoretical treatment of the ignition and combination phenomena was devised. In the case of Delrin the ignition and ignition delays are apparently independent of the gas (air, oxygen) temperatures. The results indicate that hydrogen is the ignition triggering agent. Teflon ignition limits were established in oxygen only.
Autoignition characteristics of aircraft-type fuels
NASA Technical Reports Server (NTRS)
Spadaccini, L. J.; Tevelde, J. A.
1980-01-01
The ignition delay characteristics of Jet A, JP 4, no. 2 diesel, cetane and an experimental referee broad specification (ERBS) fuel in air at inlet temperatures up to 1000 K, pressures of 10, 15, 20, 25 and 30 atm, and fuel air equivalence ratios of 0.3, 0.5, 0.7 and 1.0 were mapped. Ignition delay times in the range of 1 to 50 msec at freestream flow velocities ranging from 20 to 100 m/sec were obtained using a continuous flow test apparatus which permitted independent variation and evaluation of the effect of temperature, pressure, flow rate, and fuel/air ratio. The ignition delay times for all fuels tested appeared to correlate with the inverse of pressure and the inverse exponent of temperature. With the exception of pure cetane, which had the shortest ignition delay times, the differences between the fuels tested did not appear to be significant. The apparent global activation energies for the typical gas turbine fuels ranged from 38 to 40 kcal/mole, while the activation energy determined for cetane was 50 kcal/mole. In addition, the data indicate that for lean mixtures, ignition delay times decrease with increasing equivalence ratio. It was also noted that physical (apparatus dependent) phenomena, such as mixing (i.e., length and number of injection sites) and airstream cooling (due to fuel heating, vaporization and convective heat loss) can have an important effect on the ignition delay.
Robust spherical direct-drive design for NI
NASA Astrophysics Data System (ADS)
Masse, Laurent; Hurricane, O.; Michel, P.; Nora, R.; Tabak, M.; Lawrence Livermore Natl Lab Team
2016-10-01
Achieving ignition in a direct-drive or indirect-drive cryogenic implosion is a tremendous challenge. Both approaches need to deal with physic and technologic issues. During the past years, the indirect drive effort on the National Ignition Facility (NIF) has revealed unpredicted lost of performances that force to think to more robust designs and to dig into detailed physics aspects. Encouraging results have been obtained using a strong first shock during the implosion of CH ablator ignition capsules. These ``high-foot'' implosion results in a significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. In the same spirit of spending energy on margin, at the coast of decreased performance, we are presenting here a study on ``robust'' spherical direct drive design for NIF. This 2-Shock direct drive pulse shape results in a high adiabat (>3) and low convergence (<17) implosion designed to produce a near 1D-like implosion. We take a particular attention to design a robust implosion with respect to long-wavelength non uniformity seeded by power imbalance and target offset. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Ignition of expandable polystyrene foam by a hot particle: an experimental and numerical study.
Wang, Supan; Chen, Haixiang; Liu, Naian
2015-01-01
Many serious fires have occurred in recent years due to the ignition of external building insulation materials by hot metallic particles. This work studied the ignition of expandable polystyrene foam by hot metallic particles experimentally and numerically. In each experiment, a spherical steel particle was heated to a high temperature (within 1173-1373K) and then dropped to the surface of an expandable polystyrene foam block. The particles used in experiments ranged from 3mm to 7 mm in radius. The observed results for ignition were categorized into two types: "flaming ignition" and "no ignition", and the flaming ignition limit was determined by statistical analysis. According to the experimental observations, a numerical model was proposed, taking into account the reactant consumption and volatiles convection of expandable polystyrene decomposition in air. Three regimes, no ignition, unstable ignition and stable ignition, were identified, and two critical particle temperatures for separating the three regimes were determined. Comparison with the experimental data shows that the model can predict the range of critical ignition temperatures reasonably well. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Michael, L.; Nikiforakis, N.
2018-02-01
This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In the first part of this work, we focused on the hydrodynamic effects in the collapse process by switching off the reaction terms in the mathematical formulation. In this part, we reinstate the reactive terms and study the collapse of the cavity in the presence of chemical reactions. By using a multi-phase formulation which overcomes current challenges of cavity collapse modelling in reactive media, we account for the large density difference across the material interface without generating spurious temperature peaks, thus allowing the use of a temperature-based reaction rate law. The mathematical and physical models are validated against experimental and analytic data. In Part I, we demonstrated that, compared to experiments, the generated hot spots have a more complex topological structure and that additional hot spots arise in regions away from the cavity centreline. Here, we extend this by identifying which of the previously determined high-temperature regions in fact lead to ignition and comment on the reactive strength and reaction growth rate in the distinct hot spots. We demonstrate and quantify the sensitisation of nitromethane by the collapse of the isolated cavity by comparing the ignition times of nitromethane due to cavity collapse and the ignition time of the neat material. The ignition in both the centreline hot spots and the hot spots generated by Mach stems occurs in less than half the ignition time of the neat material. We compare two- and three-dimensional simulations to examine the change in topology, temperatures, and reactive strength of the hot spots by the third dimension. It is apparent that belated ignition times can be avoided by the use of three-dimensional simulations. The effect of the chemical reactions on the topology and strength of the hot spots in the timescales considered is also studied, in a comparison between inert and reactive simulations where maximum temperature fields and their growth rates are examined.
Novel characterization of capsule x-ray drive at the National Ignition Facility.
MacLaren, S A; Schneider, M B; Widmann, K; Hammer, J H; Yoxall, B E; Moody, J D; Bell, P M; Benedetti, L R; Bradley, D K; Edwards, M J; Guymer, T M; Hinkel, D E; Hsing, W W; Kervin, M L; Meezan, N B; Moore, A S; Ralph, J E
2014-03-14
Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.
Miniature laser ignited bellows motor
NASA Technical Reports Server (NTRS)
Renfro, Steven L.; Beckman, Tom M.
1994-01-01
A miniature optically ignited actuation device has been demonstrated using a laser diode as an ignition source. This pyrotechnic driven motor provides between 4 and 6 lbs of linear force across a 0.090 inch diameter surface. The physical envelope of the device is 1/2 inch long and 1/8 inch diameter. This unique application of optical energy can be used as a mechanical link in optical arming systems or other applications where low shock actuation is desired and space is limited. An analysis was performed to determine pyrotechnic materials suitable to actuate a bellows device constructed of aluminum or stainless steel. The aluminum bellows was chosen for further development and several candidate pyrotechnics were evaluated. The velocity profile and delivered force were quantified using an non-intrusive optical motion sensor.
Transition from Ignition to Flame Growth under External Radiation in Three Dimensions (TIGER-3D)
NASA Technical Reports Server (NTRS)
Kashiwagi, Takashi; Nakamura, Yuji; Olson, Sandra L.; Mell, William
2004-01-01
This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.
Transition from Ignition to Flame Growth under External Radiation in 3D
NASA Technical Reports Server (NTRS)
Kashiwagi, Takashi; Nakamura, Yuji; Mell, William E.; Olson, Sandra L.
2004-01-01
This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.
Characteristics of high-tension magnetos
NASA Technical Reports Server (NTRS)
Silsbee, F B
1920-01-01
This report gives the results of an investigation made into the fundamental physical characteristics of high-tension ignition magnetos, and also describes the methods used for measuring the quantities involved.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
Physical-durable performance of concrete incorporating high loss on ignition-fly ash
NASA Astrophysics Data System (ADS)
Huynh, Trong-Phuoc; Ngo, Si-Huy; Hwang, Chao-Lung
2018-04-01
This study investigates the feasibility of using raw fly ash with a high loss on ignition in concrete. The fly ash-free concrete samples were prepared with different water-to-binder (w/b) ratios of 0.35, 0.40, and 0.45, whereas the fly ash concrete samples were prepared with a constant w/b of 0.40 and with various fly ash contents (10%, 20%, and 30%) as a cement substitution. The physical properties and durability performance of the concretes were evaluated through fresh concrete properties, compressive strength, strength efficiency of cement, ultrasonic pulse velocity, and resistance to sulfate attack. Test results show that the w/b ratio affected the concrete properties significantly. The incorporation of fly ash increased the workability and reduced the unit weight of fresh concrete. In addition, the fly ash concrete samples containing up to 20% fly ash exhibited an improved strength at long-term ages. Further, all of the fly ash concrete samples showed a good durability performance with ultrasonic pulse velocity value of greater than 4100 m/s and a comparable sulfate resistance to the no-fly ash concrete.
PBX 9502 Gas Generation Progress Report FY17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Matthew David; Erickson, Michael Andrew Englert
The self-ignition (“cookoff”) behavior of PBX 9502 depends on the dynamic evolution of gas permeability and physical damage in the material. The time-resolved measurement of product gas generation yields insight regarding the crucial properties that dominate cookoff behavior. We report on small-scale laboratory testing performed in FY17, in which small unconfined samples of PBX 9502 were heated in a small custom-built sealed pressure vessel to self-ignition. We recorded time-lapse video of the evolving physical changes in the sample, quasi-static long-duration pressure rise, then high-speed video and dynamic pressure rise of the cookoff event. We report the full pressure attained duringmore » the cookoff of a 1.02g sample in a free volume of 62.5 cm 3.« less
Ignition of Cellulosic Paper at Low Radiant Fluxes
NASA Technical Reports Server (NTRS)
White, K. Alan
1996-01-01
The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.
High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign
NASA Astrophysics Data System (ADS)
Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.
2009-11-01
We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.
Thermonuclear milestones: (2) Beginnings of the Soviet H-bomb program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, G.A.
1996-11-01
Early Soviet theoretical work on thermonuclear ignition was adied by espionage, but many important ideas were conceived and developed independently {copyright} {ital 1996 American Institute of Physics.}
EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Greene, Nate; Xu, Hua
2004-01-01
The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.
Direct Drive Fusion Energy Shock Ignition Designs for Sub-MJ Lasers
2008-09-01
FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUB-MJ LASERS Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, and S. T. Zalesak Plasma Physics Division, Naval Research Laboratory, Washington DC 20375 andrew.schmitt@nrl.navy.mil D. E. Fyfe LCP&FD, Naval Research Laboratory, Washington DC 20375 R. Betti Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, Rochester NY New approaches in target design have increased the pos- sibility that useful fusion power can be generated with sub-MJ lasers. We have performed many 1D and 2D
NASA Astrophysics Data System (ADS)
Hogan, W. J.
2004-12-01
The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.
A Study of Cavitation-Ignition Bubble Combustion
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Jacqmin, David A.
2005-01-01
We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.
2018-03-01
Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.
NASA Technical Reports Server (NTRS)
Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James
2003-01-01
This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los Alamos National Laboratory and CFD Research Corporation have designed and fabricated a miniaturized, first-generation optical prototype of a laser ignition system that could be the basis for a laser ignition system for rocket applications. This prototype will be tested at MSFC in future subscale rocket ignition tests.
Laser–plasma interactions for fast ignition
Kemp, A. J.; Fiuza, F.; Debayle, A.; ...
2014-04-17
In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less
Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
2016-08-31
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
Ignition patterns & prescribed fire behavior in southern pine stands
Ragnar W. Johansen
1987-01-01
As an aid to forest managers who use or contemplate using aerial ignition techniques in their prescribed burning programs, a study was designed to evaluate the magnitude of the differences that could occur depending on whether lines of fire were used (ignited by a helitorch) or a spot-fire technique was used (ignited by aerial ignition devices). Six experimental fires...
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Schimmel, Morry L.
1989-01-01
To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pukhov, A.; Meyer-ter-Vehn, J.
Laser hole boring and relativistic electron transport into plasma of 10 times critical density is studied by means of 2D particle-in-cell simulation. At intensities of I{sub 0}{lambda}{sup 2}=10{sup 20} W(cm){sup {minus}2} {mu}m{sup 2}, a channel 12{lambda} deep and 3{lambda} in diameter has formed after 200 laser cycles. The laser driven electron current carries up to 40{percent} of the incident laser power. When penetrating the overdense region, it breaks up into several filaments at early times, but is channeled into a single magnetized jet later on. These features are essential for fast ignition of targets for inertial confinement fusion (ICF). {copyright}more » {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence
2017-06-01
We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.
NIF Double Shell outer/inner shell collision experiments
NASA Astrophysics Data System (ADS)
Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.
2017-10-01
Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.
Microstructural characterization of pressed HMX material sets at differing densities
NASA Astrophysics Data System (ADS)
Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.
2017-01-01
The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.
Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.
2010-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.
Physical characteristics of some northern California brush fuels
Clive M. Countryman
1982-01-01
Brush species make up much of the fuel load in forested wildlands. Basic physical and chemical characteristics of these species influence ease of ignition, rate of fire spread, burning time, and fire intensity. Quantitative knowledge of the variations in brush characteristics is essential to progress in fire control and effective use of fire in wildland management....
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Aoki, A.
Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called "explosion peninsula" as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.
Localized Ignition And Subsequent Flame Spread Over Solid Fuels In Microgravity
NASA Technical Reports Server (NTRS)
Kashiwagi, T.; Nakamura, Y.; Prasad, K.; Baum, H.; Olson, S.; Fujita, O.; Nishizawa, K.; Ito, K.
2003-01-01
Localized ignition is initiated by an external radiant source at the middle of a thin solid sheet under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Ignition behavior, subsequent transition simultaneously to upstream and downstream flame spread, and flame growth behavior are studied theoretically and experimentally. There are two transition stages in this study; one is the first transition from the onset of the ignition to form an initial anchored flame close to the sample surface, near the ignited area. The second transition is the flame growth stage from the anchored flame to a steady fire spread state (i.e. no change in flame size or in heat release rate) or a quasi-steady state, if either exists. Observations of experimental spot ignition characteristics and of the second transition over a thermally thin paper were made to determine the effects of external flow velocity. Both transitions have been studied theoretically to determine the effects of the confinement by a relatively small test chamber, of the ignition configuration (ignition across the sample width vs spot ignition), and of the external flow velocity on the two transitions over a thermally thin paper. This study is currently extending to two new areas; one is to include a thermoplastic sample such poly(methymethacrylate), PMMA, and the other is to determine the effects of sample thickness on the transitions. The recent results of these new studies on the first transition are briefly reported.
SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhihong
Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less
Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon
Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.
2001-01-01
Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.
Inertial-confinement fusion with lasers
NASA Astrophysics Data System (ADS)
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
Mathematical modeling of ignition of woodlands resulted from accident on the pipeline
NASA Astrophysics Data System (ADS)
Perminov, V. A.; Loboda, E. L.; Reyno, V. V.
2014-11-01
Accidents occurring at the sites of pipelines, accompanied by environmental damage, economic loss, and sometimes loss of life. In this paper we calculated the sizes of the possible ignition zones in emergency situations on pipelines located close to the forest, accompanied by the appearance of fireballs. In this paper, using the method of mathematical modeling calculates the maximum size of the ignition zones of vegetation as a result of accidental releases of flammable substances. The paper suggested in the context of the general mathematical model of forest fires give a new mathematical setting and method of numerical solution of a problem of a forest fire modeling. The boundary-value problem is solved numerically using the method of splitting according to physical processes. The dependences of the size of the forest fuel for different amounts of leaked flammable substances and moisture content of vegetation.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise
2008-01-01
Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Sherman, V. E.
2016-08-15
The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result ofmore » using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.« less
Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine
NASA Astrophysics Data System (ADS)
Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei
2017-05-01
In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.
Laser Induced Aluminum Surface Breakdown Model
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)
2002-01-01
Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.
NASA Astrophysics Data System (ADS)
An, Bin; Wang, Zhenguo; Yang, Leichao; Li, Xipeng; Zhu, Jiajian
2017-08-01
Cavity ignition of a model scramjet combustor fueled by ethylene was achieved through laser induced plasma, with inflow conditions of Ma = 2.92, total temperature T0 = 1650 K and stagnation pressure P0 = 2.6 MPa. The overall equivalent ratio was kept at 0.152 for all the tests. The ignition processes at different ignition energies and various ignition positions were captured by CH∗ and OH∗ chemiluminescence imaging. The results reveal that the initial flame kernel is carried to the cavity leading edge by the recirculation flow, and resides there for ∼100 μs before spreading downstream. The ignition time can be reduced, and the possibility of successful ignition for single laser pulse can be promoted by enhancing ignition energy. The scale and strength of the initial flame kernel is influenced by both the ignition energy and position. In present study, the middle part of the cavity is the best position for ignition, as it keeps a good balance between the strength of initial flame kernel and the impacts of strain rate in recirculation flow.
A study of ignition phenomena of bulk metals by radiant heating
NASA Technical Reports Server (NTRS)
Branch, Melvin C.; Abbud-Madrid, A.; Feiereisen, T. J.; Daily, J. W.
1993-01-01
Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions.
Ignition characterization of the GOX/ethanol propellant combination
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Boyd, W. C.
1984-01-01
This paper describes the results of a study to define the ignition characteristics and thruster pulse mode capabilities of the GOX/ethanol propellant combination. Ignition limits were defined in terms of mixture ratio and cold flow pressure using a spark initiated torch igniter. Igniter tests were run over a wide range of cold flow pressure, propellant temperature and mixture ratio. The product of cold flow pressure and igniter chamber diameter was used to correlate mixture ratio regimes of ignition and nonignition. Engine ignition reliability and pulse mode capability were demonstrated using a 620 lbF thruster with an integrated torch igniter. The nominal chamber pressure and mixture ratio were 150 psia and 1.8, respectively, thruster tests were run over a wide range of chamber pressures and mixture ratios. The feasibility of thruster pulse mode operation with the non-hypergolic GOX/ethanol propellant combination was demonstrated.
Combustion-wave ignition for rocket engines
NASA Technical Reports Server (NTRS)
Liou, Larry C.
1992-01-01
The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.
Giraldez, E. M.; Hoppe Jr., M. L.; Hoover, D. E.; ...
2016-07-07
Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition type capsules with machined 2D sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using x-ray radiography. The experimentally measured growth was in good agreement with simulations.
ICF quarterly report January - March 1997 volume 7, number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J
The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less
Ignition and combustion of bulk metals at normal, elevated and reduced gravity
NASA Technical Reports Server (NTRS)
Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel
1995-01-01
Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This proposal outlines studies in continuation of research initiated earlier under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal, elevated, and reduced gravity combustion data on a variety of different pure metals. The research conducted under this grant will use the apparatus and techniques developed earlier to continue the elevated and low gravity experiments, and to develop the overall modeling of the ignition and combustion process. Metal specimens are to be ignited using a xenon short-arc lamp and measurements are to be made of the ignition energy, surface temperature history, burning rates, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity will be provided by the University of Colorado Geotechnical Centrifuge and microgravity will be obtained in NASA's DC-9 Reduced Gravity aircraft.
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion
ERIC Educational Resources Information Center
Mattox, J. R.
2017-01-01
I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…
An Inexpensive Source of High Voltage
NASA Astrophysics Data System (ADS)
Saraiva, Carlos
2012-04-01
As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes.1-4 In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you can use a car ignition coil as a high voltage source. Such a coil can be obtained from an old car found in a car salvage yard and used to power cathode ray tubes and discharge tubes to observe the spectra. It can also be used as a source of ignition to simulate explosive combustion that occurs in car engines, rockets, etc. You can also buy these coils in shops that sell car accessories and they are cheaper than induction coils. In Fig. 1 you can see a coil that I used.
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...
2018-01-25
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.
The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less
Unfolding the fullerene: nanotubes, graphene and poly-elemental varieties by simulations.
Penev, Evgeni S; Artyukhov, Vasilii I; Ding, Feng; Yakobson, Boris I
2012-09-18
Recent research progress in nanostructured carbon has built upon and yet advanced far from the studies of more conventional carbon forms such as diamond, graphite, and perhaps coals. To some extent, the great attention to nano-carbons has been ignited by the discovery of the structurally least obvious, counterintuitive, small strained fullerene cages. Carbon nanotubes, discovered soon thereafter, and recently, the great interest in graphene, ignited by its extraordinary physics, are all interconnected in a blend of cross-fertilizing fields. Here we review the theoretical and computational models development in our group at Rice University, towards understanding the key structures and behaviors in the immense diversity of carbon allotropes. Our particular emphasis is on the role of certain transcending concepts (like elastic instabilities, dislocations, edges, etc.) which serve so well across the scales and for chemically various compositions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; ...
2018-01-29
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less
4D Imaging in Thermally Damaged Polymer-bonded Explosives
NASA Astrophysics Data System (ADS)
Parker, Gary; Bourne, Neil; Eastwood, David; Jacques, Simon; Dickson, Peter; Lopez-Pulliam, Ian; Heatwole, Eric; Holmes, Matt; Smilowitz, Laura; Rau, Christoph
2017-06-01
PBXs are composites in which explosive crystallites are bound by compliant polymers. There are safety benefits derived from compliant binders; e.g. they mitigate some effects of mechanical insult. However, during elevated thermal insult, degradation of binder and HE crystallites can modify the morphology in ways that can reduce safety margins by increasing post-ignition reaction violence. The response of thermally damaged PBXs, before and following self-ignition has safety implications and it is desirable to understand the fundamental physics controlling the rate of pre-ignition thermal runaway and the post-ignition flame propagation in thermal accident scenarios. Coupled with this there is an ongoing effort to make in situ, time-resolved, measurements of the size, nature and extent of micro-porosity in PBX 9501 during thermal decomposition. We report on PBX heating experiments conducted at the Diamond synchrotron with both PBX 9501 and an inert mock. During heating, CT radiography was conducted in order to observe void production and interconnectivity of gas flow pathways, as well as to monitor phase changes within the crystals. We explore the variation of behavior as a function of heating rate, soak temperature, soak time and confinement.
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.
2018-01-01
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.
Reactive flow model development for PBXW-126 using modern nonlinear optimization methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.; Simpson, R.L.; Urtiew, P.A.
1996-05-01
The initiation and detonation behavior of PBXW-126 has been characterized and is described. PBXW-126 is a composite explosive consisting of approximately equal amounts of RDX, AP, AL, and NTO with a polyurethane binder. The three term ignition and growth of reaction model parameters (ignition+two growth terms) have been found using nonlinear optimization methods to determine the {open_quotes}best{close_quotes} set of model parameters. The ignition term treats the initiation of up to 0.5{percent} of the RDX. The first growth term in the model treats the RDX growth of reaction up to 20{percent} reacted. The second growth term treats the subsequent growth ofmore » reaction of the remaining AP/AL/NTO. The unreacted equation of state (EOS) was determined from the wave profiles of embedded gauge tests while the JWL product EOS was determined from cylinder expansion test results. The nonlinear optimization code, NLQPEB/GLO, was used to determine the {open_quotes}best{close_quotes} set of coefficients for the three term Lee-Tarver ignition and growth of reaction model. {copyright} {ital 1996 American Institute of Physics.}« less
Nitromethane ignition observed with embedded PDV optical fibers
NASA Astrophysics Data System (ADS)
Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.
For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.
NASA Astrophysics Data System (ADS)
Cherfils, Catherine; Malinie, Guy; Boniface, Claude; Gauthier, Pascal; Laffite, Stephane; Loiseau, Pascal
2010-11-01
The A943 cryogenic target in a Rugby hohlraum is our current nominal design for ignition with 160 beams on the Laser MegaJoule (Laffite et al 2007, 49th Annual Meeting of the Division of Plasma Physics, Loiseau et al 2010, 40th Annual Anomalous Absorption Conference). In this study we redesign the laser pulse of the target under the form of a sum of six supergaussians, which is more amenable to a sensitivity study : four supergaussians are used to launch the four main shocks in the capsule, and two additional supergaussians are used first to remove the LEH windows and then to control the acceleration of the first shock, respectively. We use our 2D FCI2 code to compare the radiation hydro of the capsule, obtained with this new pulse, to what was previously obtained. We investigate the sensitivity of the yield on some parameters, which are the maximum powers and respective timings of the different components of the laser pulse.
NASA Astrophysics Data System (ADS)
Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.
2015-03-01
Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.
Avi Bar Massada; Alexandra D. Syphard; Susan I. Stewart; Volker C. Radeloff
2012-01-01
Wildfire ignition distribution models are powerful tools for predicting the probability of ignitions across broad areas, and identifying their drivers. Several approaches have been used for ignition-distribution modelling, yet the performance of different model types has not been compared. This is unfortunate, given that conceptually similar species-distribution models...
NASA Astrophysics Data System (ADS)
Michael, L.; Nikiforakis, N.
2018-02-01
This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two-dimensional and three-dimensional simulation results in the context of the maximum temperature observed in the domain, it is apparent that three-dimensional calculations are necessary in order to avoid belated ignition times in reactive scenarios.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection
NASA Astrophysics Data System (ADS)
Wang, C.; Hu, J.; Wang, F.; Jiang, J.; Zhang, Z. Z.; Yang, Y.; Ding, J. X.; Jiang, H. C.; Wang, Y. M.; Wei, H. Y.
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection.
Wang, C; Hu, J; Wang, F; Jiang, J; Zhang, Z Z; Yang, Y; Ding, J X; Jiang, H C; Wang, Y M; Wei, H Y
2018-04-01
Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.
NASA Astrophysics Data System (ADS)
McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.
2017-10-01
The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Ignition and combustion of bulk metals in a microgravity environment
NASA Technical Reports Server (NTRS)
Branch, Melvyn C.; Daily, J. W.; Abbud-Madrid, Angel
1994-01-01
Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This report summarizes research under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal gravity combustion data on ten different pure metals. Metal specimens were ignited using a xenon short-arc lamp and measurements were made of the radiant energy flux, surface temperature history, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity was provided by the University of Colorado Geotechnical Centrifuge.
Capsule Performance Optimization for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, Otto
2009-11-01
The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Claude; Hammel, Bruce; Azechi, Hiroshi; Labaune, Christine
2006-06-01
The Fourth International Conference on Inertial Fusion Sciences and Applications (IFSA 2005) was held September 4-9, 2005 at the Bellevue Conference Center in Biarritz, France. The host organizations for this conference were the University of Bordeaux 1, the Centre National de la Recherche Scientifique (CNRS) and the Commissariat a l'Energie Atomique (CEA). The conference objective was to review of the state of the art of research in inertial fusion sciences and applications since the last conference held in Monterey California, USA, in 2003. Altogether 509 abstracts were submitted, 418 accepted, and more than 440 persons from 23 countries attended the conference. These Proceedings contain 249 of the papers presented at IFSA 2005. This collection of papers represents the manuscripts submitted to and passing the peer review process. The IFSA 2005 conference is the first of a new series of three conferences to be organized in France, Japan and the USA and governed under Annex I of the Memorandum of Agreement, signed in June 2004, among the Lawrence Livermore Laboratory operated by the University of California (UC), Osaka University, and Institut Lasers et Plasmas (ILP), operated by CNRS Delegation Aquitaine. The IFSA 2005 continued the strong tradition of the three previous conferences in Bordeaux, Kyoto and Monterey. It was the largest IFSA yet with a substantial participation from countries such as China and Russia. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, there continues to be significant progress in the international inertial fusion community. At IFSA 2005, researchers presented the exciting advances in traditional hot spot ignition approach, including results from the early experiments from the NIF laser. A particularly emphasis of the meeting was the rapid and exciting progress in the fast ignition scheme. Integrated and basic physics experiments on GekkoXII, Vulcan, and other laser-matter interaction facilities have shown promising results. A lot of new results of experiments and numerical simulations in ultra-intense laser interactions have also been presented. The Megajoule Laser (LMJ), as one of two facilities being built to achieve target ignition, was a key attraction of IFSA 2005. About 200 participants toured the LMJ construction site and the LIL laser prototype during the conference. Before the tour, a special Facility Focus session examined progress on inertial fusion facilities around the world, including the soon-to-be-completed OMEGA-EP upgrade at Rochester, USA, and FIREX I, at Osaka, Japan. Recent progresses in hohlraum physics continue to give confidence in the ultimate achievement of ignition on the NIF Laser and the Megajoule Laser. The USA are pursuing a very focused program on ICF under the National Ignition Campaign (NIC). In China, a national project has been launched, the goal of which is fusion ignition and plasma burning in about 2020. Progress in direct drive has been notable over the past few years with the cryogenic implosions at LLE, polar direct-drive that may enable to switch rapidly from an indirect- to a direct-drive laser configuration, adiabat shaping of laser pulses, and even "Saturn targets", a short circuit topic from ICF to laboratory astrophysics. About this last topic, radiative shocks and plasma jets were among the most studied subjects. There were also sessions on the technologies of al1 types of drivers, including KrF and DPSSL lasers, particle beams, and Z-pinches. Advances in Z-pinch included double-hohlraum irradiation symmetry and the construction of a PW laser beam for the Z-facility. Advance in plasma diagnostics were dominated by proton imaging from ultra-intense interactions and precise imaging spectroscopy of core implosions. Of special interest, advanced target physics and reactor design studies have started to be more present during this IFSA edition. These Proceedings start with special chapters on the keynote speeches and the Teller lectures. The keynotes give an overview of progress in inertial fusion in North America, Europe and Asia. The Teller lectures show the contributions of this year's two winners: Joe Kilkenny of General Atomics and Max Tabak of LLNL. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers facilities, lasers, particle beams, Z-pinches, target fabrication and reactor design; Part C covers fundamental high-energy density science and other applications of inertial fusion VI technology such as plasma diagnostics, atomic physics and X-ray sources, laboratory astrophysics and laser particle acceleration. The readers should be aware that for some of the papers, only a short version is presented in this book: the extended version will be published in a topical issue of the European Physical Journal. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2005 an extremely successful conference. Jean-Claude Gauthier, technical committee co-chair Bruce Hammel, technical committee co-chair Hiroshi Azechi, technical committee co-chair Christine Labaune, proceedings co-editor
Temperature analysis of laser ignited metalized material using spectroscopic technique
NASA Astrophysics Data System (ADS)
Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet
2018-05-01
The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.
NASA Astrophysics Data System (ADS)
Zakharevich, Arkadiy V.
2015-01-01
The results of an experimental study of laws governing the ignition of liquid propellants (kerosene, diesel fuel and petroleum residue) by the single spherical steel particle heated to high temperatures are presented. Is carried out the comparison of the ignition delay times of the investigated flammable substances by the particles in the sphere and disk forms. It is established that the particle shape does not exert a substantial influence on the ignition process characteristics.
Progress Toward Ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, R L
2011-10-17
The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less
Gregory M. Cohn; Russell A. Parsons; Emily K. Heyerdahl; Daniel G. Gavin; Aquila Flower
2014-01-01
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to...
NASA Astrophysics Data System (ADS)
Hunt, Emily M.; Pantoya, Michelle L.
2005-08-01
Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.
Quantifying the human influence on fire ignition across the western USA.
Fusco, Emily J; Abatzoglou, John T; Balch, Jennifer K; Finn, John T; Bradley, Bethany A
2016-12-01
Humans have a profound effect on fire regimes by increasing the frequency of ignitions. Although ignition is an integral component of understanding and predicting fire, to date fire models have not been able to isolate the ignition location, leading to inconsistent use of anthropogenic ignition proxies. Here, we identified fire ignitions from the Moderate Resolution Imaging Spectrometer (MODIS) Burned Area Product (2000-2012) to create the first remotely sensed, consistently derived, and regionally comprehensive fire ignition data set for the western United States. We quantified the spatial relationships between several anthropogenic land-use/disturbance features and ignition for ecoregions within the study area and used hierarchical partitioning to test how the anthropogenic predictors of fire ignition vary among ecoregions. The degree to which anthropogenic features predicted ignition varied considerably by ecoregion, with the strongest relationships found in the Marine West Coast Forest and North American Desert ecoregions. Similarly, the contribution of individual anthropogenic predictors varied greatly among ecoregions. Railroad corridors and agricultural presence tended to be the most important predictors of anthropogenic ignition, while population density and roads were generally poor predictors. Although human population has often been used as a proxy for ignitions at global scales, it is less important at regional scales when more specific land uses (e.g., agriculture) can be identified. The variability of ignition predictors among ecoregions suggests that human activities have heterogeneous impacts in altering fire regimes within different vegetation types and geographies. © 2016 by the Ecological Society of America.
Spark-safe low-voltage detonator
Lieberman, Morton L.
1989-01-01
A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.
Spark-safe low-voltage detonator
Lieberman, M.L.
1988-07-01
A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.
Robust, Reliable Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret Stacy; Im, Hong Geum
2016-12-16
The effects of high hydrogen content fuels were studied using experimental, computational and theoretical approaches to understand the effects of mixture and state conditions on the ignition behavior of the fuels. A rapid compression facility (RCF) was used to measure the ignition delay time of hydrogen and carbon monoxide mixtures. The data were combined with results of previous studies to develop ignition regime criteria. Analytical theory and direct numerical simulation were used to validate and interpret the RCF ignition data. Based on the integrated information the ignition regime criteria were extended to non-dimensional metrics which enable application of the resultsmore » to practical gas turbine combustion systems.« less
Animal Magnetism: Metaphoric Cues Alter Perceptions of Romantic Partners and Relationships.
Christy, Andrew G; Hirsch, Kelly A; Schlegel, Rebecca J
2016-01-01
The psychological state of love is difficult to define, and we often rely on metaphors to communicate about this state and its constituent experiences. Commonly, these metaphors liken love to a physical force-it sweeps us off our feet, causes sparks to fly, and ignites flames of passion. Even the use of "attraction" to refer to romantic interest, commonplace in both popular and scholarly discourse, implies a force propelling two objects together. The present research examined the effects of exposing participants to a physical force (magnetism) on subsequent judgments of romantic outcomes. Across two studies, participants exposed to magnets reported greater levels of satisfaction, attraction, intimacy, and commitment.
Study on coal char ignition by radiant heat flux.
NASA Astrophysics Data System (ADS)
Korotkikh, A. G.; Slyusarskiy, K. V.
2017-11-01
The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.
Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow
NASA Astrophysics Data System (ADS)
Cai, Zun; Sun, Mingbo; Wang, Hongbo; Wang, Zhenguo
2016-04-01
In this study, ignition schemes of the partially covered cavity in a scramjet combustor were investigated under inflow conditions of Ma=2.1 with stagnation pressure P0=0.7 Mpa and stagnation temperature T0=947 K. It reveals that the ignition scheme of the partially covered cavity has a great impact on the ignition and flame stabilization process. There always exists an optimized global equivalence ratio of a fixed ignition scheme, and the optimized global equivalence ratio of ignition in the partially covered cavity is lower than that of the uncovered cavity. For tandem dual-cavities, ignition in the partially covered cavity could be enhanced with the optimization of global equivalence ratio. However, ignition in the partially covered cavity would be exacerbated with further increasing the global equivalence ratio. The global equivalence ratio and the jet penetration height have a strong coupling with the combustion flow-field. For multi-cavities, it is assured that fuel injection on the opposite side could hardly be ignited after ignition in the partially covered cavity even with the optimized global equivalence ratio. It is possible to realize ignition enhancement in the partially covered cavity with the optimization of global equivalence ratio, but it is not beneficial for thrust increment during the steady combustion process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, Maren; Kirkwood, Bob
The way the Death Star works in the fictional Star Wars universe has long been dismissed by scientists as something that defies our physical reality, but researchers at Lawrence Livermore's National Ignition Facility have found a way to successfully combine laser beams using plasma for the first time ever.
Aqueous Ethanol Ignition and Engine Studies, Phase I
DOT National Transportation Integrated Search
2010-09-01
Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Parker, C.; Simpson, R.; Sio, H.; Seguin, F. H.; Petrasso, R. D.; Zylstra, A.
2017-10-01
A compact and highly efficient Mini Orange Spectrometer (MOS) is being designed for measurements of energy spectra of protons and alphas in the range of 1-12 MeV in experiments at the OMEGA laser facility and the National Ignition Facility (NIF). The MOS will extend charged-particle spectrometry at these laser facilities to lower energies (<5 MeV) and lower yields (<5×108) than current instrumentation allows. This new spectrometer will enable studies of low-probability stellar nucleosynthesis reactions, including the 3He+3He reaction that is part of the solar proton-proton chain. Its unique capabilities will also be exploited in other basic science experiments, including studies of stopping power in ICF-relevant plasmas, astrophysical shocks and kinetic physics. The MOS design achieves high efficiency by maximizing the solid angle of particle acceptance. The optimization of the MOS design uses simulated magnetic fields and particle tracing. Performance requirements of the MOS system, including desired detection efficiencies and energy resolution, are discussed. This work was supported in part by the U.S. DoE, LLNL, and LLE.
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...
2016-11-03
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
Bogin, Jr., Gregory E.; Luecke, Jon; Ratcliff, Matthew A.; ...
2016-08-21
Here, an ignition delay study investigating the reduction in low temperature heat release (LTHR) and negative temperature coefficient (NTC) region with increasing ethanol concentration in binary blends of ethanol/isooctane was conducted in the Ignition Quality Tester (IQT). The IQT is advantageous for studying multi-component fuels such as iso-octane/ethanol which are difficult to study at lower temperatures covering the NTC region in traditional systems (e.g., shock tubes, rapid compression machines, etc.). The high octane numbers and concomitant long ignition delay times of ethanol and iso-octane are ideal for study in the IQT allowing the system to reach a quasi-homogeneous mixture; allowingmore » the effect of fuel chemistry on ignition delay to be investigated with minimal impact from the fuel spray due to the relatively long ignition times. NTC behavior from iso-octane/ethanol blends was observed for the first time using an IQT. Temperature sweeps of iso-octane/ethanol volumetric blends (100/0, 90/10, 80/20, 50/50, and 0/100) were conducted from 623 to 993 K at 0.5, 1.0 and 1.5 MPa and global equivalence ratios ranging from 0.7 to 1.0. Ignition of the iso-octane/ethanol blends in the IQT was also modeled using a 0-D homogeneous batch reactor model. Significant observations include: (1) NTC behavior was observed for ethanol/ iso-octane fuel blends up to 20% ethanol. (2) Ethanol produced shorter ignition delay times than iso-octane in the high temperature region. (3) The initial increase in ethanol from 0% to 10% had a lesser impact on ignition delay than increasing ethanol from 10% to 20%. (4) The 0-D model predicts that at 0.5 and 1.0 MPa ethanol produces the shortest ignition time in the high-temperature regime, as seen experimentally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogin, Jr., Gregory E.; Luecke, Jon; Ratcliff, Matthew A.
Here, an ignition delay study investigating the reduction in low temperature heat release (LTHR) and negative temperature coefficient (NTC) region with increasing ethanol concentration in binary blends of ethanol/isooctane was conducted in the Ignition Quality Tester (IQT). The IQT is advantageous for studying multi-component fuels such as iso-octane/ethanol which are difficult to study at lower temperatures covering the NTC region in traditional systems (e.g., shock tubes, rapid compression machines, etc.). The high octane numbers and concomitant long ignition delay times of ethanol and iso-octane are ideal for study in the IQT allowing the system to reach a quasi-homogeneous mixture; allowingmore » the effect of fuel chemistry on ignition delay to be investigated with minimal impact from the fuel spray due to the relatively long ignition times. NTC behavior from iso-octane/ethanol blends was observed for the first time using an IQT. Temperature sweeps of iso-octane/ethanol volumetric blends (100/0, 90/10, 80/20, 50/50, and 0/100) were conducted from 623 to 993 K at 0.5, 1.0 and 1.5 MPa and global equivalence ratios ranging from 0.7 to 1.0. Ignition of the iso-octane/ethanol blends in the IQT was also modeled using a 0-D homogeneous batch reactor model. Significant observations include: (1) NTC behavior was observed for ethanol/ iso-octane fuel blends up to 20% ethanol. (2) Ethanol produced shorter ignition delay times than iso-octane in the high temperature region. (3) The initial increase in ethanol from 0% to 10% had a lesser impact on ignition delay than increasing ethanol from 10% to 20%. (4) The 0-D model predicts that at 0.5 and 1.0 MPa ethanol produces the shortest ignition time in the high-temperature regime, as seen experimentally.« less
Ignition of Fuel Vapors Beneath Titanium Aircraft Skins Exposed to Lightning
NASA Technical Reports Server (NTRS)
Kosvic, T. C.; Helgeson, N. L.; Gerstein, M.
1971-01-01
Hot-spot and puncture ignition of fuel vapors by simulated lightning discharges was studied experimentally. The influences of skin coating, skin structure, discharge polarity, skin thickness, discharge current level, and current duration were measured and interpreted. Ignition thresholds are reported for titanium alloy constructed as sheets, sheets coated with sealants, and sandwich skins. Results indicated that the ignition threshold charge transfer for coated sheets, honeycomb, and truss skins is respectively about 200%, 400%, 800% that of bare alloy sheet of .102 cm (.040 in.)-thickness. It was found that hot-spot ignition can occur well after termination of the arc, and that sandwich materials allow ignition only if punctured.
Microgravity ignition experiment
NASA Technical Reports Server (NTRS)
Motevalli, Vahid; Elliott, William; Garrant, Keith; Marcotte, Ryan
1992-01-01
The purpose of this project is to develop a flight-ready apparatus of the microgravity ignition experiment for the GASCAN 2 program. The microgravity ignition experiment is designed to study how a microgravity environment affects the time to ignition of a sample of alpha-cellulose paper. A microgravity environment will result in a decrease in the heat transferred from the sample due to a lack of convection currents, which would decrease time to ignition. A lack of convection current would also cause the oxygen supply at the sample not to be renewed, which could delay or even prevent ignition. When this experiment is conducted aboard GASCAN 2, the dominant result of the lack of ignition will be determined. The experiment consists of four canisters containing four thermocouples and a sensor to detect ignition of the paper sample. This year the interior of the canister was redesigned and a mathematical model of the heat transfer around the sample was developed. This heat transfer model predicts an ignition time of approximately 5.5 seconds if the decrease of heat loss from the sample is the dominant factor of the lack of convection currents.
NASA Technical Reports Server (NTRS)
Swett, Clyde C , Jr
1949-01-01
Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.
Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.
2017-10-01
A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.
The national ignition facility high-energy ultraviolet laser system
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2004-09-01
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.
Advances in NIF Shock Timing Experiments
NASA Astrophysics Data System (ADS)
Robey, Harry
2012-10-01
Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.
NASA Astrophysics Data System (ADS)
Forrest, C. J.; Radha, P. B.; Knauer, J. P.; Glebov, V. Yu.; Goncharov, V. N.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Shmayda, W. T.; Stoeckl, C.; Gatu Johnson, M.
2017-03-01
The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012), 10.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.
NASA Astrophysics Data System (ADS)
Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.
2015-09-01
This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.
Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang
2014-01-01
The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753
Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber
NASA Technical Reports Server (NTRS)
Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.
2006-01-01
Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with emphasis on the level of energy needed for ignition and the ensuing flame propagation issues. Our focus in the present paper is on identifying the unsteady mixing processes that provide the propellant mixture in which the ignition source is to be placed. In particular, we wish to characterize the spatial and temporal mixture distribution with a view toward identifying preferred spatial and temporal locations for the ignition source. As such, the present work is limited to cold flow (pre-ignition) conditions
NASA Astrophysics Data System (ADS)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-02-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W
2018-02-02
Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700 μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14} W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14} W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.
The national ignition facility and atomic data
NASA Astrophysics Data System (ADS)
Crandall, David H.
1998-07-01
The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.
Advanced Concept Exploration for Fast Ignition Science Program, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang
The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less
Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric
2016-04-15
BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.
Propellant Crack Tip Ignition and Propagation under Rapid Pressurization
1982-10-01
that the ignition-delay time decreases and the heat flux to the propellant surface increases as the pressurization rate is increased. The decrease in...leading to ignition. The model predicts the experimental obseriation that the ignition delay time decreases as the pressurization rate is increased...pressurization rate on both crack propagation velocity and time variation of crack shape was studied. Experimental results indicated that the crack velocity
Direct-drive inertial confinement fusion: A review
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; ...
2015-11-25
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Investigation of Al/CuO multilayered thermite ignition
NASA Astrophysics Data System (ADS)
Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole
2017-01-01
The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena governing the ignition process of Al/CuO multilayers.
NASA Technical Reports Server (NTRS)
Smith, Sarah
2009-01-01
Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.
Ramírez, Alvaro; García-Torrent, Javier; Aguado, Pedro J
2009-08-30
There are always risks associated with silos when the stored material has been characterized as prone to self-ignition or explosion. Further research focused on the characterization of agricultural materials stored in silos is needed due to the lack of data found in the literature. The aim of this study was to determine the ignitability and explosive parameters of several agricultural products commonly stored in silos in order to assess the risk of ignition and dust explosion. Minimum Ignition Temperature, with dust forming a cloud and deposited in a layer, Lower Explosive Limit, Minimum Ignition Energy, Maximum Explosion Pressure and Maximum Explosion Pressure Rise were determined for seven agricultural materials: icing sugar, maize, wheat and barley grain dust, alfalfa, bread-making wheat and soybean dust. Following characterization, these were found to be prone to producing self-ignition when stored in silos under certain conditions.
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems
NASA Technical Reports Server (NTRS)
Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.
2000-01-01
As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.
Catalytic ignition of ionic liquids for propellant applications.
Shamshina, Julia L; Smiglak, Marcin; Drab, David M; Parker, T Gannon; Dykes, H Waite H; Di Salvo, Roberto; Reich, Alton J; Rogers, Robin D
2010-12-21
In this proof of concept study, the ionic liquids, 2-hydroxyethylhydrazinium nitrate and 2-hydroxyethylhydrazinium dinitrate, ignited on contact with preheated Shell 405 (iridium supported on alumina) catalyst and energetically decomposed with no additional ignition source, suggesting a possible route to hydrazine replacements.
Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber
NASA Astrophysics Data System (ADS)
Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.
2008-05-01
The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.
Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
James A. Lutz; Jan W. van Wagtendonk; Andrea E. Thode; Jay D. Miller; Jerry F. Franklin
2009-01-01
Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focused on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread,...
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxia; Cheng, Shengxian; Hu, Yan; Ye, Yinghua; Shen, Ruiqi
2018-03-01
The integration of composite energetic films (CEFs) with various types of initiators can effectively adjust their performance and represents potential applications in microscale energy-demanding systems. In this study, the Al/Bi2O3/graphene oxide (GO) CEFs were successfully integrated into copper micro-ignitors by electrophoretic deposition, a low-cost and time-saving method. The effects of the Al/Bi2O3/GO CEFs with different GO contents on exothermic performance and ignition properties of micro-ignitors were then systematically investigated in terms of heat release, activation energy, ignition duration, the maximum height of the ignition product, and ignition delay time. The results showed that the addition of GO promoted more heat releases and higher activation energies of Al/Bi2O3/GO CEFs. The addition of ≤3.5 wt. % GO prolonged the ignition duration from 450 μs to 950 μs and increased the maximum height of the ignition product from about 40 mm to 60 mm. However, the micro-ignitors with more than 3.5 wt. % GO cannot be ignited, which suggested that GO played a contradictory role in the ignition properties of micro-ignitors and the controlled GO content was a prerequisite for improved ignition performance. The ignition delay time gradually extended from 10.7 μs to 27.6 μs with increases in the GO contents of Al/Bi2O3 CEFs, revealing that an increase in the weight ratio of GO leads to lower ignition sensitivity of micro-ignitors.
Asphalt Content by Ignition Round Robin Study
DOT National Transportation Integrated Search
1996-01-01
The National Center for Asphalt Technology (NCAT) has developed a test method to : determine the asphalt content of hot mix asphalt (HMA) mixtures by ignition. In : the ignition method, a HMA sample is subjected to 5380C (lOOO0F) in a furnace to : ig...
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system
NASA Astrophysics Data System (ADS)
James, Mark D.
The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.
Present Status and Prospects of FIREX Project
NASA Astrophysics Data System (ADS)
Mima, K.
2008-07-01
The goal of the first phase of Fast Ignition Realization EXperiment (FIREX) project (FIREX-I) is to demonstrate ignition temperature of 5-10 keV, followed by the second phase to demonstrate ignition and burn. Since starting FIREX-I project, plasma physics study in ILE has been devoted to increase the coupling efficiency and to improve compression performance. The heating efficiency can be increased by the following two ways. 1) A previous experiments indicate that the coupling of heating laser to imploded plasmas increases with coating a low-density. foam used in the experiment, low-Z plastic foam is desired for efficient electron transport. (Lei et al. 2006). 2) Electrons generated in the inner surface of the double cone will return by sheathe potential generated between two cones. A 2-D PIC simulation indicates that hot electron confinement is improved by a factor of 1.7 (Nakamura et al. 2007). Further optimization of cone geometry by 2-D simulation will be presented in the workshop. The implosion performance can be improved by three ways. 1) Low-Z plastic layer coating on the outer surface of the cone: The 2D hydro-simulation PINOCO predicts that the target areal density increases by a factor of 2. 2) Br doped plastic layer on a fuel pellet may significantly moderate the Rayleigh-Taylor instability (Fujioka et al. 2004), making implosion more stable. 3) Reducing vapor gas pressure in a pellet is necessary to suppress strength of a jet that will destroy the cone tip. (Stephens et al. 2005). As for the cryogenic target fabrication, R&D of fabricating foam cryogenic cine shell target are under development by the joint group between Osaka Univ. and NIFS. The amplifier system of the heating laser LFEX is completed in March 2008. The amplification test has demonstrated laser energy of 3 kJ/beam at 3nm bandwidth. The equivalent 12 kJ in 4 beams meets the specification of LFEX. The large tiled gratings for pulse compressor are completed and installed. The short pulse laser will be delivered on a target in September, 2008. The fully integrated fast ignition experiments is scheduled on February 2009 until the end of 2010. If subsequent FIREX-II will start as proposed, the ignition and burn will be demonstrated in parallel to that at NIF and LMJ, providing a scientific database of both central and fast ignition.
NASA Technical Reports Server (NTRS)
Deans, Matthew
2012-01-01
This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 lbf engine.
NASA Technical Reports Server (NTRS)
Deans, Matthew C.; Schneider, Steven J.
2012-01-01
This study sought to develop a catalytic ignition advanced torch system with a unique catalyst microtube design that could serve as a low energy alternative or redundant system for the ignition of methane and oxygen rockets. Development and testing of iterations of hardware was carried out to create a system that could operate at altitude and produce a torch. A unique design was created that initiated ignition via the catalyst and then propagated into external staged ignition. This system was able to meet the goals of operating across a range of atmospheric and altitude conditions with power inputs on the order of 20 to 30 watts with chamber pressures and mass flow rates typical of comparable ignition systems for a 100 Ibf engine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y
2011-01-01
An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less
Animal Magnetism: Metaphoric Cues Alter Perceptions of Romantic Partners and Relationships
Hirsch, Kelly A.; Schlegel, Rebecca J.
2016-01-01
The psychological state of love is difficult to define, and we often rely on metaphors to communicate about this state and its constituent experiences. Commonly, these metaphors liken love to a physical force—it sweeps us off our feet, causes sparks to fly, and ignites flames of passion. Even the use of “attraction” to refer to romantic interest, commonplace in both popular and scholarly discourse, implies a force propelling two objects together. The present research examined the effects of exposing participants to a physical force (magnetism) on subsequent judgments of romantic outcomes. Across two studies, participants exposed to magnets reported greater levels of satisfaction, attraction, intimacy, and commitment. PMID:27227965
NASA Astrophysics Data System (ADS)
Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.
2005-03-01
Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.
The first target experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.
2007-08-01
A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
NASA Astrophysics Data System (ADS)
Belyaev, Vadim S.; Guterman, Vitaly Y.; Ivanov, Anatoly V.
2004-06-01
The report presents the theoretical and experimental results obtained during the first year of the ISTC project No. 1926. The energy and temporal characteristics of the laser radiation necessary to ignite the working components mixture in a rocket engine combustion chamber have been predicted. Two approaches have been studied: the optical gas fuel laser-induced breakdown; the laser-initiated plasma torch on target surface. The possibilities and conditions of the rocket fuel components ignition by a laser beam in the differently designed combustion chambers have been estimated and studied. The comparative analysis shows that both the optical spark and light focusing on target techniques can ignite the mixture.
Catalyzed Ignition of Bipropellants in Microtubes
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Boyarko, George A.; Sung, Chih-Jen
2003-01-01
This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations to more carefully characterize the measured heat transfer and pressure losses for validation purposes. Experimentally, we investigate the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter micro-tubes, with special emphases on ignition and extinction processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rises in resistively heated platinum and palladium micro-tubes are used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented.
Non-LTE modeling for the National Ignition Facility (and beyond)
NASA Astrophysics Data System (ADS)
Scott, H. A.; Hammel, B. A.; Hansen, S. B.
2012-05-01
Considerable progress has been made in the last year in the study of laser-driven inertial confinement fusion at the National Ignition Facility (NIF). Experiments have demonstrated symmetric capsule implosions with plasma conditions approaching those required for ignition. Improvements in computational models - in large part due to advances in non-LTE modeling - have resulted in simulations that match experimental results quite well for the X-ray drive, implosion symmetry and total wall emission [1]. Non-LTE modeling is a key part of the NIF simulation effort, affecting several aspects of experimental design and diagnostics. The X-rays that drive the capsule arise from high-Z material ablated off the hohlraum wall. Current capsule designs avoid excessive preheat from high-energy X-rays by shielding the fuel with a mid-Z dopant, which affects the capsule dynamics. The dopant also mixes into the hot spot through hydrodynamic instabilities, providing diagnostic possibilities but potentially impacting the energy balance of the capsule [2]. Looking beyond the NIF, a proposed design for a fusion reactor chamber depends on lowdensity high-Z gas absorbing X-rays and particles to protect the first wall [3]. These situations encompass a large range of temperatures, densities and spatial scales. They each emphasize different aspects of atomic physics and present a variety of challenges for non-LTE modeling. We discuss the relevant issues and summarize the current state of the modeling effort for these applications.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1981-01-01
Describes: (1) a seven-segment LED display successfully used as an "illuminated" object for introductory optics experiments and advantages for its use; (2) a series/parallel circuit demonstration especially useful in introductory courses for nonmajors; and (3) a method for igniting a sodium arc lamp with an incandescent lamp. (JN)
Post-processing flame-retardant for polyurethane
NASA Technical Reports Server (NTRS)
Monaghan, P.; Sidman, K. R.
1980-01-01
Treatment of polyurethane form with elastomer formulation after processing makes foam fire resistant without compromising physical properties. In testing, once ignition source is removed, combustion stops. Treatment also prevents molten particle formation, generates no smoke or toxic gases in fire, and does not deteriorate under prolonged exposure to Sun.
Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine
NASA Astrophysics Data System (ADS)
Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua
2013-02-01
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.
On the utility of antiprotons as drivers for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Perkins, L. John; Orth, Charles D.; Tabak, Max
2004-10-01
In contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90 MJ µg-1 and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ( \\bar{p} ) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both \\bar{p} -driven ablative compression and \\bar{p} -driven fast ignition, in association with zero- and one-dimensional target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of ~3 × 1015 injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains—i.e. fusion yields divided by the available p- \\bar{p} annihilation energy from the injected antiprotons ( 1.88\\,GeV/\\bar{p} )—range from ~3 for volumetric ignition targets to ~600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision—temporally and spatially—will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply methods would be required to embark on a serious R&D programme for this application.
Krisman, Alex; Hawkes, Evatt R.; Talei, Mohsen; ...
2016-08-30
With the goal of providing a more detailed fundamental understanding of ignition processes in diesel engines, this study reports analysis of a direct numerical simulation (DNS) database. In the DNS, a pseudo turbulent mixing layer of dimethyl ether (DME) at 400 K and air at 900 K is simulated at a pressure of 40 atmospheres. At these conditions, DME exhibits a two-stage ignition and resides within the negative temperature coefficient (NTC) regime of ignition delay times, similar to diesel fuel. The analysis reveals a complex ignition process with several novel features. Autoignition occurs as a distributed, two-stage event. The high-temperaturemore » stage of ignition establishes edge flames that have a hybrid premixed/autoignition flame structure similar to that previously observed for lifted laminar flames at similar thermochemical conditions. In conclusion, a combustion mode analysis based on key radical species illustrates the multi-stage and multi-mode nature of the ignition process and highlights the substantial modelling challenge presented by diesel combustion.« less
Prechamber equipped laser ignition for improved performance in natural gas engines
Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...
2017-04-25
Lean-burn operation of stationary natural gas engines offers lower NO x emissions and improved efficiency. A proven pathway to extend lean-burn operation has been to use laser ignition instead of standard spark ignition. However, under lean conditions, flame speed reduces thereby offsetting any efficiency gains resulting from the higher ratio of specific heats, γ. The reduced flame speeds, in turn, can be compensated with the use of a prechamber to result in volumetric ignition, and thereby lead to faster combustion. In this study, the optimal geometry of PCLI was identified through several tests in a single-cylinder engine as a compromisemore » between autoignition, NO x and soot formation within the prechamber. Subsequently, tests were conducted in a single-cylinder natural gas engine comparing the performance of three ignition systems: standard electrical spark ignition (SI), single-point laser ignition (LI), and prechamber equipped laser ignition (PCLI). Out of the three, the performance of PCLI was far superior compared to the other two. Efficiency gain of 2.1% points could be achieved while complying with EPA regulation (BSNO x < 1.34 kW-hr) and the industry standard for ignition stability (COV_IMEP < 5%). Finally, test results and data analysis are presented identifying the combustion mechanisms leading to the improved performance.« less
DNS study of the ignition of n-heptane fuel spray under high pressure and lean conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2005-01-01
Direct numerical simulations (DNS) are used to investigate the ignition of n-heptane fuel spray under high pressure and lean conditions. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel spray, the Lagrangian method is used. A chemistry mechanism for n-heptane with 33 species and 64 reactions is adopted to describe the chemical reactions. Initial carrier gas temperature and pressure are 926 K and 30.56 atmospheres, respectively. Initial global equivalence ratio is 0.258. Two cases with droplet radiuses of 35.5 and 20.0 macrons are simulated. Evolutions of the carrier gas temperature and species mass fractions are presented. Contours of the carrier gas temperature and species mass fractions near ignition and after ignition are presented. The results show that the smaller fuel droplet case ignites earlier than the larger droplet case. For the larger droplet case, ignition occurs first at one location; for the smaller droplet case, however, ignition occurs first at multiple locations. At ignition kernels, significant NO is produced when temperature is high enough at the ignition kernels. For the larger droplet case, more NO is produced than the smaller droplet case due to the inhomogeneous distribution and incomplete mixing of fuel vapor.
The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation
NASA Astrophysics Data System (ADS)
Zheng, Dianfeng
2016-11-01
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)
Ignition characteristics of cracked JP-7 fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Puneesh; Ma, Fuhua; Choi, Jeong-Yeol
2005-09-01
The ignition characteristics of cracked JP-7 fuel with both oxygen and air is studied over a wide range of pressures (1-20 atm), temperatures (1200-2000 K), and equivalence ratios (0.5-1.5). Correlations of ignition delay times, of the form t=Aexp(E/RT)[F]a[O2]b, are established using the Chemkin-II package and least-squares analysis. The effect of C3 hydrocarbons in cracked JP-7 fuel is examined by comparing ignition delay times for two different cracked compositions.
The effect of fire retardants on the fire response characteristics of cellulosic materials
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Brauer, D. P.
1978-01-01
The resistance to ignition of fire retardant-treated wood, cotton, and cellulose insulation was studied. The proprietary composition used to treat wood was found to increase resistance to ignition and to reduce smoke toxicity. Cotton treated with boric acid (added by padding on or by vapor phase process) was found to have increased resistance to ignition and decreased smoke toxicity. Boric acid increased the resistance of cellulose insulation to ignition but also slightly increased the smoke toxicity.
Magri, Renan; Masili, Mauro; Duarte, Fernanda Oliveira; Ventura, Liliane
2017-09-21
Sunglasses popularity skyrocketed since its advent. The ongoing trend led to the creation of standards to protect consumers from injuries and secondary hazards due to spectacles use. In Brazil, the corresponding standard is NBR ISO 12312-1:2015 and since there is no mandatory testing, evaluating sunglasses performance provides an insight into compliance with the standard. In a continuing revision of sunglasses standards requirements, resistance to ignition is one of the concerns, since sunglasses should be protected from burning into flames at a pre-determined temperature, which may protect user of getting their sunglasses into flames if some, cigarette sparks reaches the spectacles, as an example. This paper describes the building of a resistance to ignition system and the results of 410 samples that have been tested accordingly to ISO 12312-1. The procedure is in accordance with the resistance to ignition test. It consists of heating a steel rod to 650 °C and pressing it against the sample surface for 5 s, with a force equivalent to the rod weight. For carrying out the assessments, we have build resistance to ignition testing system and assured the testing requirements of the standard. The apparatus has an electrical furnace with a temperature acquisition circuit and electronic control that maintains the temperature of the steel rod at 650 °C. A linear actuator was designed for the project to drive the steel rod vertically and pressing it against the sunglasses samples. The control system is composed by a Freescale development board FRDM-KL25Z with an ARM Cortex-M0 embedded. We have also provided a LabView PC interface for acquiring, displaying, and storing data as well as added a physical control panel to the equipment for performing the evaluations. We assessed 410 sunglasses frames at the built apparatus, where the 410 lenses came out to be in accordance with the guidelines provided by the ignition to resistance test. Out of the 410 tested frames, 50% were made of polyamide (nylon 12); 10% were made of polyamide (nylon 11, mamona oil); 5% were made of cellulose acetate; 15% were made of ABS and 20% were made of polycarbonate. Out of the 410 tested lenses, 80% were polycarbonate; 2% were polymethyl methacrylate (PMMA); 5% CR-39 (with polarizing filter inside); 12.8% polyamide; 0.2% glass. For all the 410 tested spectacles frames and lenses, none burst into flames or continued to melt at the end of the procedure, being in compliance with ISO 12312-1:2013. The evidences show that all the tested thermoplastic and thermosetting materials are exceptionally resistant to ignition and all samples assessed comply with the resistance to ignition test. The analysis of the sunglasses made herein assures that most of sunglasses currently available to population are made of safe material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.
2015-01-12
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less
Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail
The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less
Evolution of wave patterns and temperature field in shock-tube flow
NASA Astrophysics Data System (ADS)
Kiverin, A. D.; Yakovenko, I. S.
2018-05-01
The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.
Imaging strategies for the study of gas turbine spark ignition
NASA Astrophysics Data System (ADS)
Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.
1999-10-01
Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P; Robey, H F; Park, H-S
2003-08-22
An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less
Direct numerical simulation of turbulent, chemically reacting flows
NASA Astrophysics Data System (ADS)
Doom, Jeffrey Joseph
This dissertation: (i) develops a novel numerical method for DNS/LES of compressible, turbulent reacting flows, (ii) performs several validation simulations, (iii) studies auto-ignition of a hydrogen vortex ring in air and (iv) studies a hydrogen/air turbulent diffusion flame. The numerical method is spatially non-dissipative, implicit and applicable over a range of Mach numbers. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co--located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non--reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily applicable to complex chemical mechanisms. Good results are obtained for validation simulations. The algorithm is used to study auto-ignition in laminar vortex rings. A nine species, nineteen reaction mechanism for H2/air combustion proposed by Mueller et al. [37] is used. Diluted H 2 at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratio, oxidizer temperature, Lewis number and stroke ratio (ratio of piston stroke length to diameter). Results show that auto--ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, zeta MR (Mastorakos et al. [32]). Subsequent evolution of the flame is not predicted by zetaMR; a most reactive temperature TMR is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates towards the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non--reacting vortex ring. We then study auto-ignition of turbulent H2/air diffusion flames using the Mueller et al. [37] mechanism. Isotropic turbulence is superimposed on an unstrained diffusion flame where diluted H 2 at ambient temperature interacts with hot air. Both, unity and non-unity Lewis number are studied. The results are contrasted to the homogeneous mixture problem and laminar diffusion flames. Results show that auto-ignition occurs in fuel lean, low vorticity, high temperature regions with low scalar dissipation around a most reactive mixture fraction, zetaMR (Mastorakos et al. [32]). However, unlike the laminar flame where auto-ignition occurs at zetaMR, the turbulent flame auto-ignites over a very broad range of zeta around zetaMR, which cannot completely predict the onset of ignition. The simulations also study the effects of three-dimensionality. Past two--dimensional simulations (Mastorakos et al. [32]) show that when flame fronts collide, extinction occurs. However, our three dimensional results show that when flame fronts collide; they can either increase in intensity, combine without any appreciable change in intensity or extinguish. This behavior is due to the three--dimensionality of the flow.
A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders
NASA Astrophysics Data System (ADS)
Stamatis, D.; Ermoline, A.; Dreizin, E. L.
2012-12-01
A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.
Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey
2015-09-01
The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.
High-Energy-Density-Physics Studies for Inertial Confinement Fusion Applications
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-10-01
Accurate knowledge of the static, transport, and optical properties of high-energy-density (HED) plasmas is essential for reliably designing and understanding inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime routinely accessed by low-adiabat ICF implosions, many-body strong-coupling and quantum electron degeneracy effects play an important role in determining plasma properties. The past several years have witnessed intense efforts to assess the importance of the microphysics of ICF targets, both theoretically and experimentally. On the theory side, first-principles methods based on quantum mechanics have been applied to investigate the properties of warm, dense plasmas. Specifically, self-consistent investigations have recently been performed on the equation of state, thermal conductivity, and opacity of a variety of ICF ablators such as polystyrene (CH), beryllium, carbon, and silicon over a wide range of densities and temperatures. In this talk, we will focus on the most-recent progress on these ab initio HED physics studies, which generally result in favorable comparisons with experiments. Upon incorporation into hydrocodes for ICF simulations, these first-principles ablator-plasma properties have produced significant differences over traditional models in predicting 1-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. *In collaboration with L. A. Collins, T. R. Boehly, G. W. Collins, J. D. Kress, and V. N. Goncharov.
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.
2012-01-01
This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.
2017-01-01
A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.
Forrest, C J; Radha, P B; Knauer, J P; Glebov, V Yu; Goncharov, V N; Regan, S P; Rosenberg, M J; Sangster, T C; Shmayda, W T; Stoeckl, C; Gatu Johnson, M
2017-03-03
The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.
Mechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignition.
Liberman, Michael; Kleeorin, Nathan; Rogachevskii, Igor; Haugen, Nils Erland L
2017-05-01
It is known that unconfined dust explosions typically start off with a relatively weak primary flame followed by a severe secondary explosion. We show that clustering of dust particles in a temperature stratified turbulent flow ahead of the primary flame may give rise to a significant increase in the radiation penetration length. These particle clusters, even far ahead of the flame, are sufficiently exposed and heated by the radiation from the flame to become ignition kernels capable to ignite a large volume of fuel-air mixtures. This efficiently increases the total flame surface area and the effective combustion speed, defined as the rate of reactant consumption of a given volume. We show that this mechanism explains the high rate of combustion and overpressures required to account for the observed level of damage in unconfined dust explosions, e.g., at the 2005 Buncefield vapor-cloud explosion. The effect of the strong increase of radiation transparency due to turbulent clustering of particles goes beyond the state of the art of the application to dust explosions and has many implications in atmospheric physics and astrophysics.
Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C2-Hydrocarbons
NASA Astrophysics Data System (ADS)
Kosarev, Ilya; Kindysheva, Svetlana; Plastinin, Eugeny; Aleksandrov, Nikolay; Starikovskiy, Andrey
2015-09-01
The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean (φ = 0.5) C2H6:O2:Ar mixture and in lean (φ = 0.5) and stoichiometric C2H4:O2:Ar mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C2H6-, C2H5OH- and C2H2-containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C2H6, C2H4 and C2H5OH. The reduction in time is smaller for C2H2, the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C2H6 and C2H4, whereas this time in stoichiometric C2H2- and C2H5OH-containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C2H2 and C2H4, whereas the plasma-assisted ignition delay time for C2H6 and C2H5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C2-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.
Roy, Soham; Smith, Lee P
2011-02-01
Airway fires are a well-described and potentially devastating complication of oropharyngeal surgery. However, the actual factors required to ignite the fire have never been well-delineated in the medical literature. In this study, we used a mechanical model to assess the oxygen parameters necessary to cause an oropharyngeal fire. An electrosurgical unit (Bovie) was grounded to a whole raw chicken and a 6.0 endotracheal tube (ETT) was inserted into the cranial end of the degutted central cavity. Oxygen (O(2)) was then titrated through the ETT tube at varying concentrations, with flow rates varying from 10 to 15L/min. Electrocautery (at a setting of 15W) was performed on tissue in the central cavity of the chicken near the ETT. All trials were repeated twice to ensure accuracy. Positive test results were quantified by the time required to obtain ignition of any part of the mechanical setup and time required to produce a sustained flame. A test was considered negative if no ignition could be obtained after four minutes of direct electrocautery. At an O(2) concentration of 100% and a flow rate of 15L/min, ignition with a sustained flame was obtained between 15 and 30s after initiation of electrocautery. At 100% O(2) at 10L/min, ignition was obtained at 70s with immediate sustained flame. At an O(2) concentration of 60%, ignition occurred at 25s and sustained fire after 60s. At an O(2) concentration of 50% ignition with a sustained flame occurred between 128 and 184s. At an O(2) concentration of 45%, neither ignition nor sustained flames could be obtained in any trial. Operating room fires remain a genuine danger when performing oropharyngeal surgery where electrocautery is performed in an oxygen-enriched environment. In our study, higher O(2) flow rates with higher FiO(2) correlated with quicker ignition in the chicken cavity. A fire was easily obtained when using 100% O(2); as the O(2) concentration decreases, longer exposure to electrocautery is required for ignition. Below 50% O(2) we were unable to obtain ignition. Our study is the first to examine the relative risk of ignition and sustained fire in a mechanical model of oropharyngeal surgery. Decreasing the fraction of inspired O(2) (FiO(2)) to less than 50% may substantially decrease the risk of airway fire during oropharyngeal surgery. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Review of Air Vitiation Effects on Scramjet Ignition and Flameholding Combustion Processes
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Bruno, Claudio; Chinitz, W.
2002-01-01
This paper offers a detailed review and analysis of more than 100 papers on the physics and chemistry of scramjet ignition and flameholding combustion processes, and the known effects of air vitiation on these processes. The paper attempts to explain vitiation effects in terms of known chemical kinetics and flame propagation phenomena. Scaling methodology is also examined, and a highly simplified Damkoehler scaling technique based on OH radical production/destruction is developed to extrapolate ground test results, affected by vitiation, to flight testing conditions. The long term goal of this effort is to help provide effective means for extrapolating ground test data to flight, and thus to reduce the time and expense of both ground and flight testing.
Deriving forest fire ignition risk with biogeochemical process modelling.
Eastaugh, C S; Hasenauer, H
2014-05-01
Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Ignition of a granular propellant bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildegger-Gaissmaier, A.E.; Johnston, I.R.
1996-08-01
An experimental and theoretical study is reported on the ignition process of a low vulnerability ammunition (LOVA) propellant bed in a 127-mm (5-in) bore gun charge. The theoretical investigation was with a two-phase flow interior ballistics code and the model predictions showed the marked influence the igniter system can have on pressure wave development, flame spreading, and the overall interior ballistics performance. A number of different igniter systems were investigated in an empty and propellant-filled gun simulator. Pressure, flame spreading, and high-speed film records were used to analyze the ignition/combustion event. The model predictions for flame spreading were confirmed qualitativelymore » by the experimental data. Full-scale instrumented gun firings were conducted with the optimized igniter design. Pressure waves were not detected in the charge during the firings. Model predictions on overall interior ballistics performance agreed well with the firing data.« less
Deriving forest fire ignition risk with biogeochemical process modelling☆
Eastaugh, C.S.; Hasenauer, H.
2014-01-01
Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905
The Hohlraum Drive Campaign on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Moody, John D.
2013-10-01
The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2-344.
Real fuel effects on flame extinction and re-ignition
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Wu, Bifen; Xu, Chao; Lu, Tianfeng; Chen, Jacqueline H.
2016-11-01
Flame-vortex interactions have significant implications in studying combustion in practical aeronautical engines, and can be used to facilitate the model development in capturing local extinction and re-ignition. To study the interactions between the complex fuel and the intense turbulence that are commonly encountered in engines, direct numerical simulations of the interactions between a flame and a vortex pair are carried out using a recently-developed 24-species reduced chemistry for n-dodecane. Both non-premixed and premixed flames with different initial and inlet thermochemical conditions are studied. Parametric studies of different vortex strengths and orientations are carried out to induce maximum local extinction and re-ignition. Chemical-explosive-mode-analysis based flame diagnostic tools are used to identify different modes of combustion, including auto-ignition and extinction. Results obtained from the reduced chemistry are compared with those obtained from one-step chemistry to quantify the effect of fuel pyrolysis on the extinction limit. Effects of flame curvature, heat loss and unsteadiness on flame extinction are also explored. Finally, the validity of current turbulent combustion models to capture the local extinction and re-ignition will be discussed.
CAN HELIUM ENVELOPES CHANGE THE OUTCOME OF DIRECT WHITE DWARF COLLISIONS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, Cole; Kushnir, Doron
2016-08-01
A pivotal feature for the viability of white dwarf (WD) collisions as SN Ia progenitors is that a significant fraction of the mass is highly compressed to the densities required for efficient {sup 56}Ni production before the ignition of the detonation wave. Previous studies have employed model WDs composed of carbon–oxygen (CO), whereas WDs typically have a non-negligible helium envelope. Given that helium is more susceptible to explosive burning than CO under the conditions of WD collision, a legitimate concern is whether or not early time He detonation ignition can lead to early time CO detonation, drastically reducing {sup 56}Nimore » synthesis. We investigate the role of He in determining the fate of WD collisions by performing a series of two-dimensional hydrodynamics calculations. We find that a necessary condition for non-trivial reduction of the CO ignition time is that the He detonation birthed in the contact region successfully propagates into the unshocked shell. We determine the minimal He shell mass as a function of the total WD mass that upholds this condition. Although we utilize a simplified reaction network similar to those used in previous studies, our findings are in good agreement with detailed investigations concerning the impact of network size on He shell detonations. This allows us to extend our results to the case with more realistic burning physics. Based on the comparison of these findings against evolutionary calculations of WD compositions, we conclude that most, if not all, WD collisions will not be drastically impacted by their intrinsic He components.« less
The Remarkable Deaths of 9-11 Solar Mass Stars
NASA Astrophysics Data System (ADS)
Woosley, S. E.; Heger, Alexander
2015-09-01
The post-helium-burning evolution of stars from 7 {M}⊙ to 11 {M}⊙ is complicated by the lingering effects of degeneracy and off-center ignition. Here, stars in this mass range are studied using a standard set of stellar physics. Two important aspects of the study are the direct coupling of a reaction network of roughly 220 nuclei to the structure calculation at all stages and the use of a subgrid model to describe the convective bounded flame that develops during neon and oxygen burning. Below 9.0 {M}⊙ degenerate oxygen-neon cores form that may become either white dwarfs or electron-capture supernovae. Above 10.3 {M}⊙ the evolution proceeds “normally” to iron-core collapse, without composition inversions or degenerate flashes. Emphasis here is upon the stars in between, which typically ignite oxygen burning off-center. After oxygen burns in a convectively bounded flame, silicon burning ignites in a degenerate flash that commences closer to the stellar center and with increasing violence for stars of larger mass. In some cases the silicon flash is so violent that it could lead to the early ejection of the hydrogen envelope. This might have interesting observable consequences. For example, the death of a 10.0 {M}⊙ star could produce two supernova-like displays, a faint low-energy event due to the silicon flash, and an unusually bright supernova many months later as the low-energy ejecta from core collapse collides with the previously ejected envelope. The potential relation to the Crab supernova is discussed.
High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall
NASA Astrophysics Data System (ADS)
Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.
2016-03-01
A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.
Combustion Processes in Solid Propellant Cracks
1981-06-01
Ignition at the Closed End of an Inert Ctack . . ......................... 38 12. Block Diagram of Remotely-Controlled Ignition and Photography System ...41 13. Block Diagram of Data Acquisition System ... ........ .. 42 14. Measured Pressure-Time Traces for Crack...ignition system has been designed and fabricated. 5. Experimental firings with single-pore propellant grain have been conducted to study the effects of
Direct-drive inertial confinement fusion: A review
NASA Astrophysics Data System (ADS)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.
2015-11-01
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.
Test System to Study the Ignition of Metals by Polymers in Oxygen
NASA Technical Reports Server (NTRS)
Shoffstall, Michael S.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)
2000-01-01
A new test system that uses Laser energy to ignite a polymer promoter has been developed at the NASA White Sands Test Facility. It will facilitate the study of the spread of fire from a burning polymer material to the metal surrounding it. The system can be used to answer questions regarding the effects of configuration on ignition and combustion. The data obtained from this test could also be used to develop mathematical models for analyzing the effects of configuration on ignition and combustion. The system features a 10,000-psi (69-MPa) test chamber with sight glass windows on either end and a 25-watt carbon dioxide Laser for an ignition source. The test system can be used with gaseous oxygen, nitrogen or any mixture of the two gases. To minimize the effect of preheating the metallic, the polymer is ignited with a minimal amount of Laser energy. Igniting the polymer in this fashion also simplifies the thermodynamic analysis of the ignition and propagation reactions. The system is very robust, versatile and straightforward to use. Depending on the test pressure and configuration, the test system operator can perform as many as 20 tests per day. Test results verify that ignition and combustion of the metallic sample is not only dependent on pressure, material type and temperature, but configuration of both the polymer promoter and metallic sample. Both 6061 aluminum and 316 stainless steel 0.25-inch (6.35-mm) diameter rods with a standard 0-ring groove were tested with Buna-N, Silicone, Teflon and Viton 0-rings. The system ignited all four types of 0-rings in oxygen at pressures ranging from ambient to 10,000 psi (69 MPa). However, neither the stainless steel nor the aluminum rods on which the O-rings were mounted ignited in any test conditions. Future testing may be done on the 0.25-inch (6.35-mm) rod and O-ring configuration to evaluate the lack of ignition in these tests. Future configurations may include a plug of polymer in the base of the sample and replicas of fire-damaged components. Furthermore, the test system may be used in the future to analyze the oxidation rate of Laser-heated metals in gaseous oxygen.
Ignition at NIF: Where we have been, and where we are going
NASA Astrophysics Data System (ADS)
Rosen, Mordecai
2014-10-01
This talk reviews results from the past several years in the pursuit of indirect-drive ignition on the National Ignition Facility (NIF), and summarizes ideas and plans for moving forward. We describe the challenging issues encountered by the low-adiabat (``low foot''), ``ignition point design'' approach, such as: hydrodynamic instability growth and ensuing mix of the CH ablator into the DT hot spot; very high convergence implosions with resultant imperfect symmetry; possible other issues such as hot electron preheat. The complex interplay among these issues is a key theme. We describe the progress that has been made in the understanding and diagnosis of these issues. We present the results from the high-adiabat (``high foot'') approach, with its property of relative hydrodynamic stability when compared to the low foot approach, its somewhat reduced convergence ratio, and its achievement of entering the alpha heating regime, an important milestone on the road to ignition. Paths forward towards ignition include excursions from the present approaches in pulse shape, hohlraum, and choice of ablator. Further pulse shaping can lower the adiabat of the high foot approach and lead to higher performance if it continues to retain its hydrodynamic stability properties. Conversely, pulse shaping can provide for ``adiabat-shaping'' for the low foot approach for it to try to attain better stability. A plethora of hohlraum approaches (size, shape, materials, gas fills) can improve the zero-order drive, as well as the low-mode shape of the implosion. Diagnosing, and then correcting, the time dependence of the symmetry is also a key issue. A variety of ablator materials, along with carefully engineering the drive spectrum, can increase implosion velocity. The high-density carbon ablator has shown promising results in this regard. Some combinations of these developments may allow for an operating space that has a relatively short pulse, in a near vacuum hohlraum. That combination has shown, to date, much better coupling efficiency, and a much lower level of laser plasma instabilities (thus, less electron preheat), than the longer pulse, full gas-fill, ignition hohlraums. Advances in modeling, experimental platforms, and diagnostic techniques developed over the past several years have been key enabling technologies in moving towards ignition, and we anticipate further advances as well. We gratefully acknowledge the dedicated efforts of many hundreds of personnel across the globe who have participated in the laser construction, operation, target fabrication, and all aspects of the target physics program, that have taken us this far towards ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng
The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet ofmore » energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investigation of all aspects of warm dense matter as well as to proton-ignited FI.« less
Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb
NASA Technical Reports Server (NTRS)
Selden, Robert F
1938-01-01
Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
14 CFR 27.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...
Ignition characterization of LOX/hydrocarbon propellants
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Wong, K. Y.
1985-01-01
The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.; Hora, H.; Badziak, J.
The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authorsmore » showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.« less
Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.
2009-01-01
Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.
Development of Ionic Liquid Monopropellants for In-Space Propulsion
NASA Technical Reports Server (NTRS)
Blevins, John A.; Drake, Gregory W.; Osborne, Robin J.
2005-01-01
A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner, shown schematically in Figure 1 and similar in design to apparatuses used by other researchers to study solid and liquid monopropellants, will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.
Laser ignition of engines: a realistic option!
NASA Astrophysics Data System (ADS)
Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.
2006-01-01
Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.
X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.
2013-05-15
Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focusesmore » on implosion performance data in the “rocket curve” plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 μm-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remaining–below the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 μm thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V≥350 km/s with ablator mass remaining above the ignition goal.« less
Fuel Combustion Laboratory | Transportation Research | NREL
detection of compounds at sub-parts per billion by volume levels. A high-performance liquid chromatograph ) platform; a high-pressure (1,200- bar) direct-injection system to minimize spray physics effects; and an combustion chamber. A high-speed pressure transducer measures chamber pressure to detect fuel ignition. Air
Propagation of a fluidization - combustion wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pron, G.P.; Gusachenko, L.K.; Zarko, V.E.
1994-05-01
A fluidization-combustion wave propagating through a fixed and initially cool bed was created by igniting coal at the top surface of the bed. The proposed physical interpretation of the phenomenon is in qualitative agreement with the experimental dependences of the characteristics of the process on determining parameters. A kindling regime with forced wave propagation is suggested.
Role of buoyant flame dynamics in wildfire spread.
Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D
2015-08-11
Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling.
Role of buoyant flame dynamics in wildfire spread
Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.
2015-01-01
Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227
A new streaked soft x-ray imager for the National Ignition Facility
Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...
2016-05-27
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
Dark Matter Ignition of Type Ia Supernovae.
Bramante, Joseph
2015-10-02
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.
Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.
Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon
2011-01-15
Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.
Multi scale modeling of ignition and combustion of micro and nano aluminum particles
NASA Astrophysics Data System (ADS)
Puri, Puneesh
With renewed interest in nano scale energetic materials like aluminum, many fundamental issues concerning the ignition and combustion characteristics at nano scales, remain to be clarified. The overall aim of the current study is the establishment of a unified theory accommodating the various processes and mechanisms involved in the combustion and ignition of aluminum particles at micro and nano scales. A comprehensive review on the ignition and combustion of aluminum particles at multi scales was first performed identifying various processes and mechanisms involved. Research focus was also placed on the establishment of a Molecular Dynamics (MD) simulation tool to investigate the characteristics of nano-particulate aluminum through three major studies. The general computational framework involved parallelized preprocessing, post-processing and main code with capability to simulate different ensembles using appropriate algorithms. Size dependence of melting temperature of pure aluminum particles was investigated in the first study. Phenomena like dynamic coexistence of solid and liquid phase and effect of surface charges on melting were explored. The second study involved the study of effect of defects in the form of voids on melting of bulk and particulate phase aluminum. The third MD study was used to analyze the thermo-mechanical behavior of nano-sized aluminum particles with total diameter of 5-10 nm and oxide thickness of 1-2.5 nm. The ensuing solid-solid and solid-liquid phase changes in the core and shell, stresses developed within the shell, and the diffusion of aluminum cations in the oxide layer, were explored in depth for amorphous and crystalline oxide layers. In the limiting case, the condition for pyrophoricity/explosivity of nano-particulate aluminum was analyzed and modified. The size dependence of thermodynamic properties at nano scales were considered and incorporated into the existing theories developed for micro and larger scales. Finally, a phenomenological theory for ignition and combustion of aluminum particles was proposed. The whole time history from ignition till particle burnout was divided into five stages. An attempt was made to explore different modes of ignition based on the effect of pressure, temperature, oxidizer, oxide thickness and particle diameter and was investigated using length and time scales involved during ignition and combustion.
NASA Technical Reports Server (NTRS)
Osipov, Viatcheslav; Muratov, Cyrill; Hafiychuk, Halyna; Ponizovskya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary
2011-01-01
We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents.
Polar-Drive--Implosion Physics on OMEGA and the NIF
NASA Astrophysics Data System (ADS)
Radha, P. B.
2012-10-01
Polar drive (PD) permits the execution of direct-drive--ignition experiments on facilities that are configured for x-ray drive such as the National Ignition Facility (NIF) and Laser M'egajoule. Experiments on the OMEGA laser are used to develop and validate models of PD implosions. Results from OMEGA PD shock-timing and warm implosions are presented. Experiments are simulated with the 2-D hydrodynamic code DRACO including full 3-D ray trace to model oblique beams. Excellent agreement is obtained in shock velocity and catch-up in PD geometry in warm, plastic shells. Predicted areal densities are measured in PD implosion experiments. Good agreement between simulation and experiments is obtained in the overall shape of the compressing shell when observed through x-ray backlighting. Simulated images of the hot core, including the effect of magnetic fields, are compared with experiments. Comparisons of simulated and observed scattered light and bang time in PD geometry are presented. Several techniques to increase implosion velocity are presented including beam profile variations and different ablator materials. Results from shimmed-target PD experiments will also be presented. Designs for future PD OMEGA experiments at ignition-relevant intensities will be presented. The implication of these results for NIF-scale plasmas is discussed. Experiments for the NIF in its current configuration, with indirect-drive phase plates, are proposed to study implosion energetics and shell asymmetries. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
A Study of the Radiant Ignition of a Range of Pyrotechnic Materials Using a CO2 Laser
1990-08-01
of colored smoke compositions. The experimental data serves as a us,/.I probe into ignition mechanisms, and may prove of value in the design of...Therefore, it is measured directly from the oscilloscope recording and is designated ti. Secondly, time to Ignition may be measured using the Go/No-Go or...calculated. This is designated tiG. Both approaches were examined in this study. However, because of the large number of tests required for the Go/No-Go
NASA Technical Reports Server (NTRS)
Pettegrew, Richard Dale
1996-01-01
An experimental study of ignition and flame growth over a thin solid fuel in oxidizer flow speeds from 0 to 10 cm/sec concurrent flow was performed. This study examined the differences between ignition using a resistively heated wire (woven in a sawtooth pattern over the leading edge of the fuel), and a straight resistively heated wire augmented by a chemical ignitor doped onto the leading edge of the fuel. Results showed that the chemical system yielded non-uniform ignition bursts, while the system using only the hotwire gave more uniform ignition. At speeds up to 2.5 cm/sec, the chemical system yielded non-uniform pyrolysis fronts, while the hotwire system gave more uniform pyrolysis fronts. At speeds of 5 cm/sec or greater, both systems gave uniform pyrolysis fronts. The chemically-ignited flames tended to become too dim to see faster than the hotwire-ignited flames, and the flame lengths were observed to be shorter (after the initial burst subsided) for the chemical system for all speeds. Flame and pyrolysis element velocities were measured. Temperature profiles for selected tests were measured using thermocouples at the fuel surface and in the gas phase. Comparisons between the flame element velocities and peak temperatures recorded in these tests with calculated spread rates and peak temperatures from a steady-state model are presented. Agreement was found to be within 20% for most flame elements for nominal velocities of 5 cm/sec and 7.5 cm/sec.
NASA Astrophysics Data System (ADS)
Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.
2015-09-01
A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.
A Preliminary Study of Flame Propagation in a Spark-ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1937-01-01
The N.A.C.A. combustion apparatus was altered to operate as a fuel-injection, spark-ignition engine, and a preliminary study was made of the combustion of gasoline-air mixtures at various air-fuel ratios. Air-fuel ratios ranging from 10 to 21.6 were investigated. Records from an optical indicator and films from a high-speed motion-picture camera were the chief sources of data. Schlieren photography was used for an additional study. The results show that the altered combustion apparatus has characteristics similar to those of a conventional spark-ignition engine and should be useful in studying phenomena in spark-ignition engines. The photographs show the flame front to be irregularly shaped rather than uniformly curved. With a theoretically correct mixture the reaction, as indicated by the photographs, is not completed in the flame front but continues for some time after the combustion front has traversed the mixture.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.
2018-05-01
Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.
NASA Astrophysics Data System (ADS)
Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael
2017-09-01
In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.
Fritt-Rasmussen, Janne; Brandvik, Per Johan
2011-08-01
This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.
Direct electrical arc ignition of hybrid rocket motors
NASA Astrophysics Data System (ADS)
Judson, Michael I., Jr.
Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.
NASA Astrophysics Data System (ADS)
Yamanaka, C.
1999-06-01
Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.
Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules
NASA Astrophysics Data System (ADS)
Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve
2017-10-01
Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Shock timing measurements in DT ice layers
NASA Astrophysics Data System (ADS)
Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.
2013-10-01
Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.
1999-01-01
Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results
NASA Technical Reports Server (NTRS)
Abbud-Madrid, A.; Fiechtner, G. J.; Branch, M. C.; Daily, J. W.
1994-01-01
An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...
2016-05-08
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; ...
2016-04-27
Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less
Simulation of stimulated Brillouin scattering and stimulated Raman scattering in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, L.; Li, J.; Liu, W. D.
2016-04-15
We study stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in shock ignition by comparing fluid and particle-in-cell (PIC) simulations. Under typical parameters for the OMEGA experiments [Theobald et al., Phys. Plasmas 19, 102706 (2012)], a series of 1D fluid simulations with laser intensities ranging between 2 × 10{sup 15} and 2 × 10{sup 16 }W/cm{sup 2} finds that SBS is the dominant instability, which increases significantly with the incident intensity. Strong pump depletion caused by SBS and SRS limits the transmitted intensity at the 0.17n{sub c} to be less than 3.5 × 10{sup 15 }W/cm{sup 2}. The PIC simulations show similar physics but with higher saturationmore » levels for SBS and SRS convective modes and stronger pump depletion due to higher seed levels for the electromagnetic fields in PIC codes. Plasma flow profiles are found to be important in proper modeling of SBS and limiting its reflectivity in both the fluid and PIC simulations.« less
Transient fields produced by a cylindrical electron beam flowing through a plasma
NASA Astrophysics Data System (ADS)
Firpo, Marie-Christine
2012-10-01
Fast ignition schemes (FIS) for inertial confinement fusion should involve in their final stage the interaction of an ignition beam composed of MeV electrons laser generated at the critical density surface with a dense plasma target. In this study, the out-of-equilibrium situation in which an initially sharp-edged cylindrical electron beam, that could e.g. model electrons flowing within a wire [1], is injected into a plasma is considered. A detailed computation of the subsequently produced magnetic field is presented [2]. The control parameter of the problem is shown to be the ratio of the beam radius to the electron skin depth. Two alternative ways to address analytically the problem are considered: one uses the usual Laplace transform approach, the other one involves Riemann's method in which causality conditions manifest through some integrals of triple products of Bessel functions.[4pt] [1] J.S. Green et al., Surface heating of wire plasmas using laser-irradiated cone geometries, Nature Physics 3, 853--856 (2007).[0pt] [2] M.-C. Firpo, http://hal.archives-ouvertes.fr/hal-00695629, to be published (2012).
Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J
2008-10-01
Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.
Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.
Coudour, B; Chetehouna, K; Rudz, S; Gillard, P; Garo, J P
2015-01-01
Minimum ignition energies (MIE) of α-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1,064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of α-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Φ) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different α-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure α-pinene and pure benzene demonstrate that the presence of benzene in α-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the α-pinene/benzene proportion. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisman, Alex; Hawkes, Evatt R.; Talei, Mohsen
In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel,more » DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.« less
Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.
Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C
2018-07-01
Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re-considered for operational purposes in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azer Yalin; Bryan Willson
Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies andmore » approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.« less
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
14 CFR 23.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...
Ignition in convective-diffusive systems
NASA Astrophysics Data System (ADS)
Fotache, Catalin Grig
The main goal of this work is understanding the controlling mechanisms and responses of forced ignition in an environment where chemistry and transport phenomena are intimately coupled. To analyze systematically this interaction the well-characterized counterflow configuration is selected whereupon a cold fuel jet impinges on a heated air jet, and ignites as the air temperature is raised gradually. In this configuration the ignition response is studied experimentally and numerically with extensive variations of the fuel dilution, flow strain rate, and ambient pressure, for hydrogen and Csb1{-}Csb4 paraffins. Experimentally, the temperatures are measured by thermocouple and Raman spectroscopy, while flow strain rates are determined through laser Doppler velocimetry. The experimental envelope comprises pressures of 0.1-8.0 atm, fuel concentrations from 0 to 100%, and strain rates between 50 and 700 ssp{-1}. Computations are performed using various detailed kinetic and transport models, whose adequacy is assessed by comparison with the experimental results. Through computational simulations, the controlling ignition mechanisms are isolated and analyzed. Simplified kinetic models are derived and evaluated, by using sensitivity/flux analyses and the Computational Singular Perturbation (CSP) method. The investigation demonstrates that the coupling chemistry-transport can produce unexpected responses, even for the arguably simplest Hsb2-air kinetic system. Here, up to three stable steady-states are identified experimentally for identical boundary conditions, corresponding to the distinct regimes of frozen flow, mild oxidation, and flaming combustion, respectively. These states can be accessed in a dual-staged ignition sequence, with radical runaway followed by thermokinetic ignition. The pattern, however, depends on the imposed parameters. Specifically, three ignition limits are found when pressure is varied; the first two are characterized by radical runaway only, whereas the third is thermokinetic in character, and may involve dual-staged ignition. The similarity with homogeneous pressure-temperature explosion limits is attributed to the dominance of similar chemistry. When this involves fast kinetics only the transport effects are minimal, such as occurs within the second limit. Conversely, the other two limits are transport-sensitive because of the relatively slower dominant chemistry. The homogeneous-heterogeneous analogy persists when studying the hydrocarbons. For example, increasing pressure uniformly facilitates ignition in both systems. The transport of heat and chemical species out of the reaction zone, however, requires higher temperatures for nonpremixed ignition. Furthermore, nonpremixed ignition is affected by preferential diffusion of light species such as Hsb2. As a result, the addition of relatively small amounts of hydrogen to the fuel jet dramatically reduces the ignition temperature for low ignitability fuels, such as methane. Finally, the presence of diffusive-convective losses results in a selection of the most efficient chemical branching modes. For hydrocarbons, this selection typically implies the dominance of high temperature kinetics, although the Csb4 alkanes show possible transition to a low-to-intermediate temperature branching mode in the limit of elevated pressures. Further research is suggested in this area, as well as in other related directions.
2014-01-15
in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression
NASA Astrophysics Data System (ADS)
Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.
2018-02-01
The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.
NASA Astrophysics Data System (ADS)
Ganteaume, A.; Jappiot, M.; Lampin, C.
2012-04-01
The increasing urbanization of Wildland-Urban Interfaces (WUI) as well as the high fire occurrence in these areas requires the assessment and the ranking of the flammability of the ornamental vegetation surrounding houses especially that planted in hedges. Thus, the flammability of seven species, among those most frequently planted in hedges in Provence (South-Eastern France), were studied at particle level and at dead surface fuel level (litters) under laboratory conditions. The flammability parameters (ignition frequency, time-to-ignition, flaming duration) of the very fine particles (live leaves and particles <2 mm in diameter) were measured using an epiradiator as burning device. The flammability parameters (ignition frequency, time-to-ignition, flaming duration and initial flame propagation) of the undisturbed litter samples were recorded during burning experiments performed on fire bench. Burning experiments using the epiradiator showed that live leaves of Phyllostachys sp., Photinia frasei and Prunus laurocerasus had the shortest time-to-ignition and the highest ignition frequency and flaming duration whereas Pittosporum tobira and Nerium oleander were the longest to ignite with a low frequency. Phyllostachys sp. and Nerium oleander litters were the shortest to ignite while Prunus laurocerasus litter had the lowest bulk density and long time-to-ignition, but high flame propagation. Photinia fraseri litter ignited frequently and had a high flame spread while Pittosporum tobira litter ignited the least frequently and for the shortest duration. Cupressus sempervirens litter had the highest bulk density and the longest flaming duration but the lowest flame propagation. Pyracantha coccinea litter was the longest to ignite and flame propagation was low but lasted a long time. Hierarchical cluster analysis performed on the flammability parameters of live leaves and of litters ranked the seven species in four distinct clusters from the most flammable (Prunus laurocerasus and Pyracantha coccinea) to the least flammable (Pittosporum tobira and Nerium oleander); the other species displaying two groups of intermediate flammabilities (Phyllostachys sp.- Photinia fraseri and Cupressus sempervirens ). The species with highly flammable characteristics should not be used in hedges planted in WUIs in South-Eastern France.
Molded composite pyrogen igniter for rocket motors. [solid propellant ignition
NASA Technical Reports Server (NTRS)
Heier, W. C.; Lucy, M. H. (Inventor)
1978-01-01
A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.
The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor
NASA Astrophysics Data System (ADS)
Bao, Heng; Zhou, Jin; Pan, Yu
2017-03-01
The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.
LOX/Methane Main Engine Igniter Tests and Modeling
NASA Technical Reports Server (NTRS)
Breisacher, Kevin J.; Ajmani, Kumund
2008-01-01
The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.
A polar-drive shock-ignition design for the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Anderson, K. S.; Betti, R.; McKenty, P. W.; Collins, T. J. B.; Hohenberger, M.; Theobald, W.; Craxton, R. S.; Delettrez, J. A.; Lafon, M.; Marozas, J. A.; Nora, R.; Skupsky, S.; Shvydky, A.
2013-05-01
Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.
A study of ignition and simulation circuits for arcjet thrusters, part 1. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.; King, Roger J.; Altenburger, Gene P.
1991-01-01
A 1 kW electronic load was programmed to simulate the nonlinear i-v (volt-ampere) characteristics of an arcjet, both ignited and unignited. The simulator was tested and found to closely resemble an arcjet both for large transients and small perturbances up to about 40 kHz. No attempt was made to simulate the ignition process itself. The dynamic behavior of the arcjet (and the simulator) was shown to differ significantly from that of a resistor bank. Previous research led to the design and construction of a 1 kW arcjet power supply. A high voltage ignition circuit was added to this hardware, and tests on a 1 kW arcjet were performed at NASA-Lewis. All tests were successful and no ignition failures were observed. Circuit documentation and test results are included.
Determination of the fire hazards of mine materials using a radiant panel.
Harteis, S P; Litton, C D; Thomas, R A
2016-01-01
The objective of this study was to develop a laboratory-scale method to rank the ignition and fire hazards of commonly used underground mine materials and to eliminate the need for the expensive large-scale tests that are currently being used. A radiant-panel apparatus was used to determine the materials' relevant thermal characteristics: time to ignition, critical heat flux for ignition, heat of gasification, and mass-loss rate. Three thermal parameters, TRP , TP1 and TP4 , were derived from the data, then developed and subsequently used to rank the combined ignition and fire hazards of the combustible materials from low hazard to high hazard. The results compared favorably with the thermal and ignition hazards of similar materials reported in the literature and support this approach as a simpler one for quantifying these combustible hazards.
The effect of venting on cookoff of a melt-castable explosive (Comp-B)
Hobbs, Michael L.; Kaneshige, Michael J.
2015-03-01
Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 25.1145 - Ignition switches.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
14 CFR 23.1165 - Engine ignition systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Controls and Accessories § 23.1165 Engine ignition systems. Link to an amendment published at 76 FR 75759... discharge of any battery used for engine ignition. (e) Each turbine engine ignition system must be... ignition systems. (f) In addition, for commuter category airplanes, each turbine engine ignition system...
14 CFR 29.1145 - Ignition switches.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...
Propulsion System for Very High Altitude Subsonic Unmanned Aircraft
NASA Technical Reports Server (NTRS)
Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.
1998-01-01
This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.
Suppression of the Rayleigh Taylor instability and its implication for the impact ignition
NASA Astrophysics Data System (ADS)
Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.
2004-12-01
The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.
Wireless Fluid-Level Sensors for Harsh Environments
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.
2009-01-01
Magnetic-field-response sensors have been developed for use in measuring levels of fluids under extreme conditions. The sensors work without wire connections or direct physical contact with power sources, microprocessors, data-acquisition equipment, or electrical circuitry. For fuel-level sensors, the absence of wire connections offers an important safety advantage in elimination of potential ignition sources.
40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...
40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...
Feasibility study of liquid pool burning in reduced gravity
NASA Technical Reports Server (NTRS)
Kanury, A. M.
1979-01-01
The feasibility of conducting experiments in the Spacelab on ignition and flame spread with liquid fuel pools which are initially at a temperature lower than the fuel's flash point temperature was studied. Theories were developed for the ignition and flame spread processes, and experiments were conducted to understand the factors influencing the ignition process and the spread rate. The results were employed to devise a conceptual Spacelab experiment which is expected to be feasible for a safe conduct and to be suitable for obtaining crucial data on the concerned processes.
Ignitability test method and apparatus
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)
1991-01-01
An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.
Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Fan, L.; Yang, S. L.; Kundu, K. P.
1996-01-01
NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermalmore » electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
1981-09-01
nitrocellulose igniter materials using the Ignition Energetics Characterization Device (IECD). The results presented herein represent Phase II eperimental ...auxiliary test cham- bcz is a combustion gas diagnostic section designed to permit determination of the composition and enthalpy level of the gases...removal/assembly and propellant loading. 2.2 Igniter Characteristics 2.2.1 Baseline Igniter The igniter system, Figure 2.3, is designed to provide overall
Fiveland, Scott B.; Wiggers, Timothy E.
2004-06-22
An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.
Manufacturing of Igniters for NHB 8060.1 Testing
NASA Technical Reports Server (NTRS)
Williams, James
1996-01-01
The purpose of this WJI is to incorporate a standard procedure to prepare, certify, and ship standard NHB 8060.1B and NHB 8060.1C igniters for flammability testing and to update LJI-320-35-18. The operations are divided into five parts as follows: A. Preparing the igniter mix; B. Extruding the igniters; C. Curing, cutting, and weighing the igniters; D. Certifying the igniters and E. Packaging, storing, and shipping the igniters
A sustained-arc ignition system for internal combustion engines
NASA Technical Reports Server (NTRS)
Birchenough, A. G.
1977-01-01
A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Chen, Ruey-Hung
2007-08-01
Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.
NASA Astrophysics Data System (ADS)
Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.
2017-10-01
Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, B K; Glenzer, S; Edwards, M J
The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called themore » experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Brian K.; Glenzer, S.; Edwards, M. J.
The National Ignition Campaign (NIC) uses non-igniting 'tritium hydrogen deuterium (THD)' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metricmore » called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less
Combustion characteristics in the transition region of liquid fuel sprays
NASA Technical Reports Server (NTRS)
Cernansky, N. P.; Namer, I.; Tidona, R. J.
1986-01-01
A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.
Kinetic Studies of Reactions in Solution Using Fast Mass Spectrometry
2013-08-13
dicyanamide ionic liquids Hypergolic fuels, or hypergols, can be ignited by exposure to an oxidizing agent under ambient conditions and are a common...DCA) based ionic liquids are a less volatile alternative that are less viscous than most ionic liquids ; however, ignition of these compounds...Condensates upon Hypergolic Ignition of Dicyanamide Ionic Liquids ," Angew. Chem. Int. Ed. 50, 8634–8637 (2011). (7) R. H. Perry, D. I. Bellovin, E
Output testing of small-arms primers
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Doris, Thomas A.; Schimmel, Morry L.
1991-01-01
The performance of two standard primers for initiating small-caliber ammunition are compared to that of a primer for initiating aircraft escape-system components. Three testing methods are employed including: (1) firing the primer to measure total energy delivered; (2) monitoring output in terms of gaseous product-mass flow rate and pressure as a function of time; and (3) firing the primer onto ignition material to study gas pressure produced during ignition and burning as a function of time. The results of the test demonstrate differences in the ignitability factors of the standard primers and time peak pressures of less than 100 microseconds. One unexpected result is that two percussion primers (the FA-41 and the M42C1) developed for different applications have the same ignitability. The ignitability test method is shown to yield the most useful data and can be used to specify percussion primers and optimize their performance.
A low-ignition energy, SCB, thermite igniter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.
1996-06-01
The authors describe threshold ignition studies for semiconductor bridge, SCB, ignition of aluminum/copper oxide (Al/CuO) thermite as a function of the capacitor discharge unit (CDU) firing set discharge capacitance, the charge holder material and the morphology of the CuO. All of the tests were carried out with the devices cooled to 0 F ({minus}18 C). They compared ignition thresholds using a brass charge holder and a G10 charge holder; G10 is a non-conducting, fiber-glass-epoxy composite material. They determined that at 50 V on the discharge capacitor, the thresholds were 30.1 {micro}F and 2.0 {micro}F respectively. The tests revealed that differentmore » CuO morphologies affected the function time (interval between start of the firing set current and the output of the thermite device) but did not significantly affect the threshold sensitivity.« less
The simulations of indirect-drive targets for ignition on megajoule lasers.
NASA Astrophysics Data System (ADS)
Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander
2013-10-01
The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.
Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud
NASA Astrophysics Data System (ADS)
Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei
2017-12-01
The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.
NASA Technical Reports Server (NTRS)
Walther, David C.; Anthenien, Ralph A.; Roslon, Mark; Fernandez-Pello, A. Carlos; Urban, David L.
1999-01-01
The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the Get Away Special Canister (GAS-CAN), an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS) which has been incorporated into the MSC experimental apparatus. Thermocouples are currently used to measure temperature and reaction front velocities. A less intrusive method is desirable, however, as smolder is a very weak reaction and it has been found that heat transfer along the thermocouple is sufficient to affect the smolder reaction. It is expected that the UIS system will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. The UIS measures line of sight permeability, providing information about the reaction front position and extent. Additionally, the ignition sequence of the MSC experiments has been optimized from previous experiments to provide longer periods of self-supported smolder. An ignition protocol of a fixed power to the igniter for a fixed time is now implemented. This, rather than a controlled temperature profile ignition protocol at the igniter surface, along with the UIS system, will allow for better study of the effect of gravity on a smolder reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Owen; Barak, Samuel; Lopez, Joseph
For this study, ignition delay times and methane species time-histories were measured for methane/O 2 mixtures in a high CO 2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH 4 mole fractions ranging from 3.5% -5% and up to 85% CO 2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of twomore » literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO 2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO 2/O 2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less
Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...
2017-03-30
For this study, ignition delay times and methane species time-histories were measured for methane/O 2 mixtures in a high CO 2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH 4 mole fractions ranging from 3.5% -5% and up to 85% CO 2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of twomore » literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO 2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO 2/O 2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less
Development of Ionic Liquid Monopropellants for In-Space Propulsion
NASA Technical Reports Server (NTRS)
Blevins, John A.; Osborne, Robin; Drake, Gregory W.
2005-01-01
A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Wei, Yaochi; Horie, Yasuyuki; Zhou, Min
2018-05-01
The design of new materials requires establishment of macroscopic measures of material performance as functions of microstructure. Traditionally, this process has been an empirical endeavor. An approach to computationally predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs) using mesoscale simulations is developed. The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to directly mimic relevant experiments for quantification of statistical variations of material behavior due to inherent material heterogeneities. The particular thresholds and ignition probabilities predicted are expressed in James type and Walker-Wasley type relations, leading to the establishment of explicit analytical expressions for the ignition probability as function of loading. Specifically, the ignition thresholds corresponding to any given level of ignition probability and ignition probability maps are predicted for PBX 9404 for the loading regime of Up = 200-1200 m/s where Up is the particle speed. The predicted results are in good agreement with available experimental measurements. A parametric study also shows that binder properties can significantly affect the macroscopic ignition behavior of PBXs. The capability to computationally predict the macroscopic engineering material response relations out of material microstructures and basic constituent and interfacial properties lends itself to the design of new materials as well as the analysis of existing materials.
Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge
NASA Astrophysics Data System (ADS)
Peng, Ching-Fang; Chen, How-Ji
2018-02-01
This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.
High-speed imaging of inhomogeneous ignition in a shock tube
NASA Astrophysics Data System (ADS)
Tulgestke, A. M.; Johnson, S. E.; Davidson, D. F.; Hanson, R. K.
2018-05-01
Homogeneous and inhomogeneous ignition of real and surrogate fuels were imaged in two Stanford shock tubes, revealing the influence of small particle fragmentation. n-Heptane, iso-octane, and Jet A were studied, each mixed in an oxidizer containing 21% oxygen and ignited at low temperatures (900-1000 K), low pressures (1-2 atm), with an equivalence ratio of 0.5. Visible images (350-1050 nm) were captured through the shock tube endwall using a high-speed camera. Particles were found to arrive near the endwalls of the shock tubes approximately 5 ms after reflection of the incident shock wave. Reflected shock wave experiments using diaphragm materials of Lexan and steel were investigated. Particles collected from the shock tubes after each experiment were found to match the material of the diaphragm burst during the experiment. Following each experiment, the shock tubes were cleaned by scrubbing with cotton cloths soaked with acetone. Particles were observed to fragment after arrival near the endwall, often leading to inhomogeneous ignition of the fuel. Distinctly more particles were observed during experiments using steel diaphragms. In experiments exhibiting inhomogeneous ignition, flames were observed to grow radially until all the fuel within the cross section of the shock tube had been consumed. The influence of diluent gas (argon or helium) was also investigated. The use of He diluent gas was found to suppress the number of particles capable of causing inhomogeneous flames. The use of He thus allowed time history studies of ignition to extend past the test times that would have been limited by inhomogeneous ignition.
Progress towards ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, M. J.; Patel, P. K.; Lindl, J. D.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mgmore » of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.« less
Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P; Holder, J; Young, B
2006-11-02
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W J; Moses, E; Warner, B
2000-12-07
The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
The National Ignition Facility Project: An Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, W.J.; Moses, E.; Warner, B.
2000-12-07
The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less
Effect of local void morphology on the reaction initiation mechanism in the case of pressed HMX
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.
2017-06-01
The microstructural characteristics of pressed HMX has a significant effect on its sensitivity under shock loading. The microstructure of pressed HMX contains voids of various orientation and aspect ratio. Subject to shock loading, these voids can collapse forming hotspots and initiate chemical reaction. This work shows how the ignition and growth of chemical reaction is dependent on the local microstructural features of the voids. Morphological quantities like size, aspect ratio and orientations are extracted from the real microstructural images of Class III and Class V pressed HMX. These morphological quantities are correlated with the ignition and growth rates of the chemical reaction. The dependency of the sensitivity of a given HMX sample on the local morphological features shows that these local features can create a mocroscale physical response.
Ignition of Hydrogen-Oxygen Rocket Combustor with Chlorine Trifluoride and Triethylaluminum
NASA Technical Reports Server (NTRS)
Gregory, John W.; Straight, David M.
1961-01-01
Ignition of a nominal-125-pound-thrust cold (2000 R) gaseous-hydrogen - liquid-oxygen rocket combustor with chlorine trifluoride (hypergolic with hydrogen) and triethylaluminum (hypergolic with oxygen) resulted in consistently smooth starting transients for a wide range of combustor operating conditions. The combustor exhaust nozzle discharged into air at ambient conditions. Each starting transient consisted of the following sequence of events: injection of the lead main propellant, injection of the igniter chemical, ignition of these two chemicals, injection of the second main propellant, ignition of the two main propellants, increase in chamber pressure to its terminal value, and cutoff of igniter-chemical flow. Smooth ignition was obtained with an ignition delay of less than 100 milliseconds for the reaction of the lead propellant with the igniter chemical using approximately 0.5 cubic inch (0-038 lb) of chlorine trifluoride or 1.0 cubic inch (0-031 lb) of triethylaluminum. These quantities of igniter chemical were sufficient to ignite a 20-percent-fuel hydrogen-oxygen mixture with a delay time of less than 15 milliseconds. Test results indicated that a simple, light weight chemical ignition system for hydrogen-oxygen rocket engines may be possible.
Pyrophoric behaviour of uranium hydride and uranium powders
NASA Astrophysics Data System (ADS)
Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.
2010-01-01
Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H2. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.
Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A
2016-10-01
Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native plants growing beneath shrubs are "igniters" of dead Larrea branches. Once burning, flames produced by dead branches engulf the entire shrub, resulting in locally intense fires without historical precedent in this system. We suggest that fire models and conservation-focused management could be improved by incorporating the distinct flammability characteristics and spatial distributions of spreaders, igniters, and keystone shrubs. © 2016 by the Ecological Society of America.
Study made of Raney nickel technology
NASA Technical Reports Server (NTRS)
Lee, W. B.
1967-01-01
Raney nickel study indicates that its improved storage life is due to gaseous hydrogen and that the mechanism of its ignitions is catalytic and due to chemisorbed hydrogen atoms. It shows that reacted Raney nickel powder can be reactivated and can introduce multiple ignitions in a hydrogen gas stream.
Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold
NASA Astrophysics Data System (ADS)
Barua, A.; Kim, S.; Horie, Y.; Zhou, M.
2013-02-01
A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.
Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...
2015-02-18
Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less
Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.
Shen, Chih-Lung; Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.
Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption
Su, Jye-Chau
2014-01-01
An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372
Direct numerical simulation of auto-ignition of a hydrogen vortex ring reacting with hot air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doom, Jeff; Mahesh, Krishnan
2009-04-15
Direct numerical simulation (DNS) is used to study chemically reacting, laminar vortex rings. A novel, all-Mach number algorithm developed by Doom et al. [J. Doom, Y. Hou, K. Mahesh, J. Comput. Phys. 226 (2007) 1136-1151] is used. The chemical mechanism is a nine species, nineteen reaction mechanism for H{sub 2}/air combustion proposed by Mueller et al. [M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31 (1999) 113-125]. Diluted H{sub 2} at ambient temperature (300 K) is injected into hot air. The simulations study the effect of fuel/air ratios, oxidizer temperature, Lewis number and stroke ratio (ratiomore » of piston stroke length to diameter). Results show that auto-ignition occurs in fuel lean, high temperature regions with low scalar dissipation at a 'most reactive' mixture fraction, {zeta}{sub MR} (Mastorakos et al. [E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109 (1997) 198-223]). Subsequent evolution of the flame is not predicted by {zeta}{sub MR}; a most reactive temperature T{sub MR} is defined and shown to predict both the initial auto-ignition as well as subsequent evolution. For stroke ratios less than the formation number, ignition in general occurs behind the vortex ring and propagates into the core. At higher oxidizer temperatures, ignition is almost instantaneous and occurs along the entire interface between fuel and oxidizer. For stroke ratios greater than the formation number, ignition initially occurs behind the leading vortex ring, then occurs along the length of the trailing column and propagates toward the ring. Lewis number is seen to affect both the initial ignition as well as subsequent flame evolution significantly. Non-uniform Lewis number simulations provide faster ignition and burnout time but a lower maximum temperature. The fuel rich reacting vortex ring provides the highest maximum temperature and the higher oxidizer temperature provides the fastest ignition time. The fuel lean reacting vortex ring has little effect on the flow and behaves similar to a non-reacting vortex ring. (author)« less
The Effect of the Heat Flux on the Self-Ignition of Oriented Strand Board
NASA Astrophysics Data System (ADS)
Hirle, Siegfried; Balog, Karol
2017-06-01
This article deals with the initiation phase of flaming and smouldering burning of oriented strand board. The influence of heat flux on thermal degradation of OSB boards, time to ignition, heat release rate and mass loss rate using thermal analysis and vertical electrical radiation panel methods were studied. Significant information on the influence of the heat flux density and the thickness of the material on time to ignition was obtained.
Development of a High Resolution X-ray Spectrometer on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.
2017-10-01
A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of <20 ps. A third cylindrical crystal focuses the entire He α to He β spectrum onto an image plate for a time-integrated spectrum to correlate the two streaked signals. The instrument was absolutely calibrated by the x-ray group at the Princeton Plasma Physics Laboratory using a micro-focus x-ray source. Detailed calibration procedures, including source and spectrum alignment, energy calibration, crystal performance evaluation, and measurement of the resolving power and the integrated reflectivity will be presented. Initial NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael
2015-06-01
Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.
Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...
2015-04-17
An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less
Semiconductor bridge, SCB, ignition studies of Al/CuO thermite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickes, R.W. Jr.; Wackerbarth, D.E.; Mohler, J.H.
1997-04-01
The authors briefly summarize semiconductor bridge operation and review their ignition studies of Al/CuO thermite as a function of the capacitor discharge unit (CDU) firing set capacitance, charge holder material and morphology of the CuO. Ignition thresholds were obtained using a brass charge holder and a non-conducting fiber-glass-epoxy composite material, G10. At - 18 C and a charge voltage of 50V, the capacitance thresholds were 30.1 {mu}F and 2.0 {mu}F respectively. They also present new data on electrostatic discharge (ESD) and radio frequency (RF) vulnerability tests.
NASA Astrophysics Data System (ADS)
Caruso, Angelo; Pais, Vicente A.
1998-07-01
We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.
Ignitability test method and apparatus
NASA Technical Reports Server (NTRS)
Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)
1989-01-01
An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition.
Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments
NASA Astrophysics Data System (ADS)
Rotavera, B.; Petersen, E. L.
2013-07-01
Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.
Researches on Preliminary Chemical Reactions in Spark-Ignition Engines
NASA Technical Reports Server (NTRS)
Muehlner, E.
1943-01-01
Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.
Evaluation of laser-driven ion energies for fusion fast-ignition research
NASA Astrophysics Data System (ADS)
Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.
2017-10-01
We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...
NASA Technical Reports Server (NTRS)
Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.
2006-01-01
A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.
On the critical flame radius and minimum ignition energy for spherical flame initiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zheng; Burke, M. P.; Ju, Yiguang
2011-01-01
Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less
Three-dimensional Simulations of Pure Deflagration Models for Thermonuclear Supernovae
NASA Astrophysics Data System (ADS)
Long, Min; Jordan, George C., IV; van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Meyer, Bradley; Rich, Paul; Lamb, Don Q.
2014-07-01
We present a systematic study of the pure deflagration model of Type Ia supernovae (SNe Ia) using three-dimensional, high-resolution, full-star hydrodynamical simulations, nucleosynthetic yields calculated using Lagrangian tracer particles, and light curves calculated using radiation transport. We evaluate the simulations by comparing their predicted light curves with many observed SNe Ia using the SALT2 data-driven model and find that the simulations may correspond to under-luminous SNe Iax. We explore the effects of the initial conditions on our results by varying the number of randomly selected ignition points from 63 to 3500, and the radius of the centered sphere they are confined in from 128 to 384 km. We find that the rate of nuclear burning depends on the number of ignition points at early times, the density of ignition points at intermediate times, and the radius of the confining sphere at late times. The results depend primarily on the number of ignition points, but we do not expect this to be the case in general. The simulations with few ignition points release more nuclear energy E nuc, have larger kinetic energies E K, and produce more 56Ni than those with many ignition points, and differ in the distribution of 56Ni, Si, and C/O in the ejecta. For these reasons, the simulations with few ignition points exhibit higher peak B-band absolute magnitudes M B and light curves that rise and decline more quickly; their M B and light curves resemble those of under-luminous SNe Iax, while those for simulations with many ignition points are not.
Laminated chemical and physical micro-jet actuators based on conductive media
NASA Astrophysics Data System (ADS)
Gadiraju, Priya D.
2008-04-01
This dissertation presents the development of electrically-powered, lamination-based microactuators for the realization of large arrays of high impulse and short duration micro-jets with potential applications in the field of micro-electro-mechanical systems (MEMS). Microactuators offer unique control opportunities by converting the input electrical or chemical energy stored in a propellant into useful mechanical energy. This small and precise control obtained can potentially be applied towards aerodynamic control and transdermal drug delivery applications. This thesis work discusses the feasibility of using microactuators for two such applications: Control of the motion of a spinning projectile by utilizing the chemically-driven microjets ejected from the actuators, and enhancement of the permeability properties of skin by selectively ablating the stratum corneum layer of skin using the physical microjets ejected from the actuators. This enhanced permeability of skin can later be used for the delivery of high molecular weight drugs for transdermal drug delivery. The development of electrically powered microactuators starts by fabricating an array of radially firing microactuators using lamination-based microfabrication techniques that potentially enable batch fabrication at low cost. The microactuators of this thesis consist of three main parts: a micro chamber in which the propellant is stored; two electrode structures through which electrical energy is supplied to the propellant; and a micro nozzle through which the propellant or released gases from the propellant are expanded as a jet. Once the actuators are fabricated, they are integrated with MEMS-process-compatible propellants and optimized so as to produce instantaneous ignition of the propellant. This instantaneous ignition is achieved either by making the propellant itself conductive, thus, passing an electric current directly through the propellant; or by discharging an arc across the propellant by placing it between two closely spaced electrodes. The first concept is demonstrated for the application of projectile maneuvering where energetic solid propellant is used in generating a high velocity gaseous jet and the second concept is demonstrated for transdermal drug delivery application where a rapid physical jet of a non-energetic propellant is generated. In the case of chemical-based microactuators, the feasibility of using conductive solid propellant based actuators for maneuvering a 25 mm bluff body projectile spinning at 600 Hz is presented. Several conductive solid propellants are developed and characterized for their electrical conductivity and required ignition energy. Finally, the propellant integrated microactuators are characterized for performance in terms of impulse delivered, thrust generated and duration of the jet. These experimental results are then compared to predicted results from simulations. In the case of physical based microactuators, the feasibility of using released physical jets from the microactuator array for transdermal drug delivery application is presented. Several bio-compatible and FDA-approved liquids are used as propellants and are characterized in terms of thrusts delivered and duration of the released jets. These thermo-mechanical jets are then used to expose skin locally so as to create micro conduits in the stratum corneum layer of skin. Both thermal effects and thermo-mechanical effects of the jet on exposed skin are studied. For both cases, histology of exposed skin is presented and its permeability to drug analog molecules is studied.
Flow Effects on the Flammability Diagrams of Solid Fuels
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.
1997-01-01
A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.
14 CFR 33.37 - Ignition system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignition system. 33.37 Section 33.37... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a dual ignition system with at least two spark plugs for each...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...
Catalytic ignition of hydrogen/oxygen
NASA Technical Reports Server (NTRS)
Green, James M.; Zurawski, Robert L.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.
NASA Astrophysics Data System (ADS)
Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin
2009-07-01
Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.
Preliminary Appraisal of Ferrocene as an Igniting Agent for JP-4 Fuel and Fuming Nitric Acid
NASA Technical Reports Server (NTRS)
Miller, RIley O.
1953-01-01
A preliminary experimental study was made of the properties of ferrocene as a solute and as a suspension in JP-4 fuel, and of the ignition delays of ferrocene - JP-4 mixture with A.F. specification 14104 white fuming nitric acid (WFNA). The investigation covered concentrations of 4 to 10 percent by weight ferrocene, and a temperature range of -40 to 80 F. The solubility of ferrocene in JP-4 is about 5 percent at room temperature and about 1 percent (extrapolated) at -80 F. The solubility is increased somewhat by increased aromatics content. Undissolved ferrocene particles of 100 mesh and smaller settle rapidly in JP-4. Clear solutions of 4 and 5 percent ferrocene in JP-4 fuels containing 10 and 25 percent by volume aromatics, respectively, do not ignite with WFNA at room temperature. Mixtures containing 10 percent ferrocene (100- mesh and smaller undissolved particles in suspension) ignited with vigorous persistent flames at room temperature, but did not ignite at -38 F. The ignition delays at room temperature, however, were widely varied; the range from 85 milliseconds to over 1 second perhaps reflected differences in degree of sedimentation.
Auto-ignition of hydrocarbons behind reflected shock waves.
NASA Technical Reports Server (NTRS)
Vermeer, D. J.; Meyer, J. W.; Oppenheim, A. K.
1972-01-01
The paper reports on the study of auto-ignition of hydrocarbon-oxygen mixtures behind reflected shock waves. Because of their bearing on the problem of knock in internal combustion engines, n-heptane and iso-octane were chosen as the combustible species. Their stoichiometric mixtures with oxygen had to be diluted with 70% argon to reduce the influence of the boundary layer. Photographic records demonstrated the existence of two different modes of ignition, as has been previously established for the hydrogen-oxygen system. The pressure-temperature limits between these regions of mild and strong ignition were determined. From the same experimental tests, induction time data were obtained over the pressure range of 1-4 atm and the temperature interval of 1200-1700 K.
Interaction of Burning Metal Particles
NASA Technical Reports Server (NTRS)
Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.
1999-01-01
Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.
NASA Astrophysics Data System (ADS)
Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.
2015-12-01
Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.
Ignition interlock : an investigation into rural Arizona judges’ perceptions.
DOT National Transportation Integrated Search
2014-05-01
This study sought to answer several questions regarding 2007 Arizona legislation requiring ignition interlock for all offenders convicted of Driving-Under-the-Influence (DUI), including first time DUI offenders. At the time the law was passed, Arizon...
Ignition interlock: an investigation into rural Arizona judges' perceptions : traffic tech.
DOT National Transportation Integrated Search
2014-05-01
This study sought to answer several questions regarding 2007 : Arizona legislation requiring ignition interlock for all offenders : convicted of driving under the influence (DUI), including : first-time DUI offenders. At the time the law was passed, ...
Multidimensional Effects on Ignition, Transition, and Flame Spread in Microgravity
NASA Technical Reports Server (NTRS)
Kashiwagi, T.; Mell, W. E.; Nakamura, Y.; Olson, S. L.; Baum, H. R.; McGrattan, K. B.
2001-01-01
Localized ignition is initiated by an external radiant source at the middle of a thermally thin sample under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Two ignition configurations are simulated, one across the sample surface creating a line shaped flame front (two-dimensional, 2-D, configuration) and the other a small circular ignition (three-dimensional, 3-D, configuration). Ignition, subsequent transition to simultaneously upstream and downstream flame spread, and flame growth behavior are studied experimentally and theoretically. Details of our theoretical models and numerical techniques can be found in previous publications. The effects of the sample width on the transition and subsequent flame spread, and flame spread along open edges of a thermally thin paper sample are determined. Experimental observations of flame spread phenomena were conducted in the 10 s drop tower and also on the space shuttle STS-75 flight to determine the effects of oxygen concentration and external flow velocity on flame spread rate and flame growth pattern. Finally, effects of confinement in a small test chamber on the transition and subsequent flame spread are examined. The results of these studies are briefly reported.
Ignition, Transition, Flame Spread in Multidimensional Configurations in Microgravity
NASA Technical Reports Server (NTRS)
Kashiwagi, Takashi; Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.; Olson, Sandra L.; Fujita, Osamu; Kikuchi, Masao; Ito, Kenichi
1997-01-01
Ignition of solid fuels by external thermal radiation and subsequent transition to flame spread are processes that not only are of considerable scientific interest but which also have fire safety applications. A material which undergoes a momentary ignition might be tolerable but a material which permits a transition to subsequent flame spread would significantly increase the fire hazard in a spacecraft. Therefore, the limiting condition under which flame cannot spread should be calculated from a model of the transition from ignition instead of by the traditional approach based on limits to a steady flame spread model. However, although the fundamental processes involved in ignition have been suggested there have been no definitive experimental or modeling studies due to the flow motion generated by buoyancy near the heated sample surface. In this study, microgravity experiments which required longer test times such as in air and surface smoldering experiment were conducted in the space shuttle STS-75 flight; shorter experimental tests such as in 35% and 50% oxygen were conducted in the droptower in the Japan Microgravity Center, JAMIC. Their experimental data along with theoretically calculated results from solving numerically the time-dependent Navier-Stokes equations are summarized in this paper.
Inertial Confinement Fusion Annual Report 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, Robert L.
The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less
Uncertainty analysis of signal deconvolution using a measured instrument response function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartouni, E. P.; Beeman, B.; Caggiano, J. A.
2016-10-05
A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimummore » physical parameters.« less
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.
Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.
Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.
Nano-Ignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-01-04
developed and ignition of liquid fuel sprays by the torch has been achieved. In this report, we will describe the experimental procedure for producing...ignition that is induced by a compact Xe-flash, including the results for photoignition of a simple fuel spray in air as well as ignition of a coaxial...window. Experimental Setup for Fuel Spray Ignition Three different setups were utilized for the fuel ignition experiments. The first one was used
Datte, P. S.; Ross, J. S.; Froula, D. H.; ...
2016-09-21
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1
NASA Astrophysics Data System (ADS)
1992-07-01
The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datte, P. S.; Ross, J. S.; Froula, D. H.
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, D; Churby, A; Krieger, E
2011-07-25
The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtualmore » model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.« less
Yang, Kun; Wu, Yanqing; Huang, Fenglei
2018-08-15
A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.
2018-01-01
A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.
Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min
The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.
Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates
NASA Astrophysics Data System (ADS)
Treviño, C.
2010-12-01
In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.
40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?
Code of Federal Regulations, 2010 CFR
2010-07-01
... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...
40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...
Relation between inflammables and ignition sources in aircraft environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1951-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.
Application of Spontaneous Raman Scattering to the Flowfield in a Scramjet Combustor
NASA Astrophysics Data System (ADS)
Sander, T.; Sattelmayer, T.
2002-07-01
For the investigation of the ignition and reaction of fuel injected into the combustor of a Scramjet at a flight Mach number of 8 high temperature test air at supersonic speed is required. One economic possibility to simulate these inlet conditions experimentally is the use of vitiators which preheat the air by the burning of hydrogen. Downstream of the precombustor the flow is accelerated in a Laval nozzle to a Mach number of 2.15 and enters the combustor. For the numerical simulation of a supersonic reacting flow precise information concerning the physical properties during ignition and reaction are required. Optical measurements are best suited for delivering this information as they do not disturb the supersonic flow like probes and as their application is not limited by thermal stress. Raman scattering offers the possibility of measuring the static temperature and the concentration of majority species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebner, M.A.
1996-08-01
Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and themore » configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.« less
Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGowan, B.J.; Kotowski, M.; Schleich, D.
1993-11-01
This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less
Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.; ...
2017-04-17
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
Capsule physics comparison of different ablators for NIF implosion designs
NASA Astrophysics Data System (ADS)
Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher
2017-10-01
Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.
Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D
2017-06-01
Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.
Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
NASA Astrophysics Data System (ADS)
Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.
NASA Astrophysics Data System (ADS)
Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.
2017-03-01
The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.
Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows
NASA Technical Reports Server (NTRS)
Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.
2001-01-01
A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.
NASA Astrophysics Data System (ADS)
Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun
2010-04-01
The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.
Physical and Chemical Processes in Flames
2010-02-15
7. "An efficient reduced mechanism for methane oxidation with NOx chemistry ," by T. F. Lu and C. K. Law, Paper No. C17, Fifth US Combustion Meeting... Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...TERMS Laminar flame speeds; ignition temperatures; extinction limits; mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethy lene oxidation
Fundamentals of Physical Volcanology
NASA Astrophysics Data System (ADS)
Marsh, Bruce
2010-04-01
Fundamentals haunt me. Certain words ignite unavoidable trains of thought, trains that begin in a cascade, unexpectedly leaping chasm after chasm, rushing from single words to whole paragraphs to full books to men's lives. So it is with me with seeing the word “fundamental” in print. I cannot evade the euphoric excitement of thinking that someone has found something terribly original and simple, understandable by every journeyman, explaining everything.
Thermal ignition combustion system
Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.
1988-04-19
The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.
Thermal ignition combustion system
Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.
1988-01-01
The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian
2017-03-28
A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
Research on measurement of aviation magneto ignition strength and balance
NASA Astrophysics Data System (ADS)
Gao, Feng; He, Zhixiang; Zhang, Dingpeng
2017-12-01
Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.
Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich
2016-04-15
The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.
Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder
NASA Astrophysics Data System (ADS)
Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.
2017-09-01
Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, M; Kukkadapu, G; Kumar, K
The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less
NIF Target Designs and OMEGA Experiments for Shock-Ignition Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Anderson, K. S.
2012-10-01
Shock ignition (SI)footnotetextR. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs require the addition of a high-intensity (˜5 x 10^15 W/cm^2) laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the imploding capsule. Achieving ignition with SI requires the laser spike to generate an ignitor shock with a launching pressure typically in excess of ˜300 Mbar. At the high laser intensities required during the spike pulse, stimulated Raman (SRS) and Brillouin scattering (SBS) could reflect a significant fraction of the incident light. In addition, SRS and the two-plasmon-decay instability can accelerate hot electrons into the shell and preheat the fuel. Since the high-power spike occurs at the end of the pulse when the areal density of the shell is several tens of mg/cm^2, shock-ignition fuel layers are shielded against hot electrons with energies below 150 keV. This paper will present data for a set of OMEGA experiments that were designed to study laser--plasma interactions during the spike pulse. In addition, these experiments were used to demonstrate that high-pressure shocks can be produced in long-scale-length plasmas with SI-relevant intensities. Within the constraints imposed by the hydrodynamics of strong shock generation and the laser--plasma instabilities, target designs for SI experiments on the NIF will be presented. Two-dimensional radiation--hydrodynamic simulations of SI target designs for the NIF predict ignition in the polar-drive beam configuration at sub-MJ laser energies. Design robustness to various 1-D effects and 2-D nonuniformities has been characterized. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion
NASA Astrophysics Data System (ADS)
Mattox, J. R.
2017-01-01
I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the release of combustion products, i.e., a "whoosh rocket." My recommendation is that the standard fuel for pedagogical whoosh demonstrations be isopropanol, and the recommended vessel is the 3.8-L high-density polyethylene (HDPE) bottle.
Chemical and Physical Properties of Hi-Cal-2
NASA Technical Reports Server (NTRS)
Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.
1955-01-01
As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.
Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret; Boehman, Andre; Lavoie, George
Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less
Modeling anthropogenic and natural fire ignitions in an inner-alpine valley
NASA Astrophysics Data System (ADS)
Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo
2018-03-01
Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.
Two-stage autoignition and edge flames in a high pressure turbulent jet
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-07-04
A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less
Ignition Delay Associated with a Strained Strip
NASA Technical Reports Server (NTRS)
Gerk, T. J.; Karagozian, A. R.
1996-01-01
Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.
Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D
2011-07-01
Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.
DOT National Transportation Integrated Search
2014-02-01
Platinum has been recognized as a viable combustion catalyst for use in transportation : engines operating at fuel-lean conditions. Its change in electrical resistance with temperature : has been used to measure light-off temperatures and rates of he...
Ignition interlocks reduce re-arrest rates of alcohol offenders
DOT National Transportation Integrated Search
2000-01-15
In a recent study of repeat offenders in Maryland, ignition interlocks reduced the risk of alcohol traffic violations by 64% during the first year they were required. In the second year, when interlocks could be removed, 3.5% of the remaining interlo...
Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen
NASA Technical Reports Server (NTRS)
Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura
1989-01-01
The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).
Relation Between Inflammables and Ignition Sources in Aircraft Environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1950-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
Single Droplet Combustion of Decane in Microgravity: Experiments and Numerical Modeling
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegam, M.; Xu, G.
2004-01-01
This paper presents experimental data on single droplet combustion of decane in microgravity and compares the results to a numerical model. The primary independent experiment variables are the ambient pressure and oxygen mole fraction, pressure, droplet size (over a relatively small range) and ignition energy. The droplet history (D(sup 2) history) is non-linear with the burning rate constant increasing throughout the test. The average burning rate constant, consistent with classical theory, increased with increasing ambient oxygen mole fraction and was nearly independent of pressure, initial droplet size and ignition energy. The flame typically increased in size initially, and then decreased in size, in response to the shrinking droplet. The flame standoff increased linearly for the majority of the droplet lifetime. The flame surrounding the droplet extinguished at a finite droplet size at lower ambient pressures and an oxygen mole fraction of 0.15. The extinction droplet size increased with decreasing pressure. The model is transient and assumes spherical symmetry, constant thermo-physical properties (specific heat, thermal conductivity and species Lewis number) and single step chemistry. The model includes gas-phase radiative loss and a spherically symmetric, transient liquid phase. The model accurately predicts the droplet and flame histories of the experiments. Good agreement requires that the ignition in the experiment be reasonably approximated in the model and that the model accurately predict the pre-ignition vaporization of the droplet. The model does not accurately predict the dependence of extinction droplet diameter on pressure, a result of the simplified chemistry in the model. The transient flame behavior suggests the potential importance of fuel vapor accumulation. The model results, however, show that the fractional mass consumption rate of fuel in the flame relative to fuel vaporized is close to 1.0 for all but the lowest ambient oxygen mole fractions.