Sample records for ii basic equations

  1. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  2. Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2008-12-01

    An ActiveX component, QrtzGeotherm, to calculate temperature and vapor fraction in a geothermal reservoir using quartz solubility geothermometry was written in Visual Basic 6.0. Four quartz solubility equations along the liquid-vapor saturation curve: (i) a quadratic equation of 1/ T and pressure, (ii) a linear equation relating log SiO 2 to the inverse of absolute temperature ( T), (iii) a polynomial of T including logarithmic terms and (iv) temperature as a polynomial of SiO 2 including logarithmic terms are programmed. The QrtzGeotherm has input parameters: (i) HRes—the reservoir enthalpy (kJ/kg), (ii) SiO2TD—silica concentration in total discharge (ppm), (iii) GeoEq—number of quartz solubility equation and (iv) TempGuess—a guess value of the reservoir temperature (°C). The reservoir enthalpy Hres is assumed to be the same as the total discharge enthalpy HR. The output parameters are (i) TempRes—reservoir temperature (°C) and (ii) VapRes—reservoir vapor fraction. The first step is to calculate the total discharge concentration of silica SiO2TD from the concentration of silica SiO2Col of separated water, sampled after N-separations of vapor and water. To use QrtzGeotherm in MS-Excel, three functions SiO2TD, GeoResTemp and GeoResVap for an N-stage separation of geothermal reservoir fluid are written in Visual Basic for Application (VBA). Similarly, a demonstration program, QrtzGeothrm, is written in Visual Basic 6.0.

  3. Multi-Component Diffusion with Application To Computational Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Gnoffo, Peter A.

    1998-01-01

    The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.

  4. A Study of Green's Function Methods Applied to Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    2001-01-01

    The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.

  5. Permanent-magnet linear alternators. I - Fundamental equations. II - Design guidelines

    NASA Astrophysics Data System (ADS)

    Boldea, I.; Nasar, S. A.

    1987-01-01

    The general equations of permanent-magnet heteropolar three-phase and single-phase linear alternators, powered by free-piston Stirling engines, are presented, with application to space power stations and domestic applications including solar power plants. The equations are applied to no-load and short-circuit conditions, illustrating the end-effect caused by the speed-reversal process. In the second part, basic design guidelines for a three-phase tubular linear alternator are given, and the procedure is demonstrated with the numerical example of the design of a 25-kVA, 14.4-m/s, 120/220-V, 60-Hz alternator.

  6. Math 3008--Developmental Mathematics II. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…

  7. Central role of the observable electric potential in transport equations.

    PubMed

    Garrido, J; Compañ, V; López, M L

    2001-07-01

    Nonequilibrium systems are usually studied in the framework of transport equations that involve the true electric potential (TEP), a nonobservable variable. Nevertheless another electric potential, the observable electric potential (OEP), may be defined to construct a useful set of transport equations. In this paper several basic characteristics of the OEP are deduced and emphasized: (i) the OEP distribution depends on thermodynamic state of the solution, (ii) the observable equations have a reference value for all other transport equations, (iii) the bridge that connects the OEP with a certain TEP is usually defined by the ion activity coefficient, (iv) the electric charge density is a nonobservable variable, and (v) the OEP formulation constitutes a natural model for studying the fluxes in membrane systems.

  8. Diagnosing development. II - A study of rapid cyclone development using analyzed data fields

    NASA Technical Reports Server (NTRS)

    Smith, Phillip; Lupo, Anthony; Zwack, Peter

    1991-01-01

    A diagnosis is presented of the explosive development phase of a cyclone that occurred over the southeastern U.S. during the 24 hour period 1200 GMT January 20 to 1200 GMT January 21, 1979. The Zwack-Osossi development equation is extended to incorporate geostrophic and ageostrophic forcing of the basic development parameter, geostrophic vorticity tendency. This equation yields reasonable comparability with observed geostrophic vorticity changes and shows positive vorticity advection, latent heat release and thermal advection to be the primary development mechanisms.

  9. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  10. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  11. Theory in Bilingual Education: Ethnoperspectives in Bilingual Education Research, Volume II.

    ERIC Educational Resources Information Center

    Padilla, Raymond V., Ed.

    The second of three volumes that present the three basic factors of the bilingual education equation--public policy, theory, and technology--this volume focuses on the theoretical aspects of bilingual education. Papers from the areas of language, culture, neurolinguistics, and pedagogy include: (1) "Ethnic and Linguistic Processes: The Future of…

  12. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  13. AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Ramírez, J. C.; Raga, A. C.; Lora, V.

    2016-12-20

    We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. Wemore » compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.« less

  14. Dirac electron in a chiral space-time crystal created by counterpropagating circularly polarized plane electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Borzdov, G. N.

    2017-10-01

    The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic.more » A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.« less

  16. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II)

    NASA Astrophysics Data System (ADS)

    Ahamad, Tansir; Alshehri, Saad M.

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.

  17. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  18. The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,

    DTIC Science & Technology

    1987-06-11

    Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1

  19. Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2008-12-01

    Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).

  20. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  1. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II).

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Turbulent transport of He II in active and passive phase separators using slit devices and porous media

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Frederking, T. H. K.

    1988-01-01

    The turbulent transport mode of vapor liquid phase separators (VLPS) for He II has been investigated comparing passive porous plug separators with active phase separators (APS) using slits of variable flow paths within a common frame of reference. It is concluded that the basic transport regimes in both devices are identical. An integrated Gorter-Mellink (1949) equation, found previously to predict VLPS results of porous plugs, is employed to analyze APS data published in the literature. It is found that the Gorter-Mellink flow rate parameter for 9-micron and 14-micron APS slit widths are relatively independent of the slit width, having a rate constant of about 9 + or - 10 percent. This agrees with the early heat flow results for He II entropy transport at zero net mass flow in wide capillaries and slits.

  3. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole.

    PubMed

    Matsui, Kazuki; Tsume, Yasuhiro; Takeuchi, Susumu; Searls, Amanda; Amidon, Gordon L

    2017-04-03

    Weakly basic drugs exhibit a pH-dependent dissolution profile in the gastrointestinal (GI) tract, which makes it difficult to predict their oral absorption profile. The aim of this study was to investigate the utility of the gastrointestinal simulator (GIS), a novel in vivo predictive dissolution (iPD) methodology, in predicting the in vivo behavior of the weakly basic drug dipyridamole when coupled with in silico analysis. The GIS is a multicompartmental dissolution apparatus, which represents physiological gastric emptying in the fasted state. Kinetic parameters for drug dissolution and precipitation were optimized by fitting a curve to the dissolved drug amount-time profiles in the United States Pharmacopeia apparatus II and GIS. Optimized parameters were incorporated into mathematical equations to describe the mass transport kinetics of dipyridamole in the GI tract. By using this in silico model, intraluminal drug concentration-time profile was simulated. The predicted profile of dipyridamole in the duodenal compartment adequately captured observed data. In addition, the plasma concentration-time profile was also predicted using pharmacokinetic parameters following intravenous administration. On the basis of the comparison with observed data, the in silico approach coupled with the GIS successfully predicted in vivo pharmacokinetic profiles. Although further investigations are still required to generalize, these results indicated that incorporating GIS data into mathematical equations improves the predictability of in vivo behavior of weakly basic drugs like dipyridamole.

  4. Ordinary differential equations.

    PubMed

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  5. Reexamination of the calculation of two-center, two-electron integrals over Slater-type orbitals. II. Neumann expansion of the exchange integrals

    NASA Astrophysics Data System (ADS)

    Lesiuk, Michał; Moszynski, Robert

    2014-12-01

    In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.

  6. Calculating Equilibrium Constants in the SnCl2-H2O-NaOH System According to Potentiometric Titration Data

    NASA Astrophysics Data System (ADS)

    Maskaeva, L. N.; Fedorova, E. A.; Yusupov, R. A.; Markov, V. F.

    2018-05-01

    The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009-1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2-H2O-NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.

  7. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  8. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    PubMed

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  9. 40 CFR 98.356 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Maximum CH4 production potential (B0) used as an input to Equation II-1 or II-2 of this subpart, from Table II-1 to this subpart. (4) Methane conversion factor (MCF) used as an input to Equation II-1 or II...

  10. 40 CFR 98.356 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Maximum CH4 production potential (B0) used as an input to Equation II-1 or II-2 of this subpart, from Table II-1 to this subpart. (4) Methane conversion factor (MCF) used as an input to Equation II-1 or II...

  11. 40 CFR 98.356 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Maximum CH4 production potential (B0) used as an input to Equation II-1 or II-2 of this subpart, from Table II-1 to this subpart. (4) Methane conversion factor (MCF) used as an input to Equation II-1 or II...

  12. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  13. 40 CFR 98.356 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Maximum CH4 production potential (B0) used as an input to Equation II-1 or II-2 of this subpart. (4) Methane conversion factor (MCF) used as an input to Equation II-1 or II-2 of this subpart. (5) Annual mass...

  14. Cosmic-ray streaming perpendicular to the mean magnetic field. II - The gyrophase distribution function

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Jokipii, J. R.

    1978-01-01

    The distribution function of cosmic rays streaming perpendicular to the mean magnetic field in a turbulent medium is reexamined. Urch's (1977) discovery that in quasi-linear theory, the flux is due to particles at 90 deg pitch angle is discussed and shown to be consistent with previous formulations of the theory. It is pointed out that this flux of particles at 90 deg cannot be arbitrarily set equal to zero, and hence the alternative theory which proceeds from this premise is dismissed. A further, basic inconsistency in Urch's transport equation is demonstrated, and the connection between quasi-linear theory and compound diffusion is discussed.

  15. TEMPEST II--A NEUTRON THERMALIZATION CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shudde, R.H.; Dyer, J.

    The TEMPEST II neutron thermalization code in Fortran for IBM 709 or 7090 calculates thermal neutron flux spectra based upon the Wigner-Wilkins equation, the Wilkins equation, or the Maxwellian distribution. When a neutron spectrum is obtained, TEMPEST II provides microscopic and macroscopic cross section averages over that spectrum. Equations used by the code and sample input and output data are given. (auth)

  16. Objective Lightning Probability Forecasting for Kennedy Space Center and Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred C.

    2010-01-01

    The AMU created new logistic regression equations in an effort to increase the skill of the Objective Lightning Forecast Tool developed in Phase II (Lambert 2007). One equation was created for each of five sub-seasons based on the daily lightning climatology instead of by month as was done in Phase II. The assumption was that these equations would capture the physical attributes that contribute to thunderstorm formation more so than monthly equations. However, the SS values in Section 5.3.2 showed that the Phase III equations had worse skill than the Phase II equations and, therefore, will not be transitioned into operations. The current Objective Lightning Forecast Tool developed in Phase II will continue to be used operationally in MIDDS. Three warm seasons were added to the Phase II dataset to increase the POR from 17 to 20 years (1989-2008), and data for October were included since the daily climatology showed lightning occurrence extending into that month. None of the three methods tested to determine the start of the subseason in each individual year were able to discern the start dates with consistent accuracy. Therefore, the start dates were determined by the daily climatology shown in Figure 10 and were the same in every year. The procedures used to create the predictors and develop the equations were identical to those in Phase II. The equations were made up of one to three predictors. TI and the flow regime probabilities were the top predictors followed by 1-day persistence, then VT and Ll. Each equation outperformed four other forecast methods by 7-57% using the verification dataset, but the new equations were outperformed by the Phase II equations in every sub-season. The reason for the degradation may be due to the fact that the same sub-season start dates were used in every year. It is likely there was overlap of sub-season days at the beginning and end of each defined sub-season in each individual year, which could very well affect equation performance.

  17. Essential core of the Hawking–Ellis types

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado; Visser, Matt

    2018-06-01

    The Hawking–Ellis (Segre–Plebański) classification of possible stress–energy tensors is an essential tool in analyzing the implications of the Einstein field equations in a more-or-less model-independent manner. In the current article the basic idea is to simplify the Hawking–Ellis type I, II, III, and IV classification by isolating the ‘essential core’ of the type II, type III, and type IV stress–energy tensors; this being done by subtracting (special cases of) type I to simplify the (Lorentz invariant) eigenvalue structure as much as possible without disturbing the eigenvector structure. We will denote these ‘simplified cores’ type II0, type III0, and type IV0. These ‘simplified cores’ have very nice and simple algebraic properties. Furthermore, types I and II0 have very simple classical interpretations, while type IV0 is known to arise semi-classically (in renormalized expectation values of standard stress–energy tensors). In contrast type III0 stands out in that it has neither a simple classical interpretation, nor even a simple semi-classical interpretation. We will also consider the robustness of this classification considering the stability of the different Hawking–Ellis types under perturbations. We argue that types II and III are definitively unstable, whereas types I and IV are stable.

  18. Turbulent fluid motion 3: Basic continuum equations

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.

  19. Cauchy-Jost function and hierarchy of integrable equations

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2015-11-01

    We describe the properties of the Cauchy-Jost (also known as Cauchy-Baker-Akhiezer) function of the Kadomtsev-Petviashvili-II equation. Using the bar partial -method, we show that for this function, all equations of the Kadomtsev-Petviashvili-II hierarchy are given in a compact and explicit form, including equations for the Cauchy-Jost function itself, time evolutions of the Jost solutions, and evolutions of the potential of the heat equation.

  20. 42 CFR 21.75 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the officer; (ii) Social security number of the officer; (iii) Duty station location of the... inclusion in computation of the officer's disposable earnings: (i) Basic pay; (ii) Basic allowances for... under title II of the Social Security Act when the withholding is required by law; (ii) FICA. (3...

  1. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1930-01-01

    Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.

  2. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  3. On star formation in stellar systems. I - Photoionization effects in protoglobular clusters

    NASA Technical Reports Server (NTRS)

    Tenorio-Tagle, G.; Bodenheimer, P.; Lin, D. N. C.; Noriega-Crespo, A.

    1986-01-01

    The progressive ionization and subsequent dynamical evolution of nonhomogeneously distributed low-metal-abundance diffuse gas after star formation in globular clusters are investigated analytically, taking the gravitational acceleration due to the stars into account. The basic equations are derived; the underlying assumptions, input parameters, and solution methods are explained; and numerical results for three standard cases (ionization during star formation, ionization during expansion, and evolution resulting in a stable H II region at its equilibrium Stromgren radius) are presented in graphs and characterized in detail. The time scale of residual-gas loss in typical clusters is found to be about the same as the lifetime of a massive star on the main sequence.

  4. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  5. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.

    PubMed

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  6. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  7. 77 FR 43861 - Importer of Controlled Substances; Notice Of Application; Cody Laboratories, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... basic class of any controlled substance in schedule I or II are, and will continue to be, required to... importer of the following basic classes of controlled substances: Drug Schedule Opium, Raw (9600) II Concentrate Poppy Straw (9670) II Tapentadol (9780) II The company plans to import narcotic raw materials for...

  8. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  9. Planckian Information (Ip): A New Measure of Order in Atoms, Enzymes, Cells, Brains, Human Societies, and the Cosmos

    NASA Astrophysics Data System (ADS)

    Ji, Sungchul

    A new mathematical formula referred to as the Planckian distribution equation (PDE) has been found to fit long-tailed histograms generated in various fields of studies, ranging from atomic physics to single-molecule enzymology, cell biology, brain neurobiology, glottometrics, econophysics, and to cosmology. PDE can be derived from a Gaussian-like equation (GLE) by non-linearly transforming its variable, x, while keeping the y coordinate constant. Assuming that GLE represents a random distribution (due to its symmetry), it is possible to define a binary logarithm of the ratio between the areas under the curves of PDE and GLE as a measure of the non-randomness (or order) underlying the biophysicochemical processes generating long-tailed histograms that fit PDE. This new function has been named the Planckian information, IP, which (i) may be a new measure of order that can be applied widely to both natural and human sciences and (ii) can serve as the opposite of the Boltzmann-Gibbs entropy, S, which is a measure of disorder. The possible rationales for the universality of PDE may include (i) the universality of the wave-particle duality embedded in PDE, (ii) the selection of subsets of random processes (thereby breaking the symmetry of GLE) as the basic mechanism of generating order, organization, and function, and (iii) the quantity-quality complementarity as the connection between PDE and Peircean semiotics.

  10. Preparation of Palladium(II) Ion-Imprinted Polymeric Nanospheres and Its Removal of Palladium(II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Tao, Hu-Chun; Gu, Yi-Han; Liu, Wei; Huang, Shuai-Bin; Cheng, Ling; Zhang, Li-Juan; Zhu, Li-Li; Wang, Yong

    2017-11-01

    Three kinds of functional monomers, 4-vinylpridine(4-VP), 2-(allylthio)nicotinic acid(ANA), and 2-Acetamidoacrylic acid(AAA), were used to synthetize palladium(II) ion-imprinted polymeric nanospheres (Pd(II) IIPs) via precipitation-polymerization method in order to study the effects of different functional monomers on the adsorption properties of ion-imprinted materials. The results of UV spectra in order to study the interaction between template ion PdCl4 2- and functional monomers showed that there were great differences in structure after the template reacted with three functional monomers, 4-VP and ANA caused a large structural change, while AAA basically did not change. Further results on the adsorption performance of Pd(II) IIPs on Pd(II) confirmed 4-VP was the most promising candidate for the synthesis of Pd(II) IIPs with an adsorption capacity of 5.042 mg/g as compared with ANA and AAA. The influence of operating parameters on Pd(II) IIP's performance on Pd(II) adsorption was investigated. There was an increase in the adsorption capacity of Pd(II) IIPs at higher pH, temperature, and initial concentration of Pd(II). The results of multi-metal competitive adsorption experiments showed that Pd(II) IIPs had selectivity for Pd(II). An adsorption equilibrium could be reached at 180 min. Kinetic analysis showed that the adsorption test data fitted best to the pseudo-second order kinetic model, and the theoretical equilibrium adsorption capacity was about 5.085 mg/g. The adsorption isotherms of Pd(II) by Pd(II) IIPs agreed well with the Freundlich equation, suggesting a favorable adsorption reaction under optimal conditions. These results showed that Pd(II) IIPs have potential application in the removal of Pd(II) from aqueous solutions and may provide some information for the selection of functional monomers in the preparation of Pd(II) IIPs.

  11. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    PubMed

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  12. The nature of the sunspot phenomenon. I - Solutions of the heat transport equation

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.

  13. A computational study of the discretization error in the solution of the Spencer-Lewis equation by doubling applied to the upwind finite-difference approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.; Seth, D.L.; Ray, A.K.

    A detailed and systematic study of the nature of the discretization error associated with the upwind finite-difference method is presented. A basic model problem has been identified and based upon the results for this problem, a basic hypothesis regarding the accuracy of the computational solution of the Spencer-Lewis equation is formulated. The basic hypothesis is then tested under various systematic single complexifications of the basic model problem. The results of these tests provide the framework of the refined hypothesis presented in the concluding comments. 27 refs., 3 figs., 14 tabs.

  14. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues.

    PubMed

    Güzel, Fuat; Yakut, Hakan; Topal, Giray

    2008-05-30

    In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.

  15. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  16. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmeijer, R.

    1994-11-01

    A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less

  18. Sex Differences in Item Functioning in the Comprehensive Inventory of Basic Skills-II Vocabulary Assessments

    ERIC Educational Resources Information Center

    French, Brian F.; Gotch, Chad M.

    2013-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II) is a diagnostic battery intended for children in grades 1st through 6th. The aim of this study was to test for item invariance, or differential item functioning (DIF), of the CIBS-II across sex in the standardization sample through the use of item response theory DIF detection…

  19. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  20. Comparing the IRT Pre-equating and Section Pre-equating: A Simulation Study.

    ERIC Educational Resources Information Center

    Hwang, Chi-en; Cleary, T. Anne

    The results obtained from two basic types of pre-equatings of tests were compared: the item response theory (IRT) pre-equating and section pre-equating (SPE). The simulated data were generated from a modified three-parameter logistic model with a constant guessing parameter. Responses of two replication samples of 3000 examinees on two 72-item…

  1. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.

  2. Challenge for more precise e- and ion-transport in gases and liquids

    NASA Astrophysics Data System (ADS)

    White, Ron

    2016-09-01

    The full potential of technologies driven by non-equilibrium electron and ion processes in gases, liquids and soft-matter can only be realised once the basic physics has been mastered. The central component in this pursuit is an ever increasing need for the precise determination of electron and ion transport in such media. Over the last few decades, the group at James Cook University and collaborators have developed a suite of multi-term Boltzmann equation solutions to treat temporal and spatial non-locality for electrons and ions in electric and magnetic fields in gaseous systems. In this presentation, we will highlight recent developments including (i) a space-time multi-term solution of Boltzmann's equation; (ii) a unified treatment of electron and ion solutions of Boltzmann's equation which avoids mass ratio expansions; (iii) the treatment dense gases and liquids, including coherent scattering, screened potentials and (self) trapped bubble state effects, the latter of which can give rise to fractional transport behaviour, and (iv) the application to consider the self-consistency of cross-sections for electrons in biomolecules. Contributors: G. Boyle, P. Stokes, M. Casey, N. Garland, D. Cocks, D. Konovalov, S. Dujko, R. E. Robson, K. F. Ness, M. Brunger, S. Buckman, J. de Urquijo and Z. Lj. Petrovic. Support: Australian Research Council.

  3. Comment on "Scrutinizing the carbon cycle and CO2residence time in the atmosphere" by H. Harde

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A.; Butzin, Martin; Halpern, Joshua B.; Rice, Ken; Zeebe, Richard E.

    2018-05-01

    Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).

  4. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  5. Project EASE II. Workplace Education Curricula: From Teaching Basic Skills to Training the Trainer.

    ERIC Educational Resources Information Center

    Northern Illinois Univ., De Kalb.

    This curriculum guide was created to guide workplace basic skills instructors in the design of customized curricula for Project Employment Assistance and Skill Enhancement (EASE II), an on-the-job literacy and basic skills improvement project for employees of small companies in the metal working industry in the Chicago area. The guide contains…

  6. Artificial magnetic field for the space station (Protecting space stations in future space missions)

    NASA Astrophysics Data System (ADS)

    Ahmadi Tara, Miss

    Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artifi-cial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) artificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artificial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) ar-tificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: General equation of artificial field: Equations of artificial field basic on the magnetic reconnection: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance General equation of artificial field: Equations of artificial field basic on the magnetic reconnec-tion: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance Results Tab II. Danger percentage of 5 strong solar storms for equipment and astronauts in the future space station within the influence on artificial field As has been shown in Tab II artificial magnetic field could pass great dangers of solar storms and protect space station wherever of free space. FIG.2) Upper panel shows X-ray flux at two wavelengths 0.5-4 ˚ and 1-8 ˚. Lower Panel shows Proton flux in various energy levels received on the Moon's A A surface from solar storm 2000(obtained from simulation) 0-14(UT) obtained from outside the field, 14-7(UT) obtained from receiver in the field, 7-0(UT) obtained from receiver behind in-strument Conclusion In this brief paper, I describe a way to protect future space station from energetic particles. This field could reduce damage of solar storms and cosmic rays that arrived to the space station outside the Earth magnetic field. This field performs as magnetosphere for space station. It could change its situation and make easy live on the space station. This strong magnetic field must be generated by low-temperature superconductors. They are suit-able material to use at generating a strong magnetic field. These materials could be used in the structure of spacecrafts during long duration space travels in future

  7. A generalized sine condition and performance comparison of Wolter type II and Wolter-Schwarzschild extreme ultraviolet telescopes

    NASA Technical Reports Server (NTRS)

    Saha, T. T.

    1984-01-01

    An equation similar to the Abbe sine condition is derived for a Wolter type II telescope. This equation and the sine condition are then combined to produce a so called generalized sine condition. Using the law of reflection, Fermat's principle, the generalized sine condition, and simple geometry the surface equations for a Wolter type II telescope and an equivalent Wolter-Schwarzschild telescope are calculated. The performances of the telescopes are compared in terms of rms blur circle radius at the Gaussian focal plane and at best focus.

  8. Padé approximations for Painlevé I and II transcendents

    NASA Astrophysics Data System (ADS)

    Novokshenov, V. Yu.

    2009-06-01

    We use a version of the Fair-Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz-Segur and Hastings-McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.

  9. Catmull-Rom Curve Fitting and Interpolation Equations

    ERIC Educational Resources Information Center

    Jerome, Lawrence

    2010-01-01

    Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…

  10. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  11. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  12. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1990-01-01

    Presented is an approach to solving oxidation-reduction reactions. The advantage of this procedure for both acidic and basic equations is stressed and emphasizes the electrical nature of redox equations. (KR)

  13. A structural equation modeling analysis of students' understanding in basic mathematics

    NASA Astrophysics Data System (ADS)

    Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus

    2017-11-01

    This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.

  14. An Outlook on Biothermodynamics: Needs, Problems, and New Developments. I. Stability and Hydration of Proteins

    NASA Astrophysics Data System (ADS)

    Keller, Jürgen U.

    2008-12-01

    The application of concepts, principles, and methods of thermodynamics of equilibria and processes to bioengineering systems has led to a new and growing field: engineering biothermodynamics. This article, which is meant as the first in a series, gives an outline of basic aspects, changes, and actual examples in this field. After a few introductory remarks, the basic concepts and laws of thermodynamics extended to systems with internal variables, which serve as models for biofluids and other biosystems, are given. The method of thermodynamics is then applied to the problem of thermal stability of aqueous protein solutions, especially to that of myoglobin solutions. After this, the phenomenon of hydration of proteins by adsorption and intrusion of water molecules is considered. Several other phenomena like the adsorption of proteins on solid surfaces or cell membranes and their temperature and pressure-related behavior represented by an equation of state, or the thermodynamics of bacterial solutions including chemical reactions like wine fermentation, etc., will be presented in Parts II and III of this article.

  15. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  16. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  17. Equations as Guides to Thinking and Problem Solving

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2011-01-01

    Science is the study of nature's rules. The most basic of these are the laws of physics, most of which are expressed in equation form. Physics equations show how concepts connect to one another. But does a study of these equations enhance student understanding? Not always, for too often in an introductory course students are tempted (or even…

  18. Foundations of radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mihalas, D.; Mihalas, B. W.

    This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.

  19. PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Dust Acoustic Solitary Waves in Saturn F-ring's Region

    NASA Astrophysics Data System (ADS)

    E. K., El-Shewy; M. I. Abo el, Maaty; H. G., Abdelwahed; M. A., Elmessary

    2011-01-01

    Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nh0, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nh0, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.

  20. Uncertainty Considerations for Ballistic Limit Equations

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.

    2005-01-01

    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation regarding which of them would be the most appropriate to follow.

  1. Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1980-01-01

    A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.

  2. A Variational Assimilation Method for Satellite and Conventional Data: Model 2 (version 1)

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1991-01-01

    The Model II variational data assimilation model is the second of the four variational models designed to blend diverse meteorological data into a dynamically constrained data set. Model II differs from Model I in that it includes the thermodynamic equation as the fifth dynamical constraint. Thus, Model II includes all five of the primative equations that govern atmospheric flow for a dry atmosphere.

  3. History of the Voluntary Intermodal Sealift Agreement

    DTIC Science & Technology

    2002-06-01

    reflect executed Voluntary Enrollment Contracts (VEC) for VISA Stages I, II, and III to include basic activation procedures; DOD annual minimums for...provisions; and on-the-shelf basic agreements (such as VISA Intermodal Contingency Contracts (VICC) for Stages I, II, and III). The anticipated...insufficient Program incentives are revised annually, but the basic tenets remain in place. Activation, capacity required to commit and carrier risk clauses

  4. Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad

    2018-05-01

    The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.

  5. Dynamic sealing principles

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained.

  6. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    NASA Technical Reports Server (NTRS)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  7. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  8. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  9. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  10. Asymptotic Laws of Thermovibrational Convecton in a Horizontal Fluid Layer

    NASA Astrophysics Data System (ADS)

    Smorodin, B. L.; Myznikova, B. I.; Keller, I. O.

    2017-02-01

    Theoretical study of convective instability is applied to a horizontal layer of incompressible single-component fluid subjected to the uniform steady gravity, longitudinal vibrations of arbitrary frequency and initial temperature difference. The mathematical model of thermovibrational convection has the form of initial boundary value problem for the Oberbeck-Boussinesq system of equations. The problems are solved using different simulation strategies, like the method of averaging, method of multiple scales, Galerkin approach, Wentzel-Kramers-Brillouin method and Floquet technique. The numerical analysis has shown that the effect of vibrations on the stability threshold is complex: vibrations can either stabilize or destabilize the basic state depending on values of the parameters. The influence of the Prandtl number on the instability thresholds is investigated. The asymptotic behaviour of critical values of the parameters is studied in two limiting cases: (i) small amplitude and (ii) low frequency of vibration. In case (i), the instability is due to the influence of thermovibrational mechanism on the classical Rayleigh-Benard convective instability. In case (ii), the nature of the instability is related to the instability of oscillating counter-streams with a cubic profile.

  11. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  12. Spatiotemporal optical dark X solitary waves.

    PubMed

    Baronio, Fabio; Chen, Shihua; Onorato, Miguel; Trillo, Stefano; Wabnitz, Stefan; Kodama, Yuji

    2016-12-01

    We introduce spatiotemporal optical dark X solitary waves of the (2+1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.

  13. Dominant height-based height-diameter equations for trees in southern Indiana

    Treesearch

    John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter

    2008-01-01

    Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...

  14. The method of averages applied to the KS differential equations

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.; Starke, S. E.

    1977-01-01

    A new approach for the solution of artificial satellite trajectory problems is proposed. The basic idea is to apply an analytical solution method (the method of averages) to an appropriate formulation of the orbital mechanics equations of motion (the KS-element differential equations). The result is a set of transformed equations of motion that are more amenable to numerical solution.

  15. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    NASA Astrophysics Data System (ADS)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  16. Using Theoretical Descriptors in Structural Activity Relationships: 4. Molecular Orbital Basicity and Electrostatic Basicity

    DTIC Science & Technology

    1988-11-01

    rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction

  17. Estimation of CT-derived abdominal visceral and subcutaneous adipose tissue depots from anthropometry in Europeans, South Asians and African Caribbeans.

    PubMed

    Eastwood, Sophie V; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F; Forouhi, Nita; Whincup, Peter; Hughes, Alun D; Chaturvedi, Nishi

    2013-01-01

    South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. 669 Europeans, 514 South Asians and 227 African Caribbeans (70 ± 7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R(2) range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R(2) 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R(2) was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available.

  18. BASIC INVESTIGATIONS IN PHOTOPOTENTIOMETRY.

    DTIC Science & Technology

    favorably with potentials calculated from the Nernst equation . The potentials are produced by a mechanism resembling a concentration cell with...transference. The effects of temperature and concentration are well defined by the Nernst equation . The observed potential at any time during the irradiation...is approximated by a potential calculated from the Nernst equation . (Author)

  19. Available Energy via Nonequilibrium Thermodynamics.

    ERIC Educational Resources Information Center

    Woollett, E. L.

    1979-01-01

    Presents basic relations involving the concept of available energy that are derived from the local equations of nonequilibrium thermodynamics. The equations and applications of the local thermodynamic equilibrium LTD model are also presented. (HM)

  20. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  1. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  2. The motion of an arbitrarily rotating spherical projectile and its application to ball games

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2013-07-01

    In this paper the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary ‘wind’ are developed. Three forces are assumed to act on the projectile: (i) gravity, (ii) a drag force proportional to the square of the projectile's velocity and in the opposite direction to this velocity and (iii) a lift or ‘Magnus’ force also assumed to be proportional to the square of the projectile's velocity and in a direction perpendicular to both this velocity and the angular velocity vector of the projectile. The problem has been coded in Matlab and some illustrative model trajectories are presented for ‘ball-games’, specifically golf and cricket, although the equations could equally well be applied to other ball-games such as tennis, soccer or baseball. Spin about an arbitrary axis allows for the treatment of situations where, for example, the spin has a component about the direction of travel. In the case of a cricket ball the subtle behaviour of so-called ‘drift’, particularly ‘late drift’, and also ‘dip’, which may be produced by a slow bowler's off or leg-spin, are investigated. It is found that the trajectories obtained are broadly in accord with those observed in practice. We envisage that this paper may be useful in two ways: (i) for its inherent scientific value as, to the best of our knowledge, the fundamental equations derived here have not appeared in the literature and (ii) in cultivating student interest in the numerical solution of differential equations, since so many of them actively participate in ball-games, and they will be able to compare their own practical experience with the overall trends indicated by the numerical results. As the paper presents equations which can be further extended, it may be of interest to research workers. However, since only the most basic principles of fundamental mechanics are employed, it should be well within the grasp of first year university students in physics and engineering and, with the guidance of teachers, good final year secondary school students. The trajectory results included may be useful to sporting personnel with no formal training in physics.

  3. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1984-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are given explicitly. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, is derived by solving the system of master equations accounting for the multiple-level transitions.

  4. Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1985-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are explicitly given. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, are derived by solving the system of master equations accounting for the multiple-level transitions.

  5. Multistep integration formulas for the numerical integration of the satellite problem

    NASA Technical Reports Server (NTRS)

    Lundberg, J. B.; Tapley, B. D.

    1981-01-01

    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators.

  6. Coincidence degree and periodic solutions of neutral equations

    NASA Technical Reports Server (NTRS)

    Hale, J. K.; Mawhin, J.

    1973-01-01

    The problem of existence of periodic solutions for some nonautonomous neutral functional differential equations is examined. It is an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations and of a generalized Leray-Schauder theory. Although proofs are simple, the results are nontrivial extensions to the neutral case of existence theorems for periodic solutions of functional differential equations.

  7. Space-Plane Spreadsheet Program

    NASA Technical Reports Server (NTRS)

    Mackall, Dale

    1993-01-01

    Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.

  8. A Theory of Preference Reversals.

    DTIC Science & Technology

    1984-08-01

    the subject mst find sme way to transform-the basic evaluation, uCG ), into a monetary amonnt. we hypothesize that subjects do : this by a process of...the basic equations as follows; MS() = (1 - ()w 7) where, A -[C)- uCG )I/uCW)C) .. Furthermore, we can solve for ulC) by using equation (8); thus, u (a...monetary value of gambles by a method which avoids references to market -type behavior. Grether and Plott asked subjects to give Othe exact dollar

  9. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  10. Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring.

    PubMed

    Vongboot, Monnapat; Suesoonthon, Monrudee

    2015-01-01

    Polyurethane foam (PUF) mini-column was used to eliminate copper and iron for the determination of nickel in pierced rings. The PUF mini-column was connected to FIA system for on-line sorption of copper and iron in complexes form of CuSCN(+) and FeSCN(2+). For this season, the acid solution containing a mixture of Ni(II), Fe(III), Cu(II) and SCN(-) ions was firstly flew into the PUF column. Then, the percolated solution which Fe(III) and Cu(II) ions is separated from analysis was injected into FIA system to react with 4-(2-pyridylazo) resorcinol (PAR) reagent in basic condition which this method is called pH gradient technique. The Ni-PAR complexes obtained were measured theirs absorbance at 500 nm by UV visible spectrophotometer. In this study, it was found that Cu(II) and Fe(III) were completely to form complexes with 400 mmol/L KSCN and entirely to eliminate in acidic condition at pH 3.0. In the optimum condition of these experiments, the method provided the linear relationship between absorbance and the concentration of Ni(II) in the range from 5.00 to 30.00 mg/L. Linear equation is y=0.0134x+0.0033 (R(2)=0.9948). Precision, assessed in the term of the relative standard deviation, RSD, and accuracy for multiple determinations obtained in values of 0.77-1.73% and 97.4%, respectively. The level of an average amount of Ni(II) in six piercing rings was evaluated to be 14.78 mg/g. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2011-03-01

    We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.

  12. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  13. Critical de Broglie wavelength in superconductors

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  14. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  15. Equating Two Forms of a Criterion-Referenced Test by Using Norm Referenced Data: An Illustration of Two Methods.

    ERIC Educational Resources Information Center

    Garcia-Quintana, Roan A.; Johnson, Lynne M.

    Three different computational procedures for equating two forms of a test were applied to a pair of mathematics tests to compare the results of the three procedures. The tests that were being equated were two forms of the SRA Mastery Mathematics Tests. The common, linking test used for equating was the Comprehensive Tests of Basic Skills, Form S,…

  16. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  17. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  18. Kinetic and isotherm studies for nickel (II) removal using novel mesoparticle graphene sand composite synthesised from sand and arenga palm sugar

    NASA Astrophysics Data System (ADS)

    Zularisam, A. W.; Wahida, Norul

    2017-07-01

    Nickel (II) is one of the most toxic contaminants recognised as a carcinogenic and mutagenic agent which needs complete removal from wastewater before disposal. In the present study, a novel adsorbent called mesoparticle graphene sand composite (MGSCaps) was synthesised from arenga palm sugar and sand by using a green, simple, low cost and efficient methodology. Subsequently, this composite was characterised and identified using field emission scanning electron microscope (FESEM), x-ray diffraction (XRD) and elemental mapping (EM). The adsorption process was investigated and optimised under the experimental parameters such as pH, contact time and bed depth. The results showed that the interaction between nickel (II) and MGSCaps was not ion to ion interaction hence removal of Ni (II) can be applied at any pH. The results were also exhibited the higher contact time and bed depth, the higher removal percentage of nickel (II) occurred. Adsorption kinetic data were modelled using Pseudo-first-order and Pseudo-second-order equation models. The experimental results indicated pseudo-second-order kinetic equation was most suitable to describe the experimental adsorption kinetics data with maximum capacity of 40% nickel (II) removal for the first hour. The equilibrium adsorption data was fitted with Langmuir, and Freundlich isotherms equations. The data suggested that the most fitted equation model is the Freundlich with correlation R2=0.9974. Based on the obtained results, it can be stated that the adsorption method using MGSCaps is an efficient, facile and reliable method for the removal of nickel (II) from waste water.

  19. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bart, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.

  20. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  1. Towards a solution of the puzzle posed by superconducting SrTiO3

    NASA Astrophysics Data System (ADS)

    Malik, G. P.

    2015-09-01

    Suitably doped SrTiO3 was found in 1964 to undergo a superconducting transition below 1 K with a dome-like Tc versus n (electron concentration) plot. The apex of the dome — a point of inflection — corresponds to the point (n≈9 ×1019cm-3, Tc≈0.30 K). On either side of it, Tc goes down to ≈0.1 K for the extreme values between which n was varied. A single value of Tc is thus observed for two different values of n. The puzzle for the theory has been to explain this result. Treating the problem in all its generality, we present here three equations: the μ1-incorporated BCS equation for Tc, the μ0-incorporated equation for the T = 0 gap Δ0, where μ1 and μ0 are the chemical potentials at T = Tc and T = 0 respectively, and an equation that relates the interaction parameters λ1 and λ0 at these temperatures. Because there are five unknowns in the problem, we tackle these equations via an approximation scheme that includes setting μ1 = μ0 and λ1 = λ0. The latter of these is factually a basic tenet of the BCS theory. Salient features of our findings are: (i) the solutions for Tc and Δ0 on the RHS (LHS) of the dome correspond to μ> kBθD(μ < kBθD); kB = Boltzmann constant, θD = Debye temperature, (ii) for solutions on the LHS the limits of the integrals in the equations need to be curtailed to obtain real solutions and (iii) the point μ = kBθD is a point of inflection in the Tc versus μ plot. Since the puzzle has remained unsolved for a long time, we also offer here a purely mathematical model for λ(μ) — sans physical justification — which leads to a Tc versus μ plot qualitatively in agreement with experiment.

  2. Silicon and Manganese Partition Between Slag and Metal Phases and Their Activities Pertinent to Ferromanganese and Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Cengizler, Hakan; Eric, R. Hurman

    Equilibrium between MnO-CaO-MgO-SiO2-Al2O3 slags and carbon saturated Mn-Si-Fe-C alloys was investigated under CO at 1500oC. Manganese and silicon activities were obtained by using the present data and the previously determined MnO and SiO2 activities of the slag. Quadratic multi-coefficient regression equations were developed for activity coefficients of manganese and silicon. The conclusions of this work are:(i)increase in the basicity and the CaO/Al2O3 ratios decreases the Mn distribution ratio,(ii)increase in the silica concentration and the MgO/CaO ratio increases the Mn distribution ratio, iii)carbon and manganese as well as carbon and silicon of the metal phase are inversely proportional,(iv)as Mn/Fe and Mn/Si ratio increases in the metal the carbon solubility increases,(v)decrease in the basicity increases the silicon content of the metal and (vi)increase in the silica content of the slag increases the silicon content of the metal and this effect is more pronounced at the higher Mn/Fe and Mn/Si ratios.

  3. Nonlinear Waves.

    DTIC Science & Technology

    1988-02-01

    in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations

  4. Metrics for Good Measure. Level II. Instructor's Guide.

    ERIC Educational Resources Information Center

    Cooper, Gloria S.; And Others

    This guide and the accompanying student workbook (separate document) comprise the Adult Basic Education Level II (grades 4, 5, and 6) package on the metric system. An introductory section provides background information on adult basic daily living skills, a discussion of the design and use of the student workbook, and information on what the…

  5. Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1988-01-01

    Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)

  6. Statistical Extremes of Turbulence and a Cascade Generalisation of Euler's Gyroscope Equation

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Scherzer, Daniel

    2016-04-01

    Turbulence refers to a rather well defined hydrodynamical phenomenon uncovered by Reynolds. Nowadays, the word turbulence is used to designate the loss of order in many different geophysical fields and the related fundamental extreme variability of environmental data over a wide range of scales. Classical statistical techniques for estimating the extremes, being largely limited to statistical distributions, do not take into account the mechanisms generating such extreme variability. An alternative approaches to nonlinear variability are based on a fundamental property of the non-linear equations: scale invariance, which means that these equations are formally invariant under given scale transforms. Its specific framework is that of multifractals. In this framework extreme variability builds up scale by scale leading to non-classical statistics. Although multifractals are increasingly understood as a basic framework for handling such variability, there is still a gap between their potential and their actual use. In this presentation we discuss how to dealt with highly theoretical problems of mathematical physics together with a wide range of geophysical applications. We use Euler's gyroscope equation as a basic element in constructing a complex deterministic system that preserves not only the scale symmetry of the Navier-Stokes equations, but some more of their symmetries. Euler's equation has been not only the object of many theoretical investigations of the gyroscope device, but also generalised enough to become the basic equation of fluid mechanics. Therefore, there is no surprise that a cascade generalisation of this equation can be used to characterise the intermittency of turbulence, to better understand the links between the multifractal exponents and the structure of a simplified, but not simplistic, version of the Navier-Stokes equations. In a given way, this approach is similar to that of Lorenz, who studied how the flap of a butterfly wing could generate a cyclone with the help of a 3D ordinary differential system. Being well supported by the extensive numerical results, the cascade generalisation of Euler's gyroscope equation opens new horizons for predictability and predictions of processes having long-range dependences.

  7. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software - Case study of Baraolt River, Romania

    NASA Astrophysics Data System (ADS)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.

  8. Estimation of CT-Derived Abdominal Visceral and Subcutaneous Adipose Tissue Depots from Anthropometry in Europeans, South Asians and African Caribbeans

    PubMed Central

    Eastwood, Sophie V.; Tillin, Therese; Wright, Andrew; Heasman, John; Willis, Joseph; Godsland, Ian F.; Forouhi, Nita; Whincup, Peter; Hughes, Alun D.; Chaturvedi, Nishi

    2013-01-01

    Background South Asians and African Caribbeans experience more cardiometabolic disease than Europeans. Risk factors include visceral (VAT) and subcutaneous abdominal (SAT) adipose tissue, which vary with ethnicity and are difficult to quantify using anthropometry. Objective We developed and cross-validated ethnicity and gender-specific equations using anthropometrics to predict VAT and SAT. Design 669 Europeans, 514 South Asians and 227 African Caribbeans (70±7 years) underwent anthropometric measurement and abdominal CT scanning. South Asian and African Caribbean participants were first-generation migrants living in London. Prediction equations were derived for CT-measured VAT and SAT using stepwise regression, then cross-validated by comparing actual and predicted means. Results South Asians had more and African Caribbeans less VAT than Europeans. For basic VAT prediction equations (age and waist circumference), model fit was better in men (R2 range 0.59-0.71) than women (range 0.35-0.59). Expanded equations (+ weight, height, hip and thigh circumference) improved fit for South Asian and African Caribbean women (R2 0.35 to 0.55, and 0.43 to 0.56 respectively). For basic SAT equations, R2 was 0.69-0.77, and for expanded equations it was 0.72-0.86. Cross-validation showed differences between actual and estimated VAT of <7%, and SAT of <8% in all groups, apart from VAT in South Asian women which disagreed by 16%. Conclusion We provide ethnicity- and gender-specific VAT and SAT prediction equations, derived from a large tri-ethnic sample. Model fit was reasonable for SAT and VAT in men, while basic VAT models should be used cautiously in South Asian and African Caribbean women. These equations will aid studies of mechanisms of cardiometabolic disease in later life, where imaging data are not available. PMID:24069381

  9. 75 FR 64744 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... applicants for registration to import a basic class of any controlled substance in schedule I or II are, and... this section to a bulk manufacturer of a controlled substance in schedule I or II, and prior to issuing... Enforcement Administration (DEA) to be registered as an importer of Remifentanil (9739), a basic class of...

  10. 76 FR 77253 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... applicants for registration to import a basic class of any controlled substance in schedule I or II are, and... this Section to a bulk manufacturer of a controlled substance in schedule I or II, and prior to issuing... Enforcement Administration (DEA) to be registered as an importer of Remifentanil (9739), a basic class of...

  11. A Trainer's Manual for Basic Helping Skills. Counseling Older Persons. Volume III.

    ERIC Educational Resources Information Center

    Myers, Jane E., Ed.

    This manual, the third in a three-volume series on counseling older adults, is designed to accompany and supplement volume II, "Basic Helping Skills for Service Providers," and focuses on training for communication skills. The units and their sections correspond to those in volume II, for easy cross-referencing. The units contain information for…

  12. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection.

    PubMed

    Jafaruddin; Indratno, Sapto W; Nuraini, Nuning; Supriatna, Asep K; Soewono, Edy

    2015-01-01

    Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.

  13. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  14. Semiannual Report October 1, 1999 through March 31, 2000

    DTIC Science & Technology

    2000-04-01

    Mark Carpenter (NASA Langley). Textbook Multigrid Efficiency for the Navier-Stokes Equations Boris Diskin A typical modern Reynolds-Averaged...defined as textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work...basic elements of the barriers to be overcome in extending textbook efficiencies to the compressible RANS equations, namely entering flows, far wake

  15. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    NASA Astrophysics Data System (ADS)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  16. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  17. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  18. Transport of reacting solutes in porous media: Relation between mathematical nature of problem formulation and chemical nature of reactions

    USGS Publications Warehouse

    Rubin, Jacob

    1983-01-01

    Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.

  19. 78 FR 39337 - Importer of Controlled Substances; Notice Of Registration; Mallinckrodt, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... narcotic raw material are not appropriate, 72 FR 3417 (2007). Regarding Phenylacetone (8501), a basic class... Phenylacetone (8501) II Coca Leaves (9040) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company...

  20. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  1. Recursion Operators and Bi-Hamiltonian Structures in Multidimensions II,

    DTIC Science & Technology

    1986-07-01

    a Symmifetry (1.2). For example the Kadomtsev - Petviashvili (KP) equation and the Davey-Stewartson (DS) equation admit two such hierarchies of...Degasperis, Nuovo Cimento, 398, 1 (1977). [16] P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation ...these equations possess infinitely many time dependent symmetries and constants of motion. The master symmetries T for these equations are simply derived

  2. Nonlinear Waves.

    DTIC Science & Technology

    1986-05-27

    purposes will be the Korteweg-deVries (KdV) equation u, 6uu, u. , =0 (1) in one spatial dimension, and the Kadomtsev - Petviashvili (KP) equation (u, - 6uu...one temporal dimen- sion: the Modified Kadomtsev - Petviashvili II (MKPII), and Davey-Stewartson I (OSII) equation . The hyperoolic analogs of (1), (2...by introducing ’Ś an intermediate version of the equations associated with (1), an infinite family of conserva- Kadomtsev - Petviashvili equation

  3. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  4. Elementary Hemodynamic Principles Based on Modified Bernoulli's Equation.

    ERIC Educational Resources Information Center

    Badeer, Henry S.

    1985-01-01

    Develops and expands basic concepts of Bernoulli's equation as it applies to vascular hemodynamics. Simple models are used to illustrate gravitational potential energy, steady nonturbulent flow, pump-driven streamline flow, and other areas. Relationships to the circulatory system are also discussed. (DH)

  5. Lectures series in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1987-01-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.

  6. Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James

    2008-05-01

    Type II Supernovae are produced by the collapse of the cores of massive stars at the ends of their nuclear lifetimes. The basic picture for the outburst mechanism of Type II Supernova explosions is rather secure with only the details of the shock generation and the outburst uncertain. However, broad issues remain concerning our understanding of Type II Supernovae when the less studied, but more general case of rotating and/or magnetic progenitor stars is considered. That rotation and magnetic fields may play large roles in core collapse has been suggested for almost 40 years dating from the discovery that pulsars, the remnants of Type II Supernovae, are strongly magnetic, rapidly rotating neutron stars. This fact has been further reinforced by the discovery of the class of neutron stars with ultra-strong magnetic fields known as Magnetars. The role that rotation plays in core collapse can be appreciated by noting that stable, stationary, degenerate equilibrium configurations are possible only for stars with central density ρc 10^4-10^9 g cm-3 (white dwarf densities) and ρc 10^14-10^15 g cm-3 (neutron star densities). Nonrotating objects with ρc between that of white dwarfs (typical of the densities of the precollapse cores of Type II Supernovae) and neutron stars are unstable to radial collapse because of the low effective γ of their equations-of-state (EOS) (see Shapiro & & Teukolsky 1983). Stars at intermediate ρc may be stabilized against collapse by rapid rotation. This possibility gives rise to what were coined fizzlers by Gold (1974) to describe fizzled core collapses of massive rotating stars through formation of rotation-supported stars with densities intermediate between those of the white dwarf-like precollapse core and a neutron star. Interest in fizzlers waned in the 1980s when it was showed that, although fizzlers could exist, they only occupied a small part of the precollapse core parameter space for cold equations-of-state (EOS). Interest in fizzlers was revived in the late 1990s when it was found that fizzlers could form under a wider range of conditions than had been suggested if hot dense EOSs were considered. Observationally, interest in fizzlers was also driven by the recognition that fizzlers could lead to the generation of gravitational wave emission in Type II Supernovae, emission potentially observable by LIGO, the Laser Interferometer Gravitational Wave Observatory), and other gravitational wave observatories, and that fizzlers could perhaps play roles in the γ-ray burster phenomenon and the formation of strange stars. We review the properties of fizzlers and consider their applications to LIGO, strange stars, and Magnetars.

  7. 10 CFR Appendix II to Part 504 - Fuel Price Computation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Fuel Price Computation II Appendix II to Part 504 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS Pt. 504, App. II Appendix II to Part 504—Fuel Price Computation (a) Introduction. This appendix provides the equations and parameters...

  8. Human and rat liver phenol sulfotransferase: structure-activity relationships for phenolic substrates.

    PubMed

    Campbell, N R; Van Loon, J A; Sundaram, R S; Ames, M M; Hansch, C; Weinshilboum, R

    1987-12-01

    Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic drugs. Human liver contains thermostable (TS) and thermolabile forms of PST. Ion exchange chromatography shows that two isozymes of TS PST (peaks I and II) are present in human liver preparations. Rat liver contains four forms of PST that can be separated by ion exchange chromatography. Quantitative structure-activity relationship (QSAR) analysis was used to study phenolic substrates for both human and rat liver PST. Thirty-six substituted phenols were tested as substrates for partially purified human liver TS PST peak I. QSAR analysis resulted in derivation of the following equation: log 1/Km = 0.92 (+/- 0.18)log P - 1.48 (+/- 0.38)MR'4 - 0.64 (+/- 0.41)MR3 + 1.04 (+/- 0.63)MR2 + 0.67(+/- 0.44) sigma- + 4.03 (+/- 0.42). In this equation Km is the Michaelis constant, P is the octanol-water partition coefficient, MR is the molar refractivity of substituents at the 2-, 3-, and 4-positions, and sigma- is the Hammett constant. Values of log 1/Km calculated with this equation were highly correlated with log 1/Km values (r = 0.950) that were observed experimentally. Nine phenols were also tested as substrates for partially purified human liver TS PST peak II. Log 1/Km values for these compounds were significantly correlated for the two isozymes of TS PST (r = 0.992, p less than 0.001). QSAR analysis was also used to derive equations that described the behavior of phenolic substrates for rat liver PST forms I and II. These equations differed substantially from the equation derived for compounds tested with human liver TS PST peak I. Therefore, the characteristics of the active sites of human liver TS PST peak I and rat liver PST forms I and II appear to differ. Application of these equations may make it possible to predict Km values of phenolic substrates for human liver TS PST and for rat liver PST forms I and II.

  9. Coordination for the Improvement of Basic Skills.

    ERIC Educational Resources Information Center

    Roberts, Jane M. E.

    The Title II Basic Skills legislation, which is part of the Educational Amendments of 1978, requires coordination of basic skills improvement among related federally-supported programs. Coordination, while essential, is made difficult by the proliferation of agencies and bureaus concerned with basic skills and by the need for autonomy among…

  10. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

  11. Education for All: An Expanded Vision. World Conference on Education for All (Jomtien, Thailand, March 5-9, 1990). Monograph II. Roundtable Themes II.

    ERIC Educational Resources Information Center

    Fordham, Paul

    This seven-chapter monograph elaborates on five components of an expanded vision of basic education. It presents material that deals with aspects of these components: universalizing access and promoting equity, focusing on learning, broadening the means and scope of basic education, enhancing the environment for learning, and strengthening…

  12. Compatible taper and volume equations for young longleaf pine plantations in southwest Georgia

    Treesearch

    Lichun Jiang; John R. Brooks; Alexander Clark

    2010-01-01

    Inside and outside bark taper equations as well as compatible cubic foot volume equations were developed from felled tree data selected from young longleaf pine plantations that are part of an existing growth and yield study located in the Flint River drainage of southwest Georgia. A Max-Burkhart taper model was selected as the basic model form due to the accuracy...

  13. Summary of transformation equations and equations of motion used in free flight and wind tunnel data reduction and analysis

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Hoffman, S.

    1972-01-01

    Basic formulations for developing coordinate transformations and motion equations used with free-flight and wind-tunnel data reduction are presented. The general forms presented include axes transformations that enable transfer back and forth between any of the five axes systems that are encountered in aerodynamic analysis. Equations of motion are presented that enable calculation of motions anywhere in the vicinity of the earth. A bibliography of publications on methods of analyzing flight data is included.

  14. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  15. Basic results on the equations of magnetohydrodynamics of partially ionized inviscid plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, Manuel

    2009-10-15

    The equations of evolution of partially ionized plasmas have been far more studied in one of their many simplifications than in its original form. They present a relation between the velocity of each species, plus the magnetic and electric fields, which yield as an analog of Ohm's law a certain elliptic equation. Therefore, the equations represent a functional evolution system, not a classical one. Nonetheless, a priori estimates and theorems of existence may be obtained in appropriate Sobolev spaces.

  16. The classical D-type expansion of spherical H II regions

    NASA Astrophysics Data System (ADS)

    Williams, Robin J. R.; Bibas, Thomas G.; Haworth, Thomas J.; Mackey, Jonathan

    2018-06-01

    Recent numerical and analytic work has highlighted some shortcomings in our understanding of the dynamics of H II region expansion, especially at late times, when the H II region approaches pressure equilibrium with the ambient medium. Here we reconsider the idealized case of a constant radiation source in a uniform and spherically symmetric ambient medium, with an isothermal equation of state. A thick-shell solution is developed which captures the stalling of the ionization front and the decay of the leading shock to a weak compression wave as it escapes to large radii. An acoustic approximation is introduced to capture the late-time damped oscillations of the H II region about the stagnation radius. Putting these together, a matched asymptotic equation is derived for the radius of the ionization front which accounts for both the inertia of the expanding shell and the finite temperature of the ambient medium. The solution to this equation is shown to agree very well with the numerical solution at all times, and is superior to all previously published solutions. The matched asymptotic solution can also accurately model the variation of H II region radius for a time-varying radiation source.

  17. E-READING II: words database for reading by students from Basic Education II.

    PubMed

    Oliveira, Adriana Marques de; Capellini, Simone Aparecida

    2016-01-01

    To develop a database of words of high, medium and low frequency in reading for Basic Education II. The words were taken from the teaching material for Portuguese Language, used by the teaching network of the State of São Paulo in the 6th to the 9th year of Basic Education. Only nouns were selected. The frequency with which each word occurred was recorded and a single database was created. In order to classify the words as of high, medium and low frequency, the decision was taken to work with the distribution terciles, mean frequency and the cutoff point of the terciles. In order to ascertain whether the words of high, medium and low frequency corresponded to this classification, 224 students were assessed: G1 (6th year, n= 61); G2 (7th year, n= 44); G3 (8th year, n= 65); and G4 (9th year, n= 54). The lists of words were presented to the students for reading out loud, in two sessions: 1st) words of high and medium frequency and 2nd) words of low-frequency. Words which encompassed the exclusion criteria, or which caused discomfort or joking on the part of the students, were excluded. The word database was made up of 1659 words and was titled 'E - LEITURA II' ('E-READING II', in English). The E-LEITURA II database is a useful resource for the professionals, as it provides a database which can be used for research, educational and clinical purposes among students of Basic Education II. The professional can choose the words according to her objectives and criteria for elaborating evaluation or intervention procedures involving reading.

  18. Soliton, rational, and periodic solutions for the infinite hierarchy of defocusing nonlinear Schrödinger equations.

    PubMed

    Ankiewicz, Adrian

    2016-07-01

    Analysis of short-pulse propagation in positive dispersion media, e.g., in optical fibers and in shallow water, requires assorted high-order derivative terms. We present an infinite-order "dark" hierarchy of equations, starting from the basic defocusing nonlinear Schrödinger equation. We present generalized soliton solutions, plane-wave solutions, and periodic solutions of all orders. We find that "even"-order equations in the set affect phase and "stretching factors" in the solutions, while "odd"-order equations affect the velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are complex. There are various applications in optics and water waves.

  19. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  20. Novice Users' Misconceptions of BASIC Programming Statements. Report No. 82-1.

    ERIC Educational Resources Information Center

    Bayman, Piraye; Mayer, Richard E.

    The nature of novice programmers' mental models for BASIC statements following preliminary BASIC instruction was assessed with 30 undergraduates who were taught BASIC through a self-paced, mastery manual and who were simultaneously given hands-on access to an Apple II microcomputer. Following instruction, the students were tested to determine…

  1. Reverse engineering of aircraft wing data using a partial differential equation surface model

    NASA Astrophysics Data System (ADS)

    Huband, Jacalyn Mann

    Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of surfaces, they are not suitable for reversing aircraft wings. In this dissertation, we develop and demonstrate a new strategy for reversing a mathematical representation of an aircraft wing. The basis of our strategy is to take an aircraft design model and determine if an inverse model can be derived. A candidate design model for this research is the partial differential equation (PDE) surface model, proposed by Bloor and Wilson and used in the Rapid Airplane Parameter Input Design (RAPID) tool at the NASA-LaRC Geolab. There are several basic mathematical problems involved in reversing the PDE surface model: (i) deriving a computational approximation of the surface function; (ii) determining a radial parametrization of the wing; (iii) choosing mathematical models or classes of functions for representation of the boundary functions; (iv) fitting the boundary data points by the chosen boundary functions; and (v) simultaneously solving for the axial parameterization and the derivative boundary functions. The study of the techniques to solve the above mathematical problems has culminated in a reverse PDE surface model and two reverse PDE surface algorithms. One reverse PDE surface algorithm recovers engineering design parameters for the RAPID tool from aircraft wing data and the other generates a PDE surface model with spline boundary functions from an arbitrary set of grid points. Our numerical tests show that the reverse PDE surface model and the reverse PDE surface algorithms can be used for the reverse engineering of aircraft wing data.

  2. Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham-Broer-Kaup-Like Equations

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2017-03-01

    In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.

  3. Matematicas en la vida actual. Volumen II, edicion para el maestro. (Mathematics: A Practical View. Volume II, Teacher Edition). Applied Basic Curriculum Series.

    ERIC Educational Resources Information Center

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  4. Competency-Based Adult Basic Education Manual for Level I (0-4.9) and Level II (5-8). A Training Manual for CBABE Instruction and Program Management.

    ERIC Educational Resources Information Center

    Singer, Elizabeth; And Others

    This training manual was developed as a source of information about Competency-Based Adult Basic Education (CBABE) for administrators, counselors, and teachers involved in the implementation of a CBABE program. After section I provides an introduction to Brevard Community College's development of CBABE curricula, section II explains the purposes…

  5. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine.

    PubMed

    Afkhami, Abbas; Saber-Tehrani, Mohammad; Bagheri, Hasan

    2010-09-15

    2,4-Dinitrophenylhydrazine (DNPH) immobilized on sodium dodecyl sulfate coated nano-alumina was developed for the removal of metal cations Pb(II), Cd(II), Cr(III), Co(II), Ni(II) and Mn(II) from water samples. The research results displayed that adsorbent has the highest adsorption capacity for Pb(II), Cr(III) and Cd(II) in ions mixture system. Optimal experimental conditions including pH, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by the Freundlich adsorption isotherm equation for Mn(II), Pb(II), Cr(III) and Cd(II) ions and by Langmuir isotherm equation for Ni(II) and Co(II) ions. Desorption experiments by elution of the adsorbent with a mixture of nitric acid and methanol show that the modified alumina nanoparticles could be reused without significant losses of its initial properties even after three adsorption-desorption cycles. Thus, modified nano-alumina with DNPH is favorable and useful for the removal of these metal ions, and the high adsorption capacity makes it a good promising candidate material for Pb(II),Cr(III) and Cd(II) removal. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Weight estimation techniques for composite airplanes in general aviation industry

    NASA Technical Reports Server (NTRS)

    Paramasivam, T.; Horn, W. J.; Ritter, J.

    1986-01-01

    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.

  7. A review of spectral methods

    NASA Technical Reports Server (NTRS)

    Lustman, L.

    1984-01-01

    An outline for spectral methods for partial differential equations is presented. The basic spectral algorithm is defined, collocation are emphasized and the main advantage of the method, the infinite order of accuracy in problems with smooth solutions are discussed. Examples of theoretical numerical analysis of spectral calculations are presented. An application of spectral methods to transonic flow is presented. The full potential transonic equation is among the best understood among nonlinear equations.

  8. A note on the solutions of some nonlinear equations arising in third-grade fluid flows: an exact approach.

    PubMed

    Aziz, Taha; Mahomed, F M

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed.

  9. Equations of condition for high order Runge-Kutta-Nystrom formulae

    NASA Technical Reports Server (NTRS)

    Bettis, D. G.

    1974-01-01

    Derivation of the equations of condition of order eight for a general system of second-order differential equations approximated by the basic Runge-Kutta-Nystrom algorithm. For this general case, the number of equations of condition is considerably larger than for the special case where the first derivative is not present. Specifically, it is shown that, for orders two through eight, the number of equations for each order is 1, 1, 1, 2, 3, 5, and 9 for the special case and is 1, 1, 2, 5, 13, 34, and 95 for the general case.

  10. A Note on the Solutions of Some Nonlinear Equations Arising in Third-Grade Fluid Flows: An Exact Approach

    PubMed Central

    Mahomed, F. M.

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed. PMID:25143962

  11. Teaching the Rules of Debit and Credit

    ERIC Educational Resources Information Center

    Potts, Andrew J.

    1974-01-01

    A fundamental method of explaining the basic accounting principles and concepts (debit, credit, basic accounting equation) which includes visual aids, reference to local businesses, and drill, does much toward increasing the student's skill and enhancing his understanding of the subject matter. (Sample transparencies are included.) (Author/AJ)

  12. Relaxation dynamics of interacting skyrmions in thin films

    NASA Astrophysics Data System (ADS)

    Brown, Bart; Pleimling, Michel

    Magnetic skyrmions are topologically protected spin textures which were recently observed in certain chiral magnets and thin films. Skyrmions can be moved by very low current densities which makes them very promising in spintronic applications such as data storage devices and logic gates. A thorough understanding of the relaxation processes for systems of interacting skyrmions far from equilibrium could prove invaluable in real world applications but is currently lacking in the literature. The dynamics are described by the Landau-Lifshitz-Gilbert (LLG) equation, however, simulating many interacting skyrmions by solving the LLG equation is computationally infeasible. We employ a suitable two-dimensional particle based model derived from Thiele's approach to study the two-time density correlation function and other quantities. The particle model differs most notably from similar models which describe vortices in type-II superconductors by the addition of the Magnus force which points perpendicular to the skyrmion velocity in the plane. Numerical studies reveal non-universal scaling of the correlation function where the scaling exponent is a function of the ratio of the Magnus force strength to damping coefficient as well as of the Gaussian noise. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  13. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. I Analysis. II - Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M.-C.; Erdogan, F.

    1983-01-01

    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled systems of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered. Previously announced in STAR as N80-18428 and N80-18429

  14. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  15. 77 FR 19717 - Importer of Controlled Substances; Notice of Registration Mallinckrodt LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... raw material are not appropriate, 72 FR 3417 (2007). Regarding all other basic classes of controlled...) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the listed...

  16. How Coaches' Motivations Mediate Between Basic Psychological Needs and Well-Being/Ill-Being.

    PubMed

    Alcaraz, Saul; Torregrosa, Miquel; Viladrich, Carme

    2015-01-01

    The purpose of the present research was to test how behavioral regulations are mediated between basic psychological needs and psychological well-being and ill-being in a sample of team-sport coaches. Based on self-determination theory, we hypothesized a model where satisfaction and thwarting of the basic psychological needs predicted coaches' behavioral regulations, which in turn led them to experience well-being (i.e., subjective vitality, positive affect) or ill-being (i.e., perceived stress, negative affect). Three-hundred and two coaches participated in the study (Mage = 25.97 years; 82% male). For each instrument employed, the measurement model with the best psychometric properties was selected from a sequence of nested models sustained by previous research, including exploratory structural equation models and confirmatory factor analysis. These measurement models were included in 3 structural equation models to test for mediation: partial mediation, complete mediation, and absence of mediation. The results provided support for the partial mediation model. Coaches' motivation mediated the relationships from both relatedness need satisfaction and basic psychological needs thwarting for coaches' well-being. In contrast, relationships between basic psychological needs satisfaction and thwarting and ill-being were only predicted by direct effects. Our results highlight that 3 conditions seem necessary for coaches to experience psychological well-being in their teams: basic psychological needs satisfaction, especially relatedness; lack of basic psychological needs thwarting; and self-determined motivation.

  17. Computer Applications in Balancing Chemical Equations.

    ERIC Educational Resources Information Center

    Kumar, David D.

    2001-01-01

    Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)

  18. Alternative Analysis of the Michaelis-Menten Equations

    ERIC Educational Resources Information Center

    Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa

    2011-01-01

    Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…

  19. Computer Series, 101: Accurate Equations of State in Computational Chemistry Projects.

    ERIC Educational Resources Information Center

    Albee, David; Jones, Edward

    1989-01-01

    Discusses the use of computers in chemistry courses at the United States Military Academy. Provides two examples of computer projects: (1) equations of state, and (2) solving for molar volume. Presents BASIC and PASCAL listings for the second project. Lists 10 applications for physical chemistry. (MVL)

  20. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  1. Determining Dissolved Oxygen Levels

    ERIC Educational Resources Information Center

    Boucher, Randy

    2010-01-01

    This project was used in a mathematical modeling and introduction to differential equations course for first-year college students. The students worked in two-person groups and were given three weeks to complete the project. Students were given this project three weeks into the course, after basic first order linear differential equation and…

  2. Stabilizing a Bicycle: A Modeling Project

    ERIC Educational Resources Information Center

    Pennings, Timothy J.; Williams, Blair R.

    2010-01-01

    This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…

  3. Scattering Of Nonplanar Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  4. Choosing the Best Method to Introduce Accounting.

    ERIC Educational Resources Information Center

    Guerrieri, Donald J.

    1988-01-01

    Of the traditional approaches to teaching accounting--single entry, journal, "T" account, balance sheet, and accounting equation--the author recommends the accounting equation approach. It is the foundation of the double entry system, new material is easy to introduce, and it provides students with a rationale for understanding basic concepts.…

  5. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  6. Bifurcation and stability in a model of moist convection in a shearing environment

    NASA Technical Reports Server (NTRS)

    Shirer, H. N.

    1980-01-01

    The truncated spectral system (model I) of shallow moist two-dimensional convection discussed by Shirer and Dutton (1979) is expanded to eleven coefficients (model II) in order to include a basic wind. Cloud streets, the atmospheric analog of the solutions to model II, are typically observed in an environment containing a shearing basic motion field. Analysis of the branching behavior of solutions to mode II shows that, if the basic wind direction varies with height, very complex temporal behavior is possible as the modified Rayleigh number HR is increased sufficiently. The first convective solution is periodic, corresponding to a cloud band that propagates downwind; but secondary branching to a two-dimensional torus can occur for larger values of HR. Orientation band formulas are derived whose predictions generally agree with the results of previous studies.

  7. Basicity of pyridine and some substituted pyridines in ionic liquids.

    PubMed

    Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella

    2010-06-04

    The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.

  8. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  9. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  10. Interferometric reflection moire

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Combell, Olivier

    1995-06-01

    A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.

  11. Fractional vector calculus for fractional advection dispersion

    NASA Astrophysics Data System (ADS)

    Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.

    2006-07-01

    We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.

  12. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    ERIC Educational Resources Information Center

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  13. 77 FR 64142 - Importer of Controlled Substances, Notice of Application, Noramco, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import raw Opium (9600) and... substance. Comments and requests for hearings on applications to import narcotic raw material are not...

  14. Naval Research Logistics Quarterly. Volume 29, Number 1.

    DTIC Science & Technology

    1982-03-01

    0 < p, < q, < 1, and np ., nq., L,, and K- =- are all positive integers. These quantities also are to satisfy other conditions to be specified below...and j < K, + 1. Then define W, as the closest value to Wj that makes np ,,(ij) + KA+2 )W,/ an integer (positive, negative, or zero). Finally, define W,,K...2 by the equation K.+2 Kn+2 K,+2 K,+2 W. N,, - n p,(i,j), WA+2, by the equation np Q W, = , N,,-n ,-I i-I i-I i-I A,+2 &,+2 A,+2 K +2 E Pj(iJ), and

  15. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations.

    DTIC Science & Technology

    1984-05-01

    The analysis also applies to higher order equations. The basic method is due to N. Meyers and A. blcrat ( HYE ] (U-l). The equations considered are...220 14. MONITORING aGENCY NAME A AODRESS(lldI1n.Mhnt &m COnt* won * 011066) 1S. SECURITY CLASS. (of h1 rpMRt) UNCLASSIFIED I1. DECL ASSI FICATION...20550 Research Triangle Park North Carolina 27709 ,B. KEY WORDS (C@Wth mu Mgo, *do it Ma0oMr O IdMf& y Nok ftwb.) degenerate equation, elliptic partial

  16. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  17. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  18. Topological classification of periodic orbits in the Kuramoto-Sivashinsky equation

    NASA Astrophysics Data System (ADS)

    Dong, Chengwei

    2018-05-01

    In this paper, we systematically research periodic orbits of the Kuramoto-Sivashinsky equation (KSe). In order to overcome the difficulties in the establishment of one-dimensional symbolic dynamics in the nonlinear system, two basic periodic orbits can be used as basic building blocks to initialize cycle searching, and we use the variational method to numerically determine all the periodic orbits under parameter ν = 0.02991. The symbolic dynamics based on trajectory topology are very successful for classifying all short periodic orbits in the KSe. The current research can be conveniently adapted to the identification and classification of periodic orbits in other chaotic systems.

  19. Fractional vector calculus and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.

    2017-04-01

    Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.

  20. Prediction of unsteady transonic flow around missile configurations

    NASA Technical Reports Server (NTRS)

    Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.

    1990-01-01

    This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.

  1. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    PubMed

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.

  2. Crash Padding Research : Volume II. Constitutive Equation Models.

    DOT National Transportation Integrated Search

    1986-08-01

    Several simplified one-dimensional constitutive equations for viscoelastic materials are reviewed and found to be inadequate for representing the impact-response performance of strongly nonlinear materials. Two multi-parameter empirical models are de...

  3. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  4. COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)

    EPA Science Inventory

    A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...

  5. The basic aerodynamics of floatation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  6. Influence of human behavior on cholera dynamics

    PubMed Central

    Wang, Xueying; Gao, Daozhou; Wang, Jin

    2015-01-01

    This paper is devoted to studying the impact of human behavior on cholera infection. We start with a cholera ordinary differential equation (ODE) model that incorporates human behavior via modeling disease prevalence dependent contact rates for direct and indirect transmissions and infectious host shedding. Local and global dynamics of the model are analyzed with respect to the basic reproduction number. We then extend the ODE model to a reaction-convection-diffusion partial differential equation (PDE) model that accounts for the movement of both human hosts and bacteria. Particularly, we investigate the cholera spreading speed by analyzing the traveling wave solutions of the PDE model, and disease threshold dynamics by numerically evaluating the basic reproduction number of the PDE model. Our results show that human behavior can reduce (a) the endemic and epidemic levels, (b) cholera spreading speeds and (c) the risk of infection (characterized by the basic reproduction number). PMID:26119824

  7. Study of helium emissions from active solar regions

    NASA Technical Reports Server (NTRS)

    Kulander, J. L.

    1973-01-01

    A theoretical study is made of the visible and UV line radiation of He I atoms and He II ions from a plane-parallel model flare layer. Codes were developed for the solution of the statistically steady state equation for a 30 level He I - II - III model, and the line and continuum transport equations. These codes are described and documented in the report along with sample solutions. Optical depths and some line intensities are presented for a 1000 km thick layer. Solutions of the steady state equations are presented for electron temperatures 10,000 to 50,000 K and electron densities 10 to the 10th power to 10 to the 14th power/cu cm.

  8. The Dynamic Force Table

    ERIC Educational Resources Information Center

    Geddes, John B.; Black, Kelly

    2008-01-01

    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  9. Teacher's Corner: Structural Equation Modeling with the Sem Package in R

    ERIC Educational Resources Information Center

    Fox, John

    2006-01-01

    R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…

  10. Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier-Stokes-Fourier equations

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2011-10-01

    Linear irreversible thermodynamic principles are used to demonstrate, by counterexample, the existence of a fundamental incompleteness in the basic pre-constitutive mass, momentum, and energy equations governing fluid mechanics and transport phenomena in continua. The demonstration is effected by addressing the elementary case of steady-state heat conduction (and transport processes in general) occurring in quiescent fluids. The counterexample questions the universal assumption of equality of the four physically different velocities entering into the basic pre-constitutive mass, momentum, and energy conservation equations. Explicitly, it is argued that such equality is an implicit constitutive assumption rather than an established empirical fact of unquestioned authority. Such equality, if indeed true, would require formal proof of its validity, currently absent from the literature. In fact, our counterexample shows the assumption of equality to be false. As the current set of pre-constitutive conservation equations appearing in textbooks are regarded as applicable both to continua and noncontinua (e.g., rarefied gases), our elementary counterexample negating belief in the equality of all four velocities impacts on all aspects of fluid mechanics and transport processes, continua and noncontinua alike.

  11. The Tao of Microelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin

    2014-12-01

    Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.

  12. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  13. Ray Modeling Methods for Range Dependent Ocean Environments

    DTIC Science & Technology

    1983-12-01

    the eikonal equation, gives rise to equations for ray paths which are perpendicular to the wave fronts. Equation II.4, the transport equation, leads... databases for use by MEDUSA. The author has assisted in the installation of MEDUSA at computer facilities which possess databases containing archives of...sound velocity profiles, bathymetry, and bottom loss data. At each computer site, programs convert the archival data retrieved by the database system

  14. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.

    PubMed

    Neves-Petersen, Maria Teresa; Petersen, Steffen B

    2003-01-01

    The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.

  15. 77 FR 31388 - Importer of Controlled Substances; Notice of Application; Noramco, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import the raw Opium (9600...

  16. 75 FR 65658 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... basic classes of controlled substances listed in schedule II: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II Tapentadol (9780) II The company plans to import the Raw Opium (9600) and... Technologies, 72 FR 3417 (2007), comments and requests for hearings on applications to import narcotic raw...

  17. Integrable Equations in Multi-Dimensions (2+1) are Bi-Hamiltonian Systems,

    DTIC Science & Technology

    1987-02-01

    equation [18]. It should be noted that the 80 equation has more similarities [19] with the Kadomtsev - Petviashvili (KP...Cimento, 39B, 1 (1977). [31] P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation , preprint U.M.I.S.T. (1985). II ’AI D p-I 4, - -- - -- - - -w 4 ...TOM NONLINEAR STUDIES IDTIC I IELEC )// MAR 2 51988 I / \\ / Integrable Equations in Multi- dimensions (2+1) are Bi-Hamiltonian Systems by A.S.

  18. Collisional excitation and radiative properties of N II - The strong intercombination (1D - 3P0) transition at 748 A

    NASA Technical Reports Server (NTRS)

    Tripp, T. M.; Shemansky, D. E.; James, G. K.; Ajello, J. M.

    1991-01-01

    Laboratory measurements of EUV emission from electron-excited N2 have been obtained at medium resolution, providing N II EUV emission cross section measurements and allowing the confirmation of recent calculations by Fawcett (1987) indicating the presence of a strong intercombination line in N II at 748.37 A. The most recently available data are used to predict the basic collisional and radiative properties of N II, the plasma diagnostic properties are briefly explored, and radiative cooling coefficients are given. Some basic properties of electron-excited N II and N2 are examined in the EUV in order to diagnose emission spectra of the earth and Titan. The N II emissions in the earth dayglow, particularly at 916 A, are much brighter than current estimates of source rates. The N II 1085 A line in the dayglow contains a significant component from dissociative photoionization excitation. The N II 1085 A, 916 A, and 670 A lines in the Titan dayglow spectrum appear to be compatible with direct electron excitation of N2.

  19. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…

  20. New superfield extension of Boussinesq and its (x,t) interchanged equation from odd Poisson bracket

    NASA Astrophysics Data System (ADS)

    Palit, S.; Chowdhury, A. Roy

    1995-08-01

    A new superfield extension of the Boussinesq equation and its corresponding (x,t) interchanged variant are deduced from the odd Poisson-bracket-formalism, which is similar to the antibracket of Batalin and Vilkovisky. In the former case we obtain the equation deduced by Figueroa-O'Farrill et al from a different approach. In each case we have deduced the bi-Hamiltonian structure and some basic symmetries associated with them.

  1. Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains

    NASA Astrophysics Data System (ADS)

    Suvorov, A. P.; Selvadurai, A. P. S.

    2010-10-01

    Macroscopic constitutive equations for thermo-viscoelastic processes in a fully saturated porous medium are re-derived from basic principles of micromechanics applicable to solid multi-phase materials such as composites. Simple derivations of the constitutive relations and the void occupancy relationship are presented. The derivations use the notion of eigenstrain or, equivalently, eigenstress applied to the separate phases of a porous medium. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  2. Double-Diffusive Convection in Rotational Shear

    DTIC Science & Technology

    2015-03-01

    salt finger development is 0 and 0Z ZT S> > . The model uses the Boussinesq equations of motion with the linear equations of state, are expressed in...reference density from the Boussinesq approximation. ( )top bottom Z T T T H − = (2.2) The resultant non-dimensionalized equations for the model are...S T k k t = to determine how the system evolved during the simulation. B. VERSIONS OF THE BASIC MODEL This research was based on four separate

  3. Developments in Quantitative Structure-Activity Relationships (QSAR). A Review

    DTIC Science & Technology

    1976-07-01

    hyphae Analogs Inhibition of s-Nitrostyrenes 20 84 Growth Botrytie -,inerea Inhibition of a-Nitrostyrenes 6 84 Grcwth Bovine hemoglobin Binding of...AspergiL us niger, phenyl methacrylates upon Ranse-nula awmat~a and RR’NCSS Na+ upon Botrytis cinerea conformed to the general equation 35. The equations...log II vs log kw *79 Botrytis cinerea , 41, 64 -lg! slgý,7 Bovine hemoglobin, 36 lg Elv o .,7 Bovine serum albumin, 36 - log iI vs log P, 79 - log JE

  4. The Application of a Statistical Analysis Software Package to Explosive Testing

    DTIC Science & Technology

    1993-12-01

    deviation not corrected for test interval. M refer to equation 2. s refer to equation 3. G refer to section 2.1, C 36 Appendix I : Program Structured ...APPENDIX I: Program Structured Diagrams 37 APPENDIX II: Bruceton Reference Graphs 39 APPENDIX III: Input and Output Data File Format 44 APPENDIX IV...directly from Graph II, which has been digitised and incorporated into the program . IfM falls below 0.3, the curve that is closest to diff( eq . 3a) is

  5. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the bookmore » presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?« less

  6. Global modelling of plasma-wall interaction in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-04-01

    The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.

  7. Basic Parameters of Metal Behavior under High Rate Forming

    DTIC Science & Technology

    1962-03-01

    1ii PHOTOGRAPH THIS SHEET II LEVELr• At-ký W •I)-_) -N INVENTORY z DOCUMENT IDENTIFICATION may. 6•t S]/ tp i - 0~o- o’•5,,? 3 ’ \\NAL- TR-/I. -a I .. ~1...TR 111.2/20- 3 BASIC PARAMETERS OF METAL BEHAVIOUR "> UNDER HIGH RATE FORMING L L j Fourth Interim Report to ell- L’,I I U. S. ARMY MATERIALS...RESEARCH AGENCY 1• I iiC::Ur:ui i 1,,i .:1 ’•:, 1 r/ n od I P,101c rolcso. Filing Subjects: I. Explosive forming 2. Dynamic behavior of metals 3 . High rate

  8. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    NASA Astrophysics Data System (ADS)

    Lu, Yanfei; Lekszycki, Tomasz

    2016-10-01

    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  9. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    PubMed

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  10. Management System for Integrating Basic Skills 2 Training and Unit Training Programs

    DTIC Science & Technology

    1983-09-01

    Social Sciences. NOTEs The findings in this report are not to be construed as en official Department of the Army position, unless so designated by other...This report describes methods used and results obtained in the design , development, and field test of a management system and curriculum components...for integrating the Army’s Basic Skills Education Program, Phase II (BSEP II) and unit training programs. The curriculum components are designed to

  11. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  12. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    PubMed

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  13. The Multidimensional Solitons in a Plasma: Structure Stability and Dynamics

    DTIC Science & Technology

    2003-07-20

    ax(8 H’ / 8u), (2) into GKP (Generalized Kadomtsev - Petviashvili ) class where of equations , and in the case when 13 4nnT / B 2 << 1 1 1 for 6) < OB= eB...that the soliton elastic collisions can lead to formation of complex structures including the multisoliton bound states. 1. Basic equations Eq. (1) with...scribed by equation 2. Stability of 2D and 3D solutions atu + A(t,u)u =f, f= K 0X Ajudx, (1) To study stability of the GKP equation solutions, we =a 2

  14. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  15. On traveling waves in beams

    NASA Technical Reports Server (NTRS)

    Leonard, Robert W; Budiansky, Bernard

    1954-01-01

    The basic equations of Timoshenko for the motion of vibrating nonuniform beams, which allow for effects of transverse shear deformation and rotary inertia, are presented in several forms, including one in which the equations are written in the directions of the characteristics. The propagation of discontinuities in moment and shear, as governed by these equations, is discussed. Numerical traveling-wave solutions are obtained for some elementary problems of finite uniform beams for which the propagation velocities of bending and shear discontinuities are taken to be equal. These solutions are compared with modal solutions of Timoshenko's equations and, in some cases, with exact closed solutions. (author)

  16. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  17. Axisymmetric Plasma Equilibria in General Relativity

    NASA Astrophysics Data System (ADS)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  18. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  19. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  20. The Factor Structure of the CIBS-II-Readiness Assessment

    ERIC Educational Resources Information Center

    Gotch, Chad M.; French, Brian F.

    2011-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II)-Readiness form is a diagnostic battery intended for children aged 5 and 6 years. The CIBS-II-Readiness is a new version of the CIBS-Revised-Readiness and includes updated normative information on a larger representative sample in comparison to the CIBS-Revised-Readiness. Empirical…

  1. Climate Modeling in the Calculus and Differential Equations Classroom

    ERIC Educational Resources Information Center

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  2. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    ERIC Educational Resources Information Center

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  3. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  4. Texas Boating Basics: A Course in Better Boating. Fifth Edition.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This student manual and teacher's guide on boating provides basic information of boating laws, boat types, and boat operation. Part I includes information on types of boats, boat hulls, and motors. Part II covers what is legally required regarding registration of boats and equipment. Part III discusses basic safety regulations, navigation rules,…

  5. Haitian Creole Basic Course: Volume II, Lessons 11-20.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This volume, the second in a series comprising the field-test edition of the Defense Language Institute's "Haitian Creole Basic Course," is extracted primarily from the instructor's guide to materials contained in Albert Valdman's "Basic Course in Haitian Creole." Materials are arranged in the order of their use in the classroom. Content of each…

  6. German Basic Course. Volume II, Lessons 16-25. Revised.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This is the second volume of the intermediate phase of the German Basic Course. The objective of the intermediate phase is mastery of the structural elements of the German language. Accordingly, each lesson contains the following elements: (1) introduction of new structure through "structure perception drills"; (2) a basic dialog dealing with a…

  7. Curvature tensors unified field equations on SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Il Young

    1988-09-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.

  8. New exact perfect fluid solutions of Einstein's equations. II

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  9. Whitham modulation theory for the Kadomtsev- Petviashvili equation.

    PubMed

    Ablowitz, Mark J; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  10. Whitham modulation theory for the Kadomtsev- Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  11. Students' Notions regarding "Covariance" of a Physical Theory

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    A physical theory is said to be covariant with respect to a certain class of transformations when its basic equations retain their "form" under those transformations. It is one of the basic notions encountered in physics, particularly in the domain of relativity. In this paper we study in some detail how students deal with this notion in different…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketterer, S.P.

    This manual is designed as a comprehensive hands-on instructional manual for learning the T{sub E}X* computer typesetting program in a classroom environment. Each section presents a new concept in careful detail, concluding with an exercise (T{sub E}Xercise) to reinforce the learning of the concept. The manual introduces the novice T{sub E}X user to the program's basic command structure, along with the concepts of grouping, producing accents, making font changes, and generating mathematical symbols. The T{sub E}Xercises guide the new user in generating text containing footnotes, multilevel lists, and hanging indentations, as well as in magnifying text for viewgraphs. Once themore » basic text generation is defined, the more advanced topics of formatting math equations and tables are explained. A full range of math capabilities is presented --- beginning with simple one-line equations, progressing through complex numbered and aligned equations, and concluding with matrices. The sections on table generation present the basic concepts in T{sub E}X's table-formatting program and then build on them. The new user first learns to construct simple tables, and with careful explanations and guidance, learns to add one new table enhancement at a time. By the conclusion of these sections, the user can construct tables with horizontal and vertical rules and with column entries that are paragraphs. 1 ref.« less

  13. Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel.

    PubMed

    Sengil, I Ayhan; Ozacar, Mahmut

    2008-09-15

    The biosorption of Cu(II) from aqueous solutions by mimosa tannin resin (MTR) was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmiur isotherm. The experimental data were analysed using four sorption kinetic models -- the pseudo-first- and second-order equations, and the Elovich and the intraparticle diffusion equation -- to determine the best fit equation for the biosorption of copper ions onto mimosa tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well. Thermodynamic parameters such as the entropy change, enthalpy change and Gibb's free energy change were found out to be 153.0 J mol(-1)K(-1), 42.09 kJ mol(-1) and -2.47 kJ mol(-1), respectively.

  14. The Systems Approach to Functional Job Analysis. Task Analysis of the Physician's Assistant: Volume II--Curriculum and Phase I Basic Core Courses and Volume III--Phases II and III--Clinical Clerkships and Assignments.

    ERIC Educational Resources Information Center

    Wake Forest Univ., Winston Salem, NC. Bowman Gray School of Medicine.

    This publication contains a curriculum developed through functional job analyses for a 24-month physician's assistant training program. Phase 1 of the 3-phase program is a 6-month basic course program in clinical and bioscience principles and is required of all students regardless of their specialty interest. Phase 2 is a 6 to 10 month period of…

  15. A vector-dyadic development of the equations of motion for N-coupled flexible bodies and point masses. [spacecraft trajectories

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1975-01-01

    The equations of motion for a system of coupled flexible bodies, rigid bodies, point masses, and symmetric wheels were derived. The equations were cast into a partitioned matrix form in which certain partitions became nontrivial when the effects of flexibility were treated. The equations are shown to contract to the coupled rigid body equations or expand to the coupled flexible body equations all within the same basic framework. Furthermore, the coefficient matrix always has the computationally desirable property of symmetry. Making use of the derived equations, a comparison was made between the equations which described a flexible body model and those which described a rigid body model of the same elastic appendage attached to an arbitrary coupled body system. From the comparison, equivalence relations were developed which defined how the two modeling approaches described identical dynamic effects.

  16. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  17. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    NASA Technical Reports Server (NTRS)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  18. Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2013-01-01

    Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.

  19. New Similarity Reductions and Compacton Solutions for Boussinesq-Like Equations with Fully Nonlinear Dispersion

    NASA Astrophysics Data System (ADS)

    Yan, Zhen-Ya

    2001-10-01

    In this paper, similarity reductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m,n) equations) utt=(u^n)xx+(u^m)xxxx, which is a generalized model of Boussinesq equation utt=(u^2)xx+uxxxx and modified Bousinesq equation utt=(u^3)xx+uxxxx, are considered by using the direct reduction method. As a result, several new types of similarity reductions are found. Based on the reduction equations and some simple transformations, we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1,n) equations and B(m,m) equations, respectively. The project supported by National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  20. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  1. 77 FR 60143 - Importer of Controlled Substances; Notice of Registration; Cody Laboratories, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... importer of the following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Concentrate Poppy Straw (9670) II Tapentadol (9780) II The company plans to import narcotic raw materials for... several controlled substances that are manufactured from opium raw, and poppy straw concentrate. The...

  2. Problem of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorikov, A. F., E-mail: afshorikov@mail.ru

    This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economicmore » system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving.« less

  3. Soliton interactions and Bäcklund transformation for a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Sun, Yan

    2018-01-01

    In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.

  4. Uncertainty Considerations for Ballistic Limit Equations

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.; Evans, H. J.; Williamsen, J. E; Boyer, R. L.; Nakayama, G. S.

    2005-01-01

    The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA determines the overall risk associated with a particular mission by factoring in all known risks to the spacecraft during its mission. The threat to mission and human life posed by the micro-meteoroid and orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the ISS. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. In this paper, we present possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the Shuttle and Station versions of BUMPER II.

  5. 76 FR 5827 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Coca Leaves (9040) II... re-registration to import crude opium, poppy straw, concentrate of poppy straw or coca leaves. As...

  6. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    NASA Astrophysics Data System (ADS)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  7. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  8. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  9. Competency-Based Adult Education Classroom Management Guide for Adult Basic Education Curriculum (Level II, 5-8).

    ERIC Educational Resources Information Center

    Singer, Elizabeth

    This Competency-Based Adult Basic Education (CBABE) Classroom Management Guide was developed to aid the Adult Basic Education (ABE) facilitator in implementing a model CBABE Level 5-8 curriculum. First, introductory material provides background on the CBABE project at Brevard Community College (Florida) and the rationale for the development of the…

  10. Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.

    PubMed

    Yonezawa, Y; Ishida, S; Sunada, H

    2001-11-01

    Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.

  11. Basic Research in the United States.

    ERIC Educational Resources Information Center

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  12. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  13. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  14. A result on differential inequalities and its application to higher order trajectory derivatives

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.

    1973-01-01

    A result on differential inequalities is obtained by considering the adjoint differential equation of the variational equation of the right side of the inequality. The main theorem is proved using basic results on differentiability of solutions with respect to initial conditions. The result is then applied to the problem of determining solution behavior using comparison techniques.

  15. Program helps quickly calculate deviated well path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, M.P.

    1993-11-22

    A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less

  16. Basic Equations Interrelate Atomic and Nuclear Properties to Patterns at the Size Scales of the Cosmos, Extended Clusters of Galaxies, Galaxies, and Nebulae

    NASA Astrophysics Data System (ADS)

    Allen, Rob

    2016-09-01

    Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.

  17. Matching in an undisturbed natural human environment.

    PubMed

    McDowell, J J; Caron, Marcia L

    2010-05-01

    Data from the Oregon Youth Study, consisting of the verbal behavior of 210 adolescent boys determined to be at risk for delinquency (targets) and 210 of their friends (peers), were analyzed for their conformance to the complete family of matching theory equations in light of recent findings from the basic science, and using recently developed analytic techniques. Equations of the classic and modern theories of matching were fitted as ensembles to rates and time allocations of the boys' rule-break and normative talk obtained from conversations between pairs of boys. The verbal behavior of each boy in a conversation was presumed to be reinforced by positive social responses from the other boy. Consistent with recent findings from the basic science, the boys' verbal behavior was accurately described by the modern but not the classic theory of matching. These findings also add support to the assertion that basic principles and processes that are known to govern behavior in laboratory experiments also govern human social behavior in undisturbed natural environments.

  18. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis.

    PubMed

    Malkoc, Emine

    2006-09-21

    The biomass of terrestrial-plant materials has high removal capacities for a number of heavy metal ions. The Ni(II) biosorption capacity of the cone biomass of Thuja orientalis was studied in the batch mode. The biosorption equilibrium level was determined as a function of contact time, pH, temperature, agitation speed at several initial metal ion and adsorbent concentrations. The removal of Ni(II) from aqueous solutions increased with adsorbent concentration, temperature and agitation speed of the solution were increased. The biosorption process was very fast; 90% of biosorption occurred within 3 min and equilibrium was reached at around 7 min. It is found that the biosorption of Ni(II) on the cone biomass was correlated well (R2 > 0.99) with the Langmuir equation as compared to Freundlich, BET Temkin and D-R isotherm equation under the concentration range studied. According to Langmuir isotherm, the monolayer saturation capacity (Q(o)) is 12.42 mg g(-1). The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to test the experimental data for initial Ni(II) and cone biomass concentrations. The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The activation energy of biosorption (E(a)) was determined as 36.85 kJ mol(-1) using the Arrhenius equation. This study indicated that the cone biomass of T. orientalis can be used as an effective and environmentally friendly adsorbent for the treatment of Ni(II) containing aqueous solutions.

  19. Periodic solutions of second-order nonlinear difference equations containing a small parameter. II - Equivalent linearization

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    The classical method of equivalent linearization is extended to a particular class of nonlinear difference equations. It is shown that the method can be used to obtain an approximation of the periodic solutions of these equations. In particular, the parameters of the limit cycle and the limit points can be determined. Three examples illustrating the method are presented.

  20. Adaptive Detection and Parameter Estimation for Multidimensional Signal Models

    DTIC Science & Technology

    1989-04-19

    first of Equations (3-3), it follows that H = fH (3-12) p BpP Moreover, with the help of Equations (Al-8) of Appendix I and Equation (3-6). we find that...7-29) 127 Substituting these results, we find that II + ZBSBBZB +Y T- YJ =+ Zi~t ÷ B SBR ZBI By introducing the definitions -t +BS1 ZB V E Y Ct

  1. Generation of squeezed microwave states by a dc-pumped degenerate parametric Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kaertner, Franz X.; Russer, Peter

    1990-11-01

    The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.

  2. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  3. Particle circulation and solids transport in large bubbling fluidized beds. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homsy, G.M.

    1982-04-01

    We have undertaken a theoretical study of the possibility of the formation of plumes or channeling when coal particles volatilize upon introduction to a fluidized bed, Fitzgerald (1980). We have completed the analysis of the basic state of uniform flow and are currently completing a stability analysis. We have modified the continuum equations of fluidization, Homsy et al. (1980), to include the source of gas due to volatilization, which we assume to be uniformly distributed spatially. Simplifying these equations and solving leads to the prediction of a basic state analogous to the state of uniform fluidization found when no sourcemore » is present within the medium. We are currently completing a stability analysis of this basic state which will give the critical volatilization rate above which the above simple basic state is unstable. Because of the experimental evidence of Jewett and Lawless (1981), who observed regularly spaced plume-like instabilities upon drying a bed of saturated silica gel, we are considering two-dimensional periodic disturbances. The analysis is similar to that given by Homsy, et al. (1980) and Medlin et al. (1974). We hope to determine the stability limits for this system shortly.« less

  4. The a(4) Scheme-A High Order Neutrally Stable CESE Solver

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2009-01-01

    The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3

  5. Panel Workshops at the Conference--II. Improving Basic Education Skills of Appalachian Children.

    ERIC Educational Resources Information Center

    Appalachia, 1979

    1979-01-01

    Concern over the channeling and coordination of resources to basic skills programs, and their integration and evaluation made up the bulk of this workshop in a conference sponsored by the Appalachian Regional Commission. (KR)

  6. A simplified rotor system mathematical model for piloted flight dynamics simulation

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.

    1979-01-01

    The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.

  7. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    NASA Astrophysics Data System (ADS)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  8. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.

  9. Family Finance Education; An Interdisciplinary Approach. Volume II.

    ERIC Educational Resources Information Center

    Gibbs, Mary S., Ed.; And Others, Eds.

    Volume II of a two-part series related to family finance education provides materials for study and discussion in the 1968 workshop. In Part I, members of the advisory council present their viewpoints concerning an interdisciplinary approach to education in family finance. Part II presents basic and current information related to principal areas…

  10. Body Composition of Bangladeshi Children: Comparison and Development of Leg-to-Leg Bioelectrical Impedance Equation

    PubMed Central

    Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal

    2012-01-01

    The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630

  11. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  12. Calculation of afterbody flows with a composite velocity formulation

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rubin, S. G.; Khosla, P. K.

    1983-01-01

    A recently developed technique for numerical solution of the Navier-Stokes equations for subsonic, laminar flows is investigated. It is extended here to allow for the computation of transonic and turbulent flows. The basic approach involves a multiplicative composite of the appropriate velocity representations for the inviscid and viscous flow regions. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli equation for the pressure, while the continuity equation reduces to the familiar potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary layers. The velocity components are computed with a coupled strongly implicity procedure. For transonic flows the artificial compressibility method is used to treat supersonic regions. Calculations are made for both laminar and turbulent flows over axisymmetric afterbody configurations. Present results compare favorably with other numerical solutions and/or experimental data.

  13. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at severalmore » levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.« less

  14. A Gas-Kinetic Scheme for Reactive Flows

    NASA Technical Reports Server (NTRS)

    Lian,Youg-Sheng; Xu, Kun

    1998-01-01

    In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.

  15. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  16. Optimality of the basic colour categories for classification

    PubMed Central

    Griffin, Lewis D

    2005-01-01

    Categorization of colour has been widely studied as a window into human language and cognition, and quite separately has been used pragmatically in image-database retrieval systems. This suggests the hypothesis that the best category system for pragmatic purposes coincides with human categories (i.e. the basic colours). We have tested this hypothesis by assessing the performance of different category systems in a machine-vision task. The task was the identification of the odd-one-out from triples of images obtained using a web-based image-search service. In each triple, two of the images had been retrieved using the same search term, the other a different term. The terms were simple concrete nouns. The results were as follows: (i) the odd-one-out task can be performed better than chance using colour alone; (ii) basic colour categorization performs better than random systems of categories; (iii) a category system that performs better than the basic colours could not be found; and (iv) it is not just the general layout of the basic colours that is important, but also the detail. We conclude that (i) the results support the plausibility of an explanation for the basic colours as a result of a pressure-to-optimality and (ii) the basic colours are good categories for machine vision image-retrieval systems. PMID:16849219

  17. A causal viscous cosmology without singularities

    NASA Astrophysics Data System (ADS)

    Laciana, Carlos E.

    2017-05-01

    An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with " w" bounded and close to -1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (τ _{Π}), associated to the causal correction, is negative, with the additional restriction ζ | τ _{Π}| >2/3, where ζ is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. (ii) For τ _{Π} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).

  18. The Global Challenge in Basic Education: Why Continued Investment in Basic Education Is Important

    ERIC Educational Resources Information Center

    Mertaugh, Michael T.; Jimenez, Emmanuel Y.; Patrinos, Harry A.

    2009-01-01

    This paper documents the importance of continued investment in basic education and argues that investments need to be carefully targeted to address the constraints that limit the coverage and quality of education if they are to provide expected benefits. Part I begins with a discussion of the returns to investment in education. Part II then…

  19. The National Conference on Achievement Testing and Basic Skills. March 1-3, 1978. Conference Proceedings.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC.

    Extracts from the papers and position statements presented at the National Conference on Achievement Testing and Basic Skills are provided in an attempt to capture both the diversity and the consensus among the participants. Six sessions are summarized: (1) achievement tests and basic skills: the issues and the setting--by Harold Howe II; (2)…

  20. 75 FR 53718 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... 3417 (2007), comments and requests for hearings on applications to import narcotic raw material are not... Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import the basic classes of...

  1. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    PubMed

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  2. 20 CFR 901.12 - Eligibility for enrollment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Basic actuarial knowledge. The applicant shall demonstrate knowledge of basic actuarial mathematics and... mathematics and methodology including compound interest, principles of life contingencies, commutation... concentration was actuarial mathematics, or (ii) Which included at least as many semester hours or quarter hours...

  3. 20 CFR 901.12 - Eligibility for enrollment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Basic actuarial knowledge. The applicant shall demonstrate knowledge of basic actuarial mathematics and... mathematics and methodology including compound interest, principles of life contingencies, commutation... concentration was actuarial mathematics, or (ii) Which included at least as many semester hours or quarter hours...

  4. 20 CFR 901.12 - Eligibility for enrollment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Basic actuarial knowledge. The applicant shall demonstrate knowledge of basic actuarial mathematics and... mathematics and methodology including compound interest, principles of life contingencies, commutation... concentration was actuarial mathematics, or (ii) Which included at least as many semester hours or quarter hours...

  5. THEORETICAL BACKGROUND AND DERIVATION OF SELECTED EQUATIONS FROM THE REPORT STUDY OF BLAST EFFECTS IN SOIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, O.K.; Grum, A.F.

    1959-03-27

    An amplification and clarification of the report Study of Blast Effects in Soil by M. A. Chaszeyka and F. B. Porzel of the Armour Research Foundation is presented. The basic thermodynamic relationships that are essential to the understanding of the Armour Report are given, and the more complex equations of the Armour Report are derived. (auth)

  6. [Inverted meiosis and its place in the evolution of sexual reproduction pathways].

    PubMed

    Bogdanov, Yu F

    2016-05-01

    Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.

  7. Selected topics of fluid mechanics

    USGS Publications Warehouse

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.

  8. Unitary-matrix models as exactly solvable string theories

    NASA Technical Reports Server (NTRS)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  9. Problems Relating Mathematics and Science in the High School.

    ERIC Educational Resources Information Center

    Morrow, Richard; Beard, Earl

    This document contains various science problems which require a mathematical solution. The problems are arranged under two general areas. The first (algebra I) contains biology, chemistry, and physics problems which require solutions related to linear equations, exponentials, and nonlinear equations. The second (algebra II) contains physics…

  10. Guide to preparing SAND reports. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locke, T.K.

    1996-04-01

    This guide contains basic information needed to produce a SAND report. Its guidelines reflect DOE regulation and Sandia policy. The guide includes basic writing instructions in an annotated sample report; guidance for organization, format, and layout of reports produced by line organizations; and information about conference papers, journal articles, and brochures. The appendixes contain sections on Sandia`s preferred usage, equations, references, copyrights and permissions, and publishing terms.

  11. Robinson-Trautman solutions to Einstein's equations

    NASA Astrophysics Data System (ADS)

    Davidson, William

    2017-02-01

    Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.

  12. Antihypertensive effects of continuous oral administration of nattokinase and its fragments in spontaneously hypertensive rats.

    PubMed

    Fujita, Mitsugu; Ohnishi, Katsunori; Takaoka, Shinsaku; Ogasawara, Kazuya; Fukuyama, Ryo; Nakamuta, Hiromichi

    2011-01-01

    To determine whether the antihypertensive effect of nattokinase is associated with the protease activity of this enzyme, we compared nattokinase with the fragments derived from nattokinase, which possessed no protease activity, in terms of the effect on hypertension in spontaneously hypertensive rats (SHR). In the continuous oral administration test, the groups were given a basic diet alone (control), the basic diet containing nattokinase (0.2, 2.6 mg/g diet) or the basic diet containing the fragments derived from nattokinase (0.2, 0.6 mg/g diet). The group fed the basic diet containing high-dosage nattokinase (2.6 mg/g diet) showed significant reductions in systolic blood pressure (SBP), diastolic blood pressure (DBP) and plasma fibrinogen level, compared with control group and no influence on activities of renin and angiotensin-converting enzyme (ACE, EC 3.4.15.1), and plasma angiotensin II level in the renin-angiotensin system. The treatment of the basic diet containing high-dosage fragments (0.6 mg/g diet) significantly decreased SBP, DBP and plasma angiotensin II level in plasma but the treatment did not influence on plasma fibrinogen level. These results suggest that nattokinase and its fragments are different from each other in the mechanism to reduce hypertension. Nattokinase, retained its protease activity after absorbance across the intestines, may decrease blood pressure through cleavage of fibrinogen in plasma. The fragments, which absorbed as nattokinase-degradation products, prevents the elevation of plasma angiotensin II level to suppress hypertension.

  13. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    PubMed

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  14. 5 CFR 831.304 - Service with the Cadet Nurse Corps during World War II.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Nurse Corps during World War II. (a) Definitions and special usages. In this section— (1) Basic pay is... World War II. 831.304 Section 831.304 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED... who performed service with the Cadet Nurse Corps is entitled to credit under CSRS if— (1) The service...

  15. 5 CFR 831.304 - Service with the Cadet Nurse Corps during World War II.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Nurse Corps during World War II. (a) Definitions and special usages. In this section— (1) Basic pay is... World War II. 831.304 Section 831.304 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED... who performed service with the Cadet Nurse Corps is entitled to credit under CSRS if— (1) The service...

  16. 5 CFR 831.304 - Service with the Cadet Nurse Corps during World War II.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Service with the Cadet Nurse Corps during World War II. 831.304 Section 831.304 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED... Nurse Corps during World War II. (a) Definitions and special usages. In this section— (1) Basic pay is...

  17. 76 FR 30969 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... schedule II. The company plans to import Remifentanil in bulk for use in dosage- form manufacturing. Any... registration to import a basic class of any controlled substance in schedule I or II are, and will continue to... this Section to a bulk manufacturer of a controlled substance in schedule I or II, and prior to issuing...

  18. English: Basic Mechanics Modules 4 and 5.

    ERIC Educational Resources Information Center

    Pipeline, 1983

    1983-01-01

    "English: Basic Mechanics" is a series of computer-based lessons for the Apple II that allow students to practice applying the fundamentals of English grammar and punctuation. The two newest modules covering use of subordinate clauses and use of subordinate phrases are described. (JN)

  19. State transformations and Hamiltonian structures for optimal control in discrete systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  20. 5 CFR 531.405 - Waiting periods for within-grade increase.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... step 4-52 calendar weeks of creditable service; (ii) Rate of basic pay equal to or greater than the... creditable service; and (iii) Rate of basic pay equal to or greater than the rate of basic pay at step 7-156... step 4-260 days of creditable service in a pay status over a period of not less than 52 calendar weeks...

  1. 5 CFR 531.405 - Waiting periods for within-grade increase.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... step 4-260 days of creditable service in a pay status over a period of not less than 52 calendar weeks... step 4-52 calendar weeks of creditable service; (ii) Rate of basic pay equal to or greater than the rate of basic pay at step 4 and less than the rate of basic pay at step 7-104 calendar weeks of...

  2. Sequential Testing: Basics and Benefits

    DTIC Science & Technology

    1978-03-01

    Eii~TARADC6M and x _..TECHNICAL REPORT NO. 12325 SEQUENTIAL TESTING: BASICS AND BENEFITS / i * p iREFERENCE CP...Sequential Testing: Basics and Benefits Contents Page I. Introduction and Summary II. Sequential Analysis 2 III. Mathematics of Sequential Testing 4 IV...testing. The added benefit of reduced energy needs are inherent in this testing method. The text was originally released by the authors in 1972. The text

  3. The einstein equivalence principle, intrinsic spin and the invariance of constitutive equations in continuum mechanics

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1988-01-01

    The invariance of constitutive equations in continuum mechanics is examined from a basic theoretical standpoint. It is demonstrated the constitutive equations which are not form invariant under arbitrary translational accelerations of the reference frame are in violation of the Einstein equivalane principle. Furthermore, by making use of an analysis based on statistical mechanics, it is argued that any frame-dependent terms in constitutive equations must arise from the intrinsic spin tensor and are negligible provided that the ratio of microscopic to macroscopic time scales is extremely small. The consistency of these results with existing constitutive theories is discussed in detail along with possible avenues of future research.

  4. Geometry of the submanifolds of SEXn. II. The generalized fundamental equations for the hypersubmanifold of SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Jong Woo

    1989-08-01

    A connection which is both Einstein and semisymmetric is called an SE connection, and a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by g λμ through an SE connection is called an n-dimensional SE manifold and denoted by SEXn. This paper is a direct continuation of earlier work. In this paper, we derive the generalized fundamental equations for the hypersubmanifold of SEXn, including generalized Gauss formulas, generalized Weingarten equations, and generalized Gauss-Codazzi equations.

  5. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  6. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-15

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations.

  7. Varying levels of difficulty index of skills-test items randomly selected by examinees on the Korean emergency medical technician licensing examination.

    PubMed

    Koh, Bongyeun; Hong, Sunggi; Kim, Soon-Sim; Hyun, Jin-Sook; Baek, Milye; Moon, Jundong; Kwon, Hayran; Kim, Gyoungyong; Min, Seonggi; Kang, Gu-Hyun

    2016-01-01

    The goal of this study was to characterize the difficulty index of the items in the skills test components of the class I and II Korean emergency medical technician licensing examination (KEMTLE), which requires examinees to select items randomly. The results of 1,309 class I KEMTLE examinations and 1,801 class II KEMTLE examinations in 2013 were subjected to analysis. Items from the basic and advanced skills test sections of the KEMTLE were compared to determine whether some were significantly more difficult than others. In the class I KEMTLE, all 4 of the items on the basic skills test showed significant variation in difficulty index (P<0.01), as well as 4 of the 5 items on the advanced skills test (P<0.05). In the class II KEMTLE, 4 of the 5 items on the basic skills test showed significantly different difficulty index (P<0.01), as well as all 3 of the advanced skills test items (P<0.01). In the skills test components of the class I and II KEMTLE, the procedure in which examinees randomly select questions should be revised to require examinees to respond to a set of fixed items in order to improve the reliability of the national licensing examination.

  8. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  9. An iwatsubo-based solution for labyrinth seals - comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1984-01-01

    The basic equations are derived for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equation. The first-order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to published test results.

  10. The fractional dynamics of quantum systems

    NASA Astrophysics Data System (ADS)

    Lu, Longzhao; Yu, Xiangyang

    2018-05-01

    The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.

  11. On the stability of equilibrium for a reformulated foreign trade model of three countries

    NASA Astrophysics Data System (ADS)

    Dassios, Ioannis K.; Kalogeropoulos, Grigoris

    2014-06-01

    In this paper, we study the stability of equilibrium for a foreign trade model consisting of three countries. As the gravity equation has been proven an excellent tool of analysis and adequately stable over time and space all over the world, we further enhance the problem to three masses. We use the basic Structure of Heckscher-Ohlin-Samuelson model. The national income equals consumption outlays plus investment plus exports minus imports. The proposed reformulation of the problem focus on two basic concepts: (1) the delay inherited in our economic variables and (2) the interaction effect along the three economies involved. Stability and stabilizability conditions are investigated while numerical examples provide further insight and better understanding. Finally, a generalization of the gravity equation is somehow obtained for the model.

  12. Gyrotron Gun Study Report,

    DTIC Science & Technology

    1981-09-18

    of bern current to space-charge limited Langmuir current - Cathode surface current density S 2 a Cylindrical diode geometry function (tabulated in...design factor . t -13- " r =J... .. ::!, qm ! . ... ... - . , m- d nc- Cd (3) lsically, this equation arises from the recognition that the gap...S. Beam Current as a Fraction of the Limiting Langmuir Current (o/IL) Equation 5 in Table I is basically intended to provide a measure of the C

  13. LORENE: Spectral methods differential equations solver

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke

    2016-08-01

    LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.

  14. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  15. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  16. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    PubMed

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  17. The Social Attribution Task-Multiple Choice (SAT-MC): A Psychometric and Equivalence Study of an Alternate Form.

    PubMed

    Johannesen, Jason K; Lurie, Jessica B; Fiszdon, Joanna M; Bell, Morris D

    2013-01-01

    The Social Attribution Task-Multiple Choice (SAT-MC) uses a 64-second video of geometric shapes set in motion to portray themes of social relatedness and intentions. Considered a test of "Theory of Mind," the SAT-MC assesses implicit social attribution formation while reducing verbal and basic cognitive demands required of other common measures. We present a comparability analysis of the SAT-MC and the new SAT-MC-II, an alternate form created for repeat testing, in a university sample (n = 92). Score distributions and patterns of association with external validation measures were nearly identical between the two forms, with convergent and discriminant validity supported by association with affect recognition ability and lack of association with basic visual reasoning. Internal consistency of the SAT-MC-II was superior (alpha = .81) to the SAT-MC (alpha = .56). Results support the use of SAT-MC and new SAT-MC-II as equivalent test forms. Demonstrating relatively higher association to social cognitive than basic cognitive abilities, the SAT-MC may provide enhanced sensitivity as an outcome measure of social cognitive intervention trials.

  18. Basic Electronics II.

    ERIC Educational Resources Information Center

    Willison, Neal A.; Shelton, James K.

    Designed for use in basic electronics programs, this curriculum guide is comprised of 15 units of instruction. Unit titles are Review of the Nature of Matter and the P-N Junction, Rectifiers, Filters, Special Semiconductor Diodes, Bipolar-Junction Diodes, Bipolar Transistor Circuits, Transistor Amplifiers, Operational Amplifiers, Logic Devices,…

  19. Dependence of the basic properties of meso-nitro-substituted derivatives of β-octaethylporphyrin on the nature of substituents

    NASA Astrophysics Data System (ADS)

    Pukhovskaya, S. G.; Ivanova, Yu. B.; Nam, Dao The; Vashurin, A. S.

    2014-10-01

    Spectrophotometric titration is used to study the basic properties of a series of porphyrins with a continuously increasing degree of macrocycle deformation resulting from the introduction of strong electron-withdrawing substituents: 2,3,7,8,12,13,17,18-octaethylporphyrin ( I), 5-nitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( II), 5,15-dinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( III), 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( IV), and 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( V). It is found that the values of log K b (total basicity constants) obtained for the investigated compounds consistently diminish with an increase in the number of meso-substituents: 11.85 ( I) > 10.45 ( II) > 10.31 ( III) > 10.23 ( IV) > 9.56 ( V). It is shown that two opposing factors, the steric and electronic effects of the substituents, change the basic properties of the above series of compounds.

  20. Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In this research, we apply new technique for higher order nonlinear Schrödinger equation which is representing the propagation of short light pulses in the monomode optical fibers and the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Nonlinear Schrödinger equation is one of the basic model in fiber optics. We apply new auxiliary equation method for nonlinear Sasa-Satsuma equation to obtain a new optical forms of solitary traveling wave solutions. Exact and solitary traveling wave solutions are obtained in different kinds like trigonometric, hyperbolic, exponential, rational functions, …, etc. These forms of solutions that we represent in this research prove the superiority of our new technique on almost thirteen powerful methods. The main merits of this method over the other methods are that it gives more general solutions with some free parameters.

  1. Stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobczyk, K.

    1990-01-01

    This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less

  2. Invarianza de las ecuaciones de movimiento bajo transformaciones de escala espacio-temporales en la dinamica de Newton modificada (MOND)

    NASA Astrophysics Data System (ADS)

    Acosta, R.; Tuiran, E.; Molina Redondo, U.

    2015-02-01

    The basic principles that originated the Modified Newtonian Dynamics MOND, are shown, as well as a description of the fundamentals aspects of the theory: modification of gravity and modification of inertia. Also, it is considered the behaviour of the movement equations under space-temporal scale transformations of the movement equations, that is, transformations that have the form (t, r) --> (lambda*t, r). It was observed in this way that the MOND regime comes from the requirement of the invariance of the movement equations with respect to this transformations.

  3. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  4. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    NASA Astrophysics Data System (ADS)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, Hiroshi, E-mail: h.nakatsuji@qcri.or.jp; Nakashima, Hiroyuki

    The free-complement (FC) method is a general method for solving the Schrödinger equation (SE): The produced wave function has the potentially exact structure as the solution of the Schrödinger equation. The variables included are determined either by using the variational principle (FC-VP) or by imposing the local Schrödinger equations (FC-LSE) at the chosen set of the sampling points. The latter method, referred to as the local Schrödinger equation (LSE) method, is integral-free and therefore applicable to any atom and molecule. The purpose of this paper is to formulate the basic theories of the LSE method and explain their basic features.more » First, we formulate three variants of the LSE method, the AB, HS, and H{sup T}Q methods, and explain their properties. Then, the natures of the LSE methods are clarified in some detail using the simple examples of the hydrogen atom and the Hooke’s atom. Finally, the ideas obtained in this study are applied to solving the SE of the helium atom highly accurately with the FC-LSE method. The results are very encouraging: we could get the world’s most accurate energy of the helium atom within the sampling-type methodologies, which is comparable to those obtained with the FC-VP method. Thus, the FC-LSE method is an easy and yet a powerful integral-free method for solving the Schrödinger equation of general atoms and molecules.« less

  6. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-03-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  7. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  8. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  9. 21 CFR 1301.33 - Application for bulk manufacture of Schedule I and II substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Application for bulk manufacture of Schedule I and... manufacture of Schedule I and II substances. (a) In the case of an application for registration or reregistration to manufacture in bulk a basic class of controlled substance listed in Schedule I or II, the...

  10. Implementing a Multiple Criteria Model Base in Co-Op with a Graphical User Interface Generator

    DTIC Science & Technology

    1993-09-23

    PROMETHEE ................................ 44 A. THE ALGORITHM S ................................... 44 1. Basic Algorithm of PROMETHEE I and... PROMETHEE II ..... 45 a. Use of the Algorithm in PROMETHEE I ............. 49 b. Use of the Algorithm in PROMETHEE II ............. 50 V 2. Algorithm of... PROMETHEE V ......................... 50 B. SCREEN DESIGNS OF PROMETHEE ...................... 51 1. PROMETHEE I and PROMETHEE II ................... 52 a

  11. FEV1/FVC and FEV1 for the assessment of chronic airflow obstruction in prevalence studies: do prediction equations need revision?

    PubMed

    Roche, Nicolas; Dalmay, François; Perez, Thierry; Kuntz, Claude; Vergnenègre, Alain; Neukirch, Françoise; Giordanella, Jean-Pierre; Huchon, Gérard

    2008-11-01

    Little is known on the long-term validity of reference equations used in the calculation of FEV(1) and FEV(1)/FVC predicted values. This survey assessed the prevalence of chronic airflow obstruction in a population-based sample and how it is influenced by: (i) the definition of airflow obstruction; and (ii) equations used to calculate predicted values. Subjects aged 45 or more were recruited in health prevention centers, performed spirometry and fulfilled a standardized ECRHS-derived questionnaire. Previously diagnosed cases and risk factors were identified. Prevalence of airflow obstruction was calculated using: (i) ATS-GOLD definition (FEV(1)/FVC<0.70); and (ii) ERS definition (FEV(1)/FVC

  12. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.M.; Lewan, M.D.; Hennet, R.J.C.

    1991-04-01

    The time and depth of oil generation from petroleum source rocks containing type II kerogens can be determined using time-temperature index (TTI) graphs based on the Arrhenius equation. Activation energies (E) and frequency factors (A) used in the Arrhenius equation were obtained from hydrous pyrolysis experiments on rock samples in which the kerogens represent the range of type II kerogen compositions encountered in most petroleum basins. The E and A values obtained were used to construct graphs that define the beginning and end of oil generation for most type II kerogens having chemical compositions in the range of these standards.more » Activation energies of these standard kerogens vary inversely with their sulfur content. The kerogen with the highest sulfur content had the lowest E value and was the fastest in generating oil, whereas the kerogen with the lowest sulfur content had the highest E value and was the slowest in generating oil. These standard kerogens were designated as types IIA, B, C, and D on the basis of decreasing sulfur content and corresponding increasing time-temperature requirements for generating oil. The {Sigma}TTI{sub ARR} values determined graphically with these type II kerogen standards in two basin models were compared with a computer calculation using 2,000 increments. The graphical method came within {plus minus} 3% of the computer calculation. As type II kerogens are the major oil generators in the world, these graphs should have wide application in making preliminary evaluations of the depth of the oil window in exploration areas.« less

  13. Validation of equations and proposed reference values to estimate fat mass in Chilean university students.

    PubMed

    Gómez Campos, Rossana; Pacheco Carrillo, Jaime; Almonacid Fierro, Alejandro; Urra Albornoz, Camilo; Cossío-Bolaños, Marco

    2018-03-01

    (i) To propose regression equations based on anthropometric measures to estimate fat mass (FM) using dual energy X-ray absorptiometry (DXA) as reference method, and (ii)to establish population reference standards for equation-derived FM. A cross-sectional study on 6,713 university students (3,354 males and 3,359 females) from Chile aged 17.0 to 27.0years. Anthropometric measures (weight, height, waist circumference) were taken in all participants. Whole body DXA was performed in 683 subjects. A total of 478 subjects were selected to develop regression equations, and 205 for their cross-validation. Data from 6,030 participants were used to develop reference standards for FM. Equations were generated using stepwise multiple regression analysis. Percentiles were developed using the LMS method. Equations for men were: (i) FM=-35,997.486 +232.285 *Weight +432.216 *CC (R 2 =0.73, SEE=4.1); (ii)FM=-37,671.303 +309.539 *Weight +66,028.109 *ICE (R2=0.76, SEE=3.8), while equations for women were: (iii)FM=-13,216.917 +461,302 *Weight+91.898 *CC (R 2 =0.70, SEE=4.6), and (iv) FM=-14,144.220 +464.061 *Weight +16,189.297 *ICE (R 2 =0.70, SEE=4.6). Percentiles proposed included p10, p50, p85, and p95. The developed equations provide valid and accurate estimation of FM in both sexes. The values obtained using the equations may be analyzed from percentiles that allow for categorizing body fat levels by age and sex. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  15. Consumer Economics, Book I [and] Book II. DECIDE.

    ERIC Educational Resources Information Center

    Huffman, Ruth E.; And Others

    This module, Consumer Economics, is one of five from Project DECIDE, which was created to design, develop, write, and implement materials to provide adult basic education administrators, instructors, para-professionals, and other personnel with curriculum to accompany the Indiana Adult Basic Education Curriculum Guide, "Learning for Everyday…

  16. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate, calcium carbonate, or on any combination of... is a salt in which is combined the basic radical sodium, potassium, barium, or calcium; or (ii) a... color with the basic radical sodium, potassium, aluminum, barium, calcium, strontium, or zirconium. (2...

  17. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate, calcium carbonate, or on any combination of... is a salt in which is combined the basic radical sodium, potassium, barium, or calcium; or (ii) a... color with the basic radical sodium, potassium, aluminum, barium, calcium, strontium, or zirconium. (2...

  18. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate, calcium carbonate, or on any combination of... is a salt in which is combined the basic radical sodium, potassium, barium, or calcium; or (ii) a... color with the basic radical sodium, potassium, aluminum, barium, calcium, strontium, or zirconium. (2...

  19. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate, calcium carbonate, or on any combination of... is a salt in which is combined the basic radical sodium, potassium, barium, or calcium; or (ii) a... color with the basic radical sodium, potassium, aluminum, barium, calcium, strontium, or zirconium. (2...

  20. 21 CFR 82.2051 - Lakes (Ext. D&C).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., titanium dioxide, zinc oxide, talc, rosin, aluminum benzoate, calcium carbonate, or on any combination of... is a salt in which is combined the basic radical sodium, potassium, barium, or calcium; or (ii) a... color with the basic radical sodium, potassium, aluminum, barium, calcium, strontium, or zirconium. (2...

  1. Basic Scientific Subroutines, Volume II.

    ERIC Educational Resources Information Center

    Ruckdeschel, F. R.

    This book, second in a series dealing with scientific programing in the BASIC language, provides students, engineers, and scientists with a documented library of subroutines for scientific applications. Subjects of the eight chapters include: (1) least-squares approximation of functions and smoothing of data; (2) approximating functions by series…

  2. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  3. Proxy-equation paradigm: A strategy for massively parallel asynchronous computations

    NASA Astrophysics Data System (ADS)

    Mittal, Ankita; Girimaji, Sharath

    2017-09-01

    Massively parallel simulations of transport equation systems call for a paradigm change in algorithm development to achieve efficient scalability. Traditional approaches require time synchronization of processing elements (PEs), which severely restricts scalability. Relaxing synchronization requirement introduces error and slows down convergence. In this paper, we propose and develop a novel "proxy equation" concept for a general transport equation that (i) tolerates asynchrony with minimal added error, (ii) preserves convergence order and thus, (iii) expected to scale efficiently on massively parallel machines. The central idea is to modify a priori the transport equation at the PE boundaries to offset asynchrony errors. Proof-of-concept computations are performed using a one-dimensional advection (convection) diffusion equation. The results demonstrate the promise and advantages of the present strategy.

  4. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  5. Nonlinear Resonance and Duffing's Spring Equation II

    ERIC Educational Resources Information Center

    Fay, T. H.; Joubert, Stephan V.

    2007-01-01

    The paper discusses the boundary in the frequency-amplitude plane for boundedness of solutions to the forced spring Duffing type equation x[umlaut] + x + [epsilon]x[cubed] = F cos[omega]t. For fixed initial conditions and for representative fixed values of the parameter [epsilon], the results are reported of a systematic numerical investigation…

  6. LP-Stability for the Strong Solutions of the Navier-Stokes Equations in the Whole Space.

    DTIC Science & Technology

    1985-10-01

    VEIGA ET AL OCT 85 F/G 28/4 Ni II 2h8 12.5I II I 3L.2 2 gL 11111125 11111_L.4 1.6 MICR~OCOPY RESOLUTION TEST CHART...STABILITY FOR THE STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE H. Beirao da Veiga and P. Secchi introduction. Consider the...34’" -’ + " " . ’ ~ . , .’,..-.- -’ ’ . - " + - " " ." " - - " ." . . .’’.." ",’ A *’". " " ,’ ’- - -’" REFERENCES [1] H. BEIRAO DA VEIGA , "Existence and asymptotic

  7. Estimating the Accuracy of the Chedoke-McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation.

    PubMed

    Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A

    2011-01-01

    To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.

  8. Hierarchical coarse-graining model for photosystem II including electron and excitation-energy transfer processes.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2014-03-01

    We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Solitary Ring Pairs and Non-Thermal Regimes in Plasmas Connected with Black Holes*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2011-10-01

    The two-dimensional plasma and field configurations that can be associated with compact objects such as black holes are described, (in the limit where assuming a scalar pressure can be justified), by two characteristic non-linear equations: i) one that connects the plasma density profile to that of the relevant magnetic surfaces and is called the ``master equation'': ii) the other, the ``vertical equilibrium equation,'' connects the plasma pressure to the density and the magnetic surfaces and is closely related to the G-S equation for magnetically confined laboratory plasmas. Two kinds of solutions are found that consist of: i) a periodic sequence of plasma rings; ii) solitary pairs of rings. Experimental observations support the presence of rings around collapsed objects. Tridimensional configuration are found in the linear approximation as consisting of trailing spirals. Observations of High Frequency Quasi-Periodic oscillations implies that they originate from 3-dimentional structures. The existing theory is extended to involve non-thermal particle distributions in order to comply with relevant experimental observations. *Sponsored in part by the U.S. DOE.

  10. Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2018-06-01

    The equations that follow from kappa symmetry of the type II Green-Schwarz string are a certain deformation, by a Killing vector field K, of the type II supergravity equations. We analyze under what conditions solutions of these 'generalized' supergravity equations are trivial in the sense that they solve also the standard supergravity equations. We argue that for this to happen K must be null and satisfy dK =iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the closely related homogenous Yang-Baxter sigma models. When one performs non-abelian T-duality of a string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to the trace of the structure constants. This is expected to lead to an anomaly but we show that when K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-anomalous non-abelian T-duality.

  11. The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak

    NASA Astrophysics Data System (ADS)

    Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.

    2017-10-01

    The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.

  12. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  13. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  14. Lagrangian formulation for penny-shaped and Perkins-Kern geometry models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.S.

    1989-09-01

    This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less

  15. Freak oscillation in a dusty plasma.

    PubMed

    Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei

    2017-05-01

    The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.

  16. Tip Vortices of Isolated Wings and Helicopter Rotor Blades.

    DTIC Science & Technology

    1987-12-01

    root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in

  17. From Supernovae to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai

    A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.

  18. Spectral stability of shifted states on star graphs

    NASA Astrophysics Data System (ADS)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  19. Arbitrarily Curved and Twisted Space Beams. Ph.D. Thesis - Va. Polytech. Inst. and State Univ.; [Elastic Deformation, Stress Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.

    1974-01-01

    A derivation of the equations which govern the deformation of an arbitrarily curved and twisted space beam is presented. These equations differ from those of the classical theory in that (1) extensional effects are included; (2) the strain-displacement relations are derived; and (3) the expressions for the stress resultants are developed from the strain displacement relations. It is shown that the torsional stress resultant obtained by the classical approach is basically incorrect except when the cross-section is circular. The governing equations are given in the form of first-order differential equations. A numerical algorithm is given for obtaining the natural vibration characteristics and example problems are presented.

  20. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    NASA Astrophysics Data System (ADS)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  1. Estimating vapor pressures of pure liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraburda, S.S.

    1996-03-01

    Calculating the vapor pressures for pure liquid chemicals is a key step in designing equipment for separation of liquid mixtures. Here is a useful way to develop an equation for predicting vapor pressures over a range of temperatures. The technique uses known vapor pressure points for different temperatures. Although a vapor-pressure equation is being showcased in this article, the basic method has much broader applicability -- in fact, users can apply it to develop equations for any temperature-dependent model. The method can be easily adapted for use in software programs for mathematics evaluation, minimizing the need for any programming. Themore » model used is the Antoine equation, which typically provides a good correlation with experimental or measured data.« less

  2. I -Love- Q relations for white dwarf stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  3. ECON 12: Teacher's Materials. Units I and II.

    ERIC Educational Resources Information Center

    Wiggins, Suzanne

    The objectives of this experimental 12th grade economics course begin with an understanding that "economic analysis applies a set of basic concepts and their interrelationships to problems (involving) economic scarcity." Fifteen basic concepts are to be learned (e. g., want, markets, money, etc.) as well as the definition and vocabulary…

  4. KURDISH READERS. PART II, KURDISH ESSAYS.

    ERIC Educational Resources Information Center

    ABDULLA, JAMAL JALAL; MCCARUS, ERNEST N.

    THIS READER, TOGETHER WITH THE "NEWSPAPER KURDISH" AND "SHORT STORIES" READERS, FOLLOWS THE "BASIC COURSE IN KURDISH" (BY THE SAME AUTHORS) AND ASSUMES A MASTERY OF THE BASIC ELEMENTS OF THE STRUCTURE AND WRITING SYSTEM AS PRESENTED IN THE BEGINNING COURSE. WRITTEN IN THE SULAIMANIAN DIALECT, THE OFFICIAL DIALECT OF…

  5. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Cox, Rodney V., Jr.

    This revised textbook, published for the Air Force ROTC program, contains a discussion of basic and essential understandings about air navigation. The first part of the book describes maps, air navigation charts, flight planning, and pilotage preflight. Basic differences between ground maps and air charts are described and the methods of…

  6. 38 CFR 21.5040 - Basic eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) 24 continuous months of active duty, or (ii) The full period for which the individual was called or.... Chapter 32 Eligibility § 21.5040 Basic eligibility. (a) Individuals not on active duty. Whether an.... (Authority: 38 U.S.C. 3202). (b) Service requirements for all individuals not on active duty. (1) An...

  7. 38 CFR 21.5040 - Basic eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) 24 continuous months of active duty, or (ii) The full period for which the individual was called or.... Chapter 32 Eligibility § 21.5040 Basic eligibility. (a) Individuals not on active duty. Whether an.... (Authority: 38 U.S.C. 3202). (b) Service requirements for all individuals not on active duty. (1) An...

  8. University Research: Understanding Its Role

    ERIC Educational Resources Information Center

    Association of American Universities, 2011

    2011-01-01

    Since World War II, the federal government has maintained a partnership with the nation's research universities, based on the bipartisan consensus that (1) the nation needs to invest its resources in curiosity-driven, competitively awarded basic research, and (2) basic research is best conducted at the nation's universities. As a result of that…

  9. 76 FR 30969 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances; Notice of... renewal to the Drug Enforcement Administration (DEA) to be registered as an importer of the following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Coca Leaves (9040) II...

  10. Assessment of turbulent models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1982-01-01

    The behavior of several turbulence models applied to the prediction of scramjet combustor flows is described. These models include the basic two equation model, the multiple dissipation length scale variant of the two equation model, and the algebraic stress model (ASM). Predictions were made of planar backward facing step flows and axisymmetric sudden expansion flows using each of these approaches. The formulation of each of these models are discussed, and the application of the different approaches to supersonic flows is described. A modified version of the ASM is found to provide the best prediction of the planar backward facing step flow in the region near the recirculation zone, while the basic ASM provides the best results downstream of the recirculation. Aspects of the interaction of numerica modeling and turbulences modeling as they affect the assessment of turbulence models are discussed.

  11. What Are We Doing When We Translate from Quantitative Models?

    PubMed Central

    Critchfield, Thomas S; Reed, Derek D

    2009-01-01

    Although quantitative analysis (in which behavior principles are defined in terms of equations) has become common in basic behavior analysis, translational efforts often examine everyday events through the lens of narrative versions of laboratory-derived principles. This approach to translation, although useful, is incomplete because equations may convey concepts that are difficult to capture in words. To support this point, we provide a nontechnical introduction to selected aspects of quantitative analysis; consider some issues that translational investigators (and, potentially, practitioners) confront when attempting to translate from quantitative models; and discuss examples of relevant translational studies. We conclude that, where behavior-science translation is concerned, the quantitative features of quantitative models cannot be ignored without sacrificing conceptual precision, scientific and practical insights, and the capacity of the basic and applied wings of behavior analysis to communicate effectively. PMID:22478533

  12. Basic mechanisms in the laser control of non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  13. Basic research and data analysis for the National Geodetic Satellite program and for the Earth Surveys program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Current research is reported on precise and accurate descriptions of the earth's surface and gravitational field and on time variations of geophysical parameters. A new computer program was written in connection with the adjustment of the BC-4 worldwide geometric satellite triangulation net. The possibility that an increment to accuracy could be transferred from a super-control net to the basic geodetic (first-order triangulation) was investigated. Coordinates of the NA9 solution were computed and were transformed to the NAD datum, based on GEOS 1 observations. Normal equations from observational data of several different systems and constraint equations were added and a single solution was obtained for the combined systems. Transformation parameters with constraints were determined, and the impact of computers on surveying and mapping is discussed.

  14. Reassessing Phase II Heart Failure Clinical Trials: Consensus Recommendations

    PubMed Central

    Butler, Javed; Hamo, Carine E.; Udelson, James E.; O’Connor, Christopher; Sabbah, Hani N.; Metra, Marco; Shah, Sanjiv J.; Kitzman, Dalane W.; Teerlink, John; Bernstein, Harold S.; Brooks, Gabriel; Depre, Christophe; DeSouza, Mary M.; Dinh, Wilfried; Donovan, Mark; Frische-Danielson, Regina; Frost, Robert J.; Garza, Dahlia; Gohring, Udo-Michael; Hellawell, Jennifer; Hsia, Judith; Ishihara, Shiro; Kay-Mugford, Patricia; Koglin, Joerg; Kozinn, Marc; Larson, Christopher J.; Mayo, Martha; Gan, Li-Ming; Mugnier, Pierrre; Mushonga, Sekayi; Roessig, Lothar; Russo, Cesare; Salsali, Afshin; Satler, Carol; Shi, Victor; Ticho, Barry; van der Laan, Michael; Yancy, Clyde; Stockbridge, Norman; Gheorghiade, Mihai

    2017-01-01

    The increasing burden and the continued suboptimal outcomes for patients with heart failure underlines the importance of continued research to develop novel therapeutics for this disorder. This can only be accomplished with successful translation of basic science discoveries into direct human application through effective clinical trial design and execution that results in a substantially improved clinical course and outcomes. In this respect, phase II clinical trials play a pivotal role in determining which of the multitude of potential basic science discoveries should move to the large and expansive registration trials in humans. A critical examination of the phase II trials in heart failure reveals multiple shortcomings in their concept, design, execution, and interpretation. To further a dialogue regarding the challenges and potential for improvement and the role of phase II trials in patients with heart failure, the Food and Drug Administration facilitated a meeting on October 17th 2016 represented by clinicians, researchers, industry members, and regulators. This document summarizes the discussion from this meeting and provides key recommendations for future directions. PMID:28356300

  15. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  16. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  17. Preloaded joint analysis methodology for space flight systems

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1995-01-01

    This report contains a compilation of some of the most basic equations governing simple preloaded joint systems and discusses the more common modes of failure associated with such hardware. It is intended to provide the mechanical designer with the tools necessary for designing a basic bolted joint. Although the information presented is intended to aid in the engineering of space flight structures, the fundamentals are equally applicable to other forms of mechanical design.

  18. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.

    1988-01-01

    The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.

  19. Response of basic structural elements and B-52 structural components to simulated nuclear overpressure. Volume II-program data (basic structural elements). Final report, 1 June 1977-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syring, R.P.; Grubb, R.L.

    1979-09-30

    This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.

  20. Rational Solutions of the Painlevé-II Equation Revisited

    NASA Astrophysics Data System (ADS)

    Miller, Peter D.; Sheng, Yue

    2017-08-01

    The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.

  1. Superoxo, μ-peroxo, and μ-oxo complexes from heme/O2 and heme-Cu/O2 reactivity: Copper ligand influences in cytochrome c oxidase models

    PubMed Central

    Kim, Eunsuk; Helton, Matthew E.; Wasser, Ian M.; Karlin, Kenneth D.; Lu, Shen; Huang, Hong-wei; Moënne-Loccoz, Pierre; Incarvito, Christopher D.; Rheingold, Arnold L.; Honecker, Marcus; Kaderli, Susan; Zuberbühler, Andreas D.

    2003-01-01

    The O2-reaction chemistry of 1:1 mixtures of (F8)FeII (1; F8 = tetrakis(2,6-diflurorophenyl)porphyrinate) and [(LMe2N)CuI]+ (2; LMe2N = N,N-bis{2-[2-(N′,N′-4-dimethylamino)pyridyl]ethyl}methylamine) is described, to model aspects of the chemistry occurring in cytochrome c oxidase. Spectroscopic investigations, along with stopped-flow kinetics, reveal that low-temperature oxygenation of 1/2 leads to rapid formation of a heme-superoxo species (F8)FeIII-(O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document}) (3), whether or not 2 is present. Complex 3 subsequently reacts with 2 to form [(F8)FeIII–(O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{2-}}}\\end{equation*}\\end{document})–CuII(LMe2N)]+ (4), which thermally converts to [(F8)FeIII–(O)–CuII(LMe2N)]+ (5), which has an unusually bent (Fe–O–Cu) bond moiety. Tridentate chelation, compared with tetradentate, is shown to dramatically lower the ν(O–O) values observed in 4 and give rise to the novel structural features in 5. PMID:12655050

  2. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  3. Varying levels of difficulty index of skills-test items randomly selected by examinees on the Korean emergency medical technician licensing examination

    PubMed Central

    2016-01-01

    Purpose: The goal of this study was to characterize the difficulty index of the items in the skills test components of the class I and II Korean emergency medical technician licensing examination (KEMTLE), which requires examinees to select items randomly. Methods: The results of 1,309 class I KEMTLE examinations and 1,801 class II KEMTLE examinations in 2013 were subjected to analysis. Items from the basic and advanced skills test sections of the KEMTLE were compared to determine whether some were significantly more difficult than others. Results: In the class I KEMTLE, all 4 of the items on the basic skills test showed significant variation in difficulty index (P<0.01), as well as 4 of the 5 items on the advanced skills test (P<0.05). In the class II KEMTLE, 4 of the 5 items on the basic skills test showed significantly different difficulty index (P<0.01), as well as all 3 of the advanced skills test items (P<0.01). Conclusion: In the skills test components of the class I and II KEMTLE, the procedure in which examinees randomly select questions should be revised to require examinees to respond to a set of fixed items in order to improve the reliability of the national licensing examination. PMID:26883810

  4. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury(II).

    PubMed

    Rubinos, David A; Barral, María Teresa

    2015-11-01

    The effectiveness of the oxide-rich residue from bauxite refining (red mud) to remove inorganic Hg(II) from aqueous solutions was assessed. The aspects studied comprised the kinetics of the process (t = 1 min-24 h), the effect of pH (3.5-11.5), the interacting effect between salt concentration (0.01-1 M NaNO3) and pH and the Hg(II) sorption isotherm. Hg leaching from spent red mud was evaluated using the toxicity characteristics leaching procedure (TCLP) method. The sorption of Hg(II) onto red mud was very fast, with most of Hg(II) (97.0-99.7%) being removed from 0.5-50 μM Hg solutions in few minutes. The kinetic process was best described by Ho's pseudo-second order equation, pointing to chemisorption as the rate controlling step. Hg(II) sorption efficiency was very high (% removal between 93.9 and 99.8%) within all the studied pH range (3.5-11.5) and added Hg concentrations (5 and 50 μM), being optimal at pH 5-8 and decreasing slightly at both lowest and highest pH. The effect of background electrolyte concentration suggests specific sorption as the main interaction mechanism between Hg(II) and red mud, but the increasing non-sorbed Hg concentrations at low and high pH for higher electrolyte concentrations also revealed the contribution of an electrostatic component to the process. The sorption isotherm showed the characteristic shape of high affinity sorbents, and it was better described by the Redlich-Peterson and Freundlich equations, which are models that assume sorbent heterogeneity and involvement of more than one mechanism. The estimated Hg(II) sorption capacity from the Langmuir equation (q m ~9 mmol/kg) was comparable to those of some inorganic commercial sorbents but lower than most bio- or specifically designed sorbents. The leachability of retained Hg(II) from spent red mud (0.02, 0.25 and 2.42 mmol Hg/kg sorbed concentration) was low (0.28, 1.15 and 2.23 μmol/kg, respectively) and accounted for 1.2, 0.5 and 0.1% of previously sorbed Hg, indicating that Hg(II) is tightly bound by red mud once sorbed.

  5. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  6. Analytical description of concentration dependence of surface tension in multicomponent systems

    NASA Astrophysics Data System (ADS)

    R, Dadashev; R, Kutuev; D, Elimkhanov

    2008-02-01

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  7. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    PubMed

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  8. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  9. Wind Factor Simulation Model: User’s Manual.

    DTIC Science & Technology

    1980-04-01

    computer program documentation; com- puterized simulation; equivalent headwind technique; great circle; great circle distance; great circle equation ; great... equation of a great circle. Program listing and flow chart are included. iv UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(WIh.n Date EnItrd) USER’S...THE EQUATOR . 336 C 337 NTRIFG = 0 338 C 339 C END OF FUNCTION ICONV I 1. RETURN TO MAIN PROGRAM . 340 C 42 341 RETURN 34? C 343 C 344 C 345 C * PART II

  10. Position-dependent effective masses in semiconductor theory. II

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1985-01-01

    A compound semiconductor possessing a slowly varying position-dependent chemical composition is considered. An effective-mass equation governing the dynamics of electron (or hole) motion using the Kohn-Luttinger representation and canonical transformations is derived. It is shown that, as long as the variation in chemical composition may be treated as a perturbation, the effective masses become constant, position-independent quantities. The effective-mass equation derived here is identical to the effective-mass equation derived previously by von Roos (1983), using a Wannier representation.

  11. Type II universal spacetimes

    NASA Astrophysics Data System (ADS)

    Hervik, S.; Málek, T.; Pravda, V.; Pravdová, A.

    2015-12-01

    We study type II universal metrics of the Lorentzian signature. These metrics simultaneously solve vacuum field equations of all theories of gravitation with the Lagrangian being a polynomial curvature invariant constructed from the metric, the Riemann tensor and its covariant derivatives of an arbitrary order. We provide examples of type II universal metrics for all composite number dimensions. On the other hand, we have no examples for prime number dimensions and we prove the non-existence of type II universal spacetimes in five dimensions. We also present type II vacuum solutions of selected classes of gravitational theories, such as Lovelock, quadratic and L({{Riemann}}) gravities.

  12. Reviews.

    ERIC Educational Resources Information Center

    Newland, Robert J.; And Others

    1988-01-01

    Reviews four organic chemistry computer programs and three books. Software includes: (1) NMR Simulator 7--for IBM or Macintosh, (2) Nucleic Acid Structure and Synthesis--for IBM, (3) Molecular Design Editor--for Apple II, and (4) Synthetic Adventure--for Apple II and IBM. Book topics include physical chemistry, polymer pioneers, and the basics of…

  13. Mathematics Programming on the Apple II and IBM PC.

    ERIC Educational Resources Information Center

    Myers, Roy E.; Schneider, David I.

    1987-01-01

    Details the features of BASIC used in mathematics programming and provides the information needed to translate between the Apple II and IBM PC computers. Discusses inputing a user-defined function, setting scroll windows, displaying subscripts and exponents, variable names, mathematical characters and special symbols. (TW)

  14. 77 FR 5846 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from opium, raw, and poppy straw concentrate. Comments and requests for...

  15. 25 CFR 36.11 - Standard II-Administrative requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Standard II-Administrative requirements. 36.11 Section 36.11 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Educational...

  16. An ADC Interface for the Apple II.

    ERIC Educational Resources Information Center

    Leiker, P. Steven

    1990-01-01

    Described is the construction of a simple analog-to-digital convertor circuit to interface an Apple II+ microcomputer to a light sensor used in conjunction with a holographic gear inspector. A list of parts, circuit diagram, and a simple BASIC program for the convertor are provided. (CW)

  17. 75 FR 10312 - Importer of Controlled Substances Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Importer of Controlled Substances Notice of... by renewal to the Drug Enforcement Administration (DEA) to be registered as an importer of the basic classes of controlled substances listed in schedule II: Drug Schedule Opium, raw (9600) II Poppy Straw...

  18. 25 CFR 36.11 - Standard II-Administrative requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Standard II-Administrative requirements. 36.11 Section 36.11 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Educational...

  19. 25 CFR 36.11 - Standard II-Administrative requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Standard II-Administrative requirements. 36.11 Section 36.11 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN AND NATIONAL CRITERIA FOR DORMITORY SITUATIONS Educational...

  20. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  1. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships.

    PubMed

    Riobó, P; Paz, B; Franco, J M; Vázquez, J A; Murado, M A; Cacho, E

    2008-08-01

    Nowadays, a variety of protocols are applied to quantitate palytoxin. However, there is not desirable agreement among them, the confidence intervals of the basic toxicological parameters are too wide and the formal descriptions lack the necessary generality to establish comparisons. Currently, the mouse bioassay is the most accepted one to categorize marine toxins and it must constitute the reference for other methods. In the present work, the mouse bioassay for palytoxin is deeply analyzed and carefully described showing the initial symptoms of injected mice which are presented here in the first time. These symptoms clearly differ from the more common marine toxins described up to now. Regarding to the toxicological aspects two considerations are taking into account: (i) the empiric models based in the dose-death time relationships cause serious ambiguities and (ii) the traditional moving average method contains in its regular use any inaccuracy elements. Herein is demonstrated that the logistic equation and the accumulative function of Weibull's distribution (with the modifications proposed) generate satisfactory toxicological descriptions in all the respects.

  2. Muscle contraction and the elasticity-mediated crosstalk effect

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    2013-05-01

    Cooperative action of molecular motors is essential for many cellular processes. One possible regulator of motor coordination is the elasticity-mediated crosstalk (EMC) coupling between myosin II motors whose origin is the tensile stress that they collectively generate in actin filaments. Here, we use a statistical mechanical analysis to investigate the influence of the EMC effect on the sarcomere — the basic contractile unit of skeletal muscles. We demonstrate that the EMC effect leads to an increase in the attachment probability of motors located near the end of the sarcomere while simultaneously decreasing the attachment probability of the motors in the central part. Such a polarized attachment probability would impair the motors' ability to cooperate efficiently. Interestingly, this undesired phenomenon becomes significant only when the system size exceeds that of the sarcomere in skeletal muscles, which provides an explanation for the remarkable lack of sarcomere variability in vertebrates. Another phenomenon that we investigate is the recently observed increase in the duty ratio of the motors with the tension in muscle. We reveal that the celebrated Hill's equation for muscle contraction is very closely related to this observation.

  3. Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator II: Physical and Geometrical Considerations

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2009-04-01

    The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.

  4. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  5. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumption is expressed in units of therms or million Btu. In that case, use Equation C-1a or C-1b, as.... (ii) If natural gas consumption is obtained from billing records and fuel usage is expressed in therms... gas consumption is obtained from billing records and fuel usage is expressed in mmBtu, use Equation C...

  6. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumption is expressed in units of therms or million Btu. In that case, use Equation C-1a or C-1b, as.... (ii) If natural gas consumption is obtained from billing records and fuel usage is expressed in therms... gas consumption is obtained from billing records and fuel usage is expressed in mmBtu, use Equation C...

  7. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumption is expressed in units of therms or million Btu. In that case, use Equation C-1a or C-1b, as.... (ii) If natural gas consumption is obtained from billing records and fuel usage is expressed in therms... gas consumption is obtained from billing records and fuel usage is expressed in mmBtu, use Equation C...

  8. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  9. Study of the interaction between mercury (II) and bovine serum albumin by spectroscopic methods.

    PubMed

    Chunmei, Dai; Cunwei, Ji; Huixiang, Lan; Yuze, Song; Wei, Yang; Dan, Zheng

    2014-03-01

    Mercury is a significant environmental pollutant that originates from industry. Mercury will bind with albumin and destroy biological functions in humans if it enters the blood. In this paper, the interaction between mercury (II) and bovine serum albumin (BSA) was investigated in vitro by fluorescence, UV-Vis absorption and circular dichroism (CD) under simulated physiological conditions. This study proves that the probable quenching mechanism of BSA by mercury (II) was mainly static quenching due to the formation of a mercury (II)-BSA complex. The quenching constant K(a) and the corresponding thermodynamic parameters (ΔH, ΔS and ΔG) at four different temperatures were calculated by a modified Stern-Volmer equation and the van't Hoff equation, respectively. The results revealed that the interaction between mercury (II) and BSA was mainly enthalpy-driven and that hydrogen bonding and van der Waals forces played a major role in the reaction. The obtained data for binding sites of n approximately equal to 1 indicated that there was a single class of binding site for the BSA with mercury (II). The value of the distance r (3.55 nm), determined by Föster's non-radioactive energy transfer theory, suggested that the energy transfer from BSA to mercury (II) occurred with a high probability. The conformational investigation from synchronous fluorescence, CD spectroscopy and three-dimensional fluorescence showed that the presence of mercury (II) resulted in micro-environmental and conformational changes of the BSA molecules, which may be responsible for the toxicity of mercury (II) in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. On the numerical treatment of nonlinear source terms in reaction-convection equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.

  11. Nonvalidity of I-Love-Q Relations for Hot White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.

    2018-05-01

    The equilibrium configurations of uniformly rotating white dwarfs at finite temperatures are investigated, exploiting the Chandrasekhar equation of state for different isothermal cores. The Hartle-Thorne formalism is applied to construct white dwarf configurations in the framework of Newtonian physics. The equations of structure are considered in the slow rotation approximation and all basic parameters of rotating hot white dwarfs are computed to test the so-called moment of inertia, tidal Love number and quadrupole moment (I-Love-Q) relations. It is shown that even within the same equation of state the I-Love-Q relations are not universal for white dwarfs at finite temperatures.

  12. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  13. Some examples of exact and approximate solutions in small particle scattering - A progress report

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The formulation of basic equations from which the scattering of radiation by a localized variation in a medium is discussed. These equations are developed in both the differential and the integral form. Primary interest is in the scattering of electromagnetic waves for which the solution of the vector wave equation with appropriate boundary conditions must be considered. Scalar scattering by an infinite homogeneous isotropic circular cylinder, and scattering of electromagnetic waves by infinite circular cylinders are treated, and the case of the finite circular cylinder is considered. A procedure is given for obtaining angular scattering distributions from spheroids.

  14. The pulsating orb: solving the wave equation outside a ball

    PubMed Central

    2016-01-01

    Transient acoustic waves are generated by the oscillations of an object or are scattered by the object. This leads to initial-boundary value problems (IBVPs) for the wave equation. Basic properties of this equation are reviewed, with emphasis on characteristics, wavefronts and compatibility conditions. IBVPs are formulated and their properties reviewed, with emphasis on weak solutions and the constraints imposed by the underlying continuum mechanics. The use of the Laplace transform to treat the IBVPs is also reviewed, with emphasis on situations where the solution is discontinuous across wavefronts. All these notions are made explicit by solving simple IBVPs for a sphere in some detail. PMID:27279773

  15. Iontophoretic transdermal drug delivery: a multi-layered approach.

    PubMed

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  16. Optimization of cascade blade mistuning. I - Equations of motion and basic inherent properties

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1985-01-01

    Attention is given to the derivation of the equations of motion of mistuned compressor blades, interpolating aerodynamic coefficients by means of quadratic expressions in the reduced frequency. If the coefficients of the quadratic expressions are permitted to assume complex values, excellent accuracy is obtained and Pade rational expressions are obviated. On the basis of the resulting equations, it is shown analytically that the sum of all the real parts of the eigenvalues is independent of the mistuning introduced into the system. Blade mistuning is further treated through the aerodynamic energy approach, and the limiting vibration modes associated with alternative mistunings are identified.

  17. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  18. The use of solution adaptive grids in solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Rai, M. M.

    1982-01-01

    The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.

  19. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  20. Direct perturbation theory for the dark soliton solution to the nonlinear Schroedinger equation with normal dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Jialu; Yang Chunnuan; Cai Hao

    2007-04-15

    After finding the basic solutions of the linearized nonlinear Schroedinger equation by the method of separation of variables, the perturbation theory for the dark soliton solution is constructed by linear Green's function theory. In application to the self-induced Raman scattering, the adiabatic corrections to the soliton's parameters are obtained and the remaining correction term is given as a pure integral with respect to the continuous spectral parameter.

  1. Boundary layer transition: A review of theory, experiment and related phenomena

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1971-01-01

    The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.

  2. Aircraft Airframe Cost Estimation Using a Random Coefficients Model

    DTIC Science & Technology

    1979-12-01

    approach will also be used here. 2 Model Formulation Several different types of equations could be used for the basic form of the CER, such as linear ...5) Marcotte developed several CER’s for fighter aircraft airframes using the log- linear model . A plot of the residuals from the CER for recurring...of the natural logarithm. Ordinary Least Squares The ordinary least squares procedure starts with the equation for the general linear model . The

  3. The Social Attribution Task-Multiple Choice (SAT-MC): A Psychometric and Equivalence Study of an Alternate Form

    PubMed Central

    Johannesen, Jason K.; Lurie, Jessica B.; Fiszdon, Joanna M.; Bell, Morris D.

    2013-01-01

    The Social Attribution Task-Multiple Choice (SAT-MC) uses a 64-second video of geometric shapes set in motion to portray themes of social relatedness and intentions. Considered a test of “Theory of Mind,” the SAT-MC assesses implicit social attribution formation while reducing verbal and basic cognitive demands required of other common measures. We present a comparability analysis of the SAT-MC and the new SAT-MC-II, an alternate form created for repeat testing, in a university sample (n = 92). Score distributions and patterns of association with external validation measures were nearly identical between the two forms, with convergent and discriminant validity supported by association with affect recognition ability and lack of association with basic visual reasoning. Internal consistency of the SAT-MC-II was superior (alpha = .81) to the SAT-MC (alpha = .56). Results support the use of SAT-MC and new SAT-MC-II as equivalent test forms. Demonstrating relatively higher association to social cognitive than basic cognitive abilities, the SAT-MC may provide enhanced sensitivity as an outcome measure of social cognitive intervention trials. PMID:23864984

  4. CURRICULUM GUIDE FOR ADULT EDUCATION.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    THE STATE DEPARTMENT OF EDUCATION IN SOUTH CAROLINA PREPARED THIS CURRICULUM GUIDE FOR ADULT EDUCATION SUPPORTED BY PUBLIC FUNDS. OBJECTIVES AND CURRICULUM OUTLINES FOR ADULT BASIC EDUCATION ARE GIVEN TO COVER LEVELS I (GRADES 1 TO 3), II (GRADES 4 TO 6), AND III (GRADES 7 AND 8). THE OUTLINES COVER COURSES IN READING, BASIC LANGUAGE ARTS AND…

  5. 20 CFR 404.2106 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Provisions § 404.2106 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  6. 20 CFR 416.2206 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Provisions § 416.2206 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  7. 20 CFR 416.2206 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Provisions § 416.2206 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  8. 20 CFR 404.2106 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Provisions § 404.2106 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  9. 20 CFR 901.13 - Eligibility for enrollment of individuals applying for enrollment on or after January 1, 1976.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... actuarial mathematics and methodology by one of the following: (1) Joint Board basic examination. Successful... basic actuarial mathematics and methodology including compound interest, principles of life... major area of concentration was actuarial mathematics, or (ii) Which included at least as many semester...

  10. An Inexpensive Predictor of Student Performance on Licensure Examinations.

    ERIC Educational Resources Information Center

    Hyde, R. M.; And Others

    1987-01-01

    The construction of a comprehensive final examination over the basic medical sciences is described. Performance on the exam was a better predictor of NBME-I scores than GPA in basic science or MCAT scores and a better predictor of NBME-II scores than preclinical course performance and MCAT scores. (Author/RH)

  11. Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning): Level II Modules.

    ERIC Educational Resources Information Center

    Brevard Community Coll., Cocoa, FL.

    These eight learning modules were prepared for parents participating in Brevard Community College's Project BEST-PAL (Basic Education Skills Through-Parenting Affective Learning), which was designed for low socioeconomic parents who are in need of an opportunity to explore effective parenting. First, materials for the BEST-PAL volunteer sponsors…

  12. 38 CFR 3.314 - Basic pension determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... therefor are: (1) Claims based on service of less than 90 days in the Spanish-American War require a rating... on service in the Mexican border period, World War I, World War II, the Korean conflict and the... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Basic pension...

  13. 38 CFR 3.314 - Basic pension determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... therefor are: (1) Claims based on service of less than 90 days in the Spanish-American War require a rating... on service in the Mexican border period, World War I, World War II, the Korean conflict and the... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Basic pension...

  14. 38 CFR 3.314 - Basic pension determinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... therefor are: (1) Claims based on service of less than 90 days in the Spanish-American War require a rating... on service in the Mexican border period, World War I, World War II, the Korean conflict and the... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Basic pension...

  15. 38 CFR 3.314 - Basic pension determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... therefor are: (1) Claims based on service of less than 90 days in the Spanish-American War require a rating... on service in the Mexican border period, World War I, World War II, the Korean conflict and the... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Basic pension...

  16. 20 CFR 404.2106 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Provisions § 404.2106 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  17. 20 CFR 404.2106 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Provisions § 404.2106 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  18. 20 CFR 416.2206 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Provisions § 416.2206 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  19. 20 CFR 416.2206 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Provisions § 416.2206 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  20. 20 CFR 416.2206 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Provisions § 416.2206 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  1. 20 CFR 404.2106 - Basic qualifications for alternate participants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Provisions § 404.2106 Basic qualifications for alternate participants. (a) General. We may arrange for VR... (that is, any entity whether for-profit or not-for-profit), other than a State VR agency. (1) An... provide VR services in the State in which it provides services; and (ii) Under the terms of the written...

  2. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture II.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    This second horticulture guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Leadership, (2) Supervised Occupational Experience, (3) Plant Propagation, (4) Soil and Plant Growth Media, (5) Fertilizers, (6) Greenhouse, (7) Plant…

  3. Zero Income Basic Grant Applicants. Phase II Report.

    ERIC Educational Resources Information Center

    Applied Management Sciences, Inc., Silver Spring, MD.

    The nature and extent of corrections made to their records by zero/low income applicants to the Basic Educational Opportunity Grant (BEOG) program was investigated. Behaviors of zero/low income applicants and the total pool of applicants were also compared. It was found that zero/low income applicants and all applicants who were rejected displayed…

  4. 10 CFR 430.24 - Units to be tested.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... efficiency ratio or other measure of energy consumption of a basic model for which consumers would favor..., and (ii) Any represented value of the annual fuel utilization efficiency or other measure of energy... tested basic models by only the design of oven doors the use of which leads to improved efficiency and...

  5. 78 FR 39337 - Importer of Controlled Substances; Notice of Application; Akorn, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ...), a basic class of controlled substance listed in schedule II. The company plans to import Remifentanil in bulk for use in dosage- form manufacturing. Any bulk manufacturer who is presently, or is applying to be, registered with DEA to manufacture such basic class of controlled substance listed in...

  6. 78 FR 64016 - Importer of Controlled Substances, Notice of Registration, Akorn, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...), a basic class of controlled substance listed in schedule II. The company plans to import Remifentanil in bulk for use in dosage form manufacturing. No comments or objections have been received. DEA... granted registration as an importer of the basic class of controlled substance listed. Dated: September 27...

  7. Russian Basic Course: Reader, Volume II.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This anthology of short stories is representative of well-known 19th and 20th century Russian writers. Eleven stories, often adapted or abridged, are arranged in order of increasing difficulty and intended for use in intermediate and advanced phases of the Russian Basic Course. The selections, all in Cyrillic script, include: (1) A. S. Pushkin's…

  8. 37 CFR 7.11 - Requirements for international application originating from the United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application and/or registration is depicted in black and white and the basic application or registration does... and white. (ii) If the mark in the basic application or registration is depicted in black and white and includes a color claim, the international application must include both a black and white...

  9. German Basic Course. Volume II, Lessons 16-25.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This is the first volume of the Intermediate Phase (lessons 16-92) of the German Basic Course developed by the Defense Language Institute. The course, normally requiring 19 weeks of training, focuses on developing mastery of structural elements of German through the audiolingual method. Dialogues are based on life situations and progress towards…

  10. Differential Ability Scales-II Prediction of Reading Performance: Global Scores Are Not Enough

    ERIC Educational Resources Information Center

    Elliott, Colin D.; Hale, James B.; Fiorello, Catherine A.; Dorvil, Cledicianne; Moldovan, Jaime

    2010-01-01

    This study investigated the effects of broad cognitive abilities derived from the Cattell-Horn-Carroll (CHC) taxonomy, together with the effect of the general factor ("g"), on Wechsler Individual Achievement Test, Second Edition (WIAT-II) reading achievement. Structural equation modeling (SEM) and commonality analyses were applied to the…

  11. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-05-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  12. Stability: Conservation laws, Painlevé analysis and exact solutions for S-KP equation in coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.; Moawad, S. M.; Wael, Shrouk

    The propagation of nonlinear waves in unmagnetized strongly coupled dusty plasma with Boltzmann distributed electrons, iso-nonthermal distributed ions and negatively charged dust grains is considered. The basic set of fluid equations is reduced to the Schamel Kadomtsev-Petviashvili (S-KP) equation by using the reductive perturbation method. The variational principle and conservation laws of S-KP equation are obtained. It is shown that the S-KP equation is non-integrable using Painlevé analysis. A set of new exact solutions are obtained by auto-Bäcklund transformations. The stability analysis is discussed for the existence of dust acoustic solitary waves (DASWs) and it is found that the physical parameters have strong effects on the stability criterion. In additional to, the electric field and the true Mach number of this solution are investigated. Finally, we will study the physical meanings of solutions.

  13. A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph Kirk

    1987-01-01

    The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.

  14. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  15. Toroidal gyrofluid equations for simulations of tokamak turbulence

    NASA Astrophysics Data System (ADS)

    Beer, M. A.; Hammett, G. W.

    1996-11-01

    A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.

  16. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  17. 76 FR 62447 - Importer of Controlled Substances; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... registration as an importer of the following basic classes of controlled substances: Drug Schedule Opium, raw (9600) II Poppy Straw Concentrate (9670) II The company plans to import narcotic raw materials for... several controlled substances that are manufactured from raw opium, poppy straw, and concentrate of poppy...

  18. 77 FR 5846 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... import narcotic raw material are not appropriate, in accordance with 72 FR 3417 (2007). DEA has... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy... to use it as a base material in the bulk manufacture of another controlled substance. No comments or...

  19. 76 FR 17967 - Importer of Controlled Substances; Notice of Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... basic classes of controlled substances: Drug Schedule Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw materials for manufacturing and further distribution... substances that are manufactured from raw opium, poppy straw, and concentrate of poppy straw. No comments or...

  20. 78 FR 55099 - Established Aggregate Production Quotas for Schedule I and II Controlled Substances and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... for the List I chemicals ephedrine, pseudoephedrine, and phenylpropanolamine, expressed in grams of anhydrous acid or base, as follows: Established 2014 Basic Class--Schedule I Quotas (grams) (1-Pentyl-1H... II Quotas (grams) 1-Phenylcyclohexylamine 3 1-Piperdinocyclohexanecarbonitrile (PCC) 3 4-Anilino-N...

  1. DESIGN AND DEVELOPMENT REPORT ON TREAT CONTROL ROD DRIVE II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batch, R.V.

    1961-05-01

    A discussion is given of the development of TREAT control rod drive II, which describes the basic design, the problems involved with the design, the various design methods pursued, the testing procedures, and the evaluation of the performance characteristics of the final drive. (B.O.G.)

  2. Moment equations for chromatography using superficially porous spherical particles.

    PubMed

    Miyabe, Kanji

    2011-01-01

    New moment equations were developed for chromatography using superficially porous (shell-type) spherical particles, which have recently attracted much attention as one of separation media for fast separation with high efficiency. At first, the moment equations of the first absolute and second central moments in the real time domain were derived from the analytical solution in the Laplace domain of a set of basic equations of the general rate model of chromatography, which represent the mass balance, mass-transfer rate, and reaction kinetics in the column packed with shell-type particles. Then, the moment equations were used for analyzing the experimental data of chromatography of kallidin in a Halo column, which were published in a previous paper written by other researchers. It was tried to predict the chromatographic behavior of shell-type particles having different shell thicknesses. The new moment equations are useful for a detailed analysis of the chromatographic behavior of shell-type spherical particles. It is also concluded that they can be used for the preliminarily optimization of their structural characteristics.

  3. First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity

    NASA Technical Reports Server (NTRS)

    Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.

    1996-01-01

    In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.

  4. On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation

    NASA Astrophysics Data System (ADS)

    Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei

    2018-06-01

    In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.

  5. Further analytical study of hybrid rocket combustion

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.

  6. Zubarev's Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems

    NASA Astrophysics Data System (ADS)

    Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.

    2018-01-01

    We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.

  7. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  8. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  9. Materials Data on BaSiC (SG:107) by Materials Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristin Persson

    2016-09-24

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Turbo fluid machinery and diffusers

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.

  11. Discussing religion and spirituality is an advanced communication skill: an exploratory structural equation model of physician trainee self-ratings.

    PubMed

    Ford, Dee W; Downey, Lois; Engelberg, Ruth; Back, Anthony L; Curtis, J Randall

    2012-01-01

    Communication about religious and spiritual issues is fundamental to palliative care, yet little empirical data exist to guide curricula in this area. The goal of this study was to develop an improved understanding of physicians' perspectives on their communication competence about religious and spiritual issues. We examined surveys of physician trainees (n=297) enrolled in an ongoing communication skills study at two medical centers in the northwestern and southeastern United States. Our primary outcome was self-assessed competence in discussing religion and spirituality. We used exploratory structural equation modeling (SEM) to develop measurement and full models for acquisition of self-assessed communication competencies. Our measurement SEM identified two latent constructs that we label Basic and Intermediate Competence, composed of five self-assessed communication skills. The Basic Competence construct included overall satisfaction with palliative care skills and with discussing do not resuscitate (DNR) status. The Intermediate Competence construct included responding to inappropriate treatment requests, maintaining hope, and addressing fears about the end-of-life. Our full SEM model found that Basic Competence predicted Intermediate Competence and that Intermediate Competence predicted competence in religious and spiritual discussions. Years of clinical training directly influenced Basic Competence. Increased end-of-life discussions positively influenced Basic Competence and had a complex association with Intermediate Competence. Southeastern trainees perceived more competence in religious and spiritual discussions than northwestern trainees. This study suggests that discussion of religious and spiritual issues is a communication skill that trainees consider more advanced than other commonly taught communication skills, such as discussing DNR orders.

  12. A delay differential equation model for dengue transmission with regular visits to a mosquito breeding site

    NASA Astrophysics Data System (ADS)

    Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.

    2015-03-01

    Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.

  13. On the large-scale dynamics of rapidly rotating convection zones. [in solar and stellar interiors

    NASA Technical Reports Server (NTRS)

    Durney, B. R.

    1983-01-01

    The fact that the values of the eight basic waves present in turbulent flows in the presence of rotation prohibit a tilt of eddy towards the axis of rotation is incorporated into a formalism for rapidly rotating convection zones. Equations for turbulent velocities are defined in a rotating coordinate system, assuming that gravity and grad delta T act in a radial direction. An expression is derived for the lifetime of a basic wave and then for the average velocity vector. A real convective eddy is formulated and the wave vectors are calculated. The velocity amplitude and the stress tensor amplitude are integrated over the eddy domain. Applied to the solar convective zone, it is found that the convective cells are aligned along the axis of rotation at the poles and at the equator, a model that conflicts with nonrotating mixng length theory predictions.

  14. Use of the Wigner representation in scattering problems

    NASA Technical Reports Server (NTRS)

    Bemler, E. A.

    1975-01-01

    The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.

  15. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  16. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    PubMed

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  17. [The results of combined ozone therapy using in complex treatment of soft tissues infections in patients with diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Pozhilenkova, E A; Morgun, A V; Shapran, M V; Kovalenko, A O

    2015-01-01

    Levels of interleukins-6, 8, 10, TNF-alpha and basic fibroblast growth factor (bFGF) were examined in peripheral blood of 60 patients with diabetes mellitus type II and soft tissues infections. It was revealed the elevated levels of proinflammatory (IL-6, 8), anti-inflammatory (IL-10) cytokines and basic fibroblast growth factor at the time of admission. Application of combined ozone therapy including ozonated autohemotherapy and superficial management of wounds with ozone-oxygen mixture resulted in significant decrease of IL-6, 8, 10 production and high level of bFGF on blood serum. Thus effective local bactericidal impact of ozone in combination with normalization of proinflammatory cytokines levels and preserved high level of bFGF in peripheral blood provide better results of wound healing process in patients with diabetes mellitus type II.

  18. Estimating the Accuracy of the Chedoke–McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation

    PubMed Central

    Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.

    2011-01-01

    ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239

  19. Autonomy support, basic psychological needs and well-being in Mexican athletes.

    PubMed

    López-Walle, Jeanette; Balaguer, Isabel; Castillo, Isabel; Tristán, José

    2012-11-01

    Based on Basic Needs Theory, one of the mini-theories of Self-determination Theory (Ryan & Deci, 2002), the present study had two objectives: (a) to test a model in the Mexican sport context based on the following sequence: perceived coach autonomy support, basic psychological needs satisfaction, and psychological well-being, and b) to analyze the mediational effect of the satisfaction of perceived coach autonomy support on indicators of psychological well-being (satisfaction with life and subjective vitality). Six hundred and sixty-nine young Mexican athletes (Boys = 339; Girls = 330; M(age) = 13.95) filled out a questionnaire assessing the study variables. Structural equations analyses revealed that perceived coach autonomy support predicted satisfaction of the basic psychological needs for autonomy, competence, and relatedness. Furthermore, basic need satisfaction predicted subjective vitality and satisfaction with life. Autonomy, competence and relatedness partially mediated the path from perceived coach autonomy support to psychological well-being in young Mexican athletes.

  20. Patterns of Reinforcement and the Essential Value of Brands: II. Evaluation of a Model of Consumer Choice

    ERIC Educational Resources Information Center

    Yan, Ji; Foxall, Gordon R.; Doyle, John R.

    2012-01-01

    We employ a behavioral-economic equation put forward by Hursh and Silberberg (2008) to explain human consumption behavior among substitutable food brands, applying a consumer-choice model--the behavioral perspective model (BPM; Foxall, 1990/2004, 2005). In this study, we apply the behavioral-economic equation to human economic consumption data. We…

Top