Science.gov

Sample records for ii core particles

  1. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  2. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  3. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines.

  4. Dual-Aircraft Investigation of the Inner Core of Hurricane Norbert. Part II: Mesoscale Distribution of Ice Particles.

    NASA Astrophysics Data System (ADS)

    Houze, Robert A., Jr.; Marks, Frank D., Jr.; Black, Robert A.

    1992-06-01

    Horizontal fields of cloud microphysical parameters, vertical air motion, and horizontal wind at the 6-km level in Hurricane Norbert (1984) were obtained by mapping and interpolating data collected on board a WP-3D aircraft along numerous flight tracks executed within the central region of the storm. Although the storm was characterized by a strong vortex of winds reaching peak values > 50 m s1 all around the storm, the precipitation was concentrated on the southwest side of the storm. A sloping eyewall was located within 20 to 30 km of the eye. Stratiform precipitation dominated the region outside the eyewall. A 25-km-wide band of maximum stratiform precipitation was centered 60-70 km southwest of the storm center.The ice particles at flight level tended to be relatively large both in the eyewall and in the outer band of stratiform precipitation. Particles were smaller and more numerous (100-300 L1) in the zone between the eyewall and outer stratiform band. These particles occurred on the outside edges of the eyewall convective updrafts, indicating that they may have been produced by splintering in association with graupel formation in the updrafts. The large particles in the eyewall tended to be graupel. In the outer stratiform region, characterized by weak, average vertical air motion and an absence of strong convective drafts, the predominant particle type was aggregates.The region of large graupel particles in the eyewall coincided with the radius of maximum tangential wind and was apparently produced by the azimuthal advection of the graupel particles. Since graupel particles fall rapidly, they were not susceptible to advection out of the eyewall region by the weaker radial wind component. On the other hand, some of the more slowly falling, less dense aggregates produced in the eyewall region were evidently advected radially as well as azimuthally, thus accounting for the location of the outer region of maximum stratiform precipitation intensity.

  5. Effective particle magnetic moment of multi-core particles

    NASA Astrophysics Data System (ADS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  6. Granulation of core particles suitable for film coating by agitation fluidized bed II. A proposal of a rapid dissolution test for evaluation of bitter taste of ibuprofen.

    PubMed

    Hamashita, Tomohiro; Matsuzaki, Miwako; Ono, Tetsuo; Ono, Masaki; Tsunenari, Yoshinobu; Aketo, Takao; Watano, Satoru

    2008-07-01

    To prepare powdered drugs that do not have a bitter taste, a film coating covering the surfaces of the core particles is required. The dissolution rate of ibuprofen from the coated particles changes according to the physical properties of the core particles. In this study, the effects of the physical properties of granules prepared by using several scales of agitation fluidized beds on the drug dissolution rate were investigated. The dissolution rate of ibuprofen decreased when the apparent density and shape factor of the granules increased. In contrast, the dissolution rate of the drug increased with the friablility of the granules increased. Thus, the structures of the granules appear to affect the dissolution rate of the drug to a large degree. A rapid dissolution test that can be used to investigate the early dissolution rate of ibuprofen in vitro was proposed to evaluate the taste-masking level of the coated particles. The bitter taste-masking level of the coated particles was successfully confirmed by using this novel test method.

  7. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to

  8. Analytical analysis of particle-core dynamics

    SciTech Connect

    Batygin, Yuri K

    2010-01-01

    Particle-core interaction is a well-developed model of halo formation in high-intensity beams. In this paper, we present an analytical solution for averaged, single particle dynamics, around a uniformly charged beam. The problem is analyzed through a sequence of canonical transformations of the Hamiltonian, which describes nonlinear particle oscillations. A closed form expression for maximum particle deviation from the axis is obtained. The results of this study are in good agreement with numerical simulations and with previously obtained data.

  9. Particle Identification at Belle II

    NASA Astrophysics Data System (ADS)

    Sandilya, S.; Belle Collaboration, II

    2016-11-01

    We report on the charged particle identification (PID) systems for the upcoming Belle II experiment. The time of propagation counter in the central region and the proximity focusing ring imaging Cherenkov counters with aerogel radiator in the forward region will be used as the PID devices. They are expected to provide a kaon identification efficiency of more than 94% at a low pion misidentification probability of 4%. The motivation for the upgrade, method and status of both systems are discussed.

  10. Magnetic behavior of core shell particles

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Rong; Wang, Cheng-Chien; Chen, I.-Han

    2006-09-01

    We have prepared composite magnetic core-shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe 2O 4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe 2O 4 nanoparticles were controlled in the range of 2.4-6.7 nm by the concentration of [NH 4+] and heated temperature. The magnetic properties of the core-shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe 2O 4.

  11. The punctilious RNA polymerase II core promoter.

    PubMed

    Vo Ngoc, Long; Wang, Yuan-Liang; Kassavetis, George A; Kadonaga, James T

    2017-07-01

    The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter. © 2017 Vo ngoc et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria.

    PubMed

    Shen, Jian-Ren; Kawakami, Keisuke; Koike, Hiroyuki

    2011-01-01

    This chapter describes the purification and crystallization of oxygen-evolving photosystem II core dimer complex from a thermophilic cyanobacterium Thermosynechococcus vulcanus. Procedures used for purification of photosystem II from the cyanobacterium involves cultivation of cells, isolation of thylakoid membranes, purification of crude and pure photosystem II core complexes by detergent solubilization, followed by differential centrifugation and column chromatography. The purified core dimer particles were successfully used for crystallization, and the methods and conditions used for crystallization are presented. These purification and crystallization procedures can be applied for another thermophilic cyanobacterium T. elongatus.

  13. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  14. Entrapment of carbon dioxide with chitosan-based core-shell particles containing changeable cores.

    PubMed

    Dong, Yanrui; Fu, Yinghao; Lin, Xia; Xiao, Congming

    2016-08-01

    Water-soluble chitosan-based core-shell particles that contained changeable cores were successfully applied to anchor carbon dioxide. The entrapment capacity of the particles for carbon dioxide (EC) depended on the cores. It was found that EC of the particles contained aqueous cores was higher than that of the beads with water-soluble chitosan gel cores, which was confirmed with thermogravimetric analysis. In addition, calcium ions and sodium hydroxide were introduced within the particles to examine their effect on the entrapment. EC of the particles was enhanced with sodium hydroxide when the cores were WSC gel. The incorporation of calcium ions was helpful for stabilizing carbon dioxide through the formation of calcium carbonate, which was verified with Fourier transform infrared spectra and scanning electron microscopy/energy-dispersive spectrometry. This phenomenon meant the role of calcium ions for fixating carbon dioxide was significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology.

  16. Core-shell colloidal particles with dynamically tunable scattering properties.

    PubMed

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  17. Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus.

    PubMed

    Lim, Linda B L; Priyantha, Namal; Tennakoon, D T B; Dahri, Muhd Khairud

    2012-09-01

    This research is on the evaluation of biosorption capability of the core of Artocarpus odoratissimus (Tarap), grown in Brunei Darussalam, towards Cd(II) and Cu(II) ions present in synthetic solutions, and to characterize the surface of Tarap particles. Thermogravimetric analysis and surface titrations were conducted to characterize the surface of dried Tarap core particles. Atomic absorption spectroscopic measurements were conducted to determine the extent of removal of Cd(II) and Cu(II) under different experimental conditions. Mass reductions associated with many exothermic reaction peaks were observed beyond 200°C up to 650°C indicating the combustion of organic matter in Tarap. Dried particles of core of Tarap bear a negative surface charge promoting strong interaction towards positively charged ions, such as Cu(II) and Cd(II). Biosorption of the two metal ions on Tarap, which is relatively high beyond pH = 4, occurs within a short period of exposure time. The extent of biosorption is enhanced by acid treatment of the biosorbent, and further it does not significantly depend on the presence of nonreacting ions up to an ionic strength of 2.0 M. Strong attraction between each metal ion and the biosorbent is attributed to the negative surface charge on the biosorbent within a broad pH range. Acid treatment of the biosorbent improves sorption characteristics, suggesting that ion exchange plays an important role in the metal ion-biosorbent interaction process.

  18. 1H NMR investigation of the conformational states of DNA in nucleosome core particles.

    PubMed Central

    Feigon, J; Kearns, D R

    1979-01-01

    In this study 1H NMR has been used to investigate the conformational state of DNA in nucleosome core particles. The nucleosome core particles exhibit partially resolved low field (10-15 ppm) spectra due to imino protons in Watson-Crick base pairs (one resonance per GC or AT base pair). To a first approximation, the spectrum is virtually identical with that of protein-free 140 base pair DNA, and from this observation we draw two important conclusions: (i) Since the low field spectra of DNA are known to be sensitive to conformation, the conformation of DNA in the core particles is essentially the same as that of free DNA (presumably B-form), (ii) since kinks occurring at a frequency at 1 in 10 or 1 in 20 base pairs would result in a core particle spectrum different from that of free DNA we find no NMR evidence supporting either the Crick-Klug or the Sobell models for kinking DNA around the core histones. Linewidth considerations indicate that the rotational correlation time for the core particles is approximately 1.5 X 10(-7) sec, whereas the end-over-end tumbling time of the free 140 base pair DNA is 3 X 10(-7) sec. PMID:461191

  19. Calibration of micro-particle analysers for ice core studies

    NASA Astrophysics Data System (ADS)

    Goto-Azuma, Kumiko; Nakazawa, Fumio; Hirabayashi, Motohiro; Ogata, Jun; Ogawa-Tsukagawa, Yoshimi; Fukuda, Kaori

    2017-04-01

    Micro-particles have been analysed for various ice cores. Temporal variations of size distribution and flux have provided valuable information on the past climatic and environmental changes. Comparison of the results obtained with different types of micro-particle analysers needs caution. First, careful calibration of each analyser is essential. Using polystyrene latex standard particles with different sizes, we have carried out extensive calibration experiments on three types of micro-particle analysers: Coulter Multsizer 4 (which measures volume of each particle and the total counts of particles in a given sample volume), Klotz Abakus (which detects shading of laser light caused by each particle), and Met One Model 211 (a laser scattering type particle analyser). The former two are most widely used analysers in the ice core community. We could obtain calibration curves much better than the ones provided by the manufactures of the three analysers. Second, we investigated how the three particle analysers define particle size. Here we report the results of the calibration experiments and compare the three analysers.

  20. Granulation of core particles suitable for film coating by agitation fluidized bed I. Optimum formulation for core particles and development of a novel friability test method.

    PubMed

    Hamashita, Tomohiro; Nakagawa, Yasuo; Aketo, Takao; Watano, Satoru

    2007-08-01

    To prepare powdered medicines without bitter taste, film coating is required to cover the surface of core particles. In this study, effect of formulation and operating conditions of agitation fluidized bed on the core particle properties was investigated. In order to prevent breakage of the core particles during coating process, which sometimes causes variation of drug dissolution rate, addition of maltose syrup powder during the formulation process of the core particles was investigated. Also, a method for friability test in which the core particles were subjected to strong impact was proposed to evaluate strength of the core particles. The friability of the core particles determined by this test method correlated well with the actual friability of the particles during the coating process. Based on this result, we confirmed this novel friability test method could predict the core particle endurance during the coating process.

  1. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein.

    PubMed Central

    Yoshikawa, A; Tanaka, T; Hoshi, Y; Kato, N; Tachibana, K; Iizuka, H; Machida, A; Okamoto, H; Yamasaki, M; Miyakawa, Y

    1993-01-01

    Either parts or multiple copies of the core gene of hepatitis C virus (HCV) were fused to the 3' terminus of the hepatitis B virus (HBV) core gene with 34 codons removed. As many as four copies of HCV core protein (720 amino acids) were fused to the carboxy terminus of truncated HBV core protein (149 amino acids) without preventing the assembly of HBV core particles. Chimeric core particles were sandwiched between monoclonal antibody to HBV core and that to HCV core, thereby indicating that antigenic determinants of both HBV and HCV cores were accessible on them. Proteolytic digestion deprived chimeric core particles of the antigenicity for the HCV core without affecting that of the HBV core, confirming the surface exposure of HCV core determinants. The density of HCV core determinants on chimeric core particles increased as copies of fused HCV core protein were increased. Hybrid core particles with multiple HCV core determinants would be instrumental as an antigen probe for detecting class-specific antibodies to the HCV core in patients with acute and chronic hepatitis C and for simultaneous detection of antibodies to HBV core and those to HCV core in donated blood. Images PMID:8396669

  2. Optimization of nanoparticle core size for magnetic particle imaging

    SciTech Connect

    Ferguson, Matthew R.; Minard, Kevin R.; Krishnan, Kannan M.

    2009-05-01

    Magnetic Particle Imaging (MPI) is a powerful new diagnostic visualization platform designed for measuring the amount and location of superparamagnetic nanoscale molecular probes (NMPs) in biological tissues. Promising initial results indicate that MPI can be extremely sensitive and fast, with good spatial resolution for imaging human patients or live animals. Here, we present modeling results that show how MPI sensitivity and spatial resolution both depend on NMP-core physical properties, and how MPI performance can be effectively optimized through rational core design. Monodisperse magnetite cores are attractive since they are readily produced with a biocompatible coating and controllable size that facilitates quantitative imaging.

  3. Lagrangian Trajectory of Small Particles in Superfluid He II

    NASA Astrophysics Data System (ADS)

    Kubo, Wataru; Tsuji, Yoshiyuki

    2017-06-01

    Small tracer particles in He II are visualized, and their motions are analyzed. Lagrangian velocity distribution is computed by analyzing the visualized particle images through particle tracking velocimetry technique. We studied how the particle sizes affect the statistics of particle motions.

  4. Particle Behavior During the Arc Spraying Process with Cored Wires

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Vogli, E.; Abdulgader, M.; Gurris, M.; Kuzmin, D.; Turek, S.

    2008-12-01

    To use the manifold possibilities that arc spraying offers to deposit wear resistance layers, knowledge of the particle formation and their behavior is necessary. This work is focused on studying the particle properties during arc spraying with cored wires. Different cored wires under various spraying parameters are investigated by means of a high speed camera. Particle properties in-flight, such as velocity and temperature, are determined. Correlation between particle behavior and particle characteristics at different spraying conditions is established. At the same time, the particle-laden gas flow is simulated numerically and the computed solutions are used to illustrate the utility of the proposed CFD model and compared with experimental results. The employed mathematical model represents a system of macroscopic conservation laws for the continuous gas phase and for the gas-solid mixture. This approach formulation makes it possible to circumvent the numerical difficulties associated with the implementation of a (potentially ill-posed) two-fluid model. The discretization in space is performed using a high-resolution finite element scheme based on algebraic flux correction in terms of local characteristic variables. The artificial diffusion operator is constructed on the discrete level and fitted to the local solution behavior using a multidimensional flux limiter of TVD type.

  5. Modeling the Arm II core in MicroCap IV

    SciTech Connect

    Dalton, A.C.

    1996-11-01

    This paper reports on how an electrical model for the core of the Arm II machine was created and how to use this model. We wanted to get a model for the electrical characteristics of the ARM II core, in order to simulate this machine and to assist in the design of a future machine. We wanted this model to be able to simulate saturation, variable loss, and reset. Using the Hodgdon model and the circuit analysis program MicroCap IV, this was accomplished. This paper is written in such a way as to allow someone not familiar with the project to understand it.

  6. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Olsen, Kasper

    2012-03-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement for the amount of bending. For the diameter of the coiled DNA we obtain the relatively accurate numerical estimate of 2R=82Å.

  7. Flying particle sensors in hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Bykov, D. S.; Schmidt, O. A.; Euser, T. G.; Russell, P. St. J.

    2015-07-01

    Optical fibre sensors make use of diverse physical effects to measure parameters such as strain, temperature and electric field. Here we introduce a new class of reconfigurable fibre sensor, based on a ‘flying-particle’ optically trapped inside a hollow-core photonic crystal fibre and illustrate its use in electric field and temperature sensing with high spatial resolution. The electric field distribution near the surface of a multi-element electrode is measured with a resolution of ∼100 μm by monitoring changes in the transmitted light signal due to the transverse displacement of a charged silica microparticle trapped within the hollow core. Doppler-based velocity measurements are used to map the gas viscosity, and thus the temperature, along a hollow-core photonic crystal fibre. The flying-particle approach represents a new paradigm in fibre sensors, potentially allowing multiple physical quantities to be mapped with high positional accuracy over kilometre-scale distances.

  8. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    SciTech Connect

    Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  9. Teaching Elementary Particle Physics, Part II

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…

  10. New particle searches at Tevatron (II)

    SciTech Connect

    Kamon, T.; CDF and D0 Collaborations

    1996-05-01

    Various recent results of new particle searches at the Fermilab Tevatron are presented. No evidence is found for supersymmetric particles (chargino, gluino), leptoquark bosons and heavy gauge bosons in {ital p{anti P}} collisions at {radical}s = 1.8 TeV. Excluded mass regions for each particle are determined.

  11. Teaching Elementary Particle Physics, Part II

    ERIC Educational Resources Information Center

    Hobson, Art

    2011-01-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…

  12. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  13. Chiral discotic columnar germs of nucleosome core particles.

    PubMed Central

    Livolant, F; Leforestier, A

    2000-01-01

    In concentrated solution and in the presence of high concentrations of monovalent cations, nucleosome core particles order into a discotic columnar mesophase. This phase is limited to finite-sized hexagonal germs that further divide into six coiled branches, following an iterative process. We show how the structure of the germs comes from the competition between hexagonal packing and chirality with a combination of dendritic facetting and double-twist configurations. Geometrical considerations lead us to suspect that the chirality of the eukaryotic chromosomes may originate from the same competition. PMID:10777768

  14. Nonthermal nuclear reactions induced by fast α particles in the solar core

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.

    2015-02-01

    Nonthermal nuclear effects triggered in the solar carbon-nitrogen-oxygen (CNO) cycle by fast α particles—products of the p p chain reactions—are examined. The main attention is paid to 8.674-MeV α particles generated in the 7Li(p ,α ) α reaction. Nonthermal characteristics of these α particles and their influence on some nuclear processes are determined. It is found that the α -particle effective temperature is at a level of 1.1 MeV and exceeds the solar core temperature by 3 orders of magnitude. These fast particles are able to significantly enhance some endoergic (α ,p ) reactions neglected in standard solar model calculations. In particular, they can substantially affect the balance of the p +17O⇄α +14N reactions due to an appreciable increase of the reverse reaction rate. It is shown that in the region R =0.08 -0.25 R⊙ the reverse α +14N reaction can block the forward p +17O reaction, thus preventing closing of the CNO-II cycle, and increase the 17O abundance by a factor of 2-155 depending on R . This indicates that the fast α particles produced in the p p cycle can distort running of the CNO cycle, making it essentially different in the inner and outer core regions.

  15. Therapeutic activity of modified U1 core spliceosomal particles.

    PubMed

    Rogalska, Malgorzata Ewa; Tajnik, Mojca; Licastro, Danilo; Bussani, Erica; Camparini, Luca; Mattioli, Chiara; Pagani, Franco

    2016-04-04

    Modified U1 snRNAs bound to intronic sequences downstream of the 5' splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations.

  16. Therapeutic activity of modified U1 core spliceosomal particles

    PubMed Central

    Rogalska, Malgorzata Ewa; Tajnik, Mojca; Licastro, Danilo; Bussani, Erica; Camparini, Luca; Mattioli, Chiara; Pagani, Franco

    2016-01-01

    Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. PMID:27041075

  17. Chemical physics of DNA packaging in a nucleosome core particle

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew; Sudhanshu, Bariz

    2008-03-01

    The fundamental unit of packaged DNA, the nucleosome core particle, contains 146 base pairs of DNA wrapped 1.7 times around a cationic protein complex called the histone octamer. A string of nucleosomes is organized into higher-order structures at several hierarchical levels to form chromatin, a remarkable complex that is compact yet maintains accessibility for gene expression. We develop a theoretical model of the nucleosome core particle in order to extract detailed quantitative information from single-molecule measurements of a single nucleosome under tension. We employ the wormlike chain model to describe the DNA strand as a thermally fluctuating polymer chain. The chain adsorbs on a spool that represents the histone octamer. This model is directly compared to single-molecule experiments conducted in Carlos Bustamante's lab; we find good agreement between our theory and the experimental data. Our model reveals the mechanism that underlies structural transitions that are apparent in the experimental measurements and predicts the conditions where these transitions occur. We proceed to construct a free energy surface to predict the dynamic response in a single-molecule experiment with a time-dependent rate of unwinding the nucleosome. The combination of single-molecule experiments and our theoretical modeling gives detailed information about the specific interactions between DNA and histone proteins.

  18. OBSERVED CORE OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Kocharov, L.; Valtonen, E.; Reiner, M. J.; Thompson, B. J.; Klassen, A.

    2010-12-20

    Using space-borne particle and EUV detection and radio spectrograms from both ground-based and space-borne instruments, we study the first phase of the major solar energetic particle (SEP) event associated with the western solar flare and fast and wide coronal mass ejection (CME) on 2000 April 4. The SEP event being observed at the magnetic connection to the eruption's center starts with deka-MeV nucl{sup -1} helium- and relativistic electron-rich production from coronal sources identified with the electromagnetic diagnostics and the SEP event modeling. The broadband observations and modeling of the initial phase of the 'well-connected' major SEP event support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core in association with coronal shocks and magnetic reconnections caused by the CME liftoff, and that the coronal component dominates during the first hour of the SEP event considered, not yet being shielded by the CME bow shock in the solar wind. The first phase of the SEP event is followed by a second phase of SEP production associated with a decelerating CME-driven shock wave in the solar wind, which accelerates ions from a distinct, helium-poor seed particle population that may originate from the CME interaction with a coronal streamer.

  19. Teaching Elementary Particle Physics, Part II

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2011-03-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because they respond to neither the EM force nor the strong force. For example, the mean free path (average penetration distance before it interacts) of a typical beta-decay neutrino moving through solid lead is about 1.5 light years! Enrico Fermi argued that neutrinos indicated a new force was at work. During the 1930s, he quickly adapted ideas from the developing new theory of QED to this new force, dubbed the weak force. Fermi's theory was able to predict the half-lives of beta-emitting nuclei and the range of energies of the emitted beta particles.

  20. Unencumbered Pol β lyase activity in nucleosome core particles.

    PubMed

    Rodriguez, Yesenia; Howard, Michael J; Cuneo, Matthew J; Prasad, Rajendra; Wilson, Samuel H

    2017-09-06

    Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol β catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol β activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol β is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  1. DENSITY EFFECT OF SOLIDIFIED HYDROGEN ISOTOPE PARTICLES ON PARTICLE IMAGE VELOCIMETRY MEASUREMENTS OF HE II FLOW

    SciTech Connect

    Xu, T.; Van Sciver, S. W.

    2008-03-16

    Solid H{sub 2}, D{sub 2} and H{sub 2}/D{sub 2} particles can be generated in He II by solidifying directly from the gas phase. Here we compare these three different particles as tracers for tracking He II forced flow in a horizontal channel using the Particle Image Velocimetry (PIV) technique. Slip velocity measurements show that all generated particles are in the micron size range. Steady state velocity fields of the forced flow of He II within a square cross-section channel are measured. By comparing the results obtained from different tracers, we show that the slip velocity caused by non-neutral buoyancy of these particles does not affect the measured velocity profiles of He II forced flow.

  2. Naked singularities as particle accelerators. II

    SciTech Connect

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  3. Blm10 facilitates nuclear import of proteasome core particles

    PubMed Central

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast. PMID:23982732

  4. Blm10 facilitates nuclear import of proteasome core particles.

    PubMed

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-10-16

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor-cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast.

  5. The Mathematical Structure of Elementary Particles. II.

    DTIC Science & Technology

    1985-05-01

    Functions, Dover, New York, (1965). (2] Berestetski, V., Lifchitz, E., Pitayevski, L., Th6orie Quantique Relativiste, Physique Thdorique (Landau et Lifchitz...M6canique Quantique , Thgorie Non- Relativiste, Physique Th’orique Tome III, Mir, Moscow (1966). C(lO] Omn~s, R., Introduction to Particle Physics, Wiley

  6. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    SciTech Connect

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan; Kim, Seung Wook

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  7. Experimental Study of Brownian Dynamics of Bent-core Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Joshi, Bhuwan; Huang, Ji-Ping; Wei, Qi-Huo

    2009-03-01

    Bent-core or banana-shaped molecules exhibit a variety of intriguing liquid crystalline mesophases including nematics and smectic phases. We try to develop suspensions of bent-core shaped colloidal particles to mimic the bent-core liquid crystals. This report will focus on the fabrication of bent-core colloidal particle suspension, and optical microscopic studies of the Brownian dynamics of individual bent-core colloidal particles. The bent-core colloidal particles confined between two glass substrates are observed through dark-field optical microscopy, and their orientation and position are obtained through imaging processing. Results on the translational and rotational Brownian dynamics of these type of particles will be reported.

  8. Assembly mechanisms of specialized core particles of the proteasome.

    PubMed

    Bai, Minghui; Zhao, Xian; Sahara, Kazutaka; Ohte, Yuki; Hirano, Yuko; Kaneko, Takeumi; Yashiroda, Hideki; Murata, Shigeo

    2014-07-16

    The 26S proteasome has a highly complicated structure comprising the 20S core particle (CP) and the 19S regulatory particle (RP). Along with the standard CP in all eukaryotes, vertebrates have two more subtypes of CP called the immunoproteasome and the thymoproteasome. The immunoproteasome has catalytic subunits β1i, β2i, and β5i replacing β1, β2, and β5 and enhances production of major histocompatibility complex I ligands. The thymoproteasome contains thymus-specific subunit β5t in place of β5 or β5i and plays a pivotal role in positive selection of CD8+ T cells. Here we investigate the assembly pathways of the specialized CPs and show that β1i and β2i are incorporated ahead of all the other β-subunits and that both β5i and β5t can be incorporated immediately after the assembly of β3 in the absence of β4, distinct from the assembly of the standard CP in which β-subunits are incorporated in the order of β2, β3, β4, β5, β6, β1, and β7. The propeptide of β5t is a key factor for this earlier incorporation, whereas the body sequence seems to be important for the earlier incorporation of β5i. This unique feature of β5t and β5i may account for preferential assembly of the immunoproteasome and the thymoproteasome over the standard type even when both the standard and specialized subunits are co-expressed.

  9. Preparation of multilayered gold-silica-polystyrene core-shell particles by seeded polymerization.

    PubMed

    Gu, Shunchao; Onishi, Junya; Mine, Eiichi; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    A preparation method for multilayered gold-silica-polystyrene core-shell composite particles is proposed. The gold-silica core-shell particles of 192-nm-sized, synthesized by coating the 18-nm-sized gold particles with silica by a seeded growth technique, were used as cores for succeeding polystyrene coating. After surface modification of gold-silica composite particles by methacryloxypropyltrimethoxysilane (MPTMS), polymerizations of styrene (0.16-0.4 M) were conducted with 8 x 10(-3) M of potassium persulfate initiator in the presence of 1 x 10(-3) M of sodium p-styrenesulfonate anionic monomer. Multilayered core-shell gold-silica-polystyrene particles that contained a single core could be obtained. The coefficient of variation of size distribution (CV) of the composite particles was less than 7%, and polystyrene shell thickness was in a range of 193 to 281 nm.

  10. Formation and cleaning function of physically cross-linked dual strengthened water-soluble chitosan-based core-shell particles.

    PubMed

    Dong, Yanrui; Xiao, Congming

    2017-09-01

    Facile and mild ionic cross-linking and freezing/thawing technologies were applied to prepare double strengthened core-shell particles by using water-soluble chitosan (WSC), sodium alginate (SA) and poly(vinyl alcohol) (PVA) as starting materials. The aqueous solution contained WSC and PVA was dropped in ethanol to form beads. The beads were converted into WSC/PVA hydrogel particles by being subjected to three freeze/thaw cycles. Subsequently, ionic cross-linked hydrogel layer was formed around each WSC/PVA particle to generate core-shell particulates. Fourier transform infrared spectra confirmed the combination among various components. Dynamic mechanical thermal analysis indicated that the storage modulus of the core-shell hydrogel was improved obviously. Thermogravimetric analysis exhibited the thermal stability of the particles was also enhanced by incorporation of PVA. It was found that the particles were able to adsorb carbon dioxide, lead ion and copper ion. The adsorption capacities of dry particles toward carbon dioxide, Pb(II) and Cu(II) could reach 199.62, 39.28 and 26.03mg/g, respectively. The rates of the particles for binding Pb(II) and Cu(II) at initial stage were 26.57 and 4.30%/min, respectively. These experimental results suggested that the particles were an efficient sorbent for removing hazardous substances such as carbon dioxide and heavy-metal ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental Breeder Reactor II (EBR-II): Instrumentation for core surveillance

    SciTech Connect

    Christensen, L.J.

    1989-01-01

    EBR-II has operated for 25 years in support of several major programs. During this time period, several of the original, non-replaceable, flow sensors, RDT sensors and thermocouples have failed in the primary system. This has led to the development of new sensors and the use of calculated values using computer models of the plant. It is important for the next generation of LMR reactors to minimize or eliminate the use of non-replaceable sensors. EBR-II is perhaps the best modeled reactor in the world, thanks to a dedicated T-H analysis program. The success of this program relied on excellent measurements of temperature and flow in subassemblies in the core. The instrumented subassemblies of the XX series provided that measurement capability. From this test series, EBR-II calculations showed that the core could withstand a loss-of-flow without scram accident and a loss-of-heat sink without scram accident from full reactor power without core damage. From this, reactor designers can now design with confidence, inherently safe reactors. 11 refs., 8 figs.

  12. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography.

    PubMed

    Hayes, Richard; Ahmed, Adham; Edge, Tony; Zhang, Haifei

    2014-08-29

    The challenges in HPLC are fast and efficient separation for a wide range of samples. Fast separation often results in very high operating pressure, which places a huge burden on HPLC instrumentation. In recent years, core-shell silica microspheres (with a solid core and a porous shell, also known as fused-core or superficially porous microspheres) have been widely investigated and used for highly efficient and fast separation with reasonably low pressure for separation of small molecules, large molecules and complex samples. In this review, we firstly show the types of core-shell particles and how they are generally prepared, focusing on the methods used to produce core-shell silica particles for chromatographic applications. The fundamentals are discussed on why core-shell particles can perform better with low back pressure, in terms of van Deemter equation and kinetic plots. The core-shell particles are compared with totally porous silica particles and also monolithic columns. The use of columns packed with core-shell particles in different types of liquid chromatography is then discussed, followed by illustrating example applications of such columns for separation of various types of samples. The review is completed with conclusion and a brief perspective on future development of core-shell particles in chromatography.

  13. Silica-silver core-shell particles for antibacterial textile application.

    PubMed

    Nischala, K; Rao, Tata N; Hebalkar, Neha

    2011-01-01

    The silica-silver core-shell particles were synthesized by simple one pot chemical method and were employed on the cotton fabric as an antibacterial agent. Extremely small (1-2 nm) silver nanoparticles were attached on silica core particles of average 270 nm size. The optimum density of the nano silver particles was found which was sufficient to show good antibacterial activity as well as the suppression in their surface plasmon resonance responsible for the colour of the core-shell particle for antibacterial textile application. The change in the density and size of the particles in the shell were monitored and confirmed by direct evidence of their transmission electron micrographs and by studying surface plasmon resonance characteristics. The colony counting method of antibacterial activity testing showed excellent results and even the least silver containing core-shell particles showed 100% activity against bacterial concentration of 10(4) colony counting units (cfu). The bonding between core-shell particles and cotton fabric was examined by X-ray photoelectron spectroscopy. The antibacterial activity test confirmed the firm attachment of core-shell particles to the cotton fabric as a result 10 times washed sample was as good antibacterial as that of unwashed sample. The bacterial growth was inhibited on and beneath the coated fabric, at the same time no zone of inhibition which occurs due to the migration of silver ions into the medium was observed indicating immobilization of silver nanoparticles on silica and core-shell particles on fabric by strong bonding.

  14. FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.; Stiavelli, Massimo; Heger, Alexander; Holz, Daniel E.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M{sub Sun} in addition to 50-500 M{sub Sun }. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15-40 M{sub Sun} Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z {approx} 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.

  15. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  16. Trafficking of Hepatitis C Virus Core Protein during Virus Particle Assembly

    PubMed Central

    Counihan, Natalie A.; Rawlinson, Stephen M.; Lindenbach, Brett D.

    2011-01-01

    Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly. PMID:22028650

  17. Particle-core study of halo dynamics in periodic-focusing channels

    SciTech Connect

    Wang, Tai-Sen F.

    2000-01-01

    This paper reports on an approach to investigate the dynamics of halo particles in mismatched charged-particle beams propagating through periodic-focusing channels using the particle-core model. The proposed method employs canonical transformations to minimize, in new phase-space variables, the flutter due to the periodic focusing to allow making stroboscopic plots. Applying this method, we find that in periodic-focusing systems, certain particles initially not in the halo region can be brought into resonance with the core oscillation to become halo particles. (c) 2000 The American Physical Society.

  18. Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template.

    PubMed

    Suzuki, Daisuke; Kawaguchi, Haruma

    2005-12-06

    We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials.

  19. Amphoteric core-shell microgels: contraphilic two-compartment colloidal particles.

    PubMed

    Christodoulakis, Kostas E; Vamvakaki, Maria

    2010-01-19

    pH-responsive amphoteric core-shell microgel particles were synthesized by emulsion copolymerization of the appropriate functional monomers with ethylene glycol dimethacrylate as the cross-linker. 2-(Diethylamino)ethyl methacrylate (DEA) was used as the ionizable basic monomer, and tert-butyl methacrylate served as the hydrophobic monomer precursor, which gave the methacrylic acid (MAA) moieties following acid hydrolysis of the ester groups. The core of the polyampholyte microgels comprised a cross-linked poly(2-(diethylamino)ethyl methacrylate) (PDEA) or poly(methacrylic acid) (PMAA) network surrounded by a cross-linked PMAA or PDEA shell, respectively. A polyampholyte random copolymer microgel with the DEA and MAA units randomly distributed within the gel phase was also prepared. Scanning electron microscopy studies showed spherical particles of a narrow size distribution, and transmission electron microscopy verified the core-shell topology of the particles. Potentiometric titration curves revealed two plateau regions for the polyampholyte core-shell microgels attributed to the independent ionization process of the core and the shell of the particles, in contrast to the random copolymer microgel particles that exhibited a single plateau region as a result of the simultaneous protonation/deprotonation process of the basic and acidic moieties of the microgels. The core and the shell of the particles were found to swell independently upon ionization of the DEA or MAA moieties at low or high pH, respectively, whereas collapsed latex particles were obtained in the intermediate pH range when both the core and the shell of the particles were neutral, in agreement with the potentiometric titration data. These core-shell microgels comprise novel two-compartment nanostructures that exhibit contraphilic properties in the core and the shell of the particles in response to a single external stimulus.

  20. Ultrafast energy transfer within the photosystem II core complex.

    PubMed

    Pan, Jie; Gelzinis, Andrius; Chorošajev, Vladimir; Vengris, Mikas; Senlik, S Seckin; Shen, Jian-Ren; Valkunas, Leonas; Abramavicius, Darius; Ogilvie, Jennifer P

    2017-06-14

    We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.

  1. A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge

    SciTech Connect

    Lund, S M; Barnard, J J; Bukh, B; Chawla, S R; Chilton, S H

    2006-08-02

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.

  2. Core-corona PSt/P(BA-AA) composite particles by two-stage emulsion polymerization

    NASA Astrophysics Data System (ADS)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya; Liao, Shijun

    2016-03-01

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA-AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA-AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core-corona composite particles, P(St/P(BA-AA)), could be regulated and controlled by varying the concentrations of P(BA-AA) or the mass ratio of BA:AA in P(BA-AA). The experimental results indicate that 3.0-6.0 wt% of P(BA-AA) is required to obtain stable composite emulsions, and P(BA-AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core-corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA-A). The regular morphology of the colloidal film is expected to facilitate potential application of core-corona particles in the field of light scattering. Furthermore, the diversity of core-corona particles can be expanded by replacing P(BA-AA) corona particles with other amphiphilic particles.

  3. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes.

    PubMed

    Chen, Chao; Wang, Joseph Che-Yen; Pierson, Elizabeth E; Keifer, David Z; Delaleau, Mildred; Gallucci, Lara; Cazenave, Christian; Kann, Michael; Jarrold, Martin F; Zlotnick, Adam

    2016-08-01

    Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.

  4. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes

    PubMed Central

    Pierson, Elizabeth E.; Keifer, David Z.; Delaleau, Mildred; Gallucci, Lara; Cazenave, Christian; Kann, Michael; Jarrold, Martin F.; Zlotnick, Adam

    2016-01-01

    Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein’s C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of “dark” particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection. PMID:27518410

  5. ESC-EEC-EPC code system for plasma core and edge equilibrium and particle orbits

    NASA Astrophysics Data System (ADS)

    Li, Xujing

    2013-10-01

    A new Edge Equilibrium Code (EEC), which is a new solver of the Grad-Shafranov equation complementing the existing ESC code (based on Fourier representation) is presented. EEC, being developed specifically for the near edge region with an arbitrary shape of the plasma boundary, uses adaptive flux coordinates with Hermite finite element representation. A special routine for fast solving the sparse matrix equations was created for EEC. The edge solution of EEC is matched with the core solution from ESC through a virtual boundary and the two codes communicate as two parallel processes. This approach addresses the future needs in enhancing functionality of EEC without conflicting with the interface of both codes. The code was complemented by Edge Particle Code (EPC) for massive calculation of collisional particle orbits using GPU. The resulting ESC-EEC-EPC code system acquired unmatched ability (a) in fast free and fixed boundary equilibrium calculations for arbitrary plasma shapes, (b) in using both r - z and different flux coordinates, (c) in choosing different combinations of input profiles, (d) in performing equilibrium reconstruction together with variances analysis, and (e) in assessing the diagnostics used for equilibrium reconstruction. Chinese National Magnetic Confinement Fusion Science Program 2011GB105003, US DOE SBIR grant # 94307S10-II.

  6. A core-particle model for periodically focused ion beams withintense space-charge

    SciTech Connect

    Lund, Steven M.; Barnard, John J.; Bukh, Boris; Chawla, SurgreevR.; Chilton, Sven H.

    2006-08-28

    A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam that has uniform density within an elliptical cross-section. The model can be applied to both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent flutter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel. Further characteristics of these processes are presented here.

  7. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  8. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles.

    PubMed

    Tian, Jia; Vana, Philipp

    2016-02-18

    Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  10. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    PubMed

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.

  11. Particle track densities in the Luna 24 core

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.; Wood, G. C.

    1978-01-01

    We report track density measurements in soil grains at six locations in the Luna 24 core. Irradiation levels are generally high precluding information on the depositional history, but indicating that the soils were exposed at the lunar surface at sometime in the past. Maturity levels determined from track density parameters disagree with those determined from ferromagnetic resonance and agglutinate contents. This discrepancy is not understood, but it could possibly indicate an ancient epoch of increased solar-flare activity.

  12. DNA base excision repair of uracil residues in reconstituted nucleosome core particles

    PubMed Central

    Nilsen, Hilde; Lindahl, Tomas; Verreault, Alain

    2002-01-01

    The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase β and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase β on nucleosome cores. PMID:12411511

  13. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein.

    PubMed

    Kunkel, M; Lorinczi, M; Rijnbrand, R; Lemon, S M; Watowich, S J

    2001-03-01

    Little is known about the assembly pathway and structure of hepatitis C virus (HCV) since insufficient quantities of purified virus are available for detailed biophysical and structural studies. Here, we show that bacterially expressed HCV core proteins can efficiently self-assemble in vitro into nucleocapsid-like particles. These particles have a regular, spherical morphology with a modal distribution of diameters of approximately 60 nm. Self-assembly of nucleocapsid-like particles requires structured RNA molecules. The 124 N-terminal residues of the core protein are sufficient for self-assembly into nucleocapsid-like particles. Inclusion of the carboxy-terminal domain of the core protein modifies the core assembly pathway such that the resultant particles have an irregular outline. However, these particles are similar in size and shape to those assembled from the 124 N-terminal residues of the core protein. These results provide novel opportunities to delineate protein-protein and protein-RNA interactions critical for HCV assembly, to study the molecular details of HCV assembly, and for performing high-throughput screening of assembly inhibitors.

  14. Photovoltaic Properties of CdSe/CdS and CdS/CdSe Core-Shell Particles Synthesized by Use of Uninterrupted Precipitation Procedures

    NASA Astrophysics Data System (ADS)

    Selene Coria-Monroy, C.; Sotelo-Lerma, M.; Martínez-Alonso, Claudia; Moreno-Romero, Paola M.; Rodríguez-Castañeda, Carlos A.; Corona-Corona, Israel; Hu, Hailin

    2015-10-01

    Cadmium Selenide (CdSe) and cadmium sulfide (CdS) are good electron acceptors for hybrid solar cells. CdSe and CdS nanoparticles can be prepared at low temperatures (60-80°C) from alkaline aqueous solutions of a cadmium salt, sodium citrate, and thiourea, as sulfur source, or sodium selenosulfate, as selenium source. Under the same experimental conditions, the reaction kinetics for CdS were faster than for CdSe. Formation of CdSe/CdS core-shell particles (type I: CdSe as core and CdS as shell) could be achieved by use of an uninterrupted one-step process by setting high and low solution temperatures for the core and shell compounds, respectively. The yield of the CdSe product was higher at a pH 8.5-9.5 whereas that of the CdS product was higher at higher pH (10-11). Therefore, formation of the "inverse" CdS/CdSe structure (type II: CdS as core and CdSe as shell) was possible in a one-step solution process by choosing a high solution pH for the core and a lower pH for the shell. Photoluminescence spectra and electron micrographs confirmed formation of the two types of core-shell particle. The photovoltaic performance of heterojunctions prepared with core-shell particles and poly(3-hexylthiophene) (P3HT), also suggested formation of core-shell particles. Both the photovoltage and photocurrent density of hybrid solar cells depended on the shell compound and not on the core. It was shown that the interface of the heterojunctions plays is important in solar cell applications, and its modification could be realized by incorporating different shell compounds on core particles.

  15. Synthesis and Characterization of Polyvinylpyrrolidone Silica Core-Shell Nanocomposite Particles.

    PubMed

    Chen, Lian-Xi; Li, Jie; Li, Xi; Zhang, Zhong-Min; Jiao, Cai-Bin

    2015-03-01

    In this work, a novel and facile strategy for making a new type of polymer/silica nanocomposte particle was proposed. Colloidally stable polyvinypyrrolidone (PVP)/silica core-shell nanocomposite particles have been successfully synthesized using an azo initiator via seed polymerization of N-vinyl-2-pyrrolidone (NVP) and VFSs (VFSs) that were derived from vinyl triethoxysilane (VTES). It was suggested from the FTIR and TGA analysis that the copolymerization reaction of NVP with VFSs has been thoroughly carried out. In addition, SEM images showed that PVP/silica nanocomposite particles have relatively rough surface due to surface polymerization in comparison with VFSs. Furthermore, TEM results proved that the size of VFSs had considerable effects on the appearance of PVP/silica nanocomposite particles. Generally, it presented that several silica nanoparticle cores with an average size of 78 nm mainly pack together within each nanocomposite particle after seed polymerization. Interestingly, the average shell thickness was 59 nm for most PVP/silica nanocomposite particles with cores about 242 nm. However, when the core size was large enough to about 504 nm, a series of PVP/silica nanocomposite particles with a relative thin shell were observed.

  16. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30-50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles.

  17. Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity

    PubMed Central

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle

    2015-01-01

    The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30–50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles were annealed and quenched to induce compressive stresses in the alumina passivation shell surrounding Al core. This thermal treatment was designed based on predictions of the melt-dispersion mechanism (MDM); a theory describing Al particle reaction under high heating rate. For all anneal treatment temperatures, experimental flame propagation rates for Al combined with nanoscale copper oxide (CuO) are in quantitative agreement with the theoretical predictions based on the MDM. The best treatment increases flame rate by 36% and achieves 68% of that for the best Al nanoparticles. PMID:25597747

  18. In vitro release profiles of PLGA core-shell composite particles loaded with theophylline and budesonide.

    PubMed

    Yeh, Hsi-Wei; Chen, Da-Ren

    2017-08-07

    We investigated the effects of drug loading location, matrix material and shell thickness on the in vitro release of combinational drugs from core-shell PLGA (i.e., poly(lactic-co-glycolic acid)) particles. Budesonide and Theophylline were selected as highly hydrophobic and hydrophilic model drugs, respectively. The dual-capillary electrospray (ES) technique, operated at the cone-jet mode, was used to produce samples of drug-loaded core-shell composite particles with selected overall sizes, polymer materials, and shell thicknesses. Theophylline and Budesonide were loaded at different locations in a PLGA composite particle. This study illustrated how the aforementioned factors affect the release rates of Budesonide and Theophylline loaded in core-shell PLGA composites. We further identified that core-shell composite particles with both model drugs loaded in the core and with matrix PLGA polymers of low molecular weights and low LA/GA ratios are the best formulation for the sustained release of highly hydrophilic and hydrophobic active pharmaceutical ingredients from PLGA composite particles. The formulation strategy obtained in this study can be in principle generalized for biopharmaceutical applications in fixed-dose combination therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Scattering properties of core-shell structure of mist wrapped dust particles].

    PubMed

    Feng, Shi-qi; Song, Wei; Wang, Yan; Miao, Xin-hui; Xu, Li-jun; Liu, Yu; Li, Cheng; Li Wen-long; Wang, Yi-ran; Cai, Hong-xing

    2014-12-01

    The authors have investigated the optical properties of core-shell structure of mist wrapped dust particles based on the method of discrete dipole approximation (DDA). The influence on the thickness of the elliptical core-shell structure were calculated which the ratio of long axis and short axis is 2:1, and the change of scattering angle for scattering characteristics. The results shows that the thickness of outer layer increase from 1.2 to 4.8 μm with the scattering and extinction coefficient of double core-shell layers particles decrease from 3.4 and 3.43 to 2.543 and 2.545, when the size of inner core isn't change. And scattering relative strength also increased obviously. The thickness of inner core increase from 0.6 to 2.4 μm with the of scattering and extinction coefficient change from 2.59 and 2.88 to 2.6 and 2.76 when thickness of outer remain constant. Effect of the thickness of visible outer layer on the scattering characteristics of double core-shell layers particles is greater, because of the interaction between scattering light and outer materials. The scattering relative intensity decrease with wavelength increased, while increased with the scale of core-shell structure increase. The results make a promotion on the study of the transportation characteristics of laser and scattering characteristics when the atmospheric aerosol and water mist interact together.

  20. [The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016].

    PubMed

    Pumpens, P; Grens, E

    2016-01-01

    This review article is a continuation of the paper "Hepatitis B core particles as a universal display model: a structure-function basis for development" written by Pumpens P. and Grens E., ordered by Professor Lev Kisselev and published in FEBS Letters, 1999, 442, 1-6. The past 17 years have strengthened the paper's finding that the human hepatitis B virus core protein, along with other Hepadnaviridae family member core proteins, is a mysterious, multifunctional protein. The core gene of the Hepadnaviridae genome encodes five partially collinear proteins. The most important of these is the HBV core protein p21, or HBc. It can self-assemble by forming viral HBc particles, but also plays a crucial role in the regulation of viral replication. Since 1986, the HBc protein has been one of the first and the most successful tools of the virus-like particle (VLP) technology. Later, the woodchuck hepatitis virus core protein (WHc) was also used as a VLP carrier. The Hepadnaviridae core proteins remain favourite VLP candidates for the knowledge-based design of future vaccines, gene therapy vectors, specifically targeted nanocontainers, and other modern nanotechnological tools for prospective medical use.

  1. Importance of core electrostatic properties on the electrophoresis of a soft particle

    NASA Astrophysics Data System (ADS)

    De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.

    2016-08-01

    The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.

  2. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide.

    PubMed

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-08-16

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly-otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA.

  3. Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide

    PubMed Central

    Li, Zhaokun; Song, Shixin; Zhao, Xuanchen; Lv, Xue; Sun, Shulin

    2017-01-01

    In order to overcome the brittleness of polylactide (PLA), reactive core-shell particles (RCS) with polybutadiene as core and methyl methacrylate-co-styrene-co-glycidyl methacrylate as shell were prepared to toughen PLA. Tert-dodecyl mercaptan (TDDM) was used as chain transfer agent to modify the grafting properties (such as grafting degree, shell thickness, internal and external grafting) of the core-shell particles. The introduction of TDDM decreased the grafting degree, shell thickness and the Tg of the core phase. When the content of TDDM was lower than 1.15%, the RCS particles dispersed in the PLA matrix uniformly—otherwise, agglomeration took place. The addition of RCS particles induced a higher cold crystallization temperature and a lower melting temperature of PLA which indicated the decreased crystallization ability of PLA. Dynamic mechanical analysis (DMA) results proved the good miscibility between PLA and the RCS particles and the increase of TDDM in RCS induced higher storage modulus of PLA/RCS blends. Suitable TDDM addition improved the toughening ability of RCS particles for PLA. In the present research, PLA/RCS-T4 (RCS-T4: the reactive core-shell particles with 0.76 wt % TDDM addition) blends displayed much better impact strength than other blends due to the easier cavitation/debonding ability and good dispersion morphology of the RCS-T4 particles. When the RCS-T4 content was 25 wt %, the impact strength of PLA/RCS-T4 blend reached 768 J/m, which was more than 25 times that of the pure PLA. PMID:28813019

  4. Investigation of the exciton emission lifetime in type-II spherical core/shell semiconductor heteronanostructures

    NASA Astrophysics Data System (ADS)

    Arfaoui, A.; Mahdouani, M.; Bourguiga, R.

    2017-08-01

    The two-band model effective mass approximation has been adopted to explain the energy spectra in type-I CdSe core-only and type-II CdSe/CdTe core/shell quantum dots (QDs). As optical properties, the emission wavelength, the electron-hole overlap integral and the radiative recombination lifetime have been investigated. The simulated emission spectra are in good agreement with available experimental results for both core-only and core/shell QDs. The radiative recombination lifetime (τrad) has been investigated in different carrier localization regimes and compared to that corresponding to core-only QDs. We have found a sudden increase in τrad at around r1 1.1 nm suggesting the transition of the heterostructure from the quasi-type-II to the type-II regime. A monotonic increase in τrad with the core and shell sizes (geometric parameters) was observed. Also found is the possibility of increasing τrad over two orders of magnitude with a suitable change in the geometric parameters. The long radiative lifetime produced by increasing the geometric parameters is found due to spatial separation of the carriers, which makes the type-II core/shell QDs made from large core and shell sizes promising for photovoltaic applications.

  5. Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search

    PubMed Central

    2012-01-01

    Background Sampling core subsets from genetic resources while maintaining as much as possible the genetic diversity of the original collection is an important but computationally complex task for gene bank managers. The Core Hunter computer program was developed as a tool to generate such subsets based on multiple genetic measures, including both distance measures and allelic diversity indices. At first we investigate the effect of minimum (instead of the default mean) distance measures on the performance of Core Hunter. Secondly, we try to gain more insight into the performance of the original Core Hunter search algorithm through comparison with several other heuristics working with several realistic datasets of varying size and allelic composition. Finally, we propose a new algorithm (Mixed Replica search) for Core Hunter II with the aim of improving the diversity of the constructed core sets and their corresponding generation times. Results Our results show that the introduction of minimum distance measures leads to core sets in which all accessions are sufficiently distant from each other, which was not always obtained when optimizing mean distance alone. Comparison of the original Core Hunter algorithm, Replica Exchange Monte Carlo (REMC), with simpler heuristics shows that the simpler algorithms often give very good results but with lower runtimes than REMC. However, the performance of the simpler algorithms is slightly worse than REMC under lower sampling intensities and some heuristics clearly struggle with minimum distance measures. In comparison the new advanced Mixed Replica search algorithm (MixRep), which uses heterogeneous replicas, was able to sample core sets with equal or higher diversity scores than REMC and the simpler heuristics, often using less computation time than REMC. Conclusion The REMC search algorithm used in the original Core Hunter computer program performs well, sometimes leading to slightly better results than some of the simpler

  6. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor.

  7. SAGE II aerosol validation: selected altitude measurements, including particle micromeasurements.

    PubMed

    Oberbeck, V R; Livingston, J M; Russell, P B; Pueschel, R F; Rosen, J N; Osborn, M T; Kritz, M A; Snetsinger, K G; Ferry, G V

    1989-06-20

    Correlative aerosol measurements taken at a limited number of altitudes during coordinated field experiments are used to test the validity of particulate extinction coefficients derived from limb path solar radiance measurements taken by the Stratospheric Aerosol and Gas Experiment (SAGE) II Sun photometer. In particular, results are presented from correlative measurement missions that were conducted during January 1985, August 1985, and July 1986. Correlative sensors included impactors, laser spectrometers, and filter samplers aboard an U-2-airplane, an upward pointing lidar aboard a P-3 airplane, and balloon-borne optical particle counters (dustsondes). The main body of this paper focuses on the July 29, 1986, validation experiment, which minimized the many difficulties (e.g., spatial and temporal inhomogeneities, imperfect coincidences) that can complicate the validation process. On this day, correlative aerosol measurements taken at an altitude of 20.5 km agreed with each other within their respective uncertainties, and particulate extinction values calculated at SAGE II wavelengths from these measurements validated corresponding SAGE II values. Additional validation efforts on days when measurement and logistical conditions were much less favorable for validation are discussed in an appendix.

  8. Particle Simulations of DARHT-II Transport System

    SciTech Connect

    Poole, B; Chen, Y J

    2001-06-11

    The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.

  9. A low resolution model for the chromatin core particle by neutron scattering

    PubMed Central

    Suau, Pedro; Kneale, G.Geoff; Braddock, Gordon W.; Baldwin, John P.; Bradbury, E.Morton

    1977-01-01

    Neutron scattering studies have been applied to chromatin core particles in solution, using the contrast variation technique. On the basis of the contrast dependance of the radius of gyration and the radial distribution function it is shown that the core particle consists of a core containing most of the histone around which is wound the DNA helix,following a path with a mean radius of 4.5 nm,in association with a small proportion of the histones. Separation of the shape from the internal structure, followed by model calculations shows that the overall shape of the particle is that of a flat cylinder with dimensions ca. 11×11×6 nm. Further details of the precise folding of the DNA cannot be deduced from the data, but detailed model calculations support concurrent results from crystallographic studies25. Images PMID:593885

  10. Amino-functionalized core-shell magnetic mesoporous composite microspheres for Pb(II) and Cd(II) removal.

    PubMed

    Tang, Yulin; Liang, Song; Wang, Juntao; Yu, Shuili; Wang, Yilong

    2013-04-01

    Amino-functionalized Fe3O4@mesoporous SiO2 core-shell composite microspheres NH2-MS in created in multiple synthesis steps have been investigated for Pb(II) and Cd(II) adsorption. The microspheres were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), N2 adsorption-desorption, zeta potential measurements and vibrating sample magnetometer. Batch adsorption tests indicated that NH2-MS exhibited higher adsorption affinity toward Pb(II) and Cd(II) than MS did. The Langmuir model could fit the adsorption isotherm very well with maximum adsorption capacity of 128.21 and 51.81 mg/g for Pb(II) and Cd(II), respectively, implying that adsorption processes involved monolayer adsorption. Pb(II) and Cd(II) adsorption could be well described by the pseudo second-order kinetics model, and was found to be strongly dependent on pH and humic acid. The Pb(II)- and Cd(II)-loaded microspheres were effectively desorbed using 0.01 mol/L HCl or EDTA solution. NH2-MS have promise for use as adsorbents in the removal of Pb(II) and Cd(II) in wastewater treatment processes.

  11. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle.

    PubMed

    Rönkkö, Topi; Virtanen, Annele; Kannosto, Jonna; Keskinen, Jorma; Lappi, Maija; Pirjola, Liisa

    2007-09-15

    The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution.

  12. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture II.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    This second horticulture guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Leadership, (2) Supervised Occupational Experience, (3) Plant Propagation, (4) Soil and Plant Growth Media, (5) Fertilizers, (6) Greenhouse, (7) Plant…

  13. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture II.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    This second horticulture guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Leadership, (2) Supervised Occupational Experience, (3) Plant Propagation, (4) Soil and Plant Growth Media, (5) Fertilizers, (6) Greenhouse, (7) Plant…

  14. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores

  15. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  16. Hydrothermal synthesis of high-quality type-II CdTe/CdSe core/shell quantum dots with dark red emission.

    PubMed

    Liu, Ning; Yang, Ping

    2014-08-01

    A hydrothermal method was used to synthesize type-II CdTe/CdSe core/shell quantum dots (QDs) using the thilglycolic acid (TGA) capped CdTe QDs as cores, which show a number of advantages. Because of the spatial separation of carriers the low excited states of CdTe/CdSe QDs, they exhibit many novel properties that are fundamentally different from the type-I QDs. On the other hand, our experiment results show that the wave function of the hole of the exciton in the CdTe core extends well into the CdSe shell. The results also reveal that a thick shell can confine the electrons inside the particles and thereby improve the PL efficiency and prolong the lifetime of the core/shell QDs. We use the UV-vis absorption and fluorescence spectrum measurements on growing particles in detail. We found that the fluorescence of the CdTe/CdSe QDs was strongly dependent on the thick of the shell and size of the core as well as the unique type-II heterostructure, which make the type-II core/shell QDs more suitable in photovoltaic or photoconduction applications.

  17. Tuning the spin crossover in nano-objects: From hollow to core-shell particles

    NASA Astrophysics Data System (ADS)

    Félix, Gautier; Mikolasek, Mirko; Molnár, Gábor; Nicolazzi, William; Bousseksou, Azzedine

    2014-06-01

    Core-shell nanoparticles displaying spin crossover (SCO) effect on the shell and/or on the core are studied using Monte Carlo simulations of an elastic microscopic Ising-like model. In this Letter we demonstrate that the SCO transition temperature can be controlled by adjusting the width of the shell and the width of the core as well as the misfit between the lattice constants. An original coupled system with a SCO active shell and an active core with another SCO material is proposed. Inducing the transition of the core by the spin transition of the shell results in a hysteresis in the thermal spin transition of the shell. This new type of memory effect in SCO compounds is based on the engineering of particle morphology.

  18. Amplified light scattering and emission of silver and silver core-silica shell particles.

    PubMed

    Siiman, Olavi; Jitianu, Andrei; Bele, Marjan; Grom, Patricia; Matijević, Egon

    2007-05-01

    Side versus forward light scattergrams, and fluorescence (488 nm excitation) intensity versus particle count histograms were gathered for bare, R6G-coated, and silica-R6G-coated silver particles of 150-200 nm diameter, one-by-one by flow cytometry. Fluorescence emission intensity of the composite particles monotonically increased and then reached a plateau with greater R6G concentrations, as measured by flow cytometry. Fluorescence amplification factors of up to 3.5x10(3) were estimated by reference to measurements on core-shell particles with silica instead of silver cores. Huge surface enhanced Raman scattering (SERS) intensities, at least 10(14)-fold greater than normal Raman scattering intensities, were observed with 633 nm excitation for molecules such as rhodamine 6G (R6G) on the same single particles of silver. Although routine transmission (TEM) and scanning (SEM) electron microscopies showed gross structures of the bare and coated particles, high-resolution field emission scanning electron microscopy (FE-SEM), revealed Brownian roughness describing quantum size and larger structures on the surface of primary colloidal silver particles. These silver particles were further characterized by extinction spectra and zeta potentials. Structural and light scattering observations that are reported herein were used to tentatively propose a new hierarchical model for the mechanism of SERS.

  19. Coherence in Dense Cores. II. The Transition to Coherence

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa A.; Barranco, Joseph A.; Wilner, David J.; Heyer, Mark H.

    1998-09-01

    After studying how line width depends on spatial scale in low-mass star-forming regions, we propose that ``dense cores'' (Myers & Benson 1983) represent an inner scale of a self-similar process that characterizes larger scale molecular clouds. In the process of coming to this conclusion, we define four distinct types of line width-size relation (Δv~Rai), which have power-law slopes a1, a2, a3, and a4, as follows: Type 1--multitracer, multicloud intercomparison; Type 2--single-tracer, multicloud intercomparison; Type 3--multitracer study of a single cloud; and Type 4--single-tracer study of a single cloud. Type 1 studies (of which Larson 1981 is the seminal example) are compendia of Type 3 studies which illustrate the range of variation in the line width-size relation from one region to another. Using new measurements of the OH and C18O emission emanating from the environs of several of the dense cores studied in NH3 by Barranco & Goodman (1998; Paper I), we show that line width increases with size outside the cores with a4 ~ 0.2. On scales larger than those traced by C18O or OH, 12CO and 13CO observations indicate that a4 increases to ~0.5 (Heyer & Schloerb 1997). By contrast, within the half-power contour of the NH3 emission from the cores, line width is virtually constant, with a4 ~ 0. We interpret the correlation between increasing density and decreasing Type 4 power-law slope as a ``transition to coherence.'' Our data indicate that the radius Rcoh at which the gas becomes coherent (i.e., a4 --> 0) is of order 0.1 pc in regions forming primarily low-mass stars. The value of the nonthermal line width at which ``coherence'' is established is always less than but still of order of the thermal line width of H2. Thus coherent cores are similar to, but not exactly the same as, isothermal balls of gas. Two other results bolster our proposal that a transition to coherence takes place at ~0.1 pc. First, the OH, C18O, and NH3 maps show that the dependence of column

  20. Resonant optical propulsion of a particle inside a hollow-core photonic crystal fiber.

    PubMed

    Maslov, A V

    2016-07-01

    Resonant propulsion of small nonresonant particles inside metal waveguides due to the formation of resonant states by the guided modes below their cutoffs has been predicted in the past. Here it is shown that stable resonant propulsion exists in hollow-core photonic crystal fibers, which are all-dielectric structures and are a major platform for various photonic applications. Specific features of the resonant propulsion are discussed together with the fiber design issues. The results may enable power-efficient transport of particles over long distances, particle sorting, and sensitive detection.

  1. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    SciTech Connect

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  2. Viscoelastic properties of electrorheological suspensions of core-shell (carbon/polyaniline) particles in silicone oil

    NASA Astrophysics Data System (ADS)

    Sedlacik, M.; Almajdalawi, S.; Mrlik, M.; Pavlinek, V.; Saha, P.; Stejskal, J.

    2013-02-01

    Carbon/polyaniline particles with core-shell structure were synthesized as a novel dispersed phase for electrorheological (ER) suspensions in this study. Core of these composite particles was obtained by carbonization of polyaniline base in an inert atmosphere of nitrogen at 650°C and then coated with polyaniline shell. The morphology and composition of prepared particles were examined with scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The analysis revealed the conversion of polyaniline to carbon via ring-opening happened during the carbonization process and successful coating of carbonized particles with shell layer. The products retained the original granular structure after carbonization as well as after the coatings. The dielectric spectra analysis suggests high particle polarizability of carbonized material. Thus, the measurements performed under oscillatory shear flow showed a remarkably high ER intensity at relatively low electric field strengths. Coating of carbonized particles by polyaniline base changes compatibility of particle surface with silicone oil medium and, consequently, flow properties of suspensions in the absence of electric field, but does not influence the shear rate dependence of the complex viscosity in the electric field.

  3. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  4. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.; Buchman, A.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 micrometers in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt % of soluble imide and compression molded at 300 C under 131 MPa. Post-fabrication heat treatments were performed at 960 C for 6 h resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable. increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. ne scanning electron micrographs taken for the 6-10 micrometer particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) -dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  5. Effects of Heat Treatment on the Magnetic Properties of Polymer-Bound Iron Particle Cores

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Bryant, R. G.

    1998-01-01

    Spherical iron particles of three different size distributions, 6-10 microns in diameter, 100 mesh and 30-80 mesh, were mixed with 2.0 wt. % of soluble imide and compression molded at 300 C under 131 MPa. Post fabrication heat treatments were performed at 960 C for 6 hours resulting in a significant enhancement of the permeability in low field region for all the specimens except for the one made of 30-80 mesh particles. The rate of core loss of these specimens at a magnetic induction of 5 kG measured up to 1 kHz shows a noticeable increase after heat treatment which, along with the permeability enhancement, can be explained by the coalescence of particles forming a network of conductivity paths in the specimens. The scanning electron micrographs taken for the 6-10 micron particle specimens show no evidence of heat treatment-induced grain growth. The untreated specimens show a very weak f(sup 2) dependence of the core loss which clearly indicates a negligible contribution from the eddy current loss. In particular, an almost perfect linearity was found in the frequency dependence of the core loss of the untreated specimen made of 100 mesh iron particles.

  6. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  7. Evaluation of storing Shippingport Core II spent blanket fuel assemblies in the T Plant PWR Core II fuel pool without active cooling

    SciTech Connect

    Gilbert, E.R.; Lanning, D.D.; Dana, C.M.; Hedengren, D.C.

    1994-10-01

    PWR Core II fuel pool chiller-off test was conducted because it appeared possible that acceptable pool-water temperatures could be maintained without operating the chillers, thus saving hundreds of thousands of dollars in maintenance and replacement costs. Test results showed that the water-cooling capability is no longer needed to maintain pool temperature below 38{degrees}C (100{degrees}F).

  8. Solid H2/D2 Particle Seeding and Injection System for Particle Image Velocimetry (PIV) Measurement of He II

    SciTech Connect

    Xu, T.; Van Sciver, S. W.

    2006-04-27

    Solid particles of the mixture of hydrogen and deuterium have certain advantages for use in Particle Image Velocimetry (PIV) of He II flow. The H2/D2 particles are near neutrally buoyant in He II and will vaporize with the helium as the experimental apparatus is warmed to room temperature. Progress of the construction of a H2/D2 particle seeding and injection system is reported in this paper. A cryogenic pulse valve is used to inject the mixture of helium, hydrogen and deuterium gas directly into a He II bath. Experiments show that the seeding quality is dependent on the back pressure, the mix ratio of the deuterium and helium gases and valve open duration. The effects of these parameters on the solid deuterium particle distribution are also discussed.

  9. Water-soluble core/shell nanoparticles for proton therapy through particle-induced radiation

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan; Kim, Maeng Jun; Kim, Kye-Ryung

    2015-02-01

    Metallic nanoparticles have been used in biomedical applications such as magnetic resonance imaging (MRI), therapy, and drug delivery systems. Metallic nanoparticles as therapeutic tools have been demonstrated using radio-frequency magnetic fields or near-infrared light. Recently, therapeutic applications of metallic nanomaterials combined with proton beams have been reported. Particle-induced radiation from metallic nanoparticles, which can enhance the therapeutic effects of proton therapy, was released when the nanoparticles were bombarded by a high-energy proton beam. Core/shell nanoparticles, especially Au-coated magnetic nanoparticles, have drawn attention in biological applications due to their attractive characteristics. However, studies on the phase transfer of organic-ligand-based core/shell nanoparticles into water are limited. Herein, we demonstrated that hydrophobic core/shell structured nanomaterials could be successfully dispersed in water through chloroform/surfactant mixtures. The effects of the core/shell nanomaterials and the proton irradiation on Escherichia coli (E. coli) were also explored.

  10. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  11. Synthesis, characterization and application of smart magnetic core-shell polymeric particles

    NASA Astrophysics Data System (ADS)

    Ho, Kin Man Edmond

    Magnetic gamma-Fe2O3 nanoparticles with three different types of surface modification were prepared. They include oleate-coated gamma-Fe 2O3 (o-Fe2O3), citrate-coated gamma-Fe 2O3 (c-Fe2O3), vinyl-coated gamma-Fe 2O3 (MPS-Fe2O3) nanoparticles. These nanoparticles were synthesized via three approaches: (1) decomposition and oxidation of Fe(CO)5 with oleic acid in a hot organic medium; (2) co-precipitation of FeCl2 and FeCl3 in an ammonium solution at pH 11--12, followed by surface coating with trisodium citrate; and (3) subsequent modification of the citrate-coated gamma-Fe2O3 through hydrolysis and condensation of tetraethyl orthosilicate (TEOS) and 3-(trimethoxysilyl)propyl methacrylate (MPS) using the modified Stober method, respectively. Encapsulation of these three types of magnetic nanoparticles into the poly(methyl methacrylate)/chitosan core-shell particles via graft copolymerization of methyl methacrylate (MMA) from chitosan were attempted. Successful encapsulation of iron oxide nanoparticles into the core-shell particles was achieved when the MPS-Fe2O3 nanoparticles were subjected to the copolymerization conditions. The magnetic core-shell particles (MCS) produced, in a reasonable yield, had diameter below 200 nm with narrow size distribution. Transmission electron microscopy (TEM) micrographs of the particles clearly revealed well-defined core-shell nanostructures where magnetic nanoparticles located inside PMMA and coated with chitosan shell. Properties of the MCS particles including their surface charge density, colloidal stability, chemical composition, magnetization measurement and film-forming ability were investigated with zeta-potential measurement, particle size measurement, Fourier-transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and atomic force microscopy (AFM), respectively. Application of the MCS particles was explored. The MCS particles were used to stabilize with single-walled carbon nanotubes (SWNTs) via

  12. Multilayered particle-packed column: Evaluation and comparison with monolithic and core-shell particle columns for the determination of red azo dyes in Sequential Injection Chromatography.

    PubMed

    Chocholouš, Petr; Gil, Renato; Acebal, Carolina C; Kubala, Viktor; Šatínský, Dalibor; Solich, Petr

    2017-03-01

    A recently presented new type of "multilayered" organic-inorganic hybrid silica particle packed column YMC-Triart C18 (50 mm × 4.6 mm, 5 μm) was used for the development of a sequential injection chromatography method for determination of five azo dyes (Sudan I, Sudan II, Sudan III, Sudan orange G, and para red) in selected food seasonings. The use of a novel sorbent brings attractive features, reduced backpressure, and broader chemical stability together with high separation performance, which are discussed and compared with that of three types of columns typically used in medium-pressure flow chromatography techniques (classic monolithic, narrow monolithic, and core-shell particle columns). The separation was performed in gradient elution mode created by the zone mixing of two mobile phases (acetonitrile/water 90:10, 1.5 mL + acetonitrile/water 100:0, 2.3 mL) at a flow rate of 0.60 mL/min and time of analysis <9.5 min. The spectrophotometric detection wavelengths were set to 400, 480, and 500 nm. The high performance of the developed method with multilayered particle column was well documented and the results indicate a broad capability of sequential injection chromatography. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A theoretical study on the advantage of core-shell particles with radially-oriented mesopores.

    PubMed

    Deridder, Sander; Catani, Martina; Cavazzini, Alberto; Desmet, Gert

    2016-07-22

    We report on a first-principles numerical study explaining the potential advantage of core-shell particles with strictly radially-oriented mesopores. Comparing the efficiency of these particles with fully porous and core-shell particles with a conventional (i.e., randomly oriented) mesopore network, the present numerical study shows a similar strong reduction in minimal reduced plate height (hmin) as was very recently observed in an experimental study by Wei et al. (respectively a hmin-reduction on the order of about 1 and 0.5 reduced plate height-units). As such, the present work provides a theoretical basis to understand and confirm their experimental findings and quantifies the general advantage of "radial-diffusion-only" particles. Determining the effective longitudinal diffusion (B-term contribution) in a series of dedicated, independent simulations, it was found that this contribution can be described by a very simple, yet fully exact mathematical expression for the case of "radial- diffusion-only" particles. Using this expression, the significant increase in efficiency of these particles can be fully attributed to their much smaller B-term band broadening, while their C-term band broadening (representing the mass transfer resistance) remains unaffected. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  15. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles.

    PubMed

    Vijayaraghavan, K; Palanivelu, K; Velan, M

    2006-08-01

    Biosorption of each of the heavy metals, copper(II) and cobalt(II) by crab shell was investigated in this study. The biosorption capacities of crab shell for copper and cobalt were studied at different particle sizes (0.456-1.117 mm), biosorbent dosages (1-10 g/l), initial metal concentrations (500-2000 mg/l) and solution pH values (3.5-6) in batch mode. At optimum particle size (0.767 mm), biosorbent dosage (5 g/l) and initial solution pH (pH 6); crab shell recorded maximum copper and cobalt uptakes of 243.9 and 322.6 mg/g, respectively, according to Langmuir model. The kinetic data obtained at different initial metal concentrations indicated that biosorption rate was fast and most of the process was completed within 2h, followed by slow attainment of equilibrium. Pseudo-second order model fitted the data well with very high correlation coefficients (>0.998). The presence of light and heavy metal ions influenced the copper and cobalt uptake potential of crab shell. Among several eluting agents, EDTA (pH 3.5, in HCl) performed well and also caused low biosorbent damage. The biosorbent was successfully regenerated and reused for five cycles.

  16. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    PubMed

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  17. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers.

    PubMed

    Buchcic, C; Tromp, R H; Meinders, M B J; Cohen Stuart, M A

    2017-02-15

    The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles are known to adsorb spontaneously. Particle hardness, however, may also affect foam and emulsion stability. The high compliance of soft particles may compromise their ability to withstand the lateral compression associated with disproportionation. Hence, particles which can spontaneously adsorb onto fluid interfaces, and yet depict low compliance may be ideal as interfacial stabilizers. In the present work, we prepared core-shell particles comprising a hard, polystyrene core and a soft poly(N-isopropylacrylamide) based shell. We found that such core-shell particles adsorb spontaneously onto various fluid interfaces. The absence of a pronounced energy barrier for interfacial adsorption allowed the facile preparation of particle-stabilized bubbles as well as emulsion droplets. For bubbles, the stability was better than that of bubbles stabilized by entirely soft particles, but disproportionation was not stopped completely. Emulsion droplets, in contrast, showed excellent stability against both coalescence and disproportionation. Lateral compression of core-shell particles due to disproportionation was clearly limited by the presence of the polystyrene core, leading to long-lasting stability. For emulsions, we even observed non-spherical droplets, indicating a negligible Laplace pressure. Our results indicate that core-shell particles comprising a hard core and a soft shell combine the advantageous properties of hard and soft particles, namely spontaneous adsorption and limited compliance, and can therefore be superior materials for the preparation of particle-stabilized dispersions.

  18. Molecular modelling study of changes induced by netropsin binding to nucleosome core particles.

    PubMed Central

    Pérez, J J; Portugal, J

    1990-01-01

    It is well known that certain sequence-dependent modulators in structure appear to determine the rotational positioning of DNA on the nucleosome core particle. That preference is rather weak and could be modified by some ligands as netropsin, a minor-groove binding antibiotic. We have undertaken a molecular modelling approach to calculate the relative energy of interaction between a DNA molecule and the protein core particle. The histones particle is considered as a distribution of positive charges on the protein surface that interacts with the DNA molecule. The molecular electrostatic potentials for the DNA, simulated as a discontinuous cylinder, were calculated using the values for all the base pairs. Computing these parameters, we calculated the relative energy of interaction and the more stable rotational setting of DNA. The binding of four molecules of netropsin to this model showed that a new minimum of energy is obtained when the DNA turns toward the protein surface by about 180 degrees, so a new energetically favoured structure appears where netropsin binding sites are located facing toward the histones surface. The effect of netropsin could be explained in terms of an induced change in the phasing of DNA on the core particle. The induced rotation is considered to optimize non-bonded contacts between the netropsin molecules and the DNA backbone. PMID:2165249

  19. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  20. LDL particle core enrichment in cholesteryl oleate increases proteoglycan binding and promotes atherosclerosis[S

    PubMed Central

    Melchior, John T.; Sawyer, Janet K.; Kelley, Kathryn L.; Shah, Ramesh; Wilson, Martha D.; Hantgan, Roy R.; Rudel, Lawrence L.

    2013-01-01

    Several studies in humans and animals suggest that LDL particle core enrichment in cholesteryl oleate (CO) is associated with increased atherosclerosis. Diet enrichment with MUFAs enhances LDL CO content. Steroyl O-acyltransferase 2 (SOAT2) is the enzyme that catalyzes the synthesis of much of the CO found in LDL, and gene deletion of SOAT2 minimizes CO in LDL and protects against atherosclerosis. The purpose of this study was to test the hypothesis that the increased atherosclerosis associated with LDL core enrichment in CO results from an increased affinity of the LDL particle for arterial proteoglycans. ApoB-100-only Ldlr−/− mice with and without Soat2 gene deletions were fed diets enriched in either cis-MUFA or n-3 PUFA, and LDL particles were isolated. LDL:proteogylcan binding was measured using surface plasmon resonance. Particles with higher CO content consistently bound with higher affinity to human biglycan and the amount of binding was shown to be proportional to the extent of atherosclerosis of the LDL donor mice. The data strongly support the thesis that atherosclerosis was induced through enhanced proteoglycan binding of LDL resulting from LDL core CO enrichment. PMID:23804810

  1. Coherent coexistence of nanodiamonds and carbon onions in icosahedral core-shell particles

    SciTech Connect

    Shevchenko, Vladimir Ya. Madison, Alexey E.; Mackay, Alan L.

    2007-03-01

    In icosahedral carbon nanoparticles, the diamond-like core can undergo a reversible topological transition into and coexist coherently with the onion shells. The general approach for describing and designing complex hierarchical icosahedral structures is discussed. Structural models of icosahedral carbon nanoparticles in which the local arrangement of atoms is virtually identical to that in diamond are derived. It is shown that icosahedral diamond-like particles can be transformed into onion-like shell structures (and vice versa) by the consecutive smoothing (puckering) of atomic networks without disturbance of their topological integrity. The possibility of coherent coexistence of icosahedral diamond-like core with onion shells is shown.

  2. Investigation of the EAS Lateral Particle Density at 500 m Distance from Shower Core

    SciTech Connect

    Toma, G.

    2008-01-24

    For the experimental conditions of the KASCADE-Grande experiment, the density of EAS charged particles at the distance of about 500 m from the shower core S(500) has been shown by detailed simulation studies to be an approximate energy estimator, being nearly independent of the mass of the primary particle. This report presents some experimentally observed features of the S(500) observable registered with the KASCADE-Grande array installed at the Forschungszentrum Karlsruhe, Germany The measured energy deposits of particles in the 37 scintillation detector stations have been used to reconstruct the lateral charged particle distributions that are described by a Linsley parameterization (LDF). Among other features, the S(500) dependence from the EAS angle of incidence has been studied.

  3. Behavior of pH-sensitive core shell particles at the air-water interface.

    PubMed

    Mathew, Mark D'Souza; Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; Biggs, Simon

    2012-03-20

    In this article, the adsorption of latex core-responsive polymer-shell nanoparticles at the air-water interface is investigated using a Langmuir trough. Phase transition isotherms are used to explore their responsive behavior at the interface as a function of changes in the pH of the subphase. By adjusting the pH of the water prior to particle deposition, we probe the effect of the stabilizing polymer wetting by the water subphase on the stability of these particles at the air-water interface. In addition, by initially compressing a stable film of adsorbed particles and then subsequently changing the pH of the subphase we study desorption of these particles into the water phase.

  4. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  5. Interfacial strain effect on type-I and type-II core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Karim, M. Rezaul; Malkoc, Derya; Ünlü, Hilmi

    2016-09-01

    A comparative experimental and theoretical study on the calculation of capped core diameter in ZnSe/ZnS, CdSe/Cd(Zn)S type-I and ZnSe/CdS type-II core/shell nanocrystals is presented. The lattice mismatch induced interface strain between core and shell was calculated from continuum elastic theory and applied in effective mass approximation method to obtain the corresponding capped core diameter. The calculated results were compared with diameter of bare cores (CdSe and ZnSe) from transmission electron microscopy images to obtain the amount of the stretched or squeezed core after deposition of tensile or compressive shells. The result of the study showed that the core is squeezed in ZnSe/ZnS and CdSe/Cd(Zn)S after compressive shell and stretched in ZnSe/CdS after tensile shell deposition. The stretched and squeezed amount of the capped core found to be in proportion with lattice mismatch amount in the core/shell structure.

  6. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  7. Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules.

    PubMed

    Schmitt, Sophia; Silvestre, Martin; Tsotsalas, Manuel; Winkler, Anna-Lena; Shahnas, Artak; Grosjean, Sylvain; Laye, Fabrice; Gliemann, Hartmut; Lahann, Joerg; Bräse, Stefan; Franzreb, Matthias; Wöll, Christof

    2015-01-01

    The controlled synthesis of hierarchically functionalized core/multishell particles is highly desirable for applications in medicine, catalysis, and separation. Here, we describe the synthesis of hierarchically structured metal-organic framework multishells around magnetic core particles (magMOFs) via layer-by-layer (LbL) synthesis. The LbL deposition enables the design of multishell systems, where each MOF shell can be modified to install different functions. Here, we used this approach to create controlled release capsules, in which the inner shell serves as a reservoir and the outer shell serves as a membrane after postsynthetic conversion of the MOF structure to a polymer network. These capsules enable the controlled release of loaded dye molecules, depending on the surrounding media.

  8. Measurement of energetic-particle-driven core magnetic fluctuations and induced fast-ion transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.; Koliner, J. J.; Eilerman, S.; Reusch, J. A.; Anderson, J. K.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Liu, D.

    2013-03-01

    Internal fluctuations arising from energetic-particle-driven instabilities, including both density and radial magnetic field, are measured in a reversed-field-pinch plasma. The fluctuations peak near the core where fast ions reside and shift outward along the major radius as the instability transits from the n = 5 to n = 4 mode. During this transition, strong nonlinear three-wave interaction among multiple modes accompanied by enhanced fast-ion transport is observed.

  9. Binding of Ethidium Bromide Causes Dissociation of the Nucleosome Core Particle

    NASA Astrophysics Data System (ADS)

    McMurray, Cynthia T.; van Holde, K. E.

    1986-11-01

    The binding of ethidium bromide to chicken erythrocyte core particles results in a step-wise dissociation of the structure that involves the initial release of one copy each of histones H2A and H2B. Quantitation of the dissociated DNA reveals that a critical amount of drug is required for the dissociation. Above the critical value, the dissociation is time dependent, reversible, and independent of DNA concentration.

  10. Critical Review of Experimental Studies of the Be II Core-Excited Level System

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    1998-01-01

    All published experimental data on the spectrum of the core-excited term system of the Be+ ion are critically compiled and analysed on the basis of Hartree-Fock calculations and computer-aided spectrum-identification and level-optimization programs. As a result, 49 core-excited terms in Be II are firmly established. Another 44 terms need further confirmation. More than 100 spectral lines belonging to transitions in the Be II core-excited term system are compiled. Spectral regions 80-105Å and 580-5200Å are covered. 13 new assignments are made, and 33 old assignments are changed. 44 previously unobserved spectral lines are predicted, including 10 intersystem lines. Several experimental and theoretical problems are outlined.

  11. Low loss Sendust powder cores comprised of particles coated by sodium salt insulating layer

    NASA Astrophysics Data System (ADS)

    Wei, Ding; Wang, Xian; Nie, Yan; Feng, Zekun; Gong, Rongzhou; Chen, Yajie; Harris, V. G.

    2015-05-01

    Toroid-shaped Sendust powder cores were prepared from cold pressing mechanically pulverized Fe-Si-Al powder that had been coated using an inorganic insulating layer. The present work focuses on the effect of the sodium salt-coated Sendust particles upon the high frequency magnetic properties. Sendust powders, having a particle size range of ˜125 μm, exhibit a high saturation magnetization of 118.9 A.m2/kg and a low coercivity of 56 A/m. The experiments indicate that the sodium-based glass insulating layer synthesized from sodium metaphosphate and sodium metaborate can effectively reduce the change in permeability with frequency or DC bias field, yielding high effective permeability (μe) of ˜113 over a wide frequency range from 10 kHz-1 MHz. Furthermore, the effective permeability is measured at ˜27 at H = 7854 A/m, indicating stable and high effective permeability under a DC bias field. The measurements of permeability under DC bias field indicate a peak in the quality factor (Q) values corresponding to a DC-bias field of 1.5-6 (kA/m) at frequencies from 50 to 200 kHz: The effective permeability remains at ˜74. The sodium salt-coated granular cores demonstrate a core loss of 68 mW/cm3 at Bm = 50 mT and f = 50 kHz: These values compare favorably to those of silicone coated Sendust particles.

  12. Application of water@silica core-shell particles for suppressing gasoline pool fires.

    PubMed

    Ni, Xiaomin; Zhang, Shaogang; Zheng, Zhong; Wang, Xishi

    2018-01-05

    A new type of dry powders with capsular structure was fabricated for fire suppression, in which the content of water approached 60%. The capsules with the size of 3-5μm consisted of liquid core and solid shell, where the core was water droplet and the shell was assembled silicon dioxide particles with surface hydrophobic modification. The shell of close-packed silica particles surrounding each water droplet provided the structural rigidity of the capsules and enabled their application as powder fire suppressants. Two different scaled real fire tests showed that thus-prepared solid powders could extinguish 0.21MW gasoline pool fire in 2.0s with agent mass of 0.055kg, and 1.0MW gasoline pool fire in 5.0s with agent mass of 0.49kg. Such fire extinguishing performance greatly outperformed the conventional monoammonium phosphate (ABC) powders, neat silica powders and water mist, with significantly reduced fire extinguishing time and mass of agent consumed. Mechanism of the core-shell particles in fire suppression was discussed based on established theories and experimental results. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of zirconium tungstate-zirconia core-shell composite particles

    SciTech Connect

    Khazeni, Nasser; Mavis, Bora; Guenduez, Guengoer; Colak, Uner

    2011-11-15

    Highlights: {yields} ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell particles to offer solutions for sintering problems. {yields} Core synthesis by a precursor based on tungstic acid and zirconium acetate. {yields} Shell phase by urea hydrolysis in the presence of zirconium ions. {yields} [Urea]/[ZrOCl{sub 2}] ratio controls the rate of shell precursor precipitation. -- Abstract: In this work, ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell composite particles were synthesized. ZrW{sub 2}O{sub 8} that was used in the core is a material with negative coefficient of thermal expansion, and it was synthesized from a high-pH precursor based on use of tungstic acid and zirconium acetate. Shell layer was composed of ZrO{sub 2} nanocrystallites and precipitated from an aqueous solution by urea hydrolysis. While volume of the shell was effectively controlled by the initial zirconium ion concentration in the solutions, the rate of precipitation was a function of the ratio of initial concentrations of urea to zirconium ions. It is hypothesized that isolation of the ZrW{sub 2}O{sub 8} within a layer of ZrO{sub 2}, will be a key element in solving problems associated with reactivity of ZrW{sub 2}O{sub 8} towards other components in sintering of ceramic-ceramic composites with tuned or zero thermal expansion coefficient.

  14. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  15. EFFECTS OF TUMORS ON INHALED PHARMACOLOGIC DRUGS: II. PARTICLE MOTION

    EPA Science Inventory

    ABSTRACT

    Computer simulations were conducted to describe drug particle motion in human lung bifurcations with tumors. The computations used FIDAP with a Cray T90 supercomputer. The objective was to better understand particle behavior as affected by particle characteristics...

  16. Particle transport after pellet injection in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; McCarthy, K. J.; Panadero, N.; Satake, S.; López-Bruna, D.; Alonso, A.; Calvo, I.; Dinklage, A.; Estrada, T.; Fontdecaba, J. M.; Hernández, J.; García, R.; Medina, F.; Ochando, M.; Pastor, I.; Perfilov, S.; Sánchez, E.; Soleto, A.; Van Milligen, B. Ph; Zhezhera, A.; the TJ-II Team

    2016-08-01

    We study radial particle transport in stellarator plasmas using cryogenic pellet injection. By means of perturbative experiments, we estimate the experimental particle flux and compare it with neoclassical simulations. Experimental evidence is obtained of the fact that core depletion in helical devices can be slowed-down even by pellets that do not reach the core region. This phenomenon is well captured by neoclassical predictions with DKES and FORTEC-3D.

  17. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    NASA Astrophysics Data System (ADS)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  18. On the optimization of the solid core radius of superficially porous particles for finite adsorption rate.

    PubMed

    Kaczmarski, Krzysztof

    2011-02-18

    Packed chromatographic columns with the superficially porous particles (porous shell particles) guarantee higher efficiency. The theoretical equation of the Height Equivalent to a Theoretical Plate (HETP), for columns packed with spherical superficially porous particles, was used for the analysis of the column efficiency for finite rate of adsorption-desorption process. The HETP equation was calculated by the application of the moment analysis to elution peaks evaluated with the General Rate (GR) model. The optimal solid core radius for maximum column efficiency was estimated for a wide spectrum of internal and external mass transfer resistances, adsorption kinetic rate and axial dispersion. The separation power of the shell adsorbent for two component mixture, in analytical and preparative chromatography, was discussed. The conditions of the equivalence between the solutions of the General Rate model with slow adsorption kinetic and the Lumped Kinetic Model (LKM) or the Equilibrium Dispersive (ED) model were formulated.

  19. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.

    PubMed

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent

    2010-03-26

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.

  20. Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells*

    PubMed Central

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent

    2010-01-01

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385

  1. Class II 6.7 GHz Methanol Maser Association with Young Massive Cores Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Csengeri, Timea; Tatematsu, Ken’ichi; Hasegawa, Tetsuo; Iguchi, Satoru; Alhassan, Jibrin A.; Higuchi, Aya E.; Bontemps, Sylvain; Menten, Karl M.

    2017-02-01

    We explored the implication of the association (or lack of it) of 6.7 GHz class II methanol (CH3OH) masers with massive dense cores (MDCs) detected (within a sample of ATLASGAL selected infrared quiet massive clumps) at 0.9 mm with Atacama Large Millimeter/submillimeter array. We found 42 out of the 112 cores (37.5%) detected with the Atacama Compact Array (ACA) to be associated with 6.7 GHz CH3OH masers. The lowest mass core with CH3OH maser association is ∼ 12 {M}ȯ . The angular offsets of the ACA cores from the 6.7 GHz CH3OH maser peak positions range from 0.″17 to 4.″79, with a median value of 2.″19. We found a weak correlation between the 0.9 mm continuum (MDCs) peak fluxes and the peak fluxes of their associated methanol multibeam (MMB) 6.7 GHz CH3OH masers. About 90% of the cores associated with 6.7 GHz CH3OH masers have masses of >40 M ⊙. The CH3OH maser containing cores are candidates for embedded high-mass protostellar objects in their earliest evolutionary stages. With our ACA 0.9 continuum data compared with the MMB 6.7 GHz CH3OH maser survey, we have constrained the cores already housing massive protostars based on their association with the radiatively pumped 6.7 GHz CH3OH masers.

  2. The prevalence of MSP-core sulphuric particles in the stratospheric Junge layer

    NASA Astrophysics Data System (ADS)

    Mann, Graham; Brooke, James; Plane, John; Dhomse, Sandip; Feng, Wuhu; Neely, Ryan; Bardeen, Chuck; Bellouin, Nicolas; Dalvi, Mohit; Johnson, Colin; Abraham, Luke

    2017-04-01

    The widespread presence of meteoric smoke particles (MSPs) within a distinct class of stratospheric aerosol particles has become clear from in-situ measurements in the Arctic (Weigel et al., 2014; Curtius et al., 2005), Antarctic (Campbell and Deshler, 2014) and mid-latitudes (Murphy et al. 2013; Murphy et al., 1998). The key role such MSP inclusions play in enabling stratospheric aerosol particles to nucleate into polar stratospheric clouds (PSCs) has been established from microphysical PSC simulations (Hoyle et al., 2013; Engel et al., 2013) and space-borne lidar measurements (Pitts et al., 2011). In this study, we apply the UM-UKCA stratosphere-troposphere composition-climate model with interactive modal aerosol microphysics (Dhomse et al., 2014) to assess the global distribution of these MSP-core sulphuric particles in the stratosphere. In our 80km top UM-UKCA model, we impose a monthly-varying MSP number and mass distribution based on separate simulations with the NCAR 120km top WACCM-CARMA model, which has sectional aerosol microphysics (e.g. Bardeen et al., 2008). In UM-UKCA, the MSP-core particles are tracked in a separate mode from the homogeneously nucleated particles, and the two different types of sulphuric particles both take up and evaporate off sulphuric acid vapour according to ambient conditions. By comparing simulations particle concentrations to balloon-borne stratospheric aerosol measurements, we observationally constrain the MSP input into the upper atmosphere, and identify the treatment of H2SO4 photolysis as an important sensitivity in model predictions. We illustrate how the MSP-core sulphuric are not restricted to polar regions, but are prevalent at all latitudes, particularly in the upper part of the Junge layer. We show there is a steep vertical profile in particle morphology, the layer transitioning from being mostly homogeneously nucleated particles in the lower stratosphere to being mostly heterogeneously nucleated particles at the top

  3. Mesoporous silica coated silica-titania spherical particles: from impregnation to core-shell formation.

    PubMed

    Shiba, Kota; Takei, Toshiaki; Ogawa, Makoto

    2016-11-22

    The coating of solid surfaces with inorganic materials is a promising approach not only to impart various functionalities but also to modify physicochemical properties that are affected by the geometry/structure of the coating. In this study, a silica-hexadecyltrimethylammonium (silica-CTA) hybrid layer was deposited on monodispersed spherical particles composed of titania and octadecylamine (titania-ODA) by a sol-gel reaction of tetraethoxysilane in aqueous CTA/ammonia/methanol solution. The formation of the coating was confirmed by SEM and TEM observations. The coating thickness varied from a few nm to 100 nm depending on the Si/Ti ratio. We found that Si/Ti = 0.68 resulted in the formation of microporous silica-titania particles with the pore size of 0.7 nm as revealed by nitrogen adsorption/desorption measurements. Because the titania-ODA particles can be converted to mesoporous titania particles after removing ODA by acid/base treatment, the silica species can be impregnated into the titania particles and replace ODA under basic conditions. By increasing the Si/Ti molar ratio up to 1.4, silica-titania particles with non-porous structures were obtained. An amorphous to anatase transition occurred at around 800 °C, indicating the complete impregnation of silica inside the titania particles. Further increases of the Si/Ti molar ratio (to 3.4 and 6.8) led to the formation of the silica-CTA shell on the core particles, and the shell was converted to mesoporous silica layers with a pore size of 2 nm after calcination at 550 °C for 5 h. Non-linear control of the pore size/structure is presented for the first time; this will be useful for the precise design of diverse hybrid materials for optical, catalytic and biomedical applications.

  4. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  5. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.

    PubMed

    Miyakawa, Masato; Hiyoshi, Norihito; Nishioka, Masateru; Koda, Hidekazu; Sato, Koichi; Miyazawa, Akira; Suzuki, Toshishige M

    2014-08-07

    Continuous synthesis of Pd@Pt and Cu@Ag core-shell nanoparticles was performed using flow processes including microwave-assisted Pd (or Cu) core-nanoparticle formation followed by galvanic displacement with a Pt (or Ag) shell. The core-shell structure and the nanoparticle size were confirmed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation and EDS elemental mapping. The Pd@Pt nanoparticles with a particle size of 6.5 ± 0.6 nm and a Pt shell thickness of ca. 0.25 nm were synthesized with appreciably high Pd concentration (Pd 100 mM). This shell thickness corresponds to one atomic layer thickness of Pt encapsulating the Pd core metal. The particle size of core Pd was controlled by tuning the initial concentrations of Na2[PdCl4] and PVP. Core-shell Cu@Ag nanoparticles with a particle size of 90 ± 35 nm and an Ag shell thickness of ca. 3.5 nm were obtained using similar sequential reactions. Oxidation of the Cu core was suppressed by the coating of Cu nanoparticles with the Ag shell.

  6. Statistical study of particle acceleration in the core of foreshock transients

    NASA Astrophysics Data System (ADS)

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli; Wilson, L. B., III

    2017-08-01

    Several types of foreshock transients upstream of Earth's bow shock possessing a tenuous, hot core have been observed and simulated. Because of the low dynamic pressure in their cores, these phenomena can significantly disturb the bow shock and the magnetosphere-ionosphere system. Recent observations have also demonstrated that foreshock transients can accelerate particles which, when transported earthward, can affect space weather. Understanding the potential of foreshock transients to accelerate particles can help us understand shock acceleration at Earth and at other planetary and astrophysical systems. To further investigate foreshock transients' potential for acceleration, we conduct a statistical study of ion and electron energization in the core of foreshock transients. We find that electron energies typically increase there, evidently due to an internal acceleration process, whereas, as expected, ion energies most often decrease to support transient formation and expansion. Nevertheless, ion energy enhancements can be seen in some events suggesting an internal ion acceleration process as well. Formation conditions of foreshock transients are related to weak solar wind magnetic field strength and fast solar wind speed. Ion and electron energization are also positively correlated with solar wind speed.

  7. Comparison of Magnesium II Core-to-Wing Ratio Measurements During Solar Minimum 23/24

    NASA Astrophysics Data System (ADS)

    Machol, J. L.; Snow, M. A.; Viereck, R. A.; Weber, M.; Richard, E. C.; Puga, L. C.

    2013-12-01

    Solar extreme ultraviolet (EUV) radiation is the primary energy source to the Earth's upper atmosphere; it heats the thermosphere, creates the ionosphere, and drives photochemistry. A useful proxy for EUV irradiance is the Magnesium II Core-to-Wing Ratio (Mg II index) which is calculated from solar irradiance measurements near 280 nm. This poster compares different satellite measurements of the Mg II index made during the recent solar minimum. We also contrast the indices calculated from high spectral resolution data with indices derived with the classic calculation and 1.1 nm resolution data. These results will be combined with prior Mg II composite time series to create a composite that best represents solar activity over the spacecraft era - 35 years and counting.

  8. Pattern formation with repulsive soft-core interactions: Discrete particle dynamics and Dean-Kawasaki equation

    NASA Astrophysics Data System (ADS)

    Delfau, Jean-Baptiste; Ollivier, Hélène; López, Cristóbal; Blasius, Bernd; Hernández-García, Emilio

    2016-10-01

    Brownian particles interacting via repulsive soft-core potentials can spontaneously aggregate, despite repelling each other, and form periodic crystals of particle clusters. We study this phenomenon in low-dimensional situations (one and two dimensions) at two levels of description: by performing numerical simulations of the discrete particle dynamics and by linear and nonlinear analysis of the corresponding Dean-Kawasaki equation for the macroscopic particle density. Restricting to low dimensions and neglecting fluctuation effects, we gain analytical insight into the mechanisms of the instability leading to clustering which turn out to be the interplay among diffusion, the intracluster forces, and the forces between neighboring clusters. We show that the deterministic part of the Dean-Kawasaki equation provides a good description of the particle dynamics, including width and shape of the clusters and over a wide range of parameters, and analyze with weakly nonlinear techniques the nature of the pattern-forming bifurcation in one and two dimensions. Finally, we briefly discuss the case of attractive forces.

  9. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    NASA Astrophysics Data System (ADS)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  10. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.

    PubMed

    Çınar, Simge; Tevis, Ian D; Chen, Jiahao; Thuo, Martin

    2016-02-23

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate ('/' = physisorbed, '-' = chemisorbed), from molten Field's metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  11. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    NASA Astrophysics Data System (ADS)

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-02-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity.

  12. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering

    PubMed Central

    Çınar, Simge; Tevis, Ian D.; Chen, Jiahao; Thuo, Martin

    2016-01-01

    Phase-change materials, such as meta-stable undercooled (supercooled) liquids, have been widely recognized as a suitable route for complex fabrication and engineering. Despite comprehensive studies on the undercooling phenomenon, little progress has been made in the use of undercooled metals, primarily due to low yields and poor stability. This paper reports the use of an extension of droplet emulsion technique (SLICE) to produce undercooled core-shell particles of structure; metal/oxide shell-acetate (‘/’ = physisorbed, ‘-’ = chemisorbed), from molten Field’s metal (Bi-In-Sn) and Bi-Sn alloys. These particles exhibit stability against solidification at ambient conditions. Besides synthesis, we report the use of these undercooled metal, liquid core-shell, particles for heat free joining and manufacturing at ambient conditions. Our approach incorporates gentle etching and/or fracturing of outer oxide-acetate layers through mechanical stressing or shearing, thus initiating a cascade entailing fluid flow with concomitant deformation, combination/alloying, shaping, and solidification. This simple and low cost technique for soldering and fabrication enables formation of complex shapes and joining at the meso- and micro-scale at ambient conditions without heat or electricity. PMID:26902483

  13. Architecture of the RNA polymerase II-Mediator core initiation complex.

    PubMed

    Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P

    2015-02-19

    The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.

  14. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    SciTech Connect

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-08-26

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10(–)(4)((h/0.7)(3)/(yr Mpc(3))) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  15. The core collapse supernova rate from the SDSS-II supernova survey

    SciTech Connect

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-09-10

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10{sup –4}((h/0.7){sup 3}/(yr Mpc{sup 3})) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  16. DNase II digestion of the nucleosome core: precise locations and relative exposures of sites.

    PubMed

    Lutter, L C

    1981-09-11

    The precise locations and relative exposures of the DNase II-accessible sites in the nucleosome core DNA are determined using techniques previously employed for the enzyme DNase I. It is found that there are a number of similarities between the site exposure patterns for the two enzymes but that in general the DNase II seems to discriminate less among adjacent sites' accessibilities than does DNase I. The two enzymes attack essentially the same positions in the DNA, the average difference between the precise location of the site being less than one-half base for the two enzymes. Such close similarities in the digestion patterns of two enzymes with such different mechanisms of scission show that the patterns reflect the structure of the nucleosome core and not merely the properties of the particular enzyme used.

  17. Luminescent liquid crystalline materials based on palladium(II) imine derivatives containing the 2-phenylpyridine core.

    PubMed

    Micutz, Marin; Iliş, Monica; Staicu, Teodora; Dumitraşcu, Florea; Pasuk, Iuliana; Molard, Yann; Roisnel, Thierry; Cîrcu, Viorel

    2014-01-21

    In this work we report our studies concerning the synthesis and characterisation of a series of imine derivatives that incorporate the 2-phenylpyridine (2-ppy) core. These derivatives were used in the cyclometalating reactions of platinum(II) or palladium(II) in order to prepare several complexes with liquid crystalline properties. Depending on the starting materials used as well as the solvents employed, different metal complexes were obtained, some of them showing both liquid crystalline behaviour and luminescence properties at room temperature. It was found that, even if there are two competing coordination sites, the cyclometalation process takes place always at the 2-ppy core with (for Pt) or without (for Pd) the imine bond cleavage. We successfully showed that it is possible to prepare emissive room temperature liquid crystalline materials based on double cyclopalladated heteroleptic complexes by varying the volume fraction of the long flexible alkyl tails on the ancillary benzoylthiourea (BTU) ligands.

  18. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  19. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    PubMed Central

    Kozawa, Takahiro; Naito, Makio

    2015-01-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. PMID:27877756

  20. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.

    PubMed

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g(-1), the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  1. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  2. Electronic excitation transport in core antennae of enriched photosystem I particles from spinach chloroplasts

    SciTech Connect

    Causgrove, T.P.; Yang, S.; Struve, W.S.

    1988-10-20

    The polarized photobleaching recovery of PSI-60 particles enriched in iron-sulfur protein and P700 was monitored with approx. 2-ps resolution at 665, 670, 675, and 681 nm. Considerable residual anisotropy appears at long times, proving that local ordering exists in the Chl a-protein core antenna of PSI-60. At these four wavelengths, the polarization decays with mean lifetimes between 2.9 and 6.6 ps. This slow time scale suggests that the depolarization accompanies electronic excitation transport between clusters of Chl a chromophores rather than between individual nearest-neighbor chromophores.

  3. Cu-Ni nano-alloy: mixed, core-shell or Janus nano-particle?

    PubMed

    Guisbiers, Grégory; Khanal, Subarna; Ruiz-Zepeda, Francisco; Roque de la Puente, Jorge; José-Yacaman, Miguel

    2014-12-21

    Bimetallic nanoparticles like Cu-Ni are particularly attractive due to their magnetic and catalytic properties; however, their properties depend strongly on the structure of the alloy i.e. mixed, core-shell or Janus. To predict the alloy structure, this paper investigates the size and shape effects as well as the surface segregation effect on the Cu-Ni phase diagram. Phase maps have been plotted to determine the mixing/demixing behavior of this alloy according the particle shape. Cu-Ni nanoalloy can form a mixed particle or a Janus one depending on the synthesis temperature. Surface segregation is also considered and reveals a nickel surface-enrichment. Finally, this paper provides a useful roadmap for experimentalists.

  4. Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles.

    PubMed

    Waite, Kenrick A; De-La Mota-Peynado, Alina; Vontz, Gabrielle; Roelofs, Jeroen

    2016-02-12

    The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy.

  5. Site-specific aflatoxin B sub 1 adduction of sequence-positioned nucleosome core particles

    SciTech Connect

    Moyer, R.A.

    1988-01-01

    The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. This problem was circumvented by constructing nucleosomes that are homogenous in DNA-histone contact points. A cloned DNA fragment, containing a sea urchin 5S gene which precisely positions a histone octamer was employed. By using {sup 32}P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate (DMS) and the bulky alkylating agent afatoxin B{sub 1}-dichloride (AFB{sub 1}-Cl{sub 2}) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in sequence-positioned core particles.

  6. Salt-induced conformation and interaction changes of nucleosome core particles.

    PubMed Central

    Mangenot, Stéphanie; Leforestier, Amélie; Vachette, Patrice; Durand, Dominique; Livolant, Françoise

    2002-01-01

    Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration C(s). The maximal extension (D(max)) of the NCP (145 +/- 3-bp DNA) increases from 137 +/- 5 A to 165 +/- 5 A when C(s) rises from 10 to 50 mM and remains constant with further increases of C(s) up to 200 mM. In view of the very weak increase of the R(g) value in the same C(s) range, we attribute this D(max) variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 +/- 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP(145). Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance. PMID:11751321

  7. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.

    PubMed

    Liu, Ying Dan; Quan, Xuemei; Hwang, Bora; Kwon, Yong Ku; Choi, Hyoung Jin

    2014-02-25

    Monodisperse core-shell-structured poly(styrene-co-butyl acrylate-co-[2-(methacryloxy)ethyl] trimethylammonium chloride)/silica (PSBM/SiO2) nanoparticles were applied as new electrorheological (ER) materials in which the particles were dispersed in an insulating oil. These nanoparticles were prepared by the consecutive precipitation of cetyltrimethylammonium bromide and negatively charged tetraethylorthosilicate onto the cationic surfaces of PSBM colloidal particles. The successful deposition of the shell phase of the particles and their morphology was examined by transmission and scanning electron microscopy. Their ER properties were studied with a rotational rheometer under different shear modes: controlled shear rate, steady shear under constant shear rate, and creep test. The silica shell allowed the PSBM/SiO2 particles to exhibit typical ER performance under an applied electric field. The dielectric spectra of the PSBM/SiO2-based ER fluid were also recorded using an LCR meter, which was correlated to the ER performance of the ER fluid.

  8. Orbital Evolution of Particles and Stable Zones at the F Ring Core

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J.; Scargle, J.; Dones, L.; Showalter, M.

    2012-10-01

    The F ring of Saturn is often thought of as a ‘shepherded’ ring; however, it is closer to the more massive of its two shepherd satellites, Prometheus. Pandora, the outer satellite, is near a 3:2 mean motion resonance with larger Mimas causing periodic fluctuations in its orbit. The perturbations from the Saturnian satellites result in chaotic orbits throughout the F ring region (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). We follow the approach of Cuzzi et al. (abstract this meeting) in exploring zones of relative stability in the F ring region using a N-body Bulirsch-Stoer orbital integrator that includes the 14 main satellites of Saturn. We find relatively stable zones situated among the tightly packed Prometheus and Pandora resonances that we dub “anti-resonances.” At these locations ring particles have much smaller changes in their semi-major axes and eccentricities than particles outside of anti-resonance zones. We present high radial resolution simulations where we track the orbital evolution of 6000 test particles over time in a 200km region and find that the variance of the semi-major axes of particles in anti-resonances can be less than 1km over a period of 32 years, while just 5km away in either radial direction the variance can be tens of km’s. More importantly, particles outside of these stable zones can migrate into one due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core even though it is not in overall torque balance with the shepherd moons.

  9. Saturn's Rings II. Particle Sizes Inferred from Stellar Occultation Data

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.

    2000-06-01

    We derive power-law particle size distributions for each of Saturn's main ring regions, using observations of the 3 July 1989 stellar occultation of 28 Sgr from Palomar, McDonald, and Lick observatories. We use the Voyager PPS δ Sco optical depth profile to estimate and then remove the directly transmitted signal from the 28 Sgr observations, leaving high SNR scattered light profiles at wavelengths of 3.9, 2.1, and 0.9 μm. The angular distribution of this diffracted signal depends on the ring particle size distribution: the sharpness of the forward lobe is set by the largest particles, while the overall breadth and amplitude of the scattered signal reflect the abundance of smaller, cm-sized particles. From a simple one-dimensional scattering model, we estimate characteristic particle sizes in the A, B, and C rings, and obtain a good match to the detailed structure of the observed scattered light profiles. To accommodate more realistic particle size distributions and to take proper account of the geometry of the occultation, we then develop a two-dimensional forward-scattering model. We assume for simplicity a single power law particle size distribution for each major ring region, and we determine the index q and lower and upper size cutoffs amin and amax that provide the best match to all three data sets in each region. Our results in the A and C rings are fairly consistent with values of q and amax derived from Voyager radio occultation (RSS) measurements (Zebker et al. 1985). We extend their results by determining lower limits to the particle size distributions and by probing the B Ring. We find a rather flat ( q=2.75) and narrow size distribution for both the inner A Ring and the B Ring, with a surprisingly large amin=30 cm. From the detailed shape of the scattered signal in the A and B rings, we find amax=20 m, a factor of two larger than the RSS result. The fraction of cm-sized particles increases between the inner and outer A Ring and is greatest in the C

  10. Protein encapsulated core-shell structured particles prepared by coaxial electrospraying: investigation on material and processing variables.

    PubMed

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2014-10-01

    Biodegradable polymeric particles have been extensively investigated for controlled drug delivery of various therapeutic agents. 'Coaxial' electrospraying was successfully employed in this study, to fabricate core-shell PLGA particles containing bovine serum albumin (BSA) as the model protein, and the results were also compared to particles prepared by 'emulsion' electrospraying. Two different molecular weights of PLGA were employed to encapsulate the protein. Solution properties and processing parameters were found to influence the morphology of the core-shell particles. Depending on the type of solvent used to dissolve the polymer as well as the polymer concentration and molecular weight, the mean diameter of the particles varied between 3.0 to 5.5 μm. Fluorescence microscopic analysis of the electrosprayed particles using FITC-conjugated BSA demonstrated the core-shell structure of the developed particles. The encapsulation efficiency and release behavior of BSA was influenced by shell:core feeding ratio, protein concentration, and the electrospraying method. The encapsulation efficiency of BSA within the core-shell particles of high and low molecular weight PLGA was found 15.7% and 25.1% higher than the emulsion electrosprayed particles, respectively. Moreover, the total amount of BSA released from low molecular weight PLGA particles was significantly higher than high molecular weight PLGA particles within 43 days of release studies, with negligible effect on encapsulation efficiency. The technique of coaxial electrospraying has high potential for encapsulation of susceptible protein-based therapeutic agents such as growth factors for multiple drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states

    NASA Astrophysics Data System (ADS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Böning, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Jung, Thomas; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, Gurvan; Marsland, Simon J.; Masina, Simona; Navarra, Antonio; George Nurser, A. J.; Pirani, Anna; y Mélia, David Salas; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Treguier, Anne-Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang

    2014-01-01

    Simulation characteristics from eighteen global ocean-sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.

  12. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    PubMed

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts.

  13. Modification of Particle Distributions by MHD Instabilities II

    SciTech Connect

    Roscoe B. White

    2011-03-02

    The modification of particle distributions by low amplitude magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles, and the same can be expected in burning plasmas for the alpha particle distributions. Flattening of a distribution in an island due to phase mixing and portions of phase space becoming stochastic lead to modification of the particle distribution, a process extremely rapid in the time scale of an experiment but still very long compared to the time scale of guiding center simulations. Large amplitude modes can cause profile avalanche and particle loss. Thus it is very valuable to be able to predict the temporal evolution of a particle distribution produced by a given spectrum of magnetohydrodynamic modes. In this paper we further develop and investigate the use of a new method of determining domains of phase space in which good KAM surfaces do not exist and use this method to examine a well documented case of profile modification by instabilities.

  14. Spin control in ladderlike hexanuclear copper(II) complexes with metallacyclophane cores.

    PubMed

    Pardo, Emilio; Bernot, Kevin; Julve, Miguel; Lloret, Francesc; Cano, Joan; Ruiz-García, Rafael; Delgado, Fernando S; Ruiz-Pérez, Catalina; Ottenwaelder, Xavier; Journaux, Yves

    2004-05-03

    Two new hexanuclear oxamatocopper(II) complexes 3 and 4 have been synthesized from the binuclear copper(II) complexes of the meta- and para-phenylenebis(oxamate) ligands, respectively. Complexes 3 and 4 possess an overall ladderlike structure made up of two oxamate-bridged linear trinuclear units ("rails") connected through two phenylenediamidate bridges ("rungs") between the central copper atoms to give metallacyclic cores of the meta- and para-cyclophane type, respectively. They show different ground spin states, S = 1 (3) or S = 0 (4), depending on the substitution pattern in the aromatic spacers. The triplet state molecule 3 containing two spin doublet Cu(II)3 units connected by two m-phenylenediamidate bridges represents a successful extension of the concept of "ferromagnetic coupling units" to metal complexes, which is a well-known approach toward high spin organic radicals.

  15. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  16. One-piece micropumps from liquid crystalline core-shell particles

    NASA Astrophysics Data System (ADS)

    Fleischmann, Eva-Kristina; Liang, Hsin-Ling; Kapernaum, Nadia; Giesselmann, Frank; Lagerwall, Jan; Zentel, Rudolf

    2012-11-01

    Responsive polymers are low-cost, light weight and flexible, and thus an attractive class of materials for the integration into micromechanical and lab-on-chip systems. Triggered by external stimuli, liquid crystalline elastomers are able to perform mechanical motion and can be utilized as microactuators. Here we present the fabrication of one-piece micropumps from liquid crystalline core-shell elastomer particles via a microfluidic double-emulsion process, the continuous nature of which enables a low-cost and rapid production. The liquid crystalline elastomer shell contains a liquid core, which is reversibly pumped into and out of the particle by actuation of the liquid crystalline shell in a jellyfish-like motion. The liquid crystalline elastomer shells have the potential to be integrated into a microfluidic system as micropumps that do not require additional components, except passive channel connectors and a trigger for actuation. This renders elaborate and high-cost micromachining techniques, which are otherwise required for obtaining microstructures with pump function, unnecessary.

  17. Crystal structure of human nucleosome core particle containing enzymatically introduced CpG methylation.

    PubMed

    Fujii, Yoshifumi; Wakamori, Masatoshi; Umehara, Takashi; Yokoyama, Shigeyuki

    2016-06-01

    Cytosine methylation, predominantly of the CpG sequence in vertebrates, is one of the major epigenetic modifications crucially involved in the control of gene expression. Due to the difficulty of reconstituting site-specifically methylated nucleosomal DNA at crystallization quality, most structural analyses of CpG methylation have been performed using chemically synthesized oligonucleotides, There has been just one recent study of nucleosome core particles (NCPs) reconstituted with nonpalindromic human satellite 2-derived DNAs. Through the preparation of a 146-bp palindromic α-satellite-based nucleosomal DNA containing four CpG dinucleotide sequences and its enzymatic methylation and restriction, we reconstituted a 'symmetric' human CpG-methylated nucleosome core particle (NCP). We solved the crystal structures of the CpG-methylated and unmodified NCPs at 2.6 and 3.0 Å resolution, respectively. We observed the electron densities of two methyl groups, among the eight 5-methylcytosines introduced in the CpG-fully methylated NCP. There were no obvious structural differences between the CpG-methylated 'symmetric NCP' and the unmodified NCP. The preparation of a crystallization-grade CpG-methylated NCP provides a platform for the analysis of CpG-methyl reader and eraser proteins.

  18. Basics of particle therapy II: relative biological effectiveness

    PubMed Central

    Choi, Jinhyun

    2012-01-01

    In the previous review, the physical aspect of heavy particles, with a focus on the carbon beam was introduced. Particle beam therapy has many potential advantages for cancer treatment without increasing severe side effects in normal tissue, these kinds of radiation have different biologic characteristics and have advantages over using conventional photon beam radiation during treatment. The relative biological effectiveness (RBE) is used for many biological, clinical endpoints among different radiation types and is the only convenient way to transfer the clinical experience in radiotherapy with photons to another type of radiation therapy. However, the RBE varies dependent on the energy of the beam, the fractionation, cell types, oxygenation status, and the biological endpoint studied. Thus this review describes the concerns about RBE related to particle beam to increase interests of the Korean radiation oncologists' society. PMID:23120738

  19. On the association between core-collapse supernovae and H ii regions

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.

    2013-01-01

    Previous studies of the location of core-collapse supernovae (ccSNe) in their host galaxies have variously claimed an association with H ii regions; no association or an association only with hydrogen-deficient ccSNe. Here, we examine the immediate environments of 39 ccSNe whose positions are well known in nearby (≤15 Mpc), low-inclination (≤65°) hosts using mostly archival, continuum-subtracted Hα ground-based imaging. We find that 11 out of 29 hydrogen-rich ccSNe are spatially associated with H ii regions (38 ± 11 per cent), versus 7 out of 10 hydrogen-poor ccSNe (70 ± 26 per cent). Similar results from Anderson et al. led to an interpretation that the progenitors of Type Ib/c ccSNe are more massive than those of Type II ccSNe. Here, we quantify the luminosities of H ii region either coincident with or nearby to the ccSNe. Characteristic nebulae are long-lived (˜20 Myr) giant H ii regions rather than short-lived (˜4 Myr) isolated, compact H ii regions. Therefore, the absence of an H ii region from most Type II ccSNe merely reflects the longer lifetime of stars with ⪉12 M⊙ than giant H ii regions. Conversely, the association of an H ii region with most Type Ib/c ccSNe is due to the shorter lifetime of stars with >12 M⊙ stars than the duty cycle of giant H ii regions. Therefore, we conclude that the observed association between certain ccSNe and H ii provides only weak constraints upon their progenitor masses. Nevertheless, we do favour lower mass progenitors for two Type Ib/c ccSNe that lack associated nebular emission, a host cluster or a nearby giant H ii region. Finally, we also reconsider the association between long gamma-ray bursts and the peak continuum light from their (mostly) dwarf hosts, and conclude that this is suggestive of very high mass progenitors, in common with previous studies.

  20. Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles.

    PubMed

    Chang, Zhenqi; Serra, Christophe A; Bouquey, Michel; Prat, Laurent; Hadziioannou, Georges

    2009-10-21

    An easy assembling-disassembling co-axial capillaries microfluidic device was built up for the production of double droplets. Uniform polymer core-polymer shell particles were synthesized by polymerizing the two immiscible monomer phases composing the double droplet. Thus poly(acrylamide) core-poly(tri(propylene glycol) diacrylate) shell particles with controlled core diameter and shell thickness were simply obtained by adjusting operating parameters. An empirical law was extracted from experiments to predict core and shell sizes. Additionally uniform and predictable non-spherical polymer objects were also prepared without adding shape-formation procedures in the experimental device. An empirical equation for describing the lengths of rod-like polymer particles is also presented.

  1. [Production of hepatitis B virus core particles protein in plants, by using cowpea mosaic virus-based vector].

    PubMed

    Meshcheriakova, Iu A; El'darov, M A; Beales, L; Skriabin, K G; Lomonossoff, G P

    2008-01-01

    The core antigen of hepatitis B virus (HBcAg) has attracted considerable attention as a carrier for antigenic sequences for various diagnostic and vaccine applications. The hepatitis B core protein has been expressed in different expression systems. At present, for reasons of cost, scale, and safety, the plant-based expression systems are attracting increasing interest. The expression and assembly for the hepatitis B core protein were investigating in N. benthamiana plants using the new expression system based on deleted version of cowpea mosaic virus RNA-2. Analysis of HBcAg expression revealed that the core protein expressed in plants and could self-assemble into virus-like particles. Virus-like particles could be purified by differential and sucrose gradient centrifugation. This expression system has the advantage of biocontainment and can be used for the rapid production of HBcAg virus-like particles for immunological and vaccine applications.

  2. Synthesis, molecular docking and evaluation of antifungal activity of Ni(II), Co(II) and Cu(II) complexes of porphyrin core macromolecular ligand.

    PubMed

    Singh, Urvashi; Malla, Ali Mohammad; Bhat, Imtiyaz Ahmad; Ahmad, Ajaz; Bukhari, Mohd Nadeem; Bhat, Sneha; Anayutullah, Syed; Hashmi, Athar Adil

    2016-04-01

    Porphyrin core dendrimeric ligand (L) was synthesized by Rothemund synthetic route in which p-hydroxy benzaldehyde and pyrrole were fused together. The prepared ligand was complexed with Ni(II), Cu(II) and Co(II) ions, separately. Both the ligand and its complexes were characterized by elemental analysis and spectroscopic studies (FT-IR, UV-Vis, (1)HNMR). Square planar geometries were proposed for Cu(II), Ni(II) and Co(II) ions in cobalt, Nickel and copper complexes, respectively on the basis of UV-Vis spectroscopic data. The ligand and its complex were screened on Candida albicans (ATCC 10231), Aspergillus fumigatus (ATCC 1022), Trichophyton mentagrophytes (ATCC 9533) and Pencillium marneffei by determining MICs and inhibition zones. The activity of the ligand and its complexes was found to be in the order: CuL ˃ CoL ≈ NiL ˃ L. Detection of DNA damage at the level of the individual eukaryotic cell was observed by commet assay. Molecular docking technique was used to understand the ligand-DNA interactions. From docking experiment, we conclude that copper complex interacts more strongly than rest two.

  3. Surface morphology and chemistry of rusty particle 60002,108. [from lunar deep-core sample

    NASA Technical Reports Server (NTRS)

    Carter, J. L.

    1975-01-01

    Scanning electron microscope, energy dispersive X-ray, and microprobe analyses of the surface of rusty colored particle 60002,108 from deep core 60002 reveal the particle to be basically metallic Ni-Fe that probably grew in contact with silicate minerals, principally plagioclase and pyroxene, and was later partially oxidized and hydrated. A yellowish wrinkled and 'shatter cone' like granular material that is either iron oxide or oxyhydrate may have formed while the particle was in the lunar environment. Ruby-red mounds of lawrencite formed, and the reaction of lawrencite, metallic Ni-Fe, and water vapor resulted in aprons of iron oxyhydrate that surrounds these mounds and flows out over the preexisting yellowish granular substrate. The observations do not allow one to distinguish unequivocally between the initiation of hydration of the ruby-red lawrencite mounds in the lunar environment followed by reaction in the terrestrial and/or spacecraft environment or only reaction in the terrestrial and/or spacecraft environment. The relationship of the lawrencite-rich mounds to the yellowish granular substrate favors the first possibility.

  4. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite.

    PubMed

    van Genuchten, Case M; Peña, Jasquelin

    2016-08-10

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).

  5. Composition of individual particles in the wakes of an Athena II rocket and the space shuttle

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.; Ross, M. N.

    2002-11-01

    The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was used to obtain the first in situ measurements of the composition of particles in the wakes of solid rocket motor (SRMs) launch vehicles. PALMS acquired mass spectra of over 2300 exhaust particles within the plumes of an Athena II rocket and the Space Shuttle. The majority of positive spectra indicated the presence of primary and trace components of the aluminum fuel and the combustion catalyst. Negative spectra showed chlorine from the oxidizer. Nitrate and phosphate fragments and water were common features of spectra acquired during the Space Shuttle encounters. Elemental carbon (EC) was a significant particle type observed in the Athena II plume. The data show that particles emitted by SRMs are more diverse and probably more reactive than previously considered.

  6. Ni(II) affects ubiquitination of core histones H2B and H2A.

    PubMed

    Karaczyn, Aldona A; Golebiowski, Filip; Kasprzak, Kazimierz S

    2006-10-15

    The molecular mechanisms of nickel-induced malignant cell transformation include effects altering the structure and covalent modifications of core histones. Previously, we found that exposure of cells to Ni(II) resulted in truncation of histones H2A and H2B and thus elimination of some modification sites. Here, we investigated the effect of Ni(II) on one such modification, ubiquitination, of histones H2B and H2A in nuclei of cultured 1HAEo- and HPL1D human lung cells. After 1-5 days of exposure, Ni(II) up to 0.25 mM stimulated mono-ubiquitination of both histones, while at higher concentrations a suppression was found. Di-ubiquitination of H2A was not affected except for a drop after 5 days at 0.5 mM Ni(II). The decrease in mono-ubiquitination coincided with the appearance of truncated H2B that lacks the K120 ubiquitination site. However, prevention of truncation did not avert the decrease of H2B ubiquitination, indicating mechanistic independence of these effects. The changes in H2B ubiquitination did not fully coincide with concurrent changes in the nuclear levels of the ubiquitin-conjugating enzymes Rad6 and UbcH6. Overall, our results suggest that dysregulation of H2B ubiquitination is a part of Ni(II) adverse effects on gene expression and DNA repair which may assist in cell transformation.

  7. Preparation and reactivity of a tetranuclear Fe(II) core in the metallothionein α-domain.

    PubMed

    Sano, Yohei; Onoda, Akira; Sakurai, Rie; Kitagishi, Hiroaki; Hayashi, Takashi

    2011-05-01

    Metallothioneins (MTs) are small cysteine-rich proteins which exhibit high affinities for various metal ions and play roles in storage of essential metals and detoxification of toxic metals. Studies on the redox properties of MTs have been quite limited. Recently, we focused on the α-domain of MT (MTα) as a protein matrix and incorporated a tetranuclear metal cluster as a reductant. UV-visible, CD and MS data indicate the formation of the stable tetranuclear metal-cysteine cluster in the MTα matrix with Fe(II)(4)-MTα and Co(II)(4)-MTα species existing in water. Furthermore, the Fe(II)(4)-MTα species was found to promote the reduction of met-myoglobin and azobenzene derivatives under mild conditions. Particularly, the stoichiometric reduction of methyl red with Fe(II)(4)-MTα (1:1) was found to proceed with a conversion of 98% over a period of 6h at 25°C. This indicates that all of the four Fe(II) cores contribute to the reduction. In this paper, we describe the preparation and reactivity of the tetranuclear iron cluster in the protein matrix.

  8. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  9. Comparisons of MgII core-wing data with Ground-Based Ca K-line

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Preminger, D.

    2011-12-01

    Magnesium_II core-wing ratio data will be compared with ground-based K-line photometry for most of cycle 22 and 23. The ground-based data is the photmetric sum computed from the composite K-line obtained from the San Fernando Observatory. We will examine several MgII core-wing composites. This work is partially supported by grants NNX11AB51G from NASA and ATM-0848518 from NSF.

  10. Size dependent photocatalytic activity of photofunctional magnetic core-shell (Fe3O4@TiO2) particles.

    PubMed

    Choi, Kyong-Hoon; Oh, Seung-Lim; Kim, Do-Yeon; Jung, Jin-Seung

    2013-10-01

    The development and enlargement of addressable magnetic core-shell hetero-architectures in a simple and economic way still remain a synthetic challenge. Herein, photofunctional magnetic FT1 (Fe3O4@TiO2 particles with 120 nm size) and FT4 ((Fe3O4@TiO2 particles with 420 nm size) core-shell particles with controlled size were fabricated successfully via a simple surface modification process that induces the atomic layer deposition (ALD) method. The size control of photofunctional magnetic particles has been adjusted by controlling the ratio of V(EG)/V(DEG) during the solvothermal reaction. Photocatalytic ability examination of the FT1 and FT4 core-shell particles was carried out in Rhodamine B (RhB) solutions illuminated under Xe light in a photochemical reactor. The photocatalytic activity depending on particle size indicates that the small FT1 particles are superior to the large FT4 particles due to the large surface area.

  11. Adhesion phenomena between particles according to the content of organic binder in core for thin-wall casting.

    PubMed

    Kim, Eun-Hee; Cho, Geon-Ho; Jung, Yeon-Gil; Kim, In-Soo; Jo, Chang-Young; Lee, Jin-Seok

    2014-10-01

    The content of organic binder in a core for thin-wall casting has been controlled to investigate the adhesion phenomena of inorganic binder between starting particles, as directly related to the mechanical and thermal properties of the core. The inorganic binder precursor was composed of tetraethyl orthosilicate and sodium methoxide as the silicon dioxide and sodium oxide precursors, respectively. Poly(vinyl alcohol), a hydrophilic polymer, was used as an organic binder. The particles coated with the inorganic precursor were sculpted with the organic binder and then the prepared core samples were heated at 1000 degrees C for 1 h. The core samples prepared with the optimum content of organic binder show the highest fracture strength. This may be due to the enhancement of adhesion by the glass phase formed between starting particles. However, when too much or too little organic binder is employed, the strength values of the core samples are significantly decreased. This is because the network structure of the glass phase is not inadequately created or the glass phase is not uniformly developed between starting particles, resulting in the insufficient contact between starting particles during the convert process.

  12. Photochemistry in the isolated Photosystem II reaction-centre core complex.

    PubMed Central

    Demetriou, C; Lockett, C J; Nugent, J H

    1988-01-01

    The photochemistry of the isolated Photosystem II reaction-centre core from pea and the green alga Scenedesmus was examined by e.s.r. Two types of triplet spectrum were observed in addition to the spin-polarized reaction-centre triplet previously identified. The additional triplet formed on continuous illumination at 4.2 K was attributed to a monomeric phaeophytin molecule. The second triplet, which was stable in the dark at 4.2 K following illumination, was assigned to the radical pair Donor+I-. This provides evidence that an electron donor to chlorophyll P680 is present on the polypeptide D1-polypeptide D2-cytochrome b-559 core complex. PMID:2844160

  13. Rapid microwave synthesis and photoluminescence properties of rare earth-based coordination polymer core-shell particles

    NASA Astrophysics Data System (ADS)

    Huang, Shuang; Xu, Hualan; Wang, Mengya; Zhong, Shengliang; Zeng, Chenghui

    2016-12-01

    Coordination polymer (CP) core-shell particles, with Eu-based CP as the core and La-based CP as the shell, were prepared using a facile microwave heating method. Pyridine-2, 5-dicarboxylic acid (PDA) was selected as the organic building blo, and DMF was used as the solvent. SEM and TEM images show that the resultant cores are nanospheres with diameters of 200-400 nm. Products with different shell thickness were prepared. The luminescence properties of the core-shell structures were studied and the influence of the La-based CP shell on the photoluminescence properties of the core were investigated. The fluorescence intensity and lifetime of the Eu-based CP core were varied with the addition of shell thickness. Both of them increases at first and then decreases with the increase of shell thickness.

  14. A chromospheric dark-cored fibril in Ca II IR spectra

    NASA Astrophysics Data System (ADS)

    Beck, C.; Tritschler, A.; Wöger, F.

    2010-06-01

    We investigate the thermodynamical and magnetic properties of a ``dark-cored" fibril seen in the chromospheric Ca II IR line at 854.2 nm to determine the physical process behind its appearance. We analyse a time series of spectropolarimetric observations obtained in the Ca II IR line at 854.2 nm and the photospheric Fe I line at 630.25 nm. We simultaneously invert the spectra in both wavelength ranges with the SIR code to obtain the temperature and velocity stratification with height in the solar atmosphere and the magnetic field properties in the photosphere. The structure can be clearly traced in the line-of-sight (LOS) velocity and the temperature maps. It connects from a small pore with kG fields to a region with lower field strength. The flow velocity and the temperature indicate that the height of the structure increases with increasing distance from the inner footpoint. The Stokes V signal of 854.2 nm shows a Doppler-shifted polarization signal with the same displacement as in the intensity profile, indicating that the supersonic flow seen in the LOS velocity is located within magnetized plasma. We conclude that the chromospheric dark-cored fibril traces a siphon flow along magnetic field lines, driven by the gas pressure difference caused by the higher magnetic field strength at the inner footpoint. We suggest that fast flows guided by the magnetic field lead to the appearance of ``dark-cored" fibrils in intensity images. Although the observations included the determination of the polarization signal in the chromospheric Ca II IR line, the signal could not be analysed quantitatively due to the low S/N. Chromospheric polarimetry will thus require telescopes of larger aperture able to collect a sufficient number of photons for a reliable determination of polarization in deep and only weakly polarized spectral lines.

  15. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    PubMed

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications.

  16. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  17. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers*

    PubMed Central

    Holmes, Kris; Shepherd, Dale A.; Ashcroft, Alison E.; Whelan, Mike; Rowlands, David J.; Stonehouse, Nicola J.

    2015-01-01

    Macromolecular complexes are responsible for many key biological processes. However, in most cases details of the assembly/disassembly of such complexes are unknown at the molecular level, as the low abundance and transient nature of assembly intermediates make analysis challenging. The assembly of virus capsids is an example of such a process. The hepatitis B virus capsid (core) can be composed of either 90 or 120 dimers of coat protein. Previous studies have proposed a trimer of dimers as an important intermediate species in assembly, acting to nucleate further assembly by dimer addition. Using novel genetically-fused coat protein dimers, we have been able to trap higher-order assembly intermediates and to demonstrate for the first time that both dimeric and trimeric complexes are on pathway to virus-like particle (capsid) formation. PMID:25953902

  18. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle

    PubMed Central

    Hergeth, Sonja P; Schneider, Robert

    2015-01-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. PMID:26474902

  19. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    NASA Astrophysics Data System (ADS)

    Costa, Liborio I.

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  20. Meaningful timescales from Monte Carlo simulations of particle systems with hard-core interactions

    SciTech Connect

    Costa, Liborio I.

    2016-12-01

    A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Monte Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.

  1. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy.

    PubMed

    Pawlowicz, N P; Groot, M-L; van Stokkum, I H M; Breton, J; van Grondelle, R

    2007-10-15

    The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC

  2. A new coincidence model for single particle counters, Part II: Advances and applications.

    PubMed

    Knapp, J Z; Lieberman, A; Abramson, L R

    1994-01-01

    Accuracy, acceptance limits and methods for U.S.P. (788) contaminating particle assays published in the XXII Revision are refined in U.S.P. XXIII. In both Revisions, although different numerical values and methods are employed, particle contamination limits remain constants for all S.V.I. container volumes. The effect of this quality standard is high particle concentration acceptance limits in the smallest S.V.I. container sizes. The effect of these high concentrations is to introduce both undercount errors and false counts into U.S.P. (788) SVI contaminating particle assays. There is general agreement that the count of high concentrations of particles by a single particle light extinction counter result in an increase of the average size of the distribution of particles reported and a decrease in their total number. The error mechanism is termed "signal coincidence." Understanding and control of both these problems is unified with the introduction of the count efficiency parameter. Part I of this paper makes available two core concepts with which evaluation and control of coincidence error in single particle counters can be accurately quantified. These two core concepts are the "Particle Triggered Poisson Model," a new more accurate statistical model of the particle counting process and a concentration measure that includes the effect of particle size on the counting capability of a detector. Use of these concepts make it possible to evaluate particle detector count efficiency capability from experimental data of the coincidence effect. This is an application paper. It combines the theory in the Part I paper with the replicability of particle counters into a simple test protocol. The test results can be used to calculate a contour of particle size and count within which both undercount errors and the introduction of false counts into U.S.P. (788) particle assays are controlled. From the data analyzed it can be seen that any single particle size test cannot

  3. Narrow-bore core-shell particles and monolithic columns in the analysis of silybin diastereoisomers.

    PubMed

    Marhol, Petr; Gažák, Radek; Bednář, Petr; Křen, Vladimír

    2011-08-01

    Two chromatographic narrow-bore columns, a novel 2.6 μm particle-packed Kinetex™ C18 core-shell (50×2.1 mm id) and monolithic Chromolith(®) FastGradient RP-18e (50×2 mm id), were evaluated for the analysis of diastereoisomers of the flavonolignans silybin and 23-O-acetylsilybin under isocratic conditions. The main advantages of the core-shell column are markedly higher efficiency (hmin =2.8 versus 5.6 for silybin A) and better peak symmetry. The Kinetex column exhibits only a slight change in the height equivalent of the theoretical plate with a higher linear velocity of the mobile phase. The monolithic column shows notably higher selectivity in terms of selectivity factor (1.21 versus 1.12) in the analysis of critical-pair of diastereoisomers (silybin A and silybin B) and enables shorter run duration (approx. twofold) together with lower backpressure. The resolution power was found to be comparable, but the Kinetex column required a higher pressure of the mobile phase that, together with the higher chance of clogging, can be a disadvantage in the separation of biological samples. Successful baseline separation of silybin diastereoisomers in real pharmaceutical sample on monolithic column was accomplished. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Particle-core coupling in 37S

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Wang, Z. M.; Bouhelal, M.; Haas, F.; Liang, X.; Azaiez, F.; Behera, B. R.; Burns, M.; Caurier, E.; Corradi, L.; Curien, D.; Deacon, A. N.; Dombrádi, Zs.; Farnea, E.; Fioretto, E.; Gadea, A.; Hodsdon, A.; Ibrahim, F.; Jungclaus, A.; Keyes, K.; Kumar, V.; Lunardi, S.; Mǎrginean, N.; Montagnoli, G.; Napoli, D. R.; Nowacki, F.; Ollier, J.; O'Donnell, D.; Papenberg, A.; Pollarolo, G.; Salsac, M.-D.; Scarlassara, F.; Simpson, G.; Smith, J. F.; Spohr, K. M.; Stanoiu, M.; Stefanini, A. M.; Szilner, S.; Trotta, M.; Verney, D.

    2016-04-01

    Excited states of the neutron-rich N =21 37S nucleus have been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of 36S ions with a thin 208Pb target. The magnetic spectrometer, PRISMA, and the γ -ray array, CLARA, were used in the measurements. The level scheme of 37S was established to an excitation energy of 4196 keV and a number of new transitions were observed, in particular that corresponding to the decay of the proposed Jπ=(11 /2 -) level at an excitation energy of 2776 keV. The structure of the state is discussed within the context of state-of-the-art shell-model calculations using the SDPF-U effective interaction; the main component of the wave function corresponds to the coupling of the odd 1 f7 /2 neutron to the first 2+ state of the 36S core. The electromagnetic decay properties of the state are discussed within the context of a particle-core coupling model and the shell model. The other members of the multiplet of states are also discussed.

  5. Geodesic motions of test particles in a relativistic core-shell spacetime

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing

    2017-02-01

    In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core-shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.

  6. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Ilicak, Mehmet; Gerdes, Rüdiger; Drange, Helge; Aksenov, Yevgeny; Bailey, David A.; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Böning, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Rabe, Benjamin; Roth, Christina; Salas y Mélia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.

    2016-03-01

    The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the former being more significant in most of the models. The mean state of the FW budget is less consistently simulated than the temporal variability. The model ensemble means of liquid FW transport through the Arctic gateways compare well with observations. On average, the models have too high mean FWC, weaker upward trends of FWC in the recent decade than the observation, and low consistency in the temporal variation of FWC spatial distribution, which needs to be further explored for the purpose of model development.

  7. The treatment of mixing in core helium burning models - II. Constraints from cluster star counts

    NASA Astrophysics Data System (ADS)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.; van Duijneveldt, Adam

    2016-03-01

    The treatment of convective boundaries during core helium burning is a fundamental problem in stellar evolution calculations. In the first paper of this series, we showed that new asteroseismic observations of these stars imply they have either very large convective cores or semiconvection/partially mixed zones that trap g modes. We probe this mixing by inferring the relative lifetimes of asymptotic giant branch (AGB) and horizontal branch (HB) from R2, the observed ratio of these stars in recent HST photometry of 48 Galactic globular clusters. Our new determinations of R2 are more self-consistent than those of previous studies and our overall calculation of R2 = 0.117 ± 0.005 is the most statistically robust now available. We also establish that the luminosity difference between the HB and the AGB clump is Δ log {L}_HB^AGB = 0.455 ± 0.012. Our results accord with earlier findings that standard models predict a lower R2 than is observed. We demonstrate that the dominant sources of uncertainty in models are the prescription for mixing and the stochastic effects that can result from its numerical treatment. The luminosity probability density functions that we derive from observations feature a sharp peak near the AGB clump. This constitutes a strong new argument against core breathing pulses, which broaden the predicted width of the peak. We conclude that the two mixing schemes that can match the asteroseismology are capable of matching globular cluster observations, but only if (i) core breathing pulses are avoided in models with a semiconvection/partially mixed zone, or (ii) that models with large convective cores have a particular depth of mixing beneath the Schwarzschild boundary during subsequent early-AGB `gravonuclear' convection.

  8. Papain digestion of crude Trichoderma reesei cellulase: Purification and properties of cellobiohydrolase I and II core proteins

    SciTech Connect

    Woodward, J.; Brown, J.P.; Evans, B.R.; Affholter, K.A.

    1992-12-01

    Papain digestion of a crude Trichoderma reesei cellulose preparation followed by gel filtration on a Superdex column resulted in the separation of cellobiohydrolase (CBH) I and II core proteins (cp). They were further purified to apparent homogeneity by chromatofocusing. N-terminal protein sequencing of the CBH II cp preparation confirmed its identity. A comparison of the catalytic activity and cellulose-binding ability of these core proteins was made. The major differences between them were the findings that CBH II cp possessed a sixfold higher specific activity toward p-nitrophenylcellobioside than the native CBH II preparation and still bound to microcrystalline cellulose, unlike CBH I cp. Neither CBH I cp nor CBH II cp had activity toward carboxymethylcellulose, but both were able to hydrolyze barley b-glucan. These data suggest that removal of the cellulose-binding domain and hinge region from CBH I and II have different effects on their properties.

  9. Papain digestion of crude Trichoderma reesei cellulase: Purification and properties of cellobiohydrolase I and II core proteins

    SciTech Connect

    Woodward, J.; Brown, J.P.; Evans, B.R.; Affholter, K.A.

    1992-01-01

    Papain digestion of a crude Trichoderma reesei cellulose preparation followed by gel filtration on a Superdex column resulted in the separation of cellobiohydrolase (CBH) I and II core proteins (cp). They were further purified to apparent homogeneity by chromatofocusing. N-terminal protein sequencing of the CBH II cp preparation confirmed its identity. A comparison of the catalytic activity and cellulose-binding ability of these core proteins was made. The major differences between them were the findings that CBH II cp possessed a sixfold higher specific activity toward p-nitrophenylcellobioside than the native CBH II preparation and still bound to microcrystalline cellulose, unlike CBH I cp. Neither CBH I cp nor CBH II cp had activity toward carboxymethylcellulose, but both were able to hydrolyze barley b-glucan. These data suggest that removal of the cellulose-binding domain and hinge region from CBH I and II have different effects on their properties.

  10. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  11. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson

    2017-07-01

    We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

  12. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE PAGES

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...

    2017-06-26

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  13. Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase.

    PubMed

    Archer, A J; Rucklidge, A M; Knobloch, E

    2015-07-01

    Systems of soft-core particles interacting via a two-scale potential are studied. The potential is responsible for peaks in the structure factor of the liquid state at two different but comparable length scales and a similar bimodal structure is evident in the dispersion relation. Dynamical density functional theory in two dimensions is used to identify two unusual states of this system: a crystal-liquid state, in which the majority of the particles are located on lattice sites but a minority remains free and so behaves like a liquid, and a 12-fold quasicrystalline state. Both are present even for deeply quenched liquids and are found in a regime in which the liquid is unstable with respect to modulations on the smaller scale only. As a result, the system initially evolves towards a small-scale crystal state; this state is not a minimum of the free energy, however, and so the system subsequently attempts to reorganize to generate the lower-energy larger-scale crystals. This dynamical process generates a disordered state with quasicrystalline domains and takes place even when this large scale is linearly stable, i.e., it is a nonlinear process. With controlled initial conditions, a perfect quasicrystal can form. The results are corroborated using Brownian dynamics simulations.

  14. Fast determination of biogenic amines in beverages by a core-shell particle column.

    PubMed

    Preti, Raffaella; Antonelli, Marta Letizia; Bernacchia, Roberta; Vinci, Giuliana

    2015-11-15

    A fast and reliable HPLC method for the determination of 11 biogenic amines in beverages has been performed. After pre-column derivatization with dansyl-chloride a Kinetex C18 core-shell particle column (100 mm × 4.6 mm, 2.6 μm particle size) has been employed and the biogenic amines were identified and quantified in a total run time of 13 min with ultraviolet (UV) or fluorescence detection (FLD). Chromatographic conditions such as column temperature (kept at 50 °C), gradient elution and flow rate have been optimized and the method has been tested on red wine and fruit nectar. The proposed method is enhanced in terms of reduced analysis time and eluent consumption with respect of classical HPLC method as to be comparable to UHPLC methods. Green and cost-effective, this method can be used as a quality-control tool for routine quantitative analysis of biogenic amines in beverages for the average laboratory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    PubMed

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  16. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1984-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies awhich indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  17. Magnetically self-assembled SrFe12O19/Fe-Co core/shell particles

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-02-15

    Epitaxial growth to synthesize core/shell-structured materials is limited because large lattice mismatches are common between materials. Magnetically hard/soft, core/shell-structured materials can be potentially used for rare-earth free permanent magnets, but their synthesis presents a challenge. We report a wet chemistry method to synthesize core/shell structured particles consisting of a magnetically hard SrFe12O19 core and a soft Fe-Co shell, with a lattice mismatch of similar to 100%, which cannot be achieved by conventional epitaxial growth or other alternative methods. When decreasing the size of the magnetically soft Fe-Co nanoclusters to below 5 nm, we show that they can be magnetically attracted by the hard SrFe12O19 to form core/shell structured particles. An AC demagnetization experiment demonstrates the formation mechanism of the core/shell particles, and their magnetic hysteresis loop shows potential for use as rare-earth free permanent magnets. Published by Elsevier B.V.

  18. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    NASA Technical Reports Server (NTRS)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  19. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV.

    PubMed Central

    French, T J; Roy, P

    1990-01-01

    The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7. Images PMID:2157041

  20. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  1. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  3. Construction of a Ca II Core-to-Wing Ratio Image

    NASA Astrophysics Data System (ADS)

    Roberts, H.

    2015-12-01

    To understand Earth's climate, we must first understand the Sun. However, there are still significant uncertainties associated with both the fundamental mechanisms of solar variability and how they enter into the Earth's climate system. An important method to study the causes of solar variability can be found through the analysis of solar images. The Precision Solar Photometric Telescope (PSPT) located at the Mauna Loa Solar Observatory (MLSO) acquires images of the Sun in three different photometric bands to monitor the evolution of solar surface features that change over the course of a solar cycle. These images provide a complete knowledge about the Sun by targeting different layers of the solar atmosphere. Though raw images are meaningful and important, precision image processing is required to remove instrumental artifacts and false features that may appear in these images prior to usage for scientific purposes. A scientific application of the high precision solar images is investigated by analyzing a set of narrow band of Calcium II K core and wing images. The Core and Wing images are processed to remove the influence of the center-to-limb variation; the resultant core-to-wing ratio image enhances the appearance of network structures on the entire solar disk along with the more obvious facula and plage brightening associated with the passage of active regions.

  4. Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2)

    NASA Astrophysics Data System (ADS)

    Sedlacek, Arthur J., III; Lewis, Ernie R.; Kleinman, Lawrence; Xu, Jianzhong; Zhang, Qi

    2012-03-01

    The large uncertainty associated with black carbon (BC) direct forcing is due, in part, to the dependence of light absorption of BC-containing particles on the position of the BC within the particle. It is predicted that this absorption will be greatest for an idealized core-shell configuration in which the BC is a sphere at the center of the particle whereas much less absorption should be observed for particles in which the BC is located near or on the surface. Such microphysical information on BC-containing particles has previously been provided only by labor-intensive microscopy techniques, thus often requiring that climate modelers make assumptions about the location of the BC within the particle that are based more on mathematical simplicity than physical reality. The present paper describes a novel analysis method that utilizes the temporal behavior of the scattering and incandescence signals from individual particles containing refractory BC (rBC) measured by the Single-Particle Soot Photometer (SP2) to distinguish particles with rBC near the surface from those that have structures more closely resembling the core-shell configuration. This approach permits collection of a high-time-resolution data set of the fraction of rBC-containing particles with rBC near the surface. By application of this method to a plume containing tracers for biomass burning, it was determined that this fraction was greater than 60%. Such a data set will not only provide previously unavailable information to the climate modeling community, allowing greater accuracy in calculating rBC radiative forcing, but also will yield insight into aerosol processes.

  5. The hydrophilic amino-terminal arm of reovirus core shell protein lambda1 is dispensable for particle assembly.

    PubMed

    Kim, Jonghwa; Zhang, Xing; Centonze, Victoria E; Bowman, Valorie D; Noble, Simon; Baker, Timothy S; Nibert, Max L

    2002-12-01

    The reovirus core particle is a molecular machine that mediates synthesis, capping, and export of the viral plus strand RNA transcripts. Its assembly and structure-function relationships remain to be well understood. Following the lead of previous studies with other Reoviridae family members, most notably orbiviruses and rotaviruses, we used recombinant baculoviruses to coexpress reovirus core proteins lambda1, lambda2, and sigma2 in insect cells. The resulting core-like particles (CLPs) were purified and characterized. They were found to be similar to cores with regard to their sizes, morphologies, and protein compositions. Like cores, they could also be coated in vitro with the two major outer-capsid proteins, micro 1 and sigma3, to produce virion-like particles. Coexpression of core shell protein lambda1 and core nodule protein sigma2 was sufficient to yield CLPs that could withstand purification, whereas expression of lambda1 alone was not, indicating a required role for sigma2 as a previous study also suggested. In addition, CLPs that lacked lambda2 (formed from lambda1 and sigma2 only) could not be coated with micro 1 and sigma3, indicating a required role for lambda2 in the assembly of these outer-capsid proteins into particles. To extend the use of this system for understanding the core and its assembly, we addressed the hypothesis that the hydrophilic amino-terminal region of lambda1, which adopts an extended arm-like conformation around each threefold axis in the reovirus core crystal structure, plays an important role in assembling the core shell. Using a series of lambda1 deletion mutants, we showed that the amino-terminal 230 residues of lambda1, including its zinc finger, are dispensable for CLP assembly. Residues in the 231-to-259 region of lambda1, however, were required. The core crystal structure suggests that residues in the 231-to-259 region are necessary because they affect the interaction of lambda1 with the threefold and/or fivefold copies of

  6. Magnetorheology of core-shell carbonyl iron/ZnO rod-like particle silicone oil suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mrlik, M.; Machovsky, M.; Pavlinek, V.; Kuritka, I.

    2015-04-01

    The aim of this study is a preparation and application of inorganic coating on the surface of carbonyl iron particles. The two step solvothermal synthesis provides core-shell CI/ZnO rod-like morphology. Compact coating of particles has a slightly negative impact on their magnetic properties (measured for magnetic field strength in the range from 0 to 213 mT); however, there is a suitable magnetorheological performance investigated under oscillatory shear, suitable to be applied in real applications.

  7. Single Particle Analysis of Oceanic Suspended Matters During the SEEDS II Iron Fertilization Experiment

    NASA Astrophysics Data System (ADS)

    Iwamoto, Y.; Narita, Y.; Uematsu, M.

    2006-12-01

    Oceanic suspended particles play an important role regulating the chemical composition of seawater through the removal of trace elements from surface water to deep water and their lateral transport. Therefore, physical and chemical properties of these particles reflect the characteristics of water mass and marine ecosystem under the perturbation of marine environment such as iron fertilization. To consider the physical and/or chemical variation of these particles in the water column, it is necessary to analyze size, number and chemical composition of individual particles. Suspended particles in the surface seawater were collected during the SEEDS II (Subarctic Iron Experiment for Ecosystem and Dynamics Study II) iron fertilization experiment in the summer of 2004. The particulate samples were analyzed by Electron probe X-ray micro analyzer (EPMA) and characterized by size and major and minor elements ranged from 0.4 to 10 μ m in diameter. These particles were classified into five groups based on their chemical compositions: Al-Si, Si-rich, Ca-rich, Organic and Others. Most of particles were Si-rich, Ca-rich and Organic. Si-rich and Ca-rich particles were mainly consist of detritus of phytoplankton.In the iron-fertilized patch area, Chl-a concentration covaried with dry weight, number and volume concentrations of the suspended particles. At 20 m depth, the number concentration of Organic particles having two peaks at 1.1 and 0.65 μ m in diameter increased within 2 days after the iron fertilization, and then gradually increased. It is suggested that the increase in suspended particles, mostly detritus of planktonic shells, corresponded to that in primary production. The contents by weight of Si in Si-rich particle and the content by weight of Ca in Ca-rich particle tended to decrease in size. In fine mode particle, Si-rich and Ca-rich particles contained more P and S as biolimiting elements and less Al, Ti, Mn, and Fe as crustal elements. The smaller Organic

  8. Is overactivity the core feature of hypomania in bipolar II disorder?

    PubMed

    Benazzi, Franco

    2007-01-01

    symptoms had the most balanced combination of sensitivity (82.4%) and specificity (85.5%) for BP-II, and a positive predictive value of 91.1%. Overactivity was present in 89.5% of patients with a history of > or = 5 hypomanic symptoms, while elevated mood was present in 76.6%. Theresults seem to support the view that overactivity may be a core feature of hypomania, suggesting the upgrading of overactivity to a stem criterion for hypomania.

  9. Physical Investigations of Small Particles: (I) Aerosol Particle Charging and Flux Enhancement and (II) Whispering Gallery Mode Sensing

    NASA Astrophysics Data System (ADS)

    Lopez-Yglesias, Xerxes

    of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

  10. Multiparticle Production in Particle and Nuclear Collisions. II

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  11. Spherical 3D photonic crystal with conducting nanoshell and particle core

    NASA Astrophysics Data System (ADS)

    Zamudio-Lara, A.; Sánchez-Mondragón, J.; Escobedo-Alatorre, J.; Pérez-Careta, E.; Torres-Cisneros, M.; Tecpoyotl-Torres, Margarita; Vázquez-Buenos Aires, O.

    2009-06-01

    We discuss a structured 3D Dielectric Photonic Crystal with both a metallic core and a metallic shell. We discuss the role of each one, the stack, the core as well as the cavity formed between the core and the shell. The low frequency metallic core features becomes much more significant as it gets smaller and get diluted by the cavity.

  12. PDMAEMA-grafted core-shell-corona particles for nonviral gene delivery and magnetic cell separation.

    PubMed

    Majewski, Alexander P; Stahlschmidt, Ullrich; Jérôme, Valérie; Freitag, Ruth; Müller, Axel H E; Schmalz, Holger

    2013-09-09

    Monodisperse, magnetic nanoparticles as vectors for gene delivery were successfully synthesized via the grafting-from approach. First, oleic acid stabilized maghemite nanoparticles (γ-Fe2O3) were encapsulated with silica utilizing a reverse microemulsion process with simultaneous functionalization with initiating sites for atom transfer radical polymerization (ATRP). Polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) from the core-shell nanoparticles led to core-shell-corona hybrid nanoparticles (γ-Fe2O3@silica@PDMAEMA) with an average grafting density of 91 polymer chains of DP(n) = 540 (PDMAEMA540) per particle. The permanent attachment of the arms was verified by field-flow fractionation. The dual-responsive behavior (pH and temperature) was confirmed by dynamic light scattering (DLS) and turbidity measurements. The interaction of the hybrid nanoparticles with plasmid DNA at various N/P ratios (polymer nitrogen/DNA phosphorus) was investigated by DLS and zeta-potential measurements, indicating that for N/P ≥ 7.5 the complexes bear a positive net charge and do not undergo secondary aggregation. The hybrids were tested as transfection agents under standard conditions in CHO-K1 and L929 cells, revealing transfection efficiencies >50% and low cytotoxicity at N/P ratios of 10 and 15, respectively. Due to the magnetic properties of the hybrid gene vector, it is possible to collect most of the cells that have incorporated a sufficient amount of magnetic material by using a magnetic activated cell sorting system (MACS). Afterward, cells were further cultivated and displayed a transfection efficiency of ca. 60% together with a high viability.

  13. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly.

    PubMed

    Mangeney, Claire; Fertani, Meriem; Bousalem, Smain; Zhicai, Ma; Ammar, Souad; Herbst, Fréderic; Beaunier, Patricia; Elaissari, Abdelhamid; Chehimi, Mohamed M

    2007-10-23

    This paper describes the synthesis of new magnetic, reactive polystyrene/polypyrrole core/shell latex particles. The core consists of a polystyrene microsphere containing gamma-Fe2O3 superparamagnetic nanoparticles (PSmag), and the shell is made of reactive N-carboxylic acid-functionalized polypyrrole (PPyCOOH). These PSmag-PPyCOOH latex particles, average diameter 220 nm, were prepared by copolymerization of pyrrole (Py) and the active carboxyl-functionalized pyrrole (PyCOOH) in the presence of PSmag particles. PNVP was used as a steric stabilizer. The functionalized polypyrrole-coated PSmag particles were characterized in terms of their particle size, surface morphology, chemical composition, and electrochemical and magnetic properties using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and SQUID magnetometry. Activation of the particle surface carboxyl groups was achieved using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), which helps transform the carboxyl groups into activated ester groups (NSE). The activated particles, PSmag-PPyNSE, were further evaluated as bioadsorbents of biotin used as a model biomolecule. It was shown that biotin was immobilized at the surface of the PSmag-PPyNSE particles by forming interfacial amide groups. The assemblies of PSmag-PPyCOOH particles on glass plates were further investigated. When no magnetic field is applied, the particles assemble into 3D colloidal crystals. In contrast, under a magnetic field, one-particle-thick chains gathered in hedgehog-like architectures are obtained. Furthermore, PSmag-PPyCOOH coated ITO electrodes were shown to be electroactive and electrochemically stable, thus offering potentialities for creating novel high-specific-area materials for biosensing devices where the conducting polymer component would act as the transducer through its conductive properties.

  14. Relativistic solar particle events during STIP (study of travelling interplanetary phenomena) intervals II and IV

    SciTech Connect

    Shea, M.A.; Smart, D.F.

    1982-12-27

    Using spaceship 'Earth' as a detector located at 1 AU, the relativistic solar cosmic ray events of 30 April 1976 and 22 November 1977 are compared to deduce the relativistic solar particle flux anisotropy and pitch angle characteristics in the interplanetary medium. These two ground level events occurred during STIP Interval II and IV respectively - periods of time of coordinated and cooperative scientific efforts.

  15. Metal-based magnetic fluids with core-shell structure FeB@SiO2 amorphous particles.

    PubMed

    Yu, Mengchun; Bian, Xiufang; Wang, Tianqi; Wang, Junzhang

    2017-09-27

    FeB@SiO2 amorphous particles were firstly introduced into Ga85.8In14.2 alloys to prepare metal-based magnetic fluids. The morphology of the FeB amorphous particles is spherical with an average particle size of about 190 nm. The shape of the particles is regular and the particle size is homogeneous. Stable core-shell structure SiO2 modified FeB amorphous particles are obtained and the thickness of the SiO2 coatings is observed to be about 40 nm. The results of VSM confirm that the saturation magnetization of the FeB amorphous particles is 131.5 emu g(-1), which is almost two times higher than that of the Fe3O4 particles. The saturation magnetization of the FeB@SiO2 amorphous particles is 106.9 emu g(-1), an approximate decrease of 18.7% due to the non-magnetic SiO2 coatings. The results from the torsional oscillation viscometer show that the metal-based magnetic fluids with FeB amorphous particles exhibit a desirable high temperature performance and are ideal candidates for high temperature use.

  16. Glass-NiP-CoFeP triplex-shell particles with hollow cores and tunable magnetic properties.

    PubMed

    An, Zhenguo; Zhang, Jingjie

    2013-02-01

    Low density (0.55-0.92g/mL, depending on the shell thickness and composition) glass-metal-metal triplex-shell hollow particles (TSHP) were prepared by a three-step route. First, micrometer-sized silicate glass particles with hollow cores, uniform shells, and high sphericity were prepared through spray drying and subsequent melting. NiP shell was uniformly assembled to the previously obtained glass hollow particles by silver seed induced chemical reduction of Ni(2+) by sodium hypophosphite, and glass-NiP double-shell hollow particles (DSHP) with compact and uniform shells were formed. The as-formed NiP particles further acted as the seeds for the directed formation and assembly of the CoFeP shell on the NiP shell to form the final glass-NiP-CoFeP triplex-shell hollow particles (TSHP). The influences of the component of the reaction system on the composition, structure, and magnetic properties of the hollow particles were studied. The multishell hollow particles thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, microwave absorbers, catalysis, etc. This work provides an additional strategy to fabricate multishell structured hollow particles with tailored shell composition and magnetic properties, which can be extended to the controlled preparation of multishell composite particles with the shells consisting of metal, oxides, or other compounds.

  17. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid – Aerosol Dynamics

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture. PMID:23729817

  18. Fuzzy ternary particle systems by surface-initiated atom transfer radical polymerization from layer-by-layer colloidal core-shell macroinitiator particles.

    PubMed

    Fulghum, Timothy M; Patton, Derek L; Advincula, Rigoberto C

    2006-09-26

    We report the synthesis of ternary polymer particle material systems composed of (a) a spherical colloidal particle core, coated with (b) a polyelectrolyte intermediate shell, and followed by (c) a grafted polymer brush prepared by surface-initiated polymerization as the outer shell. The layer-by-layer (LbL) deposition process was utilized to create a functional intermediate shell of poly(diallyl-dimethylammonium chloride)/poly(acrylic acid) multilayers on the colloid template with the final layer containing an atom transfer radical polymerization (ATRP) macroinitiator polyelectrolyte. The intermediate core-shell architecture was analyzed with FT-IR, electrophoretic mobililty (zeta-potential) measurements, atomic force microscopy, and transmission electron microscopy (TEM) techniques. The particles were then utilized as macroinitiators for the surface-initiated ATRP grafting process for poly(methyl methacrylate) polymer brush. The polymer grafting was confirmed with thermo gravimetric analysis, FT-IR, and TEM. The polymer brush formed the outermost shell for a ternary colloidal particle system. By combining the LbL and surface-initiated ATRP methods to produce controllable multidomain core-shell architectures, interesting functional properties should be obtainable based on independent polyelectrolyte and polymer brush behavior.

  19. Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.

    PubMed

    Banerjee, Samya; Chakraborty, Supratim; Jacinto, Marco Paolo; Paul, Michael D; Balster, Morgan V; Greenberg, Marc M

    2017-01-10

    DNA is rapidly cleaved under mild alkaline conditions at apyrimidinic/apurinic sites, but the half-life is several weeks in phosphate buffer (pH 7.5). However, abasic sites are ∼100-fold more reactive within nucleosome core particles (NCPs). Histone proteins catalyze the strand scission, and at superhelical location 1.5, the histone H4 tail is largely responsible for the accelerated cleavage. The rate constant for strand scission at an abasic site is enhanced further in a nucleosome core particle when it is part of a bistranded lesion containing a proximal strand break. Cleavage of this form results in a highly deleterious double-strand break. This acceleration is dependent upon the position of the abasic lesion in the NCP and its structure. The enhancement in cleavage rate at an apurinic/apyrimidinic site rapidly drops off as the distance between the strand break and abasic site increases and is negligible once the two forms of damage are separated by 7 bp. However, the enhancement of the rate of double-strand break formation increases when the size of the gap is increased from one to two nucleotides. In contrast, the cleavage rate enhancement at 2-deoxyribonolactone within bistranded lesions is more modest, and it is similar in free DNA and nucleosome core particles. We postulate that the enhanced rate of double-strand break formation at bistranded lesions containing apurinic/apyrimidinic sites within nucleosome core particles is a general phenomenon and is due to increased DNA flexibility.

  20. Composition of Individual Particles in the Wakes of an Athena II Rocket and the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.; Ross, M. N.

    2002-12-01

    The NOAA Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was used to obtain the first in situ measurements of the composition of particles in the exhaust wakes of launch vehicles powered by solid rocket motors (SRMs). PALMS, mounted in the nose of a NASA WB-57F research aircraft, acquired mass spectra of over 2300 individual exhaust particles during stratospheric encounters with the plumes of an Athena II rocket and the Space Shuttle. The majority of positive mass spectra indicated the presence of Al, Fe, Ca, Na, and K, all primary or trace components of the aluminum fuel or the combustion catalyst. Organic material, presumably from combustion of binding and curing agents, was another common feature. Negative mass spectra showed Cl from the oxidizer, ammonium perchlorate, as well as aluminum oxide produced during combustion. Nitrate and phosphate fragments and water complexes were common features of spectra acquired during the Space Shuttle but not the Athena II plume intercepts. Elemental carbon (EC) was a significant particle type observed in the Athena II plume but not the Space Shuttle. The data show that the composition of particles emitted by SRMs are more diverse, more varied from rocket to rocket, and possibly more reactive than previously considered.

  1. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  2. Using electroless deposition for the preparation of micron sized polymer/metal core/shell particles and hollow metal spheres.

    PubMed

    Tierno, Pietro; Goedel, Werner A

    2006-02-23

    Uniform and stable core-shell microspheres composed of a poly(methyl methacrylate) (PMMA) core and a thin metallic shell of nickel-phosphorus, cobalt-phosphorus, or mixed metal alloys (CoNiP, NiFeP, CoFeP) were prepared by dispersion polymerization of methyl methacrylate followed by electroless plating. The presence of the metallic shell around the particles was confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy. Transmission electron microscopy images of the cross-section of individual particles show that the thickness of the metal/alloy can be precisely tuned by adjusting the immersion time of the microspheres in the electroless bath. Depending on the deposited metallic material, various magnetic properties, from paramagnetic to ferromagnetic, are achieved. Finally, uniform hollow metallic spheres composed of nickel, cobalt, or nickel-cobalt alloy are obtained by dissolving the polymer core.

  3. Spectroscopic properties of photosystem II core complexes from Thermosynechococcus elongatus revealed by single-molecule experiments.

    PubMed

    Brecht, Marc; Skandary, Sepideh; Hellmich, Julia; Glöckner, Carina; Konrad, Alexander; Hussels, Martin; Meixner, Alfred J; Zouni, Athina; Schlodder, Eberhard

    2014-06-01

    In this study we use a combination of absorption, fluorescence and low temperature single-molecule spectroscopy to elucidate the spectral properties, heterogeneities and dynamics of the chlorophyll a (Chla) molecules responsible for the fluorescence emission of photosystem II core complexes (PS II cc) from the cyanobacterium Thermosynechococcus elongatus. At the ensemble level, the absorption and fluorescence spectra show a temperature dependence similar to plant PS II. We report emission spectra of single PS II cc for the first time; the spectra are dominated by zero-phonon lines (ZPLs) in the range between 680 and 705nm. The single-molecule experiments show unambiguously that different emitters and not only the lowest energy trap contribute to the low temperature emission spectrum. The average emission spectrum obtained from more than hundred single complexes shows three main contributions that are in good agreement with the reported bands F685, F689 and F695. The intensity of F695 is found to be lower than in conventional ensemble spectroscopy. The reason for the deviation might be due to the accumulation of triplet states on the red-most chlorophylls (e.g. Chl29 in CP47) or on carotenoids close to these long-wavelength traps by the high excitation power used in the single-molecule experiments. The red-most emitter will not contribute to the fluorescence spectrum as long as it is in the triplet state. In addition, quenching of fluorescence by the triplet state may lead to a decrease of long-wavelength emission.

  4. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-09-01

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al2O3) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoring internal stresses.

  5. Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity

    SciTech Connect

    Levitas, Valery I.; McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-09-07

    Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al{sub 2}O{sub 3}) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoring internal stresses.

  6. The Synthesis of the Core/Shell Structured Diamond/Akageneite Hybrid Particles with Enhanced Polishing Performance

    PubMed Central

    Lu, Jing; Xu, Yongchao; Zhang, Dayu; Xu, Xipeng

    2017-01-01

    In this study, the synthesis of the core/shell structured diamond/akageneite hybrid particles was performed through one-step isothermal hydrolyzing. The hybrid particle was characterized by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectra. The test results overall reveal that the akageneite coating, phase β-FeO(OH), was uniformly coated onto the diamond surface. The polishing performance of the pristine diamond and hybrid particles for the sapphire substrate was evaluated respectively. The experimental results show that the hybrid particles exhibited improved polishing quality and prolonged effective processing time of polishing pad compared with diamond particles without compromising the material remove rate and surface roughness. The improved polishing behavior might be attributed to the β-FeOOH coating, which is conducive to less abrasive shedding and reducing the scratch depth. PMID:28773033

  7. Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Gal-Yam, A.; Armen, S.; Duggan, G.; Ergon, M.; Filippenko, A. V.; Fransson, C.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Leloudas, G.; Leonard, D. C.; Lunnan, R.; Masci, F. J.; Moon, D.-S.; Silverman, J. M.; Wozniak, P. R.

    2016-04-01

    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims: We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments. Methods: Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results: We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R⊙ (PTF09gpn) and 300 R⊙ (SN 2004em). Conclusions: We confirm that long-rising SNe II with light-curve shapes closely

  8. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles

    SciTech Connect

    Paton, A.E.; Wilkinson-Singley, E.; Olins, D.W.

    1983-11-10

    Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly (dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.

  9. 3D simulations of young core-collapse supernova remnants undergoing efficient particle acceleration

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Safi-Harb, Samar

    2016-06-01

    Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the 'knee'. However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and γ-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tycho's SNR, that usually occur in a mostly undisturbed medium. Here we present our 3D simulations of core-collapse supernovae, like the Cas A SNR, that occur in a more complex medium bearing the imprint of the wind of the progenitor star.

  10. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  11. Characterization of a purified photosystem II-phycobilisome particle preparation from Porphyridium cruentum

    SciTech Connect

    Chereskin, B.M.; Clement-Metral, J.D.; Gantt, E.

    1985-01-01

    Detergent preparations isolated from thylakoids of the red alga Porphyridium cruentum, in a sucrose, phosphate, citrate, magnesium chloride medium consist of phycobilisomes and possess high rates of photosystem II activity. Characterization of these particles shows that the O/sub 2/-evolving activity is stable for several hours and the pH optimum is about 6.5 to 7.2. Response of the system to light, electron donors and acceptors, and inhibitors verify that the observed activity, measured both as O/sub 2/ evolution and 2,6-dichlorophenol-indophenol reduction, is due to photosystem II. Furthermore, photosystem II is functionally coupled to the phycobilisome in this preparation since green light, absorbed by phycobilisomes of P. cruentum, is effective in promoting both O/sub 2/ evolution and 2,6-dichlorophenol-indophenol reduction. Photosystem II activity declines when light with wavelengths shorter than 665 nm is removed. Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine inhibit photosystem II activity in this preparation, indicating that the herbicide binding site is a component of the photosystem II-phycobilisome particle. 24 references, 4 figures, 2 tables.

  12. Characterization of a Purified Photosystem II-Phycobilisome Particle Preparation from Porphyridium cruentum1

    PubMed Central

    Chereskin, Barbara M.; Clement-Metral, Jenny D.; Gantt, Elisabeth

    1985-01-01

    Detergent preparations isolated from thylakoids of the red alga Porphyridium cruentum, in a sucrose, phosphate, citrate, magnesium chloride medium consist of phycobilisomes and possess high rates of photosystem II activity. Characterization of these particles shows that the O2-evolving activity is stable for several hours and the pH optimum is about 6.5 to 7.2. Response of the system to light, electron donors and acceptors, and inhibitors verify that the observed activity, measured both as O2 evolution and 2,6-dichlorophenol-indophenol reduction, is due to photosystem II. Furthermore, photosystem II is functionally coupled to the phycobilisome in this preparation since green light, absorbed by phycobilisomes of P. cruentum, is effective in promoting both O2 evolution and 2,6-dichlorophenol-indophenol reduction. Photosystem II activity declines when light with wavelengths shorter than 665 nm is removed. Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine inhibit photosystem II activity in this preparation, indicating that the herbicide binding site is a component of the photosystem II-phycobilisome particle. PMID:16664110

  13. Fission product retention in TRISCO coated UO sub 2 particle fuels subjected to HTR simulated core heating tests

    SciTech Connect

    Baldwin, C.A.; Kania, M.J.

    1990-11-01

    Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600{degree}C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800{degree}C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800{degree}C and above may exist. 6 refs., 6 figs., 4 tabs.

  14. Nuclear structure and the fate of core collapse (Type II) supernova

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2014-08-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17-18M⊙ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M⊙, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the C12(α,γ)O16 reaction that determines the C/O ratio in stellar helium burning.

  15. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China.

    PubMed

    Sun, Li; Zang, Shuying

    2013-09-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3-6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles (<65 μm) were the predominant particle size (56-97%). Lacustrine source (with the peak towards 200-400 μm) and eolian sources derived from short (2.0-10 and 30-65 μm) and long (0.4-1.0 μm) distance suspension were indentified from frequency distribution pattern of particle size. Significant correlations between 3-6 ring PAHs (especially carcinogenic 5-6 ring PAHs) and 10-35 μm particulate fractions indicated that eolian particles played an important role in adsorbing pyrogenic PAHs. Petroleum source of PAHs was only identified during the 1980s in one core sediments, in which positive correlations between 2-ring PAHs and particulate fractions of >125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors.

  16. Investigation of high velocity separator for particle removal in coal gasification plants. Phase II report

    SciTech Connect

    Linhardt, H.D.

    1980-01-15

    This report summarizes the results of Phase II of the High Velocity Particle Separator Program performed under Contract EF-77-C-01-2709. This high velocity wedge separator has the potential to reduce equipment size and cost of high temperature and pressurized particulate removal equipment for coal derived gases. Phase II has been directed toward testing and detailed conceptual design of an element suitable for a commercial scale high temperature, high pressure particle separator (HTPS). Concurrently, Phase IA has been conducted, which utilized the ambient analog method (AAM) for aerodynamic and collection performance investigation of each HTPS configuration prior and during hot testing. This report summarizes the results of Phase IA and II. The AAM effort established correlation of theoretical analysis and experiment for HTPS pressure drop, purge flow ratio and collection efficiency potential. Task I defined the initial test conditions to be the contract design point of 1800/sup 0/F and 350 psia. The 1800/sup 0/F, 350 psia testing represents the main high temperature testing with coal-derived particulates in the 2 to 10 micron range. Phase IA and Phase II have demonstrated efficient particle collection with acceptable pressure drop. In view of these encouraging results, it is reasonable to apply the developed technology toward future hot gas particulate cleanup requirements.

  17. Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo.

    PubMed

    Mohamed Suffian, Izzat Fahimuddin Bin; Wang, Julie Tzu-Wen; Hodgins, Naomi O; Klippstein, Rebecca; Garcia-Maya, Mitla; Brown, Paul; Nishimura, Yuya; Heidari, Hamed; Bals, Sara; Sosabowski, Jane K; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T

    2017-03-01

    Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-ΔHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ΔHBc particles in HER2-expressing tumours, compared to non-targeted ΔHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Stop codon insertion restores the particle formation ability of hepatitis B virus core-hantavirus nucleocapsid protein fusions.

    PubMed

    Kazaks, Andris; Lachmann, Sylvie; Koletzki, Diana; Petrovskis, Ivars; Dislers, Andris; Ose, Velta; Skrastina, Dace; Gelderblom, Hans R; Lundkvist, Ake; Meisel, Helga; Borisova, Galina; Krüger, Detlev H; Pumpens, Paul; Ulrich, Rainer

    2002-01-01

    In recent years, epitopes of various origin have been inserted into the core protein of hepatitis B virus (HBc), allowing the formation of chimeric HBc particles. Although the C-terminus of a C-terminally truncated HBc (HBc) tolerates the insertion of extended foreign sequences, the insertion capacity is still a limiting factor for the construction of multivalent vaccines. Previously, we described a new system to generate HBc mosaic particles based on a read-through mechanism in an Escherichia coli suppressor strain [J Gen Virol 1997;78:2049-2053]. Those mosaic particles allowed the insertion of a 114-amino acid (aa)-long segment of a Puumala hantavirus (PUUV) nucleocapsid (N) protein. To study the value and the potential limitations of the mosaic approach in more detail, we investigated the assembly capacity of 'non-mosaic' HBc fusion proteins and the corresponding mosaic constructs carrying 94, 213 and 433 aa of the hantaviral N protein. Whereas the fusion proteins carrying 94, 114, 213 or 433 aa were not assembled into HBc particles, or only at a low yield, the insertion of a stop codon-bearing linker restored the ability to form particles with 94, 114 and 213 foreign aa. The mosaic particles formed exhibited PUUV-N protein antigenicity. Immunization of BALB/c mice with these mosaic particles carrying PUUV-N protein aa 1-114, aa 1-213 and aa 340-433, respectively, induced HBc-specific antibodies, whereas PUUV-N protein-specific antibodies were detected only in mice immunized with particles carrying N-terminal aa 1-114 or aa 1-213 of the N protein. Both the anti-HBc and anti-PUUV antibody responses were IgG1 dominated. In conclusion, stop codon suppression allows the formation of mosaic core particles carrying large-sized and 'problematic', e.g. hydrophobic, hantavirus sequences.

  19. Fabrication of quantum dot/silica core-shell particles immobilizing Au nanoparticles and their dual imaging functions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke

    2016-03-01

    The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.

  20. Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity

    PubMed Central

    2014-01-01

    Background Iron oxyhydroxides are commonly found in natural aqueous systems as nanoscale particles, where they can act as effective sorbents for dissolved metals due to their natural surface reactivity, small size and high surface area. These properties make nanoscale iron oxyhydroxides a relevant option for the remediation of water supplies contaminated with dissolved metals. However, natural geochemical processes, such as changes in ionic strength, pH, and temperature, can cause these particles to aggregate, thus affecting their sorption capabilities and remediation potential. Other environmental parameters such as increasing salinity may also impact metal retention, e.g. when particles are transported from freshwater to seawater. Results After using synthetic iron oxyhydroxide nanoparticles and nanoparticle aggregates in batch Zn(II) adsorption experiments, the addition of increasing concentrations of chloride (from 0.1 M to 0.6 M) appears to initially reduce Zn(II) retention, likely due to the desorption of outer-sphere zinc surface complexes and subsequent formation of aqueous Zn-Cl complexes, before then promoting Zn(II) retention, possibly through the formation of ternary surface complexes (supported by EXAFS spectroscopy) which stabilize zinc on the surface of the nanoparticles/aggregates. In batch Cu(II) adsorption experiments, Cu(II) retention reaches a maximum at 0.4 M chloride. Copper-chloride surface complexes are not indicated by EXAFS spectroscopy, but there is an increase in the formation of stable aqueous copper-chloride complexes as chloride concentration rises (with CuCl+ becoming dominant in solution at ~0.5 M chloride) that would potentially inhibit further sorption or encourage desorption. Instead, the presence of bidentate edge-sharing and monodentate corner-sharing complexes is supported by EXAFS spectroscopy. Increasing chloride concentration has more of an impact on zinc retention than the mechanism of nanoparticle aggregation, whereas

  1. A disulfide-bonded dimer of the core protein of hepatitis C virus is important for virus-like particle production.

    PubMed

    Kushima, Yukihiro; Wakita, Takaji; Hijikata, Makoto

    2010-09-01

    Hepatitis C virus (HCV) core protein forms the nucleocapsid of the HCV particle. Although many functions of core protein have been reported, how the HCV particle is assembled is not well understood. Here we show that the nucleocapsid-like particle of HCV is composed of a disulfide-bonded core protein complex (dbc-complex). We also found that the disulfide-bonded dimer of the core protein (dbd-core) is formed at the endoplasmic reticulum (ER), where the core protein is initially produced and processed. Mutational analysis revealed that the cysteine residue at amino acid position 128 (Cys128) of the core protein, a highly conserved residue among almost all reported isolates, is responsible for dbd-core formation and virus-like particle production but has no effect on the replication of the HCV RNA genome or the several known functions of the core protein, including RNA binding ability and localization to the lipid droplet. The Cys128 mutant core protein showed a dominant negative effect in terms of HCV-like particle production. These results suggest that this disulfide bond is critical for the HCV virion. We also obtained the results that the dbc-complex in the nucleocapsid-like structure was sensitive to proteinase K but not trypsin digestion, suggesting that the capsid is built up of a tightly packed structure of the core protein, with its amino (N)-terminal arginine-rich region being concealed inside.

  2. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.

    PubMed

    Synytska, Alla; Ionov, Leonid; Grundke, Karina; Stamm, Manfred

    2009-03-03

    We report an experimental and theoretical investigation of the wetting behavior of different model polar and nonpolar liquids and their mixtures on superhydrophobic fractal surfaces made of polymer- or silane-coated "core-shell" particles. We compared the experimental results with the theoretical predictions made according to the theories of Onda-Shibuichi (describes wetting on fractal surfaces) and Cassie-Baxter (describes wetting on generic rough composite surfaces). We found that the experimental findings deviate from the behavior predicted by the Onda-Shibuichi model. On the other hand, the wetting properties were found to be close to the predictions made by the Cassie-Baxter model in the hydrophobic region (the intrinsic contact angle on the flat surface is larger than 90 degrees). However, the wetting behavior in the hydrophilic region (the intrinsic contact angle is less than 90 degrees) could not be described by the Onda-Shibuichi or Cassie-Baxter model. The observed inconsistency between the experimental results and theoretical predictions was explained by the formation of metastable states of a liquid droplet on a fabricated fractal surface according to the theory developed by Johnson and Dettre for generic rough surfaces. The entrapments of the liquid droplets in metastable states resulted in superhydrophobic behavior on fractal surfaces as well, made from nonfluorinated material such as polystyrene with a surface free energy of about 30 mJ/m2. This finding is very promising for real industrial applications where fluorinated compounds are willing to be reduced. It can be concluded that employing a texture with fractal geometry is necessary for the design of superhydrophobic coatings. Thereby, extremely lowering the surface free energy of materials by fluorination is not an obligatory factor for the generation of liquid-repellent superhydrophobic materials. We believe that the results we presented in the paper give new insight into the understanding of

  3. Structural Flexibility of the Nucleosome Core Particle at Atomic Resolution studied by Molecular Dynamics Simulation.

    SciTech Connect

    Roccatano, Danilo; Barthel, Andre; Zacharias, Martin W.

    2007-01-24

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Comparative explicit solvent molecular dynamics (MD) simulations have been performed on a complete nucleosome core particle with and without N-terminal histone tails for more than 20 ns. Main purpose of the simulations was to study the dynamics of mobile elements such as histone N-terminal tails and how packing and DNA-bending influences the fine structure and dynamics of DNA. Except for the tails, histone and DNA molecules stayed on average close to the crystallographic start structure supporting the quality of the current force field approach. Despite the packing strain, no increase of transitions to noncanonical nucleic acid backbone conformations compared to regular B-DNA was observed. The pattern of kinks and bends along the DNA remained close to the experiment overall. In addition to the local dynamics, the simulations allowed the analysis of the superhelical mobility indicating a limited relative mobility of DNA segments separated by one superhelical turn (mean relative displacement of approximately 60.2 nm, mainly along the superhelical axis). An even higher rigidity was found for relative motions (distance fluctuations) of segments separated by half a superhelical turn (approximately 60.1 nm). The N-terminal tails underwent dramatic conformational rearrangements on the nanosecond time scale toward partially and transiently wrapped states around the DNA. Many of the histone tail changes corresponded to coupled association and folding events from fully solvent-exposed states toward complexes with the major and minor grooves of DNA. The simulations indicate that the rapid conformational changes of the tails can modulate the DNA accessibility within a few nanoseconds. # 2007

  4. On the extent of size range and power law scaling for particles of natural carbonate fault cores

    NASA Astrophysics Data System (ADS)

    Billi, Andrea

    2007-09-01

    To determine the size range and both type and extent of the scaling laws for particles of loose natural carbonate fault rocks, six granular fault cores from Mesozoic carbonate strata of central Italy were sampled. Particle size distributions of twelve samples were determined by combining sieving and sedimentation methods. Results show that, regardless of the fault geometry, kinematics, and tectonic history, the size of fault rock particles respects a power law distribution across approximately four orders of magnitude. The fractal dimension ( D) of the particle size distribution in the analysed samples ranges between ˜2.0 and ˜3.5. A lower bound to the power law trend is evident in all samples except in those with the highest D-values; in these samples, the smallest analysed particles (˜0.0005 mm in diameter) were also included in the power law interval, meaning that the lower size limit of the power law distribution decreases for increasing D-values and that smallest particles start to be comminuted with increasing strain (i.e. increasing fault displacement and D-values). For increasing D-values, also the largest particles tends to decrease in number, but this evidence may be affected by a censoring bias connected with the sample size. Stick-slip behaviour is suggested for the studied faults on the basis of the inferred particle size evolutions. Although further analyses are necessary to make the results of this study more generalizable, the preliminary definition of the scaling rules for fault rock particles may serve as a tool for predicting a large scale of fault rock particles once a limited range is known. In particular, data from this study may result useful as input numbers in numerical models addressing the packing of fault rock particles for frictional and hydraulic purposes.

  5. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    PubMed

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures.

  6. Comparison of settling particles and sediments at IMAGES coring site in the northwestern North Pacific — Effect of resuspended particles on paleorecords

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Minoshima, Kayo; Ishizaki, Yui; Yamaoka, Kyoko; Gupta, Lallan P.; Nagao, Masayuki; Kuroyanagi, Azumi

    2009-12-01

    In order to understand settling process of particles in high sedimentation area, one mooring of sediment trap was deployed right above the IMAGES coring site in the northwestern North Pacific. In spite of two large maxima of settling particle fluxes in June-July 2002 and October-early January 2003, organic matter (OM) and carbonate showed higher peaks in June-July while lithogenics showed a large peak in October-early January with degraded OM (low aspartic acid/beta-alanine (Asp/Bala) and glutamic acid/gamma-aminobutyric (Glu/Gaba) ratios). Fresh OM production peaked in June-July 2002 and April-May 2003. Thus a large export production occurred in spring-early summer (April-June). Alkenone production was enhanced mainly in June-July. The mean alkenone SST of the settling particles was rather consistent with the observed annual mean SST and alkenone SST determined from the surface sediments. On the other hand, the maximum lithogenic flux along with the degradation of OM indicated that a significant amount of resuspended matter contaminated the bottom sediments. Based upon idealized model, the current and settling speeds make fractionation by size and density of resuspended particles during the settling process. Accumulation rates of lithogenics were ~ 5 times those in the sediment traps, which indicate large contribution of resuspended particles to settling particles especially during October-early January, when the Tsugaru current showed high current speed. These observations call our attention to carefully reconstruct paleo-environments based upon lithogenics and several other proxies such as biogenic silica, which would be biased for example in the record of IMAGES core at Site Shimokita located on the gentle continental slope.

  7. Performance of plasma opening switches for the Particle Beam Fusion Accelerator II (PBFA II)

    SciTech Connect

    Rochau, G.E.; McDaniel, D.H.; Mendel, C.W.; Sweeney, M.A.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    During 1987 and 1988, Plasma Opening Switch (POS) experiments have been continued with the goal of providing voltage and power gain on the PBFA II ion beam accelerator at Sandia National Laboratories. The experiments have developed a POS that has a rugged plasma source, will open rapidly, and will couple to a high-impedance load. The initial erosion switch design with improved plasma uniformity does not couple to these loads. Therefore, we have abandoned further development of this switch for voltage and power gain. Three alternate designs have been developed, tested, and are found to have better performance with the high-impedance loads. These new switches employ magnetic fields to control and confine the injected plasma. A summary of the switch configurations, their theory of operation, and the experimental results is presented and discussed. 4 refs., 10 figs.

  8. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    NASA Astrophysics Data System (ADS)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2012-07-01

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D4) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D4 are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  9. THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD

    SciTech Connect

    Kirk, Helen; Johnstone, Doug; Pineda, Jaime E.; Goodman, Alyssa

    2010-11-01

    We utilize the extensive data sets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the {sup 13}CO gas, about one third of the {sup 13}CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total ({sup 13}CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) {proportional_to} k {sup -4}.

  10. Modeling Lost-Particle Backgrounds in PEP-II Using LPTURTLE

    SciTech Connect

    Fieguth, T.; Barlow, R.; Kozanecki, W.; /DAPNIA, Saclay

    2005-05-17

    Background studies during the design, construction, commissioning, operation and improvement of BaBar and PEP-II have been greatly influenced by results from a program referred to as LPTURTLE (Lost Particle TURTLE) which was originally conceived for the purpose of studying gas background for SLC. This venerable program is still in use today. We describe its use, capabilities and improvements and refer to current results now being applied to BaBar.

  11. Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method.

    PubMed

    Cao, Lihua; Luo, Jun; Tu, Kehua; Wang, Li-Qun; Jiang, Hongliang

    2014-03-01

    This study proposed a new strategy based on a coaxial tri-capillary electrospray-template removal process for producing nanosized polylactide-b-polyethylene glycol (PLA-PEG) particles with a core-shell structure. Microparticles with core-shell-corona structures were first fabricated by coaxial tri-capillary electrospray, and core-shell nanoparticles less than 200 nm in size were subsequently obtained by removing the PEG template from the core-shell-corona microparticles. The nanoparticle size could be modulated by adjusting the flow rate of corona fluid, and nanoparticles with an average diameter of 106±5 nm were obtained. The nanoparticles displayed excellent dispersion stability in aqueous media and very low cytotoxicity. Paclitaxel was used as a model drug to be incorporated into the core section of the nanoparticles. A drug loading content in the nanoparticles as high as 50.7±1.5 wt% with an encapsulation efficiency of greater than 70% could be achieved by simply increasing the feed rate of the drug solution. Paclitaxel exhibited sustained release from the nanoparticles for more than 40 days. The location of the paclitaxel in the nanoparticles, i.e., in the core or shell layer, did not have a significant effect on its release.

  12. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Xu, Xuehe; Jin, Aihui; Jia, Qunying; Zhou, Huaibin; Kang, Shuai; Lou, Yongliang; Gao, Jimin; Lu, Jianxin

    2013-09-01

    We used a baculovirus expression system to express fusion proteins of HCV core, RGD (Arg-Gly-Asp) peptide, and IFN-α2a fragments in Sf9 cells. Western blotting and electron microscopy demonstrate that HCV core, peptides RGD, and IFN-α2a fusion proteins assemble into 30 to 40 nm nano-particles (virus-like particles, VLPs). Xenograft assays show that VLPs greatly reduced tumor volume and weight with regard to a nontreated xenograft. Migration and invasion results show that VLPs can inhibit the migration and invasion of the breast cancer cells MDA-MB231. This study will provide theoretical and experimental basis for the establishment of safe and effective tumor-targeted drug delivery systems and clinical application of VLPs carrying cell interacting cargo.

  13. The Electronic Structure of CdSe/CdS Core/Shell Seeded Nanorods: Type-I or Quasi-Type-II?

    PubMed Central

    2013-01-01

    The electronic structure of CdSe/CdS core/shell seeded nanorods of experimentally relevant size is studied using a combination of molecular dynamics and semiempirical pseudopotential techniques with the aim to address the transition from type-I to a quasi-type-II band alignment. The hole is found to be localized in the core region regardless of its size. The overlap of the electron density with the core region depends markedly on the size of the CdSe core. For small cores, we observe little overlap, consistent with type-II behavior. For large cores, significant core-overlap of a number of excitonic states can lead to type-I behavior. When electron–hole interactions are taken into account, the core-overlap is further increased. Our calculations indicate that the observed transition from type-II to type-I is largely due to simple volume effects and not to band alignment. PMID:24215466

  14. Yield Optimisation of Hepatitis B Virus Core Particles in E. coli Expression System for Drug Delivery Applications.

    PubMed

    Bin Mohamed Suffian, Izzat Fahimuddin; Garcia-Maya, Mitla; Brown, Paul; Bui, Tam; Nishimura, Yuya; Palermo, Amir Rafiq Bin Mohammad Johari; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T

    2017-03-03

    An E. coli expression system offers a mean for rapid, high yield and economical production of Hepatitis B Virus core (HBc) particles. However, high-level production of HBc particles in bacteria is demanding and optimisation of HBc particle yield from E. coli is required to improve laboratory-scale productivity for further drug delivery applications. Production steps involve bacterial culture, protein isolation, denaturation, purification and finally protein assembly. In this study, we describe a modified E. coli based method for purifying HBc particles and compare the results with those obtained using a conventional purification method. HBc particle morphology was confirmed by Atomic Force Microscopy (AFM). Protein specificity and secondary structure were confirmed by Western Blot and Circular Dichroism (CD), respectively. The modified method produced ~3-fold higher yield and greater purity of wild type HBc particles than the conventional method. Our results demonstrated that the modified method produce a better yield and purity of HBc particles in an E. coli-expression system, which are fully characterised and suitable to be used for drug delivery applications.

  15. Synthesis of TiO{sub 2} core/RuO{sub 2} shell particles using multistep ultrasonic spray pyrolysis

    SciTech Connect

    Stopic, Srecko; Friedrich, Bernd; Schroeder, Michael; Weirich, Thomas E.

    2013-09-01

    Graphical abstract: - Highlights: • TiO{sub 2} core/RuO{sub 2} shell submicron-particles were prepared via a sequential spray pyrolysis. • Spherical particles have the mean particle diameters between 200 and 400 nm. • This method is promising for synthesis of core–shell and core–multishell materials. - Abstract: Spherical submicron-particles with TiO{sub 2} core–RuO{sub 2} shell structure have been synthesized by employing sequential ultrasonic spray pyrolysis. The particles have been investigated by X-ray powder diffraction, scanning electron microscopy and different transmission electron microscopy techniques. The quality of the core–shell structure of the particles has been confirmed by comparison of the experimental data with those generated on the basis of a hard sphere core–shell model. It has been found that the mixing of the Ru-containing aerosol with the TiO{sub 2} particle stream has a significant impact on the core–shell formation. The method introduced in this study can probably be applied for preparation of core–shell and core–multishell materials that are difficult to synthesize in a single step spray pyrolysis process.

  16. Yield Optimisation of Hepatitis B Virus Core Particles in E. coli Expression System for Drug Delivery Applications

    PubMed Central

    Bin Mohamed Suffian, Izzat Fahimuddin; Garcia-Maya, Mitla; Brown, Paul; Bui, Tam; Nishimura, Yuya; Palermo, Amir Rafiq Bin Mohammad Johari; Ogino, Chiaki; Kondo, Akihiko; Al-Jamal, Khuloud T.

    2017-01-01

    An E. coli expression system offers a mean for rapid, high yield and economical production of Hepatitis B Virus core (HBc) particles. However, high-level production of HBc particles in bacteria is demanding and optimisation of HBc particle yield from E. coli is required to improve laboratory-scale productivity for further drug delivery applications. Production steps involve bacterial culture, protein isolation, denaturation, purification and finally protein assembly. In this study, we describe a modified E. coli based method for purifying HBc particles and compare the results with those obtained using a conventional purification method. HBc particle morphology was confirmed by Atomic Force Microscopy (AFM). Protein specificity and secondary structure were confirmed by Western Blot and Circular Dichroism (CD), respectively. The modified method produced ~3-fold higher yield and greater purity of wild type HBc particles than the conventional method. Our results demonstrated that the modified method produce a better yield and purity of HBc particles in an E. coli-expression system, which are fully characterised and suitable to be used for drug delivery applications. PMID:28256592

  17. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  18. Coagulation of quartz particles in aqueous solutions of copper(II)

    SciTech Connect

    Larson, I.; Pugh, R.J.

    1998-12-15

    The colloidal stability of quartz suspension was determined over a wide range of pH in aqueous copper nitrate where the state of Cu(II) is changed from mainly aqua ions and monohydroxyl complexes in the acid and neutral pH to polynuclear hydroxo complexes and colloidal precipitated copper hydroxide at higher pH. Two regions of instability were observed and in both cases the particles were shown to have low electrophoretic mobility. In the neutral pH region, the uptake of Cu(II) was sufficient to reduce the mobility of the particles to zero, while in the high-pH region evidence suggested coagulation between precipitated Cu(OH){sub 2} and the quartz particles. It was shown that in all cases the coagulation was reversible and that the uptake of Cu(II) was dependent on the uncharged surface hydroxyl density. Studies of the coagulation kinetics showed that extended time scales were involved (several minutes in the neutral pH region to tens of minutes at high pH).

  19. Study of Particle Motion in He II Counterflow Across a Wide Heat Flux Range

    NASA Astrophysics Data System (ADS)

    Mastracci, Brian; Takada, Suguru; Guo, Wei

    2017-01-01

    Some discrepancy exists in the results of He II counterflow experiments obtained using particle image velocimetry (PIV) when compared with those obtained using particle tracking velocimetry (PTV): using PIV, it was observed that tracer particles move at roughly half the expected normal fluid velocity, v_n/2 , while tracer particles observed using PTV moved at approximately v_n . A suggested explanation is that two different flow regimes were examined since the range of heat flux applied in each experiment was adjacent but non-overlapping. Another PTV experiment attempted to test this model, but the applied heat flux did not overlap with any PIV experiments. We report on the beginnings of a study of solid D_2 particle motion in counterflow using PTV, and the heat flux range overlaps that of all previous visualization studies. The observed particle velocity distribution transitions from a two-peak structure to a single peak as the heat flux is increased. Furthermore, the mean value of one peak in the bi-modal distributions grows at approximately the same rate as v_n , while the mean value of the single-peak distributions grows at roughly 0.4v_n , in reasonable agreement with both previous experiments and with the suggested model.

  20. Kinetic evaluation of new generation of column packed with 1.3 μm core-shell particles.

    PubMed

    Fekete, Szabolcs; Guillarme, Davy

    2013-09-20

    The goal of this study was to critically evaluate a new generation of columns packed with 1.3 μm core-shell particles. The practical possibilities and limitations of this column technology were assessed and performance was compared with other reference columns packed with 1.7, 2.6 and 5 μm core-shell particles. The column efficiency achieved with 1.3 μm core-shell particles was indeed impressive, Hmin value of only 1.95 μm was achieved, this would correspond to an efficiency of more than 500,000 plates/m. The separation impedance of this column was particularly low, Emin=2000, mostly due to a reduced plate height, h of 1.50. Comparing the kinetic performance of 1.3 μm core-shell particles to that of other particle dimensions tested in this study revealed that the 1.3 μm material could provide systematically the shortest analysis time in a range of below 30,000 theoretical plates (N<30,000).Despite its excellent chromatographic performance, it was evident that this column suffers from the limitations of current instrumentation in terms of upper pressure limit and extra-column band broadening: (1) even at 1,200 bar, it was not possible to reach an optimal linear velocity showing minimal plate height value, due to the low permeability of this column (Kv=1.7×10(-11)cm(2)), and (2) for these short narrow bore columns packed with 1.3 μm core shell particles, which is mandatory for performing fast-analysis and preventing the influence of frictional heat on column performance in UHPLC, it was observed that the extra-column band broadening could have a major impact on the apparent kinetic performance. In the present work, significant plate count loss was noticed for retention factors of less than 5, even with the best system on the market (σ(2)ec=2 μL(2)). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts.

    PubMed Central

    Wright, J F; Kurosky, A; Pryzdial, E L; Wasi, S

    1995-01-01

    A significant amount of host cellular annexin II was found to be associated with human cytomegalovirus isolated from cultured human fibroblasts (approximately 1,160 molecules per virion). This composition was established by four different analytical approaches that included (i) Western blot (immunoblot) analysis of gradient-purified virions with a monoclonal antibody specific for annexin II, (ii) peptide mapping and sequence analysis of virus-associated proteins and proteins dissociated from virus following EDTA treatment, (iii) electron microscopic immunocytochemistry of gradient-purified virions, and (iv) labeling of virus-associated proteins by lactoperoxidase-catalyzed radioiodination. These results indicated that annexin II was primarily localized to the viral surface, where it bound in a divalent cation-dependent manner. In functional experiments, a rabbit antiserum raised against annexin II inhibited cytomegalovirus plaque formation in human foreskin fibroblast monolayers in a concentration-dependent manner. Cumulatively, these studies demonstrate an association of host annexin II with cytomegalovirus particles and provide evidence for the involvement of this cellular protein in virus infectivity. PMID:7609045

  2. Effects of nano-copper(II) oxide and nanomagnesium oxide particles on activated sludge.

    PubMed

    Liu, Guoqiang; Wang, Jianmin

    2012-07-01

    Effects of nano-copper(II) oxide (nano-CuO) and nanomagnesium oxide (nano-MgO) particles on activated sludge endogenous respiration (aerobic digestion), biochemical oxygen demand (BOD) biodegradation, and nitrification were investigated through respiration rate measurement. For comparison, the effects of Cu(II) and Mg(II) ions on activated sludge were also studied. Results indicated that soluble Cu(II) has half maximum inhibitory concentration (IC50) values of 19, 5.5, 53, and 117 mg Cu/L for endogenous respiration, BOD biodegradation, ammonium oxidation, and nitrite oxidation, respectively. However, nano-CuO only inhibited BOD biodegradation at 240 mg Cu/L or more, and its associated toxicity was primarily caused by soluble Cu(II). In contrast, soluble Mg(II) was not toxic to activated sludge in the experimental concentration range, but nano-MgO inhibited BOD biodegradation and nitrification with IC50 values of 70 and 143 mg Mg/L, respectively. Further study indicated that the toxicity of nano-MgO resulted primarily from increased pH following MgO hydrolysis.

  3. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex.

    PubMed

    Zhang, Yun; Magdaong, Nikki; Frank, Harry A; Rusling, James F

    2014-05-01

    Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.

  4. Type II and Type III Radio Emissions and Their Association with Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cane, H. V.

    2016-12-01

    It is well known that CME-driven shocks are a major source of solar energetic particles (SEPs). The solar phenomena associated with high energy SEP increases nearly always include type II radio emissions indicative of the presence of shocks. However, there is also a clear link between particles accelerated in the low corona and type III radio bursts. For the most energetic events the type III emissions extend into or occur after, the flare impulsive phase. Such emission has been named type III-l mainly because the emission is "late". In our work, we have found an excellent correlation between the pattern of radio emissions and the associated particle events. However, various other studies have investigated type III-l emissions and found the association with SEP events to be less compelling. We explore the results of these studies in order to determine why this is the case.

  5. Production of rotavirus core-like particles in Sf9 cells using recombinase-mediated cassette exchange.

    PubMed

    Fernandes, Fabiana; Dias, Mafalda M; Vidigal, João; Sousa, Marcos F Q; Patrone, Marco; Teixeira, Ana P; Alves, Paula M

    2014-02-10

    A flexible Sf9 insect cell line was recently developed leveraging the recombinase-mediated cassette exchange (RMCE) technology, which competes with the popular baculovirus expression vector system (BEVS) in terms of speed to produce new proteins. Herein, the ability of this cell platform to produce complex proteins, such as rotavirus core-like particles, was evaluated. A gene construct coding for a VP2-GFP fusion protein was targeted to a pre-characterized high recombination efficiency locus flanked by flipase (Flp) recognition target sites and, after three weeks in selection, an isogenic cell population was obtained. Despite the lower cell specific productivities with respect to those obtained by baculovirus infection, the titers of VP2-GFP reached in shake flask batch cultures were comparable as a result of higher cell densities. To further improve the VP2-GFP levels from stable expression, analysis of exhausted medium was undertaken to design feeding strategies enabling higher cell densities as well as increased culture duration. The implementation of the best strategy allowed reaching 20 million cells per ml in bioreactor cultures; the integrity of the rotavirus core-like particles could be confirmed by electron microscopy. Overall, we show that this Sf9-Flp cell platform represents a valuable alternative to the BEVS for producing complex recombinant proteins, such as rotavirus core-like particles.

  6. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

    PubMed

    Zhu, Haiming; Song, Nianhui; Lian, Tianquan

    2011-06-08

    The size dependence of optical and electronic properties of semiconductor quantum dots (QDs) have been extensively studied in various applications ranging from solar energy conversion to biological imaging. Core/shell QDs allow further tuning of these properties by controlling the spatial distributions of the conduction-band electron and valence-band hole wave functions through the choice of the core/shell materials and their size/thickness. It is possible to engineer type II core/shell QDs, such as CdTe/CdSe, in which the lowest energy conduction-band electron is largely localized in the shell while the lowest energy valence-band hole is localized in the core. This spatial distribution enables ultrafast electron transfer to the surface-adsorbed electron acceptors due to enhanced electron density on the shell materials, while simultaneously retarding the charge recombination process because the shell acts as a tunneling barrier for the core localized hole. Using ultrafast transient absorption spectroscopy, we show that in CdTe/CdSe-anthraquinone (AQ) complexes, after the initial ultrafast (~770 fs) intra-QD electron transfer from the CdTe core to the CdSe shell, the shell-localized electron is transferred to the adsorbed AQ with a half-life of 2.7 ps. The subsequent charge recombination from the reduced acceptor, AQ(-), to the hole in the CdTe core has a half-life of 92 ns. Compared to CdSe-AQ complexes, the type II band alignment in CdTe/CdSe QDs maintains similar ultrafast charge separation while retarding the charge recombination by 100-fold. This unique ultrafast charge separation and slow recombination property, coupled with longer single and multiple exciton lifetimes in type II QDs, suggests that they are ideal light-harvesting materials for solar energy conversion.

  7. Atlantic-Arctic exchange in a series of ocean model simulations (CORE-II)

    NASA Astrophysics Data System (ADS)

    Roth, Christina; Behrens, Erik; Biastoch, Arne

    2014-05-01

    In this study we aim to improve the understanding of exchange processes between the North Atlantic and the Arctic Ocean. The Nordic Sea builds an important connector between these regions, by receiving and modifying warm and saline Atlantic waters, and by providing dense overflow as a backbone of the Atlantic Meridional Overturning Circulation (AMOC). Using a hierarchy of global ocean/sea-ice models, the specific role of the Nordic Seas, both providing a feedback with the AMOC, but also as a modulator of the Atlantic water flowing into the Arctic Ocean, is examined. The models have been performed under the CORE-II protocol, in which atmospheric forcing of the past 60 years was applied in a subsequent series of 5 iterations. During the course of this 300-year long integration, the AMOC shows substantial changes, which are correlated with water mass characteristics in the Denmark Strait overflow characteristics. Quantitative analyses using Lagrangian trajectories explore the impact of these trends on the Arctic Ocean through the Barents Sea and the Fram Strait.

  8. Development of polymer-biomolecule core-shell particles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Suthiwangcharoen, Nisaraporn

    Developing efficient strategies to introduce biomolecules around polymeric nanoparticles (NPs) is critical for targeted delivery of therapeutic or diagnostic agents. Although polymeric NPs have been well established, problems such as toxicity, stability, and immunoresistance remain potential concerns. The first part of this dissertation focuses on the development of nanosized targeted drug delivery vehicle in cancer chemotherapy. The vehicle was created by the self-assembly of folate-grafted filamentous bacteriophage M13 with poly(caprolactone- b-2-vinylpyridine) while doxorubicin, the antitumor drugs, was successfully loaded in the interior of the vehicles. These particles offer unique properties of being able to selectively target tumor cells while appearing to be safe and non-toxic to normal cells. Although they have shown great prospects in many biomedical applications, less is known about the interactions between biomolecules and polymers. The next part of the dissertation focuses on the self-assembly of proteins and polymers to create polymer-protein core-shell nanoparticles (PPCS-NPs). Several proteins with different isoelectric points and molecular weights were employed to demonstrate a versatility of our assembly method while a series of esterified derivatives of poly(2-hydroxyethyl methacrylate) (pHEMA) were synthesized to evaluate the interaction between proteins and polymers. Our data indicated that the polymers containing pyridine residues can successfully assemble with proteins, and the mechanism is mainly governed by hydrogen bonding and the hydrophobic/hydrophilic interactions. This in turn helps retaining proteins' folding conformation and functionality, which are also demonstrated in the in vitro/in vivo cellular uptake of the PPCS-NPs in endothelial cells. The last part of the dissertation focuses on the self-assembly of the bienzyme-polymer NPs. Glucose oxidase (GOX) together with horseradish peroxidase (HRP) were employed to construct bienzyme

  9. Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles.

    PubMed

    Fan, Chunzhen; Li, Kan; Li, Juexiu; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2017-03-15

    In this paper, tetraethylenepentamine (TEPA) modified chitosan/CoFe2O4 particles were prepared for comparative and competitive adsorption of Cu(II) and Pb(II) in single and bi-component aqueous solutions. The characteristics results of SEM, FTIR and XRD indicated that the adsorbent was successfully fabricated. The magnetic property results manifested that the particles with saturation magnetization value of 63.83emug(-1) would have a fast magnetic response. The effects of experimental parameters including contact time, pH value, initial metal ions concentration and coexisting ions on single and bi-component adsorption were investigated. The results revealed that the adsorption kinetic was followed pseudo-second-order kinetic model, indicating that chemical adsorption was the rate-limiting step. Sorption isotherms were also determined in single and bi-component solutions with different mass ratio of Cu(II) to Pb(II) (Cu(II)/Pb(II)) and fitted using Langmuir and Freundlich isotherm models. A better fit for Cu(II) and Pb(II) adsorption were obtained with Langmuir model, with a maximum sorption capacity of 168.067 and 228.311mgg(-1) for Cu(II) and Pb(II) in single component solution, 139.860 and 160.256mgg(-1) in bi-component solution (Cu(II)/Pb(II)=1:1), respectively. The present results suggest that TEPA modified chitosan/CoFe2O4 particles are feasible and satisfactory adsorbent for efficient removal of Cu(II) and Pb(II) ions.

  10. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    PubMed

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  11. Modified equilibrium-dispersive model for the interpretation of the efficiency of columns packed on core-shell particle

    SciTech Connect

    Gritti, Fabrice; Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    A modified Equilibrium Dispersive (ED) Model is proposed for the modeling of chromatographic processes in columns packed with shell-particle adsorbents and operated under very high pressures. This new model was validated on the basis of experimental results obtained with 2.1 mm x 150 mm columns packed with superficially porous 1.7 {micro}m Kinetex-C{sub 18} particles and with classical columns packed with 1.7 {micro}m BEH-C{sub 18} fully porous particles. The influence of the heat friction on the performance of these columns was analyzed by comparing the experimental and calculated peak profiles. Moreover a theoretical analysis of the influence the solid-core conductivity on the column efficiency was discussed.

  12. The magnetic penetration depth and the vortex core radius in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Sonier, Jeffrey Edward

    1998-11-01

    In this thesis, muon spin rotation (μSR) measurements of the internal magnetic field distribution in the vortex state of the high-Tc superconductor YBa2Cu3O7-δ and the conventional type-II superconductor NbSe2 are presented. From the measured field distributions, the 'characteristic length scales of superconductivity' are extracted. It is found that both the / a-/ b plane magnetic penetration depth λab and the vortex-core radius r0 (which is closely related to the coherence length ξab) vary as functions of temperature and magnetic field in both materials. The behaviour of λab(H,T) and r0(H,T) at low temperatures is found to be substantially different in YBa2Cu3O7-δ from what is observed in NbSe2. This reflects the unconventional nature of the pairing mechanism in this compound. The temperature dependence of λab in the vortex state of YBa2Cu3O/[7-/delta] agrees well with microwave cavity measurements in the Meissner state. The magnetic field dependence of λab in YBa2Cu3O7-δ is found to be considerably stronger than in NbSe2. This is likely due to both the nonlinear and the nonlocal effects associated with nodes in the superconducting energy gap. However, in NbSe2 (where nonlocal effects are negligible), it is not clear whether the field dependence of λab can be explained solely in terms of the nonlinear effects associated with an isotropic s-wave energy gap. The vortex-core radius r0 is found to decrease with increasing magnetic field in both superconductors. The reduction in the vortex-core size appears to be due to the increased strength of the vortex-vortex interactions. An important consequence of this variation with field is that ξab in the vortex state, which is generally regarded to be extremely small in the high-Tc compounds, is comparatively large at low magnetic fields. The vortex-core radius is also found to increase with increasing temperature. The strength of this variation is considerably weaker in YBa2Cu3O7-δ than in NbSe2. One possible

  13. A core-shell structured nanocomposite material for detection, adsorption and removal of Hg(II) ions in water.

    PubMed

    Li, Le; Tang, Shuangyang; Ding, Dexin; Hu, Nan; Yang, Shengyuan; He, Shuya; Wang, Yongdong; Tan, Yan; Sun, Jing

    2012-11-01

    In this paper, a core-shell structured nanocomposite material was prepared for the detection, adsorption and removal of Hg(ll) ions in aqueous solution. The core was made from Fe3O4 nanoparticles with superparamagnetic behavior and the outer shell was made from amorphous silica modified with pyrene-based sensing-probes. The material could detect and adsorb Hg(II) ions in aqueous solution due to its surface being modified with pyrene-based sensing-probes, and could easily be removed from the solution by magnetic force because of its core being made from magnetic Fe3O4 nanoparticles. This multifunctional core-shell structure was confirmed and characterized by TEM, IR spectra, TGA, XRD and N2 adsorption/desorption isotherms. Experiments were conducted on its functions of detection, adsorption and removal of Hg(II) ions in aqueous solution. The experimental results showed that this composite material had high sensitivity and unique selectivity to Hg(II), and that it could easily be removed from the solution.

  14. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  15. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  16. Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia

    PubMed Central

    SANSONNO, D; LAULETTA, G; NISI, L; GATTI, P; PESOLA, F; PANSINI, N; DAMMACCO, F

    2003-01-01

    Hepatitis C virus (HCV) infection has been detected in a large proportion of patients with mixed cryoglobulinaemia (MC). Circulating ‘free’ non-enveloped HCV core protein has been demonstrated in HCV-infected patients, and this suggests its possible involvement in the formation of cryoprecipitable immune complexes (ICs). Thirty-two anti-HCV, HCV RNA-positive patients with type II MC were evaluated. Non-enveloped HCV core protein, HCV RNA sequences, total IgM, rheumatoid factor (RF) activity, IgG and IgG subclasses, C3 and C4 fractions, C1q protein and C1q binding activity were assessed in both cryoprecipitates and supernatants. Non-enveloped HCV core protein was demonstrated in 30 of 32 (93·7%) type II MC patients. After separation of cold-precipitable material, the protein was removed completely from supernatant in 12 patients (40%), whereas it was enriched in the cryoprecipitates of the remaining 18. In addition, HCV RNA and IgM molecules with RF activity were concentrated selectively in the cryoprecipitates. Differential precipitation was found for both total IgG and IgG subclasses, as they were less represented in the cryoglobulins and no selective enrichment was noted. Immunological characterization of HCV core protein-containing cryoprecipitating ICs after chromatographic fractionation showed that the IgM monoclonal component had RF activity, whereas anti-HCV core reactivity was confined to the IgG fraction. C1q enrichment in addition to high avidity of ICs for C1q binding in the cryoprecipitates suggest that complement activation may occur through the C1q protein pathway. The present data demonstrate that non-enveloped HCV core protein is a constitutive component of cryoprecipitable ICs in type II MC patients. PMID:12869035

  17. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.

    SciTech Connect

    Talamo, A.

    2010-07-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  18. A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.

    SciTech Connect

    Talamo, A.

    2011-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initial excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.

  19. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy.

    PubMed

    Armini, Silvia; Vakarelski, Ivan U; Whelan, Caroline M; Maex, Karen; Higashitani, Ko

    2007-02-13

    Atomic force microscopy was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and composite terpolymer core-silica shell particles in air and water media. The composite particles were achieved with two different approaches: using a silane coupling agent (composite A) or attractive electrostatic interactions (composite B) between the core and the shell. Young's moduli (E) of 4.3+/-0.7, 11.1+/-1.7, and 8.4+/-1.7 GPa were measured in air for the PMMA-based terpolymer, composite A, and composite B, respectively. In water, E decreases to 1.6+/-0.2 GPa for the terpolymer; it shows a slight decrease to 8.0+/-1.2 GPa for composite A, while it decreases to 2.9+/-0.6 GPa for composite B. This trend is explained by considering a 50% swelling of the polymer in water confirmed by dynamic light scattering. Close agreement is found between the absolute values of elastic moduli determined by nanoindentation and known values for the corresponding bulk materials. The thickness of the silica coating affects the mechanical properties of composite A. In the case of composite B, because the silica shell consists of separate particles free to move in the longitudinal direction that do not individually deform when the entire composite deforms, the elastic properties of the composites are determined exclusively by the properties of the polymer core. These results provide a basis for tailoring the mechanical properties of polymer and composite particles in air and in solution, essential in the design of next-generation abrasive schemes for several technological applications.

  20. Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years

    NASA Astrophysics Data System (ADS)

    Oyabu, Ikumi; Iizuka, Yoshinori; Fischer, Hubertus; Schüpbach, Simon; Gfeller, Gideon; Svensson, Anders; Fukui, Manabu; Steffensen, Jørgen Peder; Hansson, Margareta

    2015-09-01

    This study reports the chemical composition of particles present along Greenland's North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 µm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na2SO4, CaSO4, and CaCO3 represent major soluble salts. For the first time, particles of CaMg(CO3)2 and Ca(NO3)2•4H2O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na2SO4) exceeds that of Ca salts (CaSO4 + CaCO3) during the Holocene (0.6-11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9-14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0-12.6 kyr B.P.) and the Last Glacial Maximum (15.0-26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.

  1. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    PubMed

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  2. Research advances in polymer emulsion based on "core-shell" structure particle design.

    PubMed

    Ma, Jian-zhong; Liu, Yi-hong; Bao, Yan; Liu, Jun-li; Zhang, Jing

    2013-09-01

    In recent years, quite many studies on polymer emulsions with unique core-shell structure have emerged at the frontier between material chemistry and many other fields because of their singular morphology, properties and wide range of potential applications. Organic substance as a coating material onto either inorganic or organic internal core materials promises an unparalleled opportunity for enhancement of final functions through rational designs. This contribution provides a brief overview of recent progress in the synthesis, characterization, and applications of both inorganic-organic and organic-organic polymer emulsions with core-shell structure. In addition, future research trends in polymer composites with core-shell structure are also discussed in this review. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Nd-doped calcium molybdate core and particles: synthesis, optical and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Alam, Manawwer; Parchur, A. K.

    2014-09-01

    CaMoO4:Nd (core), CaMoO4:Nd@CaMoO4 and CaMoO4:Nd@CaMoO4@SiO2 core-shell nanoparticles were synthesized using polyol method under urea hydrolysis. X-ray diffraction and thermogravimetric analysis were employed to examine the structural and thermal properties of the as-prepared core and core-shell nanoparticles. Optical properties of core and core-shell nanoparticles were observed to investigate the influence of surface coating on the spectra of as-prepared nanomaterials in terms of ultraviolet/visible (UV-Vis) absorbance, FTIR, Raman and emission spectra. The optical band gap energy calculated from the UV-Vis absorption spectrum for CaMoO4:Nd, CaMoO4:Nd@CaMoO4 and CaMoO4:Nd@CaMoO4@SiO2 nanoparticles was 3.09, 2.06 and 1.26 eV, respectively. The photoluminescence spectra of the samples showed broad charge transfer emission band of [MoO4]2- along with sharp transitions of neodymium ion in the visible and near infrared regions, respectively.

  4. Application of hepatitis B core particles produced by human primary hepatocellular carcinoma (PLC/342) propagated in nude mice to the determination of anti-HBc by passive hemagglutination.

    PubMed

    Miyamoto, K; Itoh, Y; Tsuda, F; Matsui, T; Tanaka, T; Miyamoto, H; Naitoh, S; Imai, M; Usuda, S; Nakamura, T

    1986-05-22

    Human primary hepatocellular carcinoma (PLC/342), carried by nude mice, produces hepatitis B core particles as well as hepatitis B surface antigen particles. Core particles purified form PLC/342 tumors displayed epitopes of hepatitis B core antigen (HBcAg) but not epitopes of hepatitis B e antigen (HBeAg) on their surface, unlike core particles prepared from Dane particles, derived from plasma of asymptomatic carriers, that expressed epitopes of both HBcAg and HBeAg. Core particles obtained from PLC/342 tumors were applied to the determination of antibody to HBcAg (anti-HBc) by passive hemagglutination. The assay detected anti-HBc not only in individuals with persistent infection with hepatitis B virus and in those who had recovered from transient infection, but also in patients with acute type B hepatitis, indicating that it can detect anti-HBc of either IgG or IgM class. A liberal availability of core particles from tumors carried by nude mice, taken together with an easy applicability of the method, would make the passive hemagglutination for anti-HBc a valuable tool in clinical and epidemiological studies, especially in places where sophisticated methods are not feasible.

  5. Critical assessment of the emission spectra of various photosystem II core complexes.

    PubMed

    Chen, Jinhai; Kell, Adam; Acharya, Khem; Kupitz, Christopher; Fromme, Petra; Jankowiak, Ryszard

    2015-06-01

    We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent

  6. Collapse and fragmentation of magnetic molecular cloud cores with the Enzo AMR MHD code. II. Prolate and oblate cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-10-10

    We present the results of a large suite of three-dimensional models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement code Enzo2.2 in the ideal magnetohydrodynamics approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 M {sub ☉}, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density isothermal phases, to high density optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 μG, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from 10{sup –4} to 0.1. Two significantly different outcomes for collapse result: (1) formation of single protostars with spiral arms, and (2) fragmentation into multiple protostar systems. The transition between these two outcomes depends primarily on the initial magnetic field strength, with fragmentation occurring for mass to flux ratios greater than about 14 times the critical ratio for prolate clouds. Oblate clouds typically fragment into several times more clumps than prolate clouds. Multiple, rather than binary, system formation is the general rule in either case, suggesting that binary stars are primarily the result of the orbital dissolution of multiple protostar systems.

  7. An in vitro system for the enzymological analysis of avian hepatitis B virus replication and inhibition in core particles.

    PubMed

    Urban, S; Tyrrell, D L

    2000-03-01

    A detailed analysis of the hepatitis B virus (HBV) replication reaction is important both in understanding viral biology and in developing effective antiviral drugs. This can best be achieved by studying the viral reverse transcriptase (RT) in its natural context, encapsidated within viral core particles in a multiprotein complex, rather than as an isolated enzyme. In order to facilitate a precise enzymological analysis of the avian HBV-RT reaction and its inhibition within replicating cores, a scheme for the purification and analysis of intracellular core particles derived from infected liver tissue has been devised, optimized and evaluated. The purification scheme itself is simple and rapid, and results in preparations with a 25-fold increase in endogenous polymerase activity that persists for over 5 h under assay conditions. In order to assess the suitability of these preparations for mechanistic studies, a thorough evaluation of purity was undertaken, revealing predominantly pure viral protein and nucleic acid, free of contaminating cellular polymerases and phosphatase activities that potently degrade nucleotides and antiviral drugs. Parameters governing optimal polymerase activity have been determined, and an assay for DHBV-RT activity has been developed which offers the highest purity and specific polymerase activity currently available to study hepadnaviral replication and inhibition.

  8. Preparation and characterization of core-shell structured TiO 2-BaCO 3 particles

    NASA Astrophysics Data System (ADS)

    Gablenz, Silvio; Damm, Cornelia; Müller, Franz Werner; Israel, Gunter; Rössel, Michael; Röder, Andreas; Abicht, Hans-Peter

    2001-03-01

    Preparation of core-shell structured TiO 2-BaCO 3 particles as precursor of BaTiO 3 genesis, proceeds using a two step procedure, by first coating the TiO 2 core by Ba(OH) 2 shell followed by conversion of the shell region with CO 2 gas by the formation of BaCO 3. Straightforward experimental results reveal environmental scanning electron microscopy (ESEM) and scanning transmission electron microscopy (STEM) as suitable methods for analytical characterization of the core and shell regions from individual TiO 2-BaCO 3 grains. Evidence of coating the whole ensemble of TiO 2 particles is possible using Photo Electro Motive Force (Photo EMF, PEMF) measurements. This method is able to indicate very sensitively changes of surface properties of TiO 2 after coating with Ba(OH) 2 and BaCO 3, respectively. PEMF measurements were used for the first time with concern to this topic.

  9. Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC.

    PubMed

    Wiest, Landon A; Jensen, David S; Hung, Chuan-Hsi; Olsen, Rebecca E; Davis, Robert C; Vail, Michael A; Dadson, Andrew E; Nesterenko, Pavel N; Linford, Matthew R

    2011-07-15

    A new stationary phase for reversed-phase high performance liquid chromatography (RP HPLC) was created by coating spherical 3 μm carbon core particles in a layer-by-layer (LbL) fashion with poly(allylamine) (PAAm) and nanodiamond. Unfunctionalized core carbon particles were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and Raman spectroscopy. After LbL of PAAm and nanodiamond, which yields ca. 4 μm core-shell particles, the particles were simultaneously functionalized and cross-linked using a mixture of 1,2-epoxyoctadecane and 1,2,7,8-diepoxyoctane to obtain a mechanically stable C(18)/C(8) bonded outer layer. Core-shell particles were characterized by SEM, and their surface area, pore diameter, and volume were determined using the Brunauer-Emmett-Teller (BET) method. Short stainless steel columns (30 × 4.6 mm i.d.) were packed and the corresponding van Deemter plots obtained. The Supporting Information contains a MATLAB program used to fit the van Deemter data. The retentions of a suite of analytes were investigated on a conventional HPLC at various organic solvent compositions, pH values of mobile phases, including extreme pH values, and column temperatures. At 60 °C, a chromatogram of 2,6-diisopropylphenol showed 71,500 plates/m (N/m). Chromatograms obtained under acidic conditions (pH 2.7) of a mixture of acetaminophen, diazepam, and 2,6-diisopropylphenol and a mixture of phenol, 4-methylphenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol, and 1-tert-butyl-4-methylphenol are presented. Retention of amitriptyline, cholesterol, and diazinon at temperatures ranging from 35 to 80 °C and at pH 11.3 is reported. A series of five basic drugs was also separated at this pH. The stationary phase exhibits considerable hydrolytic stability at high pH (11.3) and even pH 13 over extended periods of time. An analysis run on a UHPLC with a "sandwich" injection

  10. Decreased Photosystem II Core Phosphorylation in a Yellow-Green Mutant of Wheat Showing Monophasic Fluorescence Induction Curve.

    PubMed Central

    Giardi, M. T.; Kucera, T.; Briantais, J. M.; Hodges, M.

    1995-01-01

    In the present work we study the regulation of the distribution of the phosphorylated photosystem II (PSII) core populations present in grana regions of the thylakoids from several plant species. The heterogeneous nature of PSII core phosphorylation has previously been reported (M.T. Giardi, F. Rigoni, R. Barbato [1992] Plant Physiol 100: 1948-1954; M.T. Giardi [1993] Planta 190: 107-113). The pattern of four phosphorylated PSII core populations in the grana regions appears to be ubiquitous in higher plants. In the dark, at least two phosphorylated PSII core populations are always detected. A mutant of wheat (Triticum durum) that shows monophasic room-temperature photoreduction of the primary quinone electron acceptor of PSII as measured by chlorophyll fluorescence increase in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and by fluorescence upon flash illumination in intact leaves also lacks the usual distribution of phosphorylated PSII core populations. In this mutant, the whole PSII core population pattern is changed, probably due to altered threonine kinase activity, which leads to the absence of light-induced phosphorylation of CP43 and D2 proteins. The results, correlated to previous experiments in vivo, support the idea that the functional heterogeneity observed by fluorescence is correlated in part to the PSII protein phosphorylation in the grana. PMID:12228652

  11. North Atlantic Simulations in Coordinated Ocean-Ice Reference Experiments Phase II (CORE-II) . Part II; Inter-Annual to Decadal Variability

    NASA Technical Reports Server (NTRS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Boening, Claus; Bozec, Alexandra; hide

    2015-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include

  12. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Böning, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Ilicak, Mehmet; Jung, Thomas; Karspeck, Alicia R.; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, Gurvan; Marsland, Simon J.; Masina, Simona; Navarra, Antonio; Nurser, A. J. George; Pirani, Anna; Romanou, Anastasia; Salas y Mélia, David; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sun, Shan; Treguier, Anne-Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yashayaev, Igor

    2016-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which

  13. Influence of core size on the upconversion luminescence properties of spherical Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles with core-shell structures

    SciTech Connect

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-11-14

    Spherical SiO{sub 2} particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO{sub 2} cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er{sup 3+} ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO{sub 2} particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO{sub 2} cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO{sub 2} core sizes.

  14. Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots.

    PubMed

    Sugunan, Abhilash; Zhao, Yichen; Mitra, Somak; Dong, Lin; Li, Shanghua; Popov, Sergei; Marcinkevicius, Saulius; Toprak, Muhammet S; Muhammed, Mamoun

    2011-10-21

    Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.

  15. Particle identification using dE/dx in the Mark II detector at the SLC

    SciTech Connect

    Boyarski, A.; Coupal, D.P.; Feldman, G.J.; Hanson, G.; Nash, J.; O'Shaughnessy, K.F.; Rankin, P.; Van Kooten, R.

    1989-04-01

    The central drift chamber in the Mark II detector at the SLAC Linear Collider has been instrumented with 100-MHz Flash-ADCs. Pulse digitization provides particle identification through the measurement of average ionization loss in the chamber. We present the results of a study of system performance and outline the systematic corrections that optimize resolution. The data used are from a short test run at PEP with one-third of the FADCs installed and an extensive cosmic ray sample with the fully instrumented chamber. 11 refs., 9 figs.

  16. Correlating Type II and III Radio Bursts with Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Ledbetter, K.; Winter, L. M.; Quinn, R. A.

    2013-12-01

    Solar energetic particles (SEPs) are high-energy particles, such as protons, which are accelerated at the Sun and speed outward into the solar system. If they reach Earth, they can be harmful to satellites, ionospheric communications, and humans in space or on polar airline routes. NOAA defines an SEP event as an occasion when the flux of protons with energies higher than 10 MeV exceeds 10 pfu (particle flux units) as measured by the GOES satellites in geosynchronous orbit. The most intense SEP events are associated with shocks, driven by coronal mass ejections (CMEs), which accelerate particles as they move through the corona. However, very few CMEs result in SEP events. To determine what factors are most important in distinguishing the shock waves that will result in SEP acceleration toward Earth, we take into account several variables and perform a principal component analysis (PCA) to examine their correlations. First, we examine Type II radio bursts, which are caused by electrons accelerating in the same CME-driven shocks that can accelerate SEPs. Using data from the WAVES instrument on the WIND satellite, these Type II radio bursts, as well as the Type III bursts that often accompany them, can be characterized by slope in 1/f space and by intensity. In addition, local Langmuir waves detected by WIND, which are caused by electrons speeding through the plasma surrounding the satellite, can be an indicator of the magnetic connectivity between the active region and Earth. Finally, X-ray flares directly preceding the Type II burst are also taken into consideration in the PCA analysis. The accompanying figure illustrates an example of the WAVES solar radio bursts along with the GOES solar proton flux >= 10 MeV during the SEP event on April 11, 2013. Using PCA to determine which of these factors are most relevant to the onset, intensity, and duration of SEP events will be valuable in future work to predict such events. In total, we present the analysis of all type

  17. Improving Powder Magnetic Core Properties via Application of Thin, Insulating Silica-Nanosheet Layers on Iron Powder Particles

    PubMed Central

    Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko

    2016-01-01

    A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity. PMID:28336835

  18. Improving Powder Magnetic Core Properties via Application of Thin, Insulating Silica-Nanosheet Layers on Iron Powder Particles.

    PubMed

    Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko

    2016-12-23

    A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity.

  19. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    NASA Astrophysics Data System (ADS)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

  20. A statistically selected Chandra sample of 20 galaxy clusters - II. Gas properties and cool core/non-cool core bimodality

    NASA Astrophysics Data System (ADS)

    Sanderson, Alastair J. R.; O'Sullivan, Ewan; Ponman, Trevor J.

    2009-05-01

    We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density, metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r-0.31), outside ~0.02r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, fc, to be lognormal, with a log (base 10) mean of -1.50 +/- 0.03 (i.e. fc = 0.032) and log standard deviation 0.39 +/- 0.02.

  1. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects

    SciTech Connect

    Wang, J.X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R.R.

    2009-11-09

    We examined the effects of the thickness of the Pt shell, lattice mismatch, and particle size on specific and mass activities from the changes in effective surface area and activity for oxygen reduction induced by stepwise Pt-monolayer depositions on Pd and Pd{sub 3}Co nanoparticles. The core?shell structure was characterized at the atomic level using Z-contrast scanning transmission electron microscopy coupled with element-sensitive electron energy loss spectroscopy. The enhancements in specific activity are largely attributed to the compressive strain effect based on the density functional theory calculations using a nanoparticle model, revealing the effect of nanosize-induced surface contraction on facet-dependent oxygen binding energy. The results suggest that moderately compressed (111) facets are most conducive to oxygen reduction reaction on small nanoparticles and indicate the importance of concerted structure and component optimization for enhancing core?shell nanocatalysts activity and durability.

  2. Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots.

    PubMed

    Sai, Li-Man; Kong, Xiang Yang

    2011-05-27

    A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent properties were dramatically improved through UV-illuminated treatment, and the time-resolved fluorescence spectra showed that there is a gradual increase of decay lifetime with the thickness of CdSe shell.

  3. Optical and electronic properties of type-II CdSe/CdS core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Dea Uk; Yun, Dong Yeol; Kim, Tae Whan; Park, Seoung-Hwan; Choi, Donghyeuk; Kim, Sang Wook; Yoo, Keon-Ho; Lee, Hong Seok; Hae Kwon, Young; Kang, Tae Won

    2015-06-01

    CdSe/CdS core-shell quantum dots (QDs) were synthesized using a facile method in aqueous phase. X-ray diffraction pattern, high-resolution transmission electron microscopy images, and energy dispersive spectroscopy profiles showed that stoichiometric CdSe/CdS QDs were formed. Temperature-dependent photoluminescence spectra showed that the activation energy of CdSe/CdS core-shell QDs was 15 meV. The potential profiles and interband transition energies of the strained type-II CdSe/CdS core-shell QDs were calculated. The calculated interband transition energies slightly decreased from 2.061 to 2.007 eV when the shell thickness increased from 10 to 17 Å. The theoretical interband transition energy of 2.007 eV was in reasonable agreement with the photoluminescence excitonic transition energy of 1.98 eV.

  4. Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles

    NASA Astrophysics Data System (ADS)

    Leclerc, Lara; Boudard, Delphine; Pourchez, Jérémie; Forest, Valérie; Marmuse, Laurence; Louis, Cédric; Bin, Valérie; Palle, Sabine; Grosseau, Philippe; Bernache-Assollant, Didier; Cottier, Michèle

    2012-11-01

    The relationship between particles' physicochemical parameters, their uptake by cells and their degree of biological toxicity represent a crucial issue, especially for the development of new technologies such as fabrication of micro- and nanoparticles in the promising field of drug delivery systems. This work was aimed at developing a proof-of-concept for a novel model of double fluorescence submicronic particles that could be spotted inside phagolysosomes. Fluorescein isothiocyanate (FITC) particles were synthesized and then conjugated with a fluorescent pHrodo™ probe, red fluorescence of which increases in acidic conditions such as within lysosomes. After validation in acellular conditions by spectral analysis with confocal microscopy and dynamic light scattering, quantification of phagocytosis was conducted on a macrophage cell line in vitro. The biological impact of pHrodo functionalization (cytotoxicity, inflammatory response, and oxidative stress) was also investigated. Results validate the proof-of-concept of double fluorescent particles (FITC + pHrodo), allowing detection of entirely engulfed pHrodo particles (green and red labeling). Moreover incorporation of pHrodo had no major effects on cytotoxicity compared to particles without pHrodo, making them a powerful tool for micro- and nanotechnologies.

  5. YOUNG STARLESS CORES EMBEDDED IN THE MAGNETICALLY DOMINATED PIPE NEBULA. II. EXTENDED DATA SET

    SciTech Connect

    Frau, P.; Girart, J. M.; Padovani, M.; Beltran, M. T.; Sanchez-Monge, A.; Busquet, G.; Morata, O.; Masque, J. M.; Estalella, R.; Alves, F. O.; Franco, G. A. P.

    2012-11-01

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A {sub V} to N{sub H{sub 2}} factor of (1.27 {+-} 0.12) Multiplication-Sign 10{sup -21} mag cm{sup 2} and a background visual extinction of {approx}6.7 mag possibly arising from the cloud material. We derived an average core diameter of {approx}0.08 pc, density of {approx}10{sup 5} cm{sup -3}, and mass of {approx}1.7 M {sub Sun }. Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the 'diffuse' (e.g., the 'ubiquitous' CO, C{sub 2}H, and CS), 'oxo-sulfurated' (e.g., SO and

  6. On Ohmic heating in the Earth's core II: Poloidal magnetic fields obeying Taylor's constraint

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; Livermore, Philip W.; Ierley, Glenn

    2011-08-01

    The extremely small Ekman and magnetic Rossby numbers in the Earth's core make the magnetostrophic limit an attractive approximation to the core's dynamics. This limit leads to the need for the internal magnetic field to satisfy Taylor's constraint, associated with the vanishing of the azimuthal component of Lorentz torques averaged over every cylinder coaxial with the rotation axis. A special class of three dimensional poloidal interior magnetic fields is chosen that satisfies Taylor's constraint identically on every cylinder in a spherical shell exterior to an inner core. This class of fields, which we call small-circle conservative, demonstrates existence of interior fields satisfying Taylor's constraint, regardless of the morphology of the field on the core surface. These poloidal fields are used to examine the Ohmic dissipation present in the Earth's core. To address the question of dissipation, we demand that the 3-D core fields agree with recent observations of the core field structure on the core-mantle boundary. We use these poloidal fields to show that the true lower bound on core dissipation must necessarily lie below a value that we calculate. For 2004 we find that this lower bound must lie below 10 10 W, and when nutation constraints are also considered the bound must lie below 2 × 10 10 W. These numbers are small compared to suggested values of the order of a few TeraWatts. A more restrictive bound may be forthcoming when the time-dependency of the field is considered, using a variational data assimilation technique.

  7. Young Starless Cores Embedded in the Magnetically Dominated Pipe Nebula. II. Extended Data Set

    NASA Astrophysics Data System (ADS)

    Frau, P.; Girart, J. M.; Beltrán, M. T.; Padovani, M.; Busquet, G.; Morata, O.; Masqué, J. M.; Alves, F. O.; Sánchez-Monge, Á.; Franco, G. A. P.; Estalella, R.

    2012-11-01

    The Pipe nebula is a massive, nearby, filamentary dark molecular cloud with a low star formation efficiency threaded by a uniform magnetic field perpendicular to its main axis. It harbors more than a hundred, mostly quiescent, very chemically young starless cores. The cloud is therefore a good laboratory to study the earliest stages of the star formation process. We aim to investigate the primordial conditions and the relation among physical, chemical, and magnetic properties in the evolution of low-mass starless cores. We used the IRAM 30 m telescope to map the 1.2 mm dust continuum emission of five new starless cores, which are in good agreement with previous visual extinction maps. For the sample of nine cores, which includes the four cores studied in a previous work, we derived an A V to N_H_2 factor of (1.27 ± 0.12) × 10-21 mag cm2 and a background visual extinction of ~6.7 mag possibly arising from the cloud material. We derived an average core diameter of ~0.08 pc, density of ~105 cm-3, and mass of ~1.7 M ⊙. Several trends seem to exist related to increasing core density: (1) the diameter seems to shrink, (2) the mass seems to increase, and (3) the chemistry tends to be richer. No correlation is found between the direction of the surrounding diffuse medium magnetic field and the projected orientation of the cores, suggesting that large-scale magnetic fields seem to play a secondary role in shaping the cores. We also used the IRAM 30 m telescope to extend the previous molecular survey at 1 and 3 mm of early- and late-time molecules toward the same five new Pipe nebula starless cores, and analyzed the normalized intensities of the detected molecular transitions. We confirmed the chemical differentiation toward the sample and increased the number of molecular transitions of the "diffuse" (e.g., the "ubiquitous" CO, C2H, and CS), "oxo-sulfurated" (e.g., SO and CH3OH), and "deuterated" (e.g., N2H+, CN, and HCN) starless core groups. The chemically defined

  8. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    PubMed

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.

  9. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-04-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.

  10. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  11. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    PubMed Central

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  12. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    SciTech Connect

    Foerster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  13. Structural variation of solid core and thickness of porous shell of 1.7 μm core-shell silica particles on chromatographic performance: narrow bore columns.

    PubMed

    Omamogho, Jesse O; Hanrahan, John P; Tobin, Joe; Glennon, Jeremy D

    2011-04-15

    Chromatographic and mass transfer kinetic properties of three narrow bore columns (2.1×50 mm) packed with new core-shell 1.7 μm EIROSHELL™-C(18) (EiS-C(18)) particles have been studied. The particles in each column varied in the solid-core to shell particle size ratio (ρ), of 0.59, 0.71 and 0.82, with a porous silica shell thickness of 350, 250 and 150 nm respectively. Scanning and transmission electron microscopy (SEM and TEM), Coulter counter analysis, gas pycnometry, nitrogen sorption analysis and inverse size exclusion chromatography (ISEC) elucidated the physical properties of these materials. The porosity measurement of the packed HILIC and C(18) modified phases provided the means to estimate the phase ratios of the three different shell columns (EiS-150-C(18), EiS-250-C(18) and EiS-350-C(18)). The dependence of the chromatographic performance to the volume fraction of the porous shell was observed for all three columns. The naphtho[2,3-a]pyrene retention factor of k'∼10 on the three EiS-C(18s) employed to obtain the height equivalents to theoretical plates (HETPs) data were achieved by varying the mobile phase compositions and applying the Wilke and Chang relationship to obtain a parallel reduced linear velocity. The Knox fit model gave the coefficient of the reduce HETPs for the three EiS-C(18s). The reduced plate height minimum h(min)=1.9 was achieved for the EiS-150-C(18) column, and generated an efficiency of over 350,000 N/m and h(min)=2.5 equivalent to an efficiency of 200,000 N/m for the EiS-350-C(18) column. The efficiency loss of the EiS-C18 column emanating from the system extra-column volume was discussed with respect to the porous shell thickness.

  14. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  15. Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition

    NASA Astrophysics Data System (ADS)

    Huelser, T. P.; Lorke, A.; Ifeacho, P.; Wiggers, H.; Schulz, C.

    2007-12-01

    In this study, we investigate the synthesis of WO3 and WOx (2.6≥x≤2.8) by adding different concentrations of tungsten hexafluoride (WF6) into a H2/O2/Ar premixed flame within a low-pressure reactor equipped with a particle-mass spectrometer (PMS). The PMS results show that mean particle diameters dp between 5 and 9 nm of the as-synthesized metal-oxides can be obtained by varying the residence time and precursor concentration in the reactor. This result is further validated by N2 adsorption measurements on the particle surface, which yielded a 91 m2/g surface area, corresponding to a spherical particle diameter of 9 nm (Brunauer-Emmett-Teller technique). H2/O2 ratios of 1.6 and 0.63 are selected to influence the stoichiometry of the powders, resulting in blue-colored WOx and white WO3 respectively. X-ray diffraction (XRD) analysis of the as-synthesized materials indicates that the powders are mostly amorphous, and the observed broad reflexes can be attributed to the orthorhombic structure of β-WO3. Thermal annealing at 973 K for 3 h in air resulted in crystalline WO3 comprised of both monoclinic and orthorhombic phases. The transmission electron microscope micrograph analysis shows that the particles exhibit spherical morphology with some degree of agglomeration. Impedance spectroscopy is used for the electrical characterization of tungsten-oxide thin films with a thickness of 50 nm. Furthermore, the temperature-dependent gas-sensing properties of the material deposited on interdigital capacitors are investigated. Sensitivity experiments reveal two contributions to the overall sensitivity, which result from the surface and the core of each particle.

  16. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.

    PubMed

    Balmer, Jennifer A; Mykhaylyk, Oleksandr O; Schmid, Andreas; Armes, Steven P; Fairclough, J Patrick A; Ryan, Anthony J

    2011-07-05

    A two-population model based on standard small-angle X-ray scattering (SAXS) equations is verified for the analysis of core-shell structures comprising spherical colloidal particles with particulate shells. First, Monte Carlo simulations of core-shell structures are performed to demonstrate the applicability of the model. Three possible shell packings are considered: ordered silica shells due to either charge-dependent repulsive or size-dependent Lennard-Jones interactions or randomly arranged silica particles. In most cases, the two-population model produces an excellent fit to calculated SAXS patterns for the simulated core-shell structures, together with a good correlation between the fitting parameters and structural parameters used for the simulation. The limits of application are discussed, and then, this two-population model is applied to the analysis of well-defined core-shell vinyl polymer/silica nanocomposite particles, where the shell comprises a monolayer of spherical silica nanoparticles. Comprehensive SAXS analysis of a series of poly(styrene-co-n-butyl acrylate)/silica colloidal nanocomposite particles (prepared by the in situ emulsion copolymerization of styrene and n-butyl acrylate in the presence of a glycerol-functionalized silica sol) allows the overall core-shell particle diameter, the copolymer latex core diameter and polydispersity, the mean silica shell thickness, the mean silica diameter and polydispersity, the volume fractions of the two components, the silica packing density, and the silica shell structure to be obtained. These experimental SAXS results are consistent with electron microscopy, dynamic light scattering, thermogravimetry, helium pycnometry, and BET surface area studies. The high electron density contrast between the (co)polymer and the silica components, together with the relatively low polydispersity of these core-shell nanocomposite particles, makes SAXS ideally suited for the characterization of this system. Moreover

  17. Particle identification performance of the prototype aerogel RICH counter for the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Iwata, S.; Adachi, I.; Hara, K.; Iijima, T.; Ikeda, H.; Kakuno, H.; Kawai, H.; Kawasaki, T.; Korpar, S.; Križan, P.; Kumita, T.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovic, E.; Yusa, Y.

    2016-03-01

    We have developed a new type of particle identification device, called an aerogel ring imaging Cherenkov (ARICH) counter, for the Belle II experiment. It uses silica aerogel tiles as Cherenkov radiators. For detection of Cherenkov photons, hybrid avalanche photo-detectors (HAPDs) are used. The designed HAPD has a high sensitivity to single photons under a strong magnetic field. We have confirmed that the HAPD provides high efficiency for single-photon detection even after exposure to neutron and γ -ray radiation that exceeds the levels expected in the 10-year Belle II operation. In order to confirm the basic performance of the ARICH counter system, we carried out a beam test at the using a prototype of the ARICH counter with six HAPD modules. The results are in agreement with our expectations and confirm the suitability of the ARICH counter for the Belle II experiment. Based on the in-beam performance of the device, we expect that the identification efficiency at 3.5 GeV/c is 97.4% and 4.9% for pions and kaons, respectively. This paper summarizes the development of the HAPD for the ARICH and the evaluation of the performance of the prototype ARICH counter built with the final design components.

  18. Synthesis of Co/MFe(2)O(4) (M = Fe, Mn) Core/Shell Nanocomposite Particles.

    PubMed

    Peng, Sheng; Xie, Jin; Sun, Shouheng

    2008-01-01

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe(2)O(4) (M = Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe(2)O(4) nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe(2)O(4) nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Comparing to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.

  19. Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries.

    PubMed

    Schmuelling, Guido; Oehl, Nikolas; Knipper, Martin; Kolny-Olesiak, Joanna; Plaggenborg, Thorsten; Meyer, Hinrich-Wilhelm; Placke, Tobias; Parisi, Jürgen; Winter, Martin

    2014-09-05

    Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnOx and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry.

  20. The optical Tamm states at the interface between a photonic crystal and a nanocomposite containing core-shell particles

    NASA Astrophysics Data System (ADS)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2016-06-01

    We investigate the optical Tamm states (OTSs) localized at the interface between a photonic crystal (PC) and a nanocomposite consisting of spherical nanoparticles with a dielectric core and a metallic shell, which are dispersed in a transparent matrix, and is characterized by the resonance permittivity. Spectra of transmission, reflection, and absorption of normally incident light waves by the investigated structure are calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range is studied. It is demonstrated that, along with the significantly extended band gap of the PC, the transmission spectrum contains an additional stopband caused by nanocomposite absorption near the resonance frequency. It is shown that the OTSs can be implemented in two band gaps of the PCs, each corresponding to a certain plasmon resonance frequency of the nanocomposite. It is established that the characteristics of the Tamm state localized at the edge of the PCs significantly depend on the ratio between the particle core volume and the total particle volume.

  1. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations: Hydrography and fluxes

    NASA Astrophysics Data System (ADS)

    Ilicak, Mehmet; Drange, Helge

    2016-04-01

    We compare the simulated Arctic Ocean in fifteen global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II). Most of these models are the ocean and sea-ice components of the coupled climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. We mainly focus on the hydrography of the Arctic interior, the state of Atlantic Water layer and heat and volume transports at the gateways of the Davis Strait, the Bering Strait, the Fram Strait and the Barents Sea Opening. We found that there is a large spread in temperature in the Arctic Ocean between the models, and generally large differences compared to the observed temperature at intermediate depths. Warm bias models have a strong temperature anomaly of inflow of the Atlantic Water entering the Arctic Ocean through the Fram Strait. Another process that is not represented accurately in the CORE-II models is the formation of cold and dense water, originating on the eastern shelves. In the cold bias models, excessive cold water forms in the Barents Sea and spreads into the Arctic Ocean through the St. Anna Through. There is a large spread in the simulated mean heat and volume transports through the Fram Strait and the Barents Sea Opening. The models agree more on the decadal variability, to a large degree dictated by the common atmospheric forcing. We conclude that the CORE-II model study helps us to understand the crucial biases in the Arctic Ocean. The current coarse resolution state-of-the-art ocean models need to be improved in accurate representation of the Atlantic Water inflow into the Arctic and density currents coming from the shelves.

  2. BiFeO₃/α-Fe₂O₃ core/shell composite particles for fast and selective removal of methyl orange dye in water.

    PubMed

    Tseng, Wenjea J; Lin, Ruei-De

    2014-08-15

    BiFeO3/α-Fe2O3 core/shell composite particles featuring fast removal, selective adsorption, and magnetic recycle capability on anionic methyl orange (MO) dye in water was synthesized by a two-step chemical route. A discontinuous and rough shell consisting of the α-Fe2O3 nanoparticles was deposited on the BiFeO3 core surface preferentially, forming raspberry-like core/shell particle morphology. The core/shell particles demonstrated a pronounced adsorption to the MO molecules when compared with particulate mixtures of the same molar ratio. At an initial MO concentration of 2.5×10(-5) M, nearly 80% of the dye molecules were captured by the core/shell particles within 5 min at an acidic pH of 5.2. Desorption of the MO dye could be made easily when the solution pH was adjusted to 9.5. This together with a minute adsorption capacity (<2%) from solutions consisting of cationic methylene blue (MB) dye suggests that the adsorption selectivity was in part due to electrostatic interactions between the dye molecules and the core/shell particles. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Smoothed particle hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Aznar-Siguán, G.; García-Berro, E.; Lorén-Aguilar, P.; Soker, N.; Kashi, A.

    2015-07-01

    The core-degenerate scenario for Type Ia supernovae involves the merger of the hot core of an asymptotic giant branch star and a white dwarf, and might contribute a non-negligible fraction of all thermonuclear supernovae. Despite its potential interest, very few studies, and based on only crude simplifications, have been devoted to investigate this possible scenario, compared with the large efforts invested to study some other scenarios. Here we perform the first three-dimensional simulations of the merger phase, and find that this process can lead to the formation of a massive white dwarf, as required by this scenario. We consider two situations, according to the mass of the circumbinary disc formed around the system during the final stages of the common envelope phase. If the disc is massive enough, the stars merge on a highly eccentric orbit. Otherwise, the merger occurs after the circumbinary disc has been ejected and gravitational wave radiation has brought the stars close enough for the secondary to overflow its Roche lobe radius. Not surprisingly, the overall characteristics of the merger remnants are similar to those found for the double-degenerate scenario, independently of the very different core temperature and of the orbits of the merging stars. They consist of a central massive white dwarf, surrounded by a hot, rapidly rotating corona and a thick debris region.

  4. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins

    PubMed Central

    Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.

    2015-01-01

    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365

  5. The formation of entropy cores in non-radiative galaxy cluster simulations: smoothed particle hydrodynamics versus adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Power, C.; Read, J. I.; Hobbs, A.

    2014-06-01

    We simulate cosmological galaxy cluster formation using three different approaches to solving the equations of non-radiative hydrodynamics - classic smoothed particle hydrodynamics (SPH), novel SPH with a higher order dissipation switch (SPHS), and an adaptive mesh refinement (AMR) method. Comparing spherically averaged entropy profiles, we find that SPHS and AMR approaches result in a well-defined entropy core that converges rapidly with increasing mass and force resolution. In contrast, the central entropy profile in the SPH approach is sensitive to the cluster's assembly history and shows poor numerical convergence. We trace this disagreement to the known artificial surface tension in SPH that appears at phase boundaries. Varying systematically numerical dissipation in SPHS, we study the contributions of numerical and physical dissipation to the entropy core and argue that numerical dissipation is required to ensure single-valued fluid quantities in converging flows. However, provided it occurs only at the resolution limit and does not propagate errors to larger scales, its effect is benign - there is no requirement to build `sub-grid' models of unresolved turbulence for galaxy cluster simulations. We conclude that entropy cores in non-radiative galaxy cluster simulations are physical, resulting from entropy generation in shocked gas during cluster assembly.

  6. Application of a tandem mass spectrometer and core-shell particle column for the determination of 151 pesticides in grains.

    PubMed

    Wang, Jian; Chow, Willis; Cheung, Wendy

    2011-08-24

    A comparison of ultrahigh performance liquid chromatography (UHPLC) with a 2.6 μm core-shell particle column (Kinetex C(18)) and conventional liquid chromatography (LC) with a 3 μm porous particle column (Atlantis dC(18)), coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS), for the determination of 151 pesticides in grains is presented in this study. Pesticides were extracted from grain samples using a procedure known as QuEChERS (quick, easy, cheap, effective, rugged, and safe). Quantification, with an analytical range from 5 to 500 μg/kg, was achieved using matrix-matched standard calibration curves with isotopically labeled standards or a chemical analogue as internal standards. The method performance parameters that included overall recovery, intermediate precision, and measurement uncertainty were evaluated using a designed experiment, that is, the nested design. The UHPLC (Kinetex C(18)) was superior to conventional LC (Atlantis dC(18)) as it yielded a shorter analytical run time, increased method sensitivity, and improved method performance. For UHPLC/ESI-MS/MS (Kinetex C(18)), 90% of the pesticides studied had recoveries between 81 and 110%, 88% of the pesticides had intermediate precision ≤20%, and 84% of the pesticides showed measurement uncertainty ≤40%. As compared to UHPLC/ESI-MS/MS (Kinetex dC(18)), the LC/ESI-MS/MS (Atlantis dC(18)) showed a relatively lower sensitivity, less repeatability, and larger measurement uncertainty. UHPLC/ESI-MS/MS with 2.6 μm core-shell particle column and scheduled MRM proved to be a good choice for quantification or determination of pesticides in grains.

  7. Isocratic and gradient impedance plot analysis and comparison of some recently introduced large size core-shell and fully porous particles.

    PubMed

    Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken

    2013-10-18

    The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime.

  8. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  9. Active galactic nuclei. II - The acceleration of relativistic particles in a cluster of accreting black holes

    NASA Technical Reports Server (NTRS)

    Pacholczyk, A. G.; Stepinski, T. F.

    1988-01-01

    An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.

  10. Preparation of nanosized drug particles by the coating of inorganic cores: naproxen and ketoprofen on alumina.

    PubMed

    Joguet, Laurent; Sondi, Ivan; Matijević, Egon

    2002-07-15

    Nanosized alumina particles with modal diameters of 8 and 13 nm, respectively, were successfully coated by the adsorption of naproxen [(+)-6-methoxy-alpha-methyl-2-naphthalene acetic acid] and ketoprofen [alpha-methyl-3-(4-methylbenzoil) benzene acetic acid] in aqueous and ethanol solutions. The presence of the drugs at the alumina surface was confirmed by attenuated total reflection infrared spectroscopy and electrokinetic measurements, while their bound amounts were assessed by thermogravimetric analysis.

  11. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. II. Varied Shock Wave and Cloud Core Parameters

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-06-01

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of ~10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  12. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  13. Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particles

    NASA Astrophysics Data System (ADS)

    Shen, Fei; An, Ning; Tao, Yifei; Zhou, Hongping; Jiang, Zhaoneng; Guo, Zhongyi

    2016-12-01

    We have investigated the scattering properties of an individual core-shell nanoparticle using the Mie theory, which can be tuned to support both electric and magnetic modes simultaneously. In general, the suppression of forward scattering can be realized by the second Kerker condition. Here, a novel mechanism has to be adopted to explain zero-forward scattering, which originates from the complex interactions between dipolar and quadrupolar modes. However, for lossy and lossless core-shell spherical nanoparticles, zero-forward scattering can never be achieved because the real parts of Mie expansion coefficients are always positive. By adding proper gain in dielectric shell, zero-forward scattering can be found at certain incident wavelengths, which means that all electric and magnetic responses in Mie scattering can be counteracted totally in the forward direction. In addition, if the absolute values of dipolar and quadrupolar terms are in the same order of magnitude, the local scattering minimum and maximum can be produced away from the forward and backward directions due to the interacting effect between the dipolar and quadrupolar terms. Furthermore, by adding suitable gain in shell, super-forward scattering can also be realized at certain incident wavelengths. We also demonstrated that anomalously weak scattering or superscattering could be obtained for the core-shell nanoparticles with suitable gain in shell. In particular, for such a choice of suitable gain in shell, we can obtain zero-forward scattering and anomalously weak scattering at the same wavelength as well as super-forward scattering at another wavelength. These features may provide new opportunities for cloaking, plasmonic lasers, optical antennas, and so on.

  14. Anomalous forward scattering of gain-assisted dielectric shell-coated metallic core spherical particles

    NASA Astrophysics Data System (ADS)

    Shen, Fei; An, Ning; Tao, Yifei; Zhou, Hongping; Jiang, Zhaoneng; Guo, Zhongyi

    2017-08-01

    We have investigated the scattering properties of an individual core-shell nanoparticle using the Mie theory, which can be tuned to support both electric and magnetic modes simultaneously. In general, the suppression of forward scattering can be realized by the second Kerker condition. Here, a novel mechanism has to be adopted to explain zero-forward scattering, which originates from the complex interactions between dipolar and quadrupolar modes. However, for lossy and lossless core-shell spherical nanoparticles, zero-forward scattering can never be achieved because the real parts of Mie expansion coefficients are always positive. By adding proper gain in dielectric shell, zero-forward scattering can be found at certain incident wavelengths, which means that all electric and magnetic responses in Mie scattering can be counteracted totally in the forward direction. In addition, if the absolute values of dipolar and quadrupolar terms are in the same order of magnitude, the local scattering minimum and maximum can be produced away from the forward and backward directions due to the interacting effect between the dipolar and quadrupolar terms. Furthermore, by adding suitable gain in shell, super-forward scattering can also be realized at certain incident wavelengths. We also demonstrated that anomalously weak scattering or superscattering could be obtained for the core-shell nanoparticles with suitable gain in shell. In particular, for such a choice of suitable gain in shell, we can obtain zero-forward scattering and anomalously weak scattering at the same wavelength as well as super-forward scattering at another wavelength. These features may provide new opportunities for cloaking, plasmonic lasers, optical antennas, and so on.

  15. A new tetranuclear copper(II) Schiff base complex containing Cu 4O 4 cubane core: Structural and spectral characterizations

    NASA Astrophysics Data System (ADS)

    Shit, Shyamapada; Rosair, Georgina; Mitra, Samiran

    2011-04-01

    A new tetra-nuclear coordination complex [Cu 4(HL) 4] ( 1) containing Cu 4O 4 cubane core has been synthesized by using Schiff base ligand [(OH)C 6H 4CH dbnd N sbnd C(CH 3)(CH 2OH) 2] (H 3L), obtained by the 1:1 condensation of 2-amino-2-methyl-1,3-propanediol with salicylaldehyde and thoroughly characterized by micro-analytical, FT-IR, UV-Vis, thermal and room temperature magnetic susceptibility measurements. Structural characterization of the complex has been done by single crystal X-ray diffraction analysis. Structural elucidation reveals versatile coordination modes for two identical alkoxo oxygen atoms of the Schiff base ligand; one in its deprotonated form exhibits μ 3-bridging to bind three similar copper(II) centers whilst the protonated one remains as monodentate or non-coordinating. Structural analysis also shows that the Cu 4O 4 cubane core in 1 consists of four μ 3-alkoxo oxygen bridged copper(II) atoms giving an approximately cubic array of alternating oxygen atoms and copper(II) atoms where the metal centers display both distorted square pyramidal and distorted octahedral geometries.

  16. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  17. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  18. Novel co-axial prilling technique for the development of core-shell particles as delayed drug delivery systems.

    PubMed

    Del Gaudio, Pasquale; Auriemma, Giulia; Russo, Paola; Mencherini, Teresa; Campiglia, Pietro; Stigliani, Mariateresa; Aquino, Rita Patrizia

    2014-08-01

    In this study, biocompatible double layered beads consisting of pectin core and alginate shell were prepared through a single step manufacturing process based on prilling apparatus equipped with co-axial nozzles. The core was loaded with piroxicam (PRX) as model non-steroidal anti-inflammatory drug (NSAID). Morphology, size distribution and shape of the double layered beads varied depending on the operative conditions and polymer concentrations. Co-axial nozzles size, applied vibration frequency, gelling conditions and, mainly, polymers mass ratio were identified as critical variables. Particularly, the relative viscosity of polymeric feed solutions inside the nozzle was the key parameter to obtain homogeneous and well-formed coated particles. The produced beads were investigated for the release kinetic in different media. Once PRX was encapsulated within the pectin core, a controlled release pattern was observed. Particularly, beads produced with 4:1 core/shell ratio (F4) released less than 30% of PRX in simulated gastric fluid (SGF) while total liberation of the drug was achieved during the next 3h in simulated intestinal fluid (SIF). More interesting, F4 tested in SIF was able to release drug in a delayed and sustained manner at established time points (2h_8.2%, 3h_32.2%, 4h_70.1% and 5h_about 100%). Based on the above results, co-axial prilling approach is expected to provide success in manufacturing systems with delayed drug release profiles. Such systems may be potentially useful in targeting diseases which are affected by the circadian rhythm, such as chronic inflammation.

  19. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  20. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization.

    PubMed

    Tan, Chau Jin; Chua, Hong Gap; Ker, Kwee Hong; Tong, Yen Wah

    2008-02-01

    Molecular imprinting is a state-of-the-art technique for preparing mimics of natural, biological receptors. Nevertheless, the imprinting of macromolecules like proteins remains a challenge due to their bulkiness and sensitivity to denaturation. In this work, a surface imprinting strategy based on covalently immobilized template molecules was adopted for protein imprinting. Bovine serum albumin (BSA) surface-imprinted submicrometer particles (500-600 nm) with magnetic susceptibility were prepared through a two-stage core-shell miniemulsion polymerization system using methyl methacrylate and ethylene glycol dimethacrylate as functional and cross-linking monomers, respectively. The particles possessed a novel red blood cell-like structure and exhibited a very favorable recognition property toward the template BSA molecules in aqueous medium. In a two-protein system, the particles had shown a very high specific recognition of the template proteins over the nontemplate proteins. The magnetic susceptibility was imparted through the successful encapsulation of Fe3O4 nanoparticles. Their superparamagnetic nature increases their potential applications in the fields such as magnetic bioseparation, cell labeling, and bioimaging. In addition, the importance of template immobilization for successful protein imprinting had also been illustrated to demonstrate the potential of this approach as a general methodology for protein imprinting.

  1. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM

    PubMed Central

    Chua, Eugene Y.D.; Vogirala, Vinod K.; Inian, Oviya; Wong, Andrew S.W.; Nordenskiöld, Lars; Plitzko, Juergen M.; Danev, Radostin; Sandin, Sara

    2016-01-01

    The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein–DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors. PMID:27563056

  2. LUC7L3/CROP inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter activity

    PubMed Central

    Li, Yuan; Ito, Masahiko; Sun, Suofeng; Chida, Takeshi; Nakashima, Kenji; Suzuki, Tetsuro

    2016-01-01

    The core promoter of hepatitis B virus (HBV) genome is a critical region for transcriptional initiation of 3.5 kb, pregenome and precore RNAs and for the viral replication. Although a number of host-cell factors that potentially regulate the viral promoter activities have been identified, the molecular mechanisms of the viral gene expression, in particular, regulatory mechanisms of the transcriptional repression remain elusive. In this study, we identified LUC7 like 3 pre-mRNA splicing factor (LUC7L3, also known as hLuc7A or CROP) as a novel interacting partner of HBV enhancer II and basal core promoter (ENII/BCP), key elements within the core promoter, through the proteomic screening and found that LUC7L3 functions as a negative regulator of ENII/BCP. Gene silencing of LUC7L3 significantly increased expression of the viral genes and antigens as well as the activities of ENII/BCP and core promoter. In contrast, overexpression of LUC7L3 inhibited their activities and HBV replication. In addition, LUC7L3 possibly contributes to promotion of the splicing of 3.5 kb RNA, which may also be involved in negative regulation of the pregenome RNA level. This is the first to demonstrate the involvement of LUC7L3 in regulation of gene transcription and in viral replication. PMID:27857158

  3. Search for heavy long-lived particles that decay to photons at CDF II.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-09-21

    We present the first search for heavy, long-lived particles that decay to photons at a hadron collider. We use a sample of gamma + jet + missing transverse energy events in pp[over] collisions at square root[s] = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb(-1) of collision data, we observe 2 events, consistent with the background estimate of 1.3+/-0.7 events. While our search strategy does not rely on model-specific dynamics, we set cross section limits in a supersymmetric model with [Formula: see text] and place the world-best 95% C.L. lower limit on the [Formula: see text] mass of 101 GeV/c(2) at [Formula: see text].

  4. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  5. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    PubMed

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  6. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  7. Microdosimetry of rat alveolar type II cells irradiated with alpha particles from 239PuO2

    SciTech Connect

    Shen, Z.Y.; Ye, C.Q.; Wu, D.C. )

    1989-11-01

    The alveolar type II cell is one of the critical cells for radiation damage in the lungs after inhalation of radioactive aerosols. With the aid of a Quantimet-970 image analyzer and a VAX-11/780 computer, we calculated the radiation dose to rat alveolar type II cells from alpha particles emitted by {sup 239}PuO{sub 2}. A series of dosimetric parameters for type II cells, including track length distribution, linear energy transfer (LET), values of the specific energy for a single hit of a spherical target (z1), cellular dose, hit number, and their spatial distributions were calculated. By comparing the volume density of type II cells and lung tissue with energy deposited in alveolar type II cells, we found that the energy deposited per unit volume of type II cells was larger than that of lung tissue excluding type II cells. The z1 for spherical targets and the LET across type II cells were less than those in lung tissue excluding type II cells. The age of the rat and damage to lung by inhalation may significantly influence some of the parameters. The neoplastic transformation probability for type II cells is also discussed. The results suggest that the type II cell is an important target cell in the rat lung for exposure to inhaled {sup 239}PuO{sub 2}.

  8. Microdosimetry of rat alveolar type II cells irradiated with alpha particles from 239PuO2.

    PubMed

    Shen, Z Y; Ye, C Q; Wu, D C

    1989-11-01

    The alveolar type II cell is one of the critical cells for radiation damage in the lungs after inhalation of radioactive aerosols. With the aid of a Quantimet-970 image analyzer and a VAX-11/780 computer, we calculated the radiation dose to rat alveolar type II cells from alpha particles emitted by 239PuO2. A series of dosimetric parameters for type II cells, including track length distribution, linear energy transfer (LET), values of the specific energy for a single hit of a spherical target (z1), cellular dose, hit number, and their spatial distributions were calculated. By comparing the volume density of type II cells and lung tissue with energy deposited in alveolar type II cells, we found that the energy deposited per unit volume of type II cells was larger than that of lung tissue excluding type II cells. The z1 for spherical targets and the LET across type II cells were less than those in lung tissue excluding type II cells. The age of the rat and damage to lung by inhalation may significantly influence some of the parameters. The neoplastic transformation probability for type II cells is also discussed. The results suggest that the type II cell is an important target cell in the rat lung for exposure to inhaled 239PuO2.

  9. Self-propelled particles with soft-core interactions: patterns, stability, and collapse.

    PubMed

    D' Orsogna, M R; Chuang, Y L; Bertozzi, A L; Chayes, L S

    2006-03-17

    Understanding collective properties of driven particle systems is significant for naturally occurring aggregates and because the knowledge gained can be used as building blocks for the design of artificial ones. We model self-propelling biological or artificial individuals interacting through pairwise attractive and repulsive forces. For the first time, we are able to predict stability and morphology of organization starting from the shape of the two-body interaction. We present a coherent theory, based on fundamental statistical mechanics, for all possible phases of collective motion.

  10. Flow and particle dispersion in a pulmonary alveolus--part II: effect of gravity on particle transport.

    PubMed

    Chhabra, Sudhaker; Prasad, Ajay K

    2010-05-01

    The acinar region of the human lung comprises about 300x10(6) alveoli, which are responsible for gas exchange between the lung and the blood. As discussed in Part I (Chhabra and Prasad, "Flow and Particle Dispersion in a Pulmonary Alveolus-Part I: Velocity Measurements and Convective Particle Transport," ASME J. Biomech. Eng., 132, p. 051009), the deposition of aerosols in the acinar region can either be detrimental to gas exchange (as in the case of harmful particulate matter) or beneficial (as in the case of inhalable pharmaceuticals). We measured the flow field inside an in-vitro model of a single alveolus mounted on a bronchiole and calculated the transport and deposition of massless particles in Part I. This paper focuses on the transport and deposition of finite-sized particles ranging from 0.25 microm to 4 microm under the combined influence of flow-induced advection (computed from velocity maps obtained by particle image velocimetry) and gravitational settling. Particles were introduced during the first inhalation cycle and their trajectories and deposition statistics were calculated for subsequent cycles for three different particle sizes (0.25 microm, 1 microm, and 4 microm) and three alveolar orientations. The key outcome of the study is that particles particles (d(p)=1 microm) deviate to some extent from streamlines and exhibit complex trajectories. The motion of large particles >or=4 microm is dominated by gravitational settling and shows little effect of fluid advection. Additionally, small and midsize particles deposit at about two-thirds height in the alveolus irrespective of the gravitational orientation whereas the deposition of large particles is governed primarily by the orientation of the gravity vector.

  11. Silica nanoparticles as the adjuvant for the immunisation of mice using hepatitis B core virus-like particles.

    PubMed

    Skrastina, Dace; Petrovskis, Ivars; Lieknina, Ilva; Bogans, Janis; Renhofa, Regina; Ose, Velta; Dishlers, Andris; Dekhtyar, Yuri; Pumpens, Paul

    2014-01-01

    Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10-20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation. Silica nanoparticles were able to adsorb maximally 40% of the added HBc, whereas the adsorption capacity of Alum exceeded 90% at the same VLPs/adjuvant ratio. Both Silica and Alum formed large complexes with HBc VLPs that sedimented rapidly after formulation, as detected by dynamic light scattering, spectrophotometry, and electron microscopy. Both Silica and Alum augmented the humoral response against HBc VLPs to the high anti-HBc level in the case of intraperitoneal immunisation, whereas in subcutaneous immunisation, the Silica-adjuvanted anti-HBc level even exceeded the level adjuvanted by Alum. The adjuvanting of HBc VLPs by Silica resulted in the same typical IgG2a/IgG1 ratios as in the case of the adjuvanting by Alum. The combination of Silica with monophosphoryl lipid A (MPL) led to the same enhancement of the HBc-specific T-cell induction as in the case of the Alum and MPL combination. These findings demonstrate that Silica is not a weaker putative adjuvant than Alum for induction of B-cell and T-cell responses against recombinant HBc VLPs. This finding may have an essential impact on the development of the set of Silica-adjuvanted vaccines based on a long list of HBc-derived virus-like particles as the biological component.

  12. Silica Nanoparticles as the Adjuvant for the Immunisation of Mice Using Hepatitis B Core Virus-Like Particles

    PubMed Central

    Skrastina, Dace; Petrovskis, Ivars; Lieknina, Ilva; Bogans, Janis; Renhofa, Regina; Ose, Velta; Dishlers, Andris; Dekhtyar, Yuri; Pumpens, Paul

    2014-01-01

    Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10–20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation. Silica nanoparticles were able to adsorb maximally 40% of the added HBc, whereas the adsorption capacity of Alum exceeded 90% at the same VLPs/adjuvant ratio. Both Silica and Alum formed large complexes with HBc VLPs that sedimented rapidly after formulation, as detected by dynamic light scattering, spectrophotometry, and electron microscopy. Both Silica and Alum augmented the humoral response against HBc VLPs to the high anti-HBc level in the case of intraperitoneal immunisation, whereas in subcutaneous immunisation, the Silica-adjuvanted anti-HBc level even exceeded the level adjuvanted by Alum. The adjuvanting of HBc VLPs by Silica resulted in the same typical IgG2a/IgG1 ratios as in the case of the adjuvanting by Alum. The combination of Silica with monophosphoryl lipid A (MPL) led to the same enhancement of the HBc-specific T-cell induction as in the case of the Alum and MPL combination. These findings demonstrate that Silica is not a weaker putative adjuvant than Alum for induction of B-cell and T-cell responses against recombinant HBc VLPs. This finding may have an essential impact on the development of the set of Silica-adjuvanted vaccines based on a long list of HBc-derived virus-like particles as the biological component. PMID:25436773

  13. Synthesis of Nanostructured/Macroscopic Low-Density Copper Foams Based on Metal-Coated Polymer Core-Shell Particles.

    PubMed

    Kim, Sung Ho; Bazin, Nick; Shaw, Jessica I; Yoo, Jae-Hyuck; Worsley, Marcus A; Satcher, Joe H; Sain, John D; Kuntz, Joshua D; Kucheyev, Sergei O; Baumann, Theodore F; Hamza, Alex V

    2016-12-21

    A robust, millimeter-sized low-density Cu foam with ∼90% (v/v) porosity, ∼30 nm thick walls, and ∼1 μm diameter spherical pores is prepared by the slip-casting of metal-coated polymer core-shell particles followed by a thermal removal of the polymer. In this paper, we report our key findings that enable the development of the low-density Cu foams. First, we need to synthesize polystyrene (PS) particles coated with a very thin Cu layer (in the range of tens of nanometers). A simple reduction in the amount of Cu deposited onto the PS was not sufficient to form such a low-density Cu foams due to issues related to foam collapse and densification upon the subsequent polymer removal step. Precise control over the morphology of the Cu coating on the particles is essential for the synthesis of a lower density of foams. Second, improving the dispersion of PS-Cu particles in a suspension used for the casting as well as careful optimization of a baking condition minimize the formation of irregular large voids, leading to Cu foams with a more uniform packing and a better connectivity of neighboring Cu hollow shells. Finally, we analyzed mechanical properties of the Cu foams with a depth-sensing indentation test. The uniform Cu foams show a significant improvement in mechanical properties (∼1.5× modulus and ∼3× hardness) compared to those of uncontrolled foam samples with a similar foam density but irregular large voids. Higher surface areas and a good electric conductivity of the Cu foams present a great potential to future applications.

  14. Crystallization of the Photosystem II core complex and its chlorophyll binding subunit CP43 from transplastomic plants of Nicotianatabacum

    PubMed Central

    Piano, Dario; El Alaoui, Sabah; Korza, Henryk J.; Filipek, Renata; Sabala, Izabela; Haniewicz, Patrycja; Buechel, Claudia; De Sanctis, Daniele

    2010-01-01

    Photosystem II from transplastomic plants of Nicotiana tabacum with a hexahistidine tag at the N-terminal end of the PsbE subunit (α-chain of the cytochrome b559) was purified according to the protocol of Fey et al. (BBA 12:1501–1509, 2008). The protein sample was then subjected to two additional gel filtration runs in order to increase its homogeneity and to standardize the amount of detergent. Large three dimensional crystals of the core complex were obtained. Crystals of one of its chlorophyll binding subunits (CP43) in isolation grew in very similar conditions that differed only in the concentration of the detergent. Diffraction of Photosystem II and CP43 crystals at various synchrotron beamlines was limited to a resolution of 7 and 14 Å, respectively. In both cases the diffraction quality was insufficient for an unambiguous assignment of the crystallographic lattice or space group. PMID:21063907

  15. I. Fission probabilities, fission barriers, and shell effects. II. Particle structure functions

    NASA Astrophysics Data System (ADS)

    Jing, Kexing

    1999-11-01

    In Part I, fission excitation functions of osmium isotopes 185,186,187,189 Os produced in 3He + 182,183,184,186W reactions, and of polonium isotopes 209,210,211,212Po produced in 3He/4He + 206,207,208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15 × 10-21 sec and 25 × 10-21 sec for Os and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the α- particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that substracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  16. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    SciTech Connect

    Jing, Kexing

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  17. Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae.

    PubMed

    Tian, Jia; Jin, Jie; Zheng, Fan; Zhao, Hanying

    2010-06-01

    Colloidal particles with polystyrene (PS) cores and gold nanoparticle (AuNP) coronae were prepared on the basis of the self-assembly of AuNP's and PS. Citrate-stabilized AuNP's were dispersed in aqueous solution, and PS with thiol terminal groups (PS-SH) was dissolved in toluene. A stable emulsion was obtained by mixing the two solutions. Optical microscope images indicate that after grafting of PS-SH to the citrate-stabilized AuNP's at liquid-liquid interface, the interfacial tension is reduced and the average size of toluene droplets in the emulsion decreases. Transmission electron microscope (TEM) results also prove the grafting of PS-SH to AuNP's and the location of the hybrid nanoparticles at the liquid-liquid interface. Colloidal particles with PS cores and AuNP coronae were prepared by adding the emulsion to excess methanol. The weight ratio of PS-SH to AuNP exerts a significant effect on the size of colloidal particles. TEM and dynamic light scattering results both indicate that the size of colloidal particles increases with the weight ratio. The application of the core-shell-structured colloidal particles to protein separation was also investigated in this research. Colloidal particles with PS-coated magnetic nanoparticles in the cores were also prepared by this strategy.

  18. Silicate core-organic refractory mantle particles as interstellar dust and as aggregated in comets and stellar disks.

    PubMed

    Greenberg, J M; Li, A

    1997-01-01

    The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.

  19. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, hλ(r ,r') , in which interactions λ u (r ,r') are gradually switched on as λ changes from 0 to 1. The function hλ(r ,r') is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure cλ(r ,r') ≈-λ β u (r ,r') , known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  20. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles.

    PubMed

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, h_{λ}(r,r^{'}), in which interactions λu(r,r^{'}) are gradually switched on as λ changes from 0 to 1. The function h_{λ}(r,r^{'}) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure c_{λ}(r,r^{'})≈-λβu(r,r^{'}), known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  1. Polymer blend particles with defined compositions for targeting antigen to both class I and II antigen presentation pathways.

    PubMed

    Tran, Kenny K; Zhan, Xi; Shen, Hong

    2014-05-01

    Defense against many persistent and difficult-to-treat diseases requires a combination of humoral, CD4(+) , and CD8(+) T-cell responses, which necessitates targeting antigens to both class I and II antigen presentation pathways. In this study, polymer blend particles are developed by mixing two functionally unique polymers, poly(lactide-co-glycolide) (PLGA) and a pH-responsive polymer, poly(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate) (DMAEMA-co-PAA-co-BMA). Polymer blend particles are shown to enable the delivery of antigens into both class I and II antigen presentation pathways in vitro. Increasing the ratio of the pH-responsive polymer in blend particles increases the degree of class I antigen presentation, while maintaining high levels of class II antigen presentation. In a mouse model, it is demonstrated that a significantly higher and sustained level of CD4(+) and CD8(+) T-cell responses, and comparable antibody responses, are elicited with polymer blend particles than PLGA particles and a conventional vaccine, Alum. The polymer blend particles offer a potential vaccine delivery platform to generate a combination of humoral and cell-mediated immune responses that insure robust and long-lasting immunity against many infectious diseases and cancers.

  2. Polymer blend particles with defined compositions for targeting antigen to both class I and II antigen presentation pathways

    PubMed Central

    Tran, Kenny K.; Zhan, Xi; Shen, Hong

    2013-01-01

    Defense against many persistent and difficult-to-treat diseases requires a combination of humoral, CD4+ and CD8+ T cell responses, which necessitates targeting antigens to both class I and II antigen presentation pathways. In this study, we developed polymer blend particles by mixing two functionally unique polymers, poly(lactide-co-glycolide) (PLGA) and a pH-responsive polymer, poly(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate) (DMAEMA-co-PAA-co-BMA). We showed polymer blend particles enabled the delivery of antigens into both class I and II antigen presentation pathways in vitro. Increasing the ratio of the pH-responsive polymer in blend particles increased the degree of class I antigen presentation, while maintaining high levels of class II antigen presentation. In a mouse model, we demonstrated that a significantly higher and sustained level of CD4+ and CD8+ T cell responses, and comparable antibody responses, were elicited with polymer blend particles than PLGA particles and a conventional vaccine, Alum. The polymer blend particles offer a potential vaccine delivery platform to generate a combination of humoral and cell-mediated immune responses that insure robust and long-lasting immunity against many infectious diseases and cancers. PMID:24124123

  3. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.

    PubMed

    Sant'Angelo, Derek B; Robinson, Eve; Janeway, Charles A; Denzin, Lisa K

    2002-09-01

    CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.

  4. Core II Materials for Rural Agricultural Programs. Units A-D.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th-grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are orientation to agricultural occupations (orientation to vocational agricultural course and developing effective study…

  5. Core II Materials for Rural Agriculture Programs. Units E-H.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are crop science (harvesting farm crops and growing small grains); soil science and conservation of natural resources…

  6. Integration of Skills and Competencies in the Missouri Marketing Education Core Curriculum. Section II.

    ERIC Educational Resources Information Center

    Ruhland, Sheila K.; Wilkinson, Richard F.

    This publication contains teaching activities for the Fundamentals of Marketing and Advanced Marketing curriculum. Chapter 1 presents an alignment of the marketing education core competencies within the nine curriculum units for Fundamentals of Marketing and Advanced Marketing as they relate to the basic academic skills, advanced academic skills,…

  7. Core II Materials for Metropolitan Agriculture/Horticulture Programs. Units G-L.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This second volume of a 2-volume curriculum guide contains 12 problem areas selected as suggested areas of study to be included in a core curriculum for 10th-grade or second-year students enrolled in a metropolitan agriculture program. The 12 problem areas are divided into 5 units: Growing and Managing Horticultural Crops (4 problem areas),…

  8. Screen of multifunctional monoclonal antibodies against hepatitis B core virus-like particles.

    PubMed

    Sun, Chang; Ding, Fei-Xiang; Wang, Fang; He, Xiao-Wen; He, Ying; Li, Zhao-Shen; Sun, Shu-Han

    2009-06-01

    HBc-VLP can be used in an epitope presentation system to carry foreign epitopes and mimic live virus in order to study viral particle uptake, virion-mediated activation and antigen presentation by dendritic cells. In this study, a multifunctional mAb was produced using a novel research strategy. A truncated HBc-VLP bone vector with a special conformation was used as an immunogen and the target hybridoma cell lines were screened by a series of tests; including ELISA, Western blot, and cellular immunofluorescence based on the epitope presentation system. The screened monoclonal antibody was used to identify the HBc-VLP vector, a fusion HBc-VLP vaccine, and intracellular HBV capsids. The new strategy facilitated acquisition of the desired mAbs and will serve as a reference for other VLP-related research.

  9. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine.

  10. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies

    NASA Astrophysics Data System (ADS)

    Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin

    2014-05-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter ( D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) ( z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected

  11. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies

    PubMed Central

    2014-01-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter (D4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) (z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was

  12. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies.

    PubMed

    Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin

    2014-01-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance ((1)H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter (D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) (z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was

  13. Synthesis of polystyrene core/SiO2 shell composite particles and fabrication of SiO2 capsules out of them

    NASA Astrophysics Data System (ADS)

    Terekhin, V.

    2017-01-01

    Systemic studies on the dependence of the morphology of polystyrene core/SiO2 shell composite particles on the conditions of their fabrication have been performed. Spherical polystyrene particles synthesized in the presence of a cationic initiator of polymerization were used as cores. SiO2 shells were formed by modified Stober’s method. Exposure of the synthesized composite particles to high temperatures has been shown to cause destruction of their polystyrene core, thereby allowing the formation of mesoporous SiO2 capsules with a mean pore diameter of ~3 nm and specific surface area of ~270 m2/g. Model experiments on loading the SiO2 capsules with amoxicillin have been carried out. Spectrophotometry in the UV and visible spectral regions has been used to estimate the kinetics of amoxicillin release from the SiO2 capsules.

  14. The mutable nature of particle-core excitations with spin in the one-valence-proton nucleus 133Sb

    NASA Astrophysics Data System (ADS)

    Bocchi, G.; Leoni, S.; Fornal, B.; Colò, G.; Bortignon, P. F.; Bottoni, S.; Bracco, A.; Michelagnoli, C.; Bazzacco, D.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J.-M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Fraile, L. M.; Lozeva, R.; Belvito, B.; Benzoni, G.; Bruce, A.; Carroll, R.; Cieplicka-Oryǹczak, N.; Crespi, F. C. L.; Didierjean, F.; Jolie, J.; Korten, W.; Kröll, T.; Lalkovski, S.; Mach, H.; Mărginean, N.; Melon, B.; Mengoni, D.; Million, B.; Nannini, A.; Napoli, D.; Olaizola, B.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Saed-Samii, N.; Szpak, B.; Vedia, V.

    2016-09-01

    The γ-ray decay of excited states of the one-valence-proton nucleus 133Sb has been studied using cold-neutron induced fission of 235U and 241Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between γ-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 μs isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus 132Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin.

  15. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer

    SciTech Connect

    Pandya, Santosh P.; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D.; Govindarajan, J.

    2013-02-15

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a= 25 cm and major radius, R= 75 cm) using a 45 Degree-Sign parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and {Delta}E/E of high-energy channel has been found to be {approx}10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature T{sub i}(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically T{sub e}(0) {approx} 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  16. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer.

    PubMed

    Pandya, Santosh P; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D; Govindarajan, J

    2013-02-01

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a = 25 cm and major radius, R = 75 cm) using a 45° parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and ΔE∕E of high-energy channel has been found to be ∼10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature Ti(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically Te(0) ∼ 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  17. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor.

    PubMed

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-29

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using 'greener' chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50–75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 10(3) mA cm−2 and 17.7 mW cm−2 at 8 V; it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  18. Properties of oxygen-evolving photosystem-II particles from Phormidium laminosum, a thermophilic blue--green alga.

    PubMed Central

    Stewart, A C; Bendall, D S

    1981-01-01

    1. O2-evolving Photosystem-II particles from the thermophilic blue--green alga Phormidium laminosum contained 1 mol of Mn/13--17 mol of chlorophyll a compared with 1 mol of Mn/65--75 mol of chlorophyll a in unfractionated membranes. 2. At least two-thirds of the Mn in the Photosystem-II particles was removed by mild heating and by treatment with Tris or EDTA, with concomitant loss of O2 evolution. However, irreversible inactivation was also caused by washing in buffers without MgCl2, and this inactivation was not accompanied by a corresponding loss of Mn. 3. Bivalent cations (Mg2+ or Ca2+), Cl- or Br- ions and at least 20% (v/v) glycerol were required for maximum stability of O2 evolution. 4. The Photosystem-II particles were enriched in high-potential cytochrome b-559 (1 mol of cytochrome/50--60 mol of chlorophyll a) and in component C-550, and had a photosynthetic-unit size of 40--70 molecules of chlorophyll a. 5. The absorption spectrum at 77 K showed a preponderance of shorter-wavelength forms of chlorophyll a in the Photosystem-II particles, and in the fluorescence emission spectrum at 77 K there were major chlorophyll fluorescence bands at 684 nm and 695 nm, with almost no fluorescence in the far-red region. 6. Analysis of the lipid and protein contents showed that the Photosystem-II particles were not chemically pure (for example, all of the membrane-bound cytochromes and cytochrome c-549 were present), but their high O2-evolution activity and good optical properties make them useful for functional studies on Photosystem-II and O2 evolution. Images Fig. 5. Fig. 6. PMID:6796068

  19. The relationship of shock-associated kilometric radio emission with metric type II bursts and energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Cliver, E. W.; Cane, H. V.

    1986-01-01

    Shock-associated (SA) events from 1978 to 1982 are compared with metric type II bursts and solar energetic particle (SEP) events. Most metric type II bursts are not obviously associated with SA events at 1980 kHz. Metric type II bursts associated with magnetically well connected flares and SA emission are well correlated with SEP events; those without SA emission are poorly correlated with SEP events. The largest SEP events from flares at any longitude are well correlated with SAs. These results are consistent with the hypothesis that the escaping electrons giving rise to SA emission are accelerated in coronal shocks.

  20. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    SciTech Connect

    Prasad, Kunj Bihari

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  1. Enhanced photoluminescence properties of methylene blue dye encapsulated in nanosized hydroxyapatite/silica particles with core-shell structure

    NASA Astrophysics Data System (ADS)

    Ge, Xiaolu; Li, Chengfeng; Fan, Chengyu; Feng, Xiaoxing; Cao, Bingqiang

    2013-11-01

    Organic dye of methylene blue (MB) was encapsulated in core-shell structured hydroxyapatite/silica particles (HAp/silica-MB) through a modified Stöber method with the addition of polyvinylpyrrolidone molecules. It was found that MB molecules were released from HAp/silica-MB at a slower rate than those from silica-MB in deionized water. In phosphate buffered saline (pH: 7.2-7.4) and acidic solutions (pH: 1.5-1.6), the penetration of ions in the interface influenced the interaction between HAp and MB molecules, which resulted in the rapid release of MB molecules from HAp/silica-MB. From the UV-Vis absorbance spectra, one could see that MB molecules in HAp/silica-MB were weakly aggregated in comparison with those in silica-MB. For HAp/silica-MB, enhanced luminescence properties were observed in the photoluminescence spectra and dual luminescence with two emission peaks were caused by the presence of monomers and dimers. Contrarily, no photoluminescence emission was detected for samples of free MB and silica-MB under the same excitation condition because of the self-quenching effect. It was the adsorption of MB molecules on HAp that had resulted in the enlargement of intramolecular distance and the reduction of self-quenching effect. These hybrid particles with enhanced luminescent properties might find wide applications in the field of bioanalysis, bioseparation, and biomedical imaging.

  2. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications.

    PubMed

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-26

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  3. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    NASA Astrophysics Data System (ADS)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  4. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles.

    PubMed

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus.

  5. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    PubMed Central

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-01-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26113394

  6. Antiviral Activity of Gold/Copper Sulfide Core/Shell Nanoparticles against Human Norovirus Virus-Like Particles

    PubMed Central

    Broglie, Jessica Jenkins; Alston, Brittny; Yang, Chang; Ma, Lun; Adcock, Audrey F.; Chen, Wei; Yang, Liju

    2015-01-01

    Human norovirus is a leading cause of acute gastroenteritis worldwide in a plethora of residential and commercial settings, including restaurants, schools, and hospitals. Methods for easily detecting the virus and for treating and preventing infection are critical to stopping norovirus outbreaks, and inactivation via nanoparticles (NPs) is a more universal and attractive alternative to other physical and chemical approaches. Using norovirus GI.1 (Norwalk) virus-like particles (VLPs) as a model viral system, this study characterized the antiviral activity of Au/CuS core/shell nanoparticles (NPs) against GI.1 VLPs for the rapid inactivation of HuNoV. Inactivation of VLPs (GI.1) by Au/CuS NPs evaluated using an absorbance-based ELISA indicated that treatment with 0.083 μM NPs for 10 min inactivated ~50% VLPs in a 0.37 μg/ml VLP solution and 0.83 μM NPs for 10 min completely inactivated the VLPs. Increasing nanoparticle concentration and/or VLP-NP contact time significantly increased the virucidal efficacy of Au/CuS NPs. Changes to the VLP particle morphology, size, and capsid protein were characterized using dynamic light scattering, transmission electron microscopy, and Western blot analysis. The strategy reported here provides the first reported proof-of-concept Au/CuS NPs-based virucide for rapidly inactivating human norovirus. PMID:26474396

  7. Refactoring the Six-Gene Photosystem II Core in the Chloroplast of the Green Algae Chlamydomonas reinhardtii.

    PubMed

    Gimpel, Javier A; Nour-Eldin, Hussam H; Scranton, Melissa A; Li, Daphne; Mayfield, Stephen P

    2016-07-15

    Oxygenic photosynthesis provides the energy to produce all food and most of the fuel on this planet. Photosystem II (PSII) is an essential and rate-limiting component of this process. Understanding and modifying PSII function could provide an opportunity for optimizing photosynthetic biomass production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct. Complementation of the knockout strain with the core PSII synthetic module from three different green algae resulted in reconstitution of photosynthetic activity to 85, 55, and 53% of that of the wild-type, demonstrating that the PSII core can be exchanged between algae species and retain function. The strains, synthetic cassettes, and refactoring strategy developed for this study demonstrate the potential of synthetic biology approaches for tailoring oxygenic photosynthesis and provide a powerful tool for unraveling PSII structure-function relationships.

  8. Glucose sensing through Fano resonances in mesoscale silica core-gold shell particles arrays

    NASA Astrophysics Data System (ADS)

    Pincella, Francesca; Huang, Zhiwei

    2016-03-01

    We report the development of a versatile, cheap and reusable plasmonic sensor able to detect glucose in the physiological concentration range by means of a simple label-free optical detection scheme. In order to achieve the aforementioned goal we applied a self-assembly deposition technique for the large-scale arraying of mesoscale gold nanoshell particles. Different from metallic nanospheres arrays, the localized surface plasmon resonances of gold nanoshells arrays extend in both the visible and near-infrared range, making them extremely promising for their use in biological media. Furthermore, the optical response of mesoscale gold nanoshells arrays showed another remarkable characteristic, which is the presence of various Fano resonances that have the advantage of enhancing the sensitivity of the plasmonic substrate to the external media thanks to their sharp features and increased spectral contrast. The plasmonic sensor was shown to have an extended working range with a good linear response for large refractive index shifts, where a bulk refractive index sensitivity of 0.93 RIU-1 (RIU, refractive index units) was achieved experimentally. In addition, the plasmonic sensor could detect aqueous glucose solutions in the blood concentration range (0-25 mM), with a sensitivity of 0.24 M-1.

  9. Preparation and characterization of polymer electrolyte membranes based on silicon-containing core-shell structured nanocomposite latex particles

    NASA Astrophysics Data System (ADS)

    Zhong, Shuangling; Sun, Chenggang; Gao, Yushan; Cui, Xuejun

    2015-09-01

    A series of silicon-containing core-shell structured polyacrylate/2-acrylamido-2-methyl-1-propanesulfonic acid (SiO2-CS-PA/A) nanocomposite latex particles are prepared by the emulsifier-free emulsion polymerization of acrylate monomers and various amount of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) with colloidal nanosilica particles as seed. The chemical and morphological structures of latex particles with high monomer conversion are determined using Fourier transform infrared (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The SiO2-CS-PA/A nanocomposite membranes are fabricated through pouring the latex onto a clean surface of glass and drying at 60 °C for 10 h and 120 °C for 2 h. The nanocomposite membranes possess good thermal and dimensional stability. In addition, in comparison to Nafion® 117, the nanocomposite membranes exhibit moderate proton conductivity, significantly better methanol barrier and selectivity. The methanol diffusion coefficient is in the range of 1.03 × 10-8 to 5.26 × 10-8 cm2 s-1 which is about two orders of magnitude lower than that of Nafion® 117 (2.36 × 10-6 cm2 s-1). The SiO2-CS-PA/A 5 membrane shows the highest selectivity value (2.34 × 105 S cm-3) which is approximately 11.0 times of that (2.13 × 104 S cm-3) of Nafion® 117. These results indicate that the nanocomposite membranes are promising candidates to be used as polymer electrolyte membranes in direct methanol fuel cells.

  10. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.

  11. Wrinkle-assisted linear assembly of hard-core/soft-shell particles: impact of the soft shell on the local structure.

    PubMed

    Müller, Mareen; Karg, Matthias; Fortini, Andrea; Hellweg, Thomas; Fery, Andreas

    2012-04-07

    This article addresses wrinkle assisted assembly of core-shell particles with hard cores and soft poly-(N-isopropylacrylamide) shells. As core materials we chose silica as well as silver nanoparticles. The assembled structures show that the soft shells act as a separator between the inorganic cores. Anisotropic alignment is found on two length scales, macroscopically guided through the wrinkle structure and locally due to deformation of the polymer shell leading to smaller inter-core separations as compared to assembly on flat substrates without confinement. The structures were analysed by means of scanning electron microscopy. Radial distribution functions are shown, clearly highlighting the impact of confinement on nearest neighbour distances and symmetry. The observed ordering is directly compared to Monte-Carlo simulations for hard-core/soft-shell particles, showing that the observed symmetries are a consequence of the soft interaction potential and differ qualitatively from a hard-sphere situation. For the silver-poly-(N-isopropylacrylamide) particles, we show UV-vis absorbance measurements revealing optical anisotropy of the generated structures due to plasmon coupling. Furthermore, the high degree of order of the assembled structures on macroscopic areas is demonstrated by laser diffraction effects.

  12. Facile fabrication of core-shell structured magnetic Fe3O4/cross-linked polyphosphazene nanocomposite particles with high stability

    NASA Astrophysics Data System (ADS)

    Wang, Xuzhe; Wang, Minghuan; Fu, Jianwei; Zhang, Chao; Xu, Qun

    2013-08-01

    We herein report a facile approach to the fabrication of core-shell structured magnetic Fe3O4/poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanocomposite particles via precipitation polymerization of comonomers hexachlorocyclotriphosphazene and 4,4'-sulfonyldiphenol in the presence of Fe3O4 nanopaticles. The morphology, composition, thermal property, and magnetic property of the magnetic nanocomposite particles were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectra, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer, respectively. Results indicated that the submicron-sized magnetic nanocomposite particles own core/shell structures, 410 °C of initial decomposition temperature under an air atmosphere, and 6.2 emu/g of saturation magnetization, which should make them have potential applications in biotechnology and catalyst supports. Furthermore, we also proposed a possible formation mechanism of these magnetic Fe3O4/PZS nanocomposite particles.

  13. Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I - The solar Ca II K line core emission

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Cote, J.; Zwaan, C.; Saar, S. H.

    1989-01-01

    Observations of a solar active region complex and its surroundings are used to establish a quantitative relation between the Ca II K line core intensity and magnetic flux density. The Ca II K line core intensity is transformed to a Ca II H + K line core flux density to facilitate a comparison of solar and stellar data. A new absolute calibration for the Mount Wilson Ca II H + K fluxes for G-type dwarfs is derived. The minimum Ca II K flux, found in the centers of supergranulation cells in quiet regions on the sun, is identical to the minimum flux that is observed for solar-type stars. An expression is presented for the nonlinear trend between the Ca II H + K line core excess flux density and the absolute value of the magnetic flux density. Models that explain the nonlinearity of the mean trend and the large intrinsic scatter about it are discussed. The solar data define a relation that is similar to the relation between stellar hemisphere-average magnetic flux densities and Ca II H + K excess flux densities.

  14. Rapid removal of Hg(II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles.

    PubMed

    He, Feng; Wang, Wei; Moon, Ji-Won; Howe, Jane; Pierce, Eric M; Liang, Liyuan

    2012-08-01

    The surfaces of Zn-doped biomagnetite nanostructured particles were functionalized with (3-mercaptopropyl)trimethoxysilane (MPTMS) and used as a high-capacity and collectable adsorbent for the removal of Hg(II) from water. Fourier transform infrared spectroscopy (FTIR) confirmed the attachment of MPTMS on the particle surface. The crystallite size of the Zn-doped biomagnetite was ∼17 nm, and the thickness of the MPTMS coating was ∼5 nm. Scanning transmission electron microscopy and dynamic light scattering analyses revealed that the particles formed aggregates in aqueous solution with an average hydrodynamic size of 826 ± 32 nm. Elemental analyses indicate that the chemical composition of the biomagnetite is Zn(0.46)Fe(2.54)O(4), and the loading of sulfur is 3.6 mmol/g. The MPTMS-modified biomagnetite has a calculated saturation magnetization of 37.9 emu/g and can be separated from water within a minute using a magnet. Sorption of Hg(II) to the nanostructured particles was much faster than other commercial sorbents, and the Hg(II) sorption isotherm in an industrial wastewater follows the Langmuir model with a maximum capacity of ∼416 mg/g, indicating two -SH groups bonded to one Hg. This new Hg(II) sorbent was stable in a range of solutions, from contaminated water to 0.5 M acid solutions, with low leaching of Fe, Zn, Si, and S (<10%).

  15. The Lithium isotope ratio in Population II halo dwarfs: A proposed test of the late decaying massive particle nucleosynthesis scenario

    SciTech Connect

    Brown, L.; Schramm, D.N.

    1988-02-01

    It is shown that observations of the Lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations. 15 refs., 3 figs., 2 tabs.

  16. The lithium isotope ratio in Population II halo dwarfs - A proposed test of the late decaying massive particle nucleosynthesis scenario

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence; Schramm, David N.

    1988-01-01

    It is shown that observations of the lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations.

  17. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  18. Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma

    PubMed Central

    Kido, Toshimi; Kurata, Hideaki; Kondo, Kazuo; Itakura, Hiroshige; Okazaki, Mitsuyo; Urata, Takeyoshi; Yokoyama, Shinji

    2016-01-01

    Plasma concentration of apoA-I, apoA-II and apoA-II-unassociated apoA-I was analyzed in 314 Japanese subjects (177 males and 137 females), including one (male) homozygote and 37 (20 males and 17 females) heterozygotes of genetic CETP deficiency. ApoA-I unassociated with apoA-II markedly and linearly increased with HDL-cholesterol, while apoA-II increased only very slightly and the ratio of apoA-II-associated apoA-I to apoA-II stayed constant at 2 in molar ratio throughout the increase of HDL-cholesterol, among the wild type and heterozygous CETP deficiency. Thus, overall HDL concentration almost exclusively depends on HDL with apoA-I without apoA-II (LpAI) while concentration of HDL containing apoA-I and apoA-II (LpAI:AII) is constant having a fixed molar ratio of 2 : 1 regardless of total HDL and apoA-I concentration. Distribution of apoA-I between LpAI and LpAI:AII is consistent with a model of statistical partitioning regardless of sex and CETP genotype. The analysis also indicated that LpA-I accommodates on average 4 apoA-I molecules and has a clearance rate indistinguishable from LpAI:AII. Independent evidence indicated LpAI:A-II has a diameter 20% smaller than LpAI, consistent with a model having two apoA-I and one apoA-II. The functional contribution of these particles is to be investigated. PMID:27526664

  19. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core

    PubMed Central

    Truong, David M.; Sidote, David J.; Russell, Rick; Lambowitz, Alan M.

    2013-01-01

    Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA (“ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites (“retrohoming”). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg2+ concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg2+ transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg2+ concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg2+ concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg2+ binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg2+-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg2+ concentrations, with implications for evolution and potential applications in gene targeting. PMID:24043808

  20. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion.

  1. Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core-Shell Plasmonic Particles.

    PubMed

    Malekshahi Byranvand, Mahdi; Nemati Kharat, Ali; Taghavinia, Nima; Dabirian, Ali

    2016-06-29

    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core-shell particles is related to the large number of hybrid photonic-plasmonic resonance modes that they support.

  2. Structure and optical properties of new lead(II) coordination polymers and PbO nanoparticles core of polymer

    NASA Astrophysics Data System (ADS)

    Amini, Mostafa M.; Najafi, Ezzatollah; Dehghani, Ali; Ng, Seik Weng

    2015-03-01

    Two lead(II) coordination polymers, [Pb2(4,4‧-bipy)(NO3)4]n (1) and [Pb4(4,4‧-bipy)2(NO3)8(PhN2O2)2]n (2), were synthesized by reaction of lead(II) nitrate with the 4,4‧-bipyridine (4,4‧-bipy) and cupferron ([PhN(O)NO]NH4) ligands and characterized by 1H and 13C NMR, IR, and UV spectroscopies and elemental analysis. The molecular structure of 2 was determined by single-crystal X-ray diffraction. Photoluminescence studies of complexes showed that a good correlation exists between the structures of complexes and emission wavelengths. Utilization of cupferron ligand as a second ligand in the structure of 2 resulted in a red-shift in the both absorption and fluorescence spectra and moderately enhanced the photoluminescence intensity. Lead(II) oxide core that resulted from direct thermal decomposition of complex 2 at 600 °C in air was characterized by X-ray powder diffraction and scanning electron microscopy. The photoluminescence emission spectrum of PbO nanoparticles revealed a strong blue emission band centered at 472 nm, which might be associated with oxygen vacancies.

  3. Collapse and Fragmentation Models of Prolate Molecular Cloud Cores. II. Initial Differential Rotation

    NASA Astrophysics Data System (ADS)

    Di G. Sigalotti, Leonardo

    1998-05-01

    The prevalence of companions to pre-main-sequence stars and the emerging observational evidence for binary and multiple protostellar condensations suggest that fragmentation during protostellar collapse is a mechanism that may occur frequently in the star formation process. Here a second-order accurate hydrodynamic code has been used to investigate the gravitational (postmagnetic) collapse and fragmentation of low-mass (~1 M⊙), small (~0.05 pc) molecular cloud cores, starting from moderately centrally condensed (Gaussian), prolate (2:1 and 4:1 axial ratios) configurations with varying thermal energies (α) and degrees of differential rotation (ν = 1/3 and 2/3). To facilitate comparisons with previous collapse calculations of uniformly rotating prolate cloud cores (Sigalotti & Klapp), all the models were made to start with a ratio of rotational to gravitational energy of β ~ 0.036. The results indicate that prolate clouds are highly susceptible to binary fragmentation and that with respect to uniformly rotating initial conditions, differential rotation plays no role in either determining or enhancing fragmentation in initially slowly rotating clouds. In contrast to the fragmentation criteria previously established by Boss and Myhill, the results also indicate that clouds with α = 0.56 and varied prolateness collapse in a similar fashion, producing intermediate central condensations of oblate spheroidal shape before fragmenting into either a binary (2:1 clouds) or multiple protostellar core (4:1 clouds). The models with α <= 0.45 all produced binary systems after having formed intermediate central condensations, which might be of prolate ellipsoidal (2:1 clouds) or narrow cylindrical (4:1 clouds) shape. The mass and separation of the binary fragments increase with decreasing α and with an increase of both the degree of differential rotation and the cloud elongation. The results imply that for initial low β, the degree of cloud prolateness has a greater effect

  4. Mantle formation, coagulation, and the origin of cloud/core shine. II. Comparison with observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Dartois, E.; Godard, M.; Gavilan, L.

    2016-04-01

    Context. Many dense interstellar clouds are observable in emission in the near-IR (J, H, and K photometric bands), commonly referred to as "Cloudshine", and in the mid-IR (Spitzer IRAC 3.6 and 4.5 μm bands), the so-called "Coreshine". These C-shine observations have usually been explained in terms of grain growth but no model has yet been able to self-consistently explain the dust spectral energy distribution from the near-IR to the submm. Aims: Our new core/mantle evolutionary dust model, The Heterogeneous dust Evolution Model at the IaS (THEMIS), has been shown to be valid in the far-IR and submm. We want to demonstrate its ability to reproduce the C-shine observations. Methods: Our starting point is a physically motivated core/mantle dust model. It consists of three dust populations: small poly-aromatic-rich carbon grains, bigger core/mantle grains with mantles of aromatic-rich carbon, and cores made of either amorphous aliphatic-rich carbon or amorphous silicate. Then, we assume an evolutionary path where these grains, when entering denser regions, may first form a second aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon from the gas phase), second coagulate together to form large aggregates, and third accrete gas phase molecules coating them with an ice mantle. To compute the corresponding dust emission and scattering, we use a 3D Monte Carlo radiative transfer code. Results: We show that our global evolutionary dust modelling approach THEMIS allows us to reproduce C-shine observations towards dense starless clouds. Dust scattering and emission is most sensitive to the cloud central density and to the steepness of the cloud density profile. Varying these two parameters leads to changes that are stronger in the near-IR, in both the C-shine intensity and profile. Conclusions: With a combination of aliphatic-rich mantle formation and low-level coagulation into aggregates, we can self-consistently explain the observed C-shine and far

  5. Water formation in early solar nebula: II-Collapsing cloud core

    NASA Astrophysics Data System (ADS)

    Tornow, C.; Gast, P.; Motschmann, U.; Kupper, S.; Kührt, E.; Pelivan, I.

    2014-08-01

    The formation of water is a repetitive process and depends on the physical conditions in the different stages of the solar nebula and early solar system. Our solar nebula model considers the thermal and chemical evolution of a collapsing globular cloud core. We simulate the collapse with a semi-analytical model which is based on a multi-zone density distribution. This model describes the formation of a central protostellar object surrounded by a disk and a thin outer envelope. It considers an adiabatic equation of state, viscous gas flow and a resistive magnetic field. Due to the low temperatures in the hydrostatic stage of the core, icy layers of water mixed with other molecules build on the dust grains. In the course of the collapse the ice sublimates and drives a complex chemical evolution located in a warm region around the proto-stellar object called hot corino. Moreover, the relatively high temperatures in this region allow the gas phase formation of water together with other molecules. The abundances of the chemical compounds are computed from rate equations solved in a Lagrangian grid. We can show that there was high water density in the early and late accretion zone of the Earth. This water was sublimated from the dust or formed by hot neutral reactions in the gas phase. Thus, according to our collapse model, there were two sources delivering the water incorporated into the Earth.

  6. Particle identification with the TOP and ARICH detectors at Belle II

    NASA Astrophysics Data System (ADS)

    Torassa, E.

    2016-07-01

    The SuperKEKB e+e- collider will provide 40 times higher instantaneous luminosity than the KEKB collider. The Belle II detector, located at the collision point, is the upgrade of the Belle detector. The particle identification will be improved by replacing the aerogel threshold counter with two new high performance Cherenkov detectors: the time-of-propagation (TOP) in the barrel region and the focusing aerogel (ARICH) in the forward region. The time-of-propagation sub-detector consists of quartz radiator bars and micro-channel plate photomultiplier tubes. The Cherenkov photons are produced and propagated through the quartz radiator, and after multiple internal reflections they are detected by the photomultiplier tubes. Photons with different Cherenkov angles reach different photomultiplier channels and arrive at different times. The time and the position convolution is used for the reconstruction of the Cherenkov angle. The focusing aerogel consists of a double layer aerogel radiator, an expansion volume and a photon detector. The aerogel thickness and the refractive indices of the two layers are optimized to focus the two light cones at the detection surface. The key features of these two detectors, the performance studies, and the construction progress are presented.

  7. Search for heavy, long-lived particles that decay to photons at CDF II

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; /Comenius U. /Tsukuba U.

    2007-04-01

    The authors present the first search for heavy, long-lived particles that decay to photons at a hadron collider. They use a sample of {gamma} + jet + missing transverse energy events in p{bar p} collisions at {radical}s = 1.96 TeV taken with the CDF II detector. Candidate events are selected based on the arrival time of the photon at the detector. Using an integrated luminosity of 570 pb{sup -1} of collision data, they observe 2 events, consistent with the background estimate of 1.3 {+-} 0.7 events. While the search strategy does not rely on model-specific dynamics, they set cross section limits in a supersymmetric model with {tilde {chi}}{sub 1}{sup 0} {yields} {gamma}{tilde G} and place the world-best 95% C.L. lower limit on the {tilde {chi}}{sub 1}{sup 0} mass of 101 GeV/c{sup 2} at {tau}{sub {tilde {chi}}{sub 1}{sup 0}} = 5 ns.

  8. Evaluation of Stability and Transient Characteristics of ABWR-II Large Bundle Core and SSR Influence for Transient phenomena by TRACG Code

    SciTech Connect

    Masao, Chaki; Hideo, Soneda; Shinya, Mizokami; Hideya, Kitamura; Kouji, Hiraiwa; Takanori, Fukahori; Andersen, Jens G.

    2004-07-01

    The next generation ABWR, the ABWR-II, has been under development for more than a decade in Japan. Among various features newly adopted for the ABWR-II, a 1.5 times lager fuel bundle is notable. This bundle design makes it possible to increase the total number of fuel rods in the core while minimizing the reactor pressure vessel size increase. As a result, the void coefficient is more negative due to the harder neutron spectrum since a smaller hydrogen-to uranium (H/U) ratio with fuel inventory increase makes the neutron spectrum harder. This more negative void coefficient affects the stability and transient characteristics of the ABWR-II plant. We have evaluated the stability and transient characteristics by using analysis codes and proven that these characteristics do not affect the realization of the ABWR-II large bundle core concept. Furthermore, we have evaluated the influences for the stability and transient phenomena by using spectral shift rods (SSRs) for the ABWR-II core. The analytical results show that the use of SSRs increases the design margin for the core stability. Regarding transient phenomena, the analyses by the TRACG code show that the influence of using SSRs is very small and do not affect the realization of the ABWR-II plant. In addition, the sensitivity analyses with the TRACG code show that design parameters of SSRs, inlet hole diameter of ascending path etc, are not very sensitive for the transient phenomena. (authors)

  9. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    SciTech Connect

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung; Park, Sun; Shin, Ho-Joon; Kim, Kyongmin

    2008-01-05

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate {sup 32}P-ribonucleotides, but not HBV core particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems.

  10. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Klimchuk, J. A. E-mail: stephen.bradshaw@rice.edu

    2013-02-20

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  11. Carbonized medlar-core particles as a new biosorbent for removal of Cu(2+) from aqueous solution and study of its surface morphology.

    PubMed

    Samadani Langeroodi, Narges; Safaei, Elaheh

    2016-01-01

    The objective of this study was to investigate the use of carbonized medlar-core particles as a new biosorbent to remove Cu(2+) from aqueous solution. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the biosorbent. This paper reports the effects of adsorbent dose, pH, temperature and concentration of adsorbate. Batch isotherm studies were also performed to understand the ability of the adsorbent. The adsorption behavior of the Cu(2+) was studied using Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity determined from the Langmuir adsorption equation has been found as 43.478 mg.g(-1) at 298.15 K. The adsorption of Cu(2+) by medlar core in carbonized form was spontaneous and endothermic. It was also found that the biosorption of Cu(2+) followed second-order kinetics. Carbonized medlar-core particles showed great potential in aqueous solution due to the high adsorption capacity.

  12. Effect of aggregation state, temperature and phospholipids on photobleaching of photosynthetic pigments in spinach Photosystem II core complexes.

    PubMed

    Ventrella, A; Catucci, L; Agostiano, A

    2008-06-01

    Photosystem II (PSII) complex activity is known to decrease under strong white light illumination, and this photoinhibition phenomenon is connected to the photobleaching of the PSII photosynthetic pigments. In this work the pigment photobleaching has been studied on PSII core complexes, by observing the effects of different factors such as the aggregation state (PSII monomers and dimers were used), temperature (20 degrees C and 10 degrees C temperatures were tested) and the presence of the exogenous phospholipids (cardiolipin and phosphatidylglycerol). In particular, PSII resistance against white light stress was studied by means of UV/VIS Absorption and Fluorescence Emission measurements. It was found that PSII dimers resulted more resistant against photobleaching and that lower temperature reduces the pigment photodestruction. Moreover, the presence of phosphatidylglycerol or cardiolipin enhanced the PSII resistance to the photobleaching phenomenon, mainly at lower temperatures.

  13. Fukushima Daiichi Unit 1 Uncertainty Analysis-Exploration of Core Melt Progression Uncertain Parameters-Volume II.

    SciTech Connect

    Denman, Matthew R.; Brooks, Dusty Marie

    2015-08-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on key figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .

  14. Modeling the water circulation in the North Atlantic in the scope of the CORE-II experiment

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Grankina, T. B.; Ibraev, R. A.

    2016-07-01

    A numerical experiment on the reproduction of the variability in the state of North Atlantic water in 1948-2007 with a spatial resolution of 0.25° has been performed using the global ocean model developed at Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), and the Shirshov Institute of Oceanology (IO RAS) (the INM-IO model). The data on the state of the atmosphere, radiation fluxes, and bulk formulas of the CORE-II protocol are used as boundary conditions. Five successive 60-year calculation cycles have been performed in order to obtain the quasi-equilibrium state of a model ocean. For the last 20 years, the main elements of large-scale ocean circulation have been analyzed and compared with the WOA09 atlas data and the results of other models.

  15. Spectroscopic properties of the CP43 core antenna protein of photosystem II.

    PubMed

    Groot, M L; Frese, R N; de Weerd, F L; Bromek, K; Pettersson, A; Peterman, E J; van Stokkum, I H; van Grondelle, R; Dekker, J P

    1999-12-01

    CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.

  16. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    PubMed

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  17. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES

    SciTech Connect

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Cenko, S. Bradley; Becker, Adam B.; Fox, Derek B.; Leonard, Douglas C.; Moon, Dae-Sik; Sand, David J.; Soderberg, Alicia M.; Kiewe, Michael; Scheps, Raphael; Birenbaum, Gali; Chamudot, Daniel; Zhou, Jonathan

    2012-09-10

    We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

  18. Widespread Use of TATA Elements in the Core Promoters for RNA Polymerases III, II, and I in Fission Yeast

    PubMed Central

    Hamada, Mitsuhiro; Huang, Ying; Lowe, Todd M.; Maraia, Richard J.

    2001-01-01

    In addition to directing transcription initiation, core promoters integrate input from distal regulatory elements. Except for rare exceptions, it has been generally found that eukaryotic tRNA and rRNA genes do not contain TATA promoter elements and instead use protein-protein interactions to bring the TATA-binding protein (TBP), to the core promoter. Genomewide analysis revealed TATA elements in the core promoters of tRNA and 5S rRNA (Pol III), U1 to U5 snRNA (Pol II), and 37S rRNA (Pol I) genes in Schizosaccharomyces pombe. Using tRNA-dependent suppression and other in vivo assays, as well as in vitro transcription, we demonstrated an obligatory requirement for upstream TATA elements for tRNA and 5S rRNA expression in S. pombe. The Pol III initiation factor Brf is found in complexes with TFIIIC and Pol III in S. pombe, while TBP is not, consistent with independent recruitment of TBP by TATA. Template commitment assays are consistent with this and confirm that the mechanisms of transcription complex assembly and initiation by Pol III in S. pombe differ substantially from those in other model organisms. The results were extended to large-rRNA synthesis, as mutation of the TATA element in the Pol I promoter also abolishes rRNA expression in fission yeast. A survey of other organisms' genomes reveals that a substantial number of eukaryotes may use widespread TATAs for transcription. These results indicate the presence of TATA-unified transcription systems in contemporary eukaryotes and provide insight into the residual need for TBP by all three Pols in other eukaryotes despite a lack of TATA elements in their promoters. PMID:11564871

  19. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure.

    PubMed

    Bao, Yunhe; White, Cindy L; Luger, Karolin

    2006-08-25

    Poly(dA.dT) DNA sequence elements are thought to promote transcription by either excluding nucleosomes or by altering their structural or dynamic properties. Here, the stability and structure of a defined nucleosome core particle containing a 16 base-pair poly(dA.dT) element (A16 NCP) was investigated. The A16 NCP requires a significantly higher temperature for histone octamer sliding in vitro compared to comparable nucleosomes that do not contain a poly(dA.dT) element. Fluorescence resonance energy transfer showed that the interactions between the nucleosomal DNA ends and the histone octamer were destabilized in A16 NCP. The crystal structure of A16 NCP was determined to a resolution of 3.2 A. The overall structure was maintained except for local deviations in DNA conformation. These results are consistent with previous in vivo and in vitro observations that poly(dA.dT) elements cause only modest changes in DNA accessibility and modest increases in steady-state transcription levels.

  20. Induced self-energy on a static scalar charged particle in the spacetime of a global monopole with finite core

    NASA Astrophysics Data System (ADS)

    Barbosa, D.; de Freitas, U.; Bezerra de Mello, E. R.

    2011-03-01

    We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green's function associated with this physical system. We explicitly show that for points outside the monopole's core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.

  1. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    PubMed

    Weng, Liwei; Greenberg, Marc M

    2015-09-02

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  2. Chimeric Derivatives of Hepatitis B Virus Core Particles Carrying Major Epitopes of the Rubella Virus E1 Glycoprotein

    PubMed Central

    Skrastina, Dace; Petrovskis, Ivars; Petraityte, Rasa; Sominskaya, Irina; Ose, Velta; Liekniņa, Ilva; Bogans, Janis; Sasnauskas, Kestutis

    2013-01-01

    Three variants of the major rubella virus (RV) E1 protein virus-neutralizing epitope from position 214 to 285 were exposed on the hepatitis B virus (HBV) C-terminally truncated core (HBcΔ) in a virus-like particle (VLP) vector and were produced in Escherichia coli. All three chimeras demonstrated VLPs in bacterial cell lysates, but only HBcΔ-E1(245-285) demonstrated the correct VLP structure after purification. The other chimeras, HBcΔ-E1(214-285) and HBcΔ-E1(214-240), appeared after purification as non-VLP aggregates of 100 to 900 nm in diameter according to dynamic light scattering data. All three variants possessed the intrinsic antigenic activity of RV E1, since they were recognized by natural human anti-RV E1 antibodies and induced an anti-RV E1 response in mice. HBcΔ-E1(214-240) and HBcΔ-E1(245-285) can be regarded as prototypes for a putative RV vaccine because they were able to induce antibodies recognizing natural RV E1 protein in RV diagnostic kits. PMID:24006140

  3. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-05

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation.

  4. Multi-Model Comparison of Southern Ocean and Sea Ice Trends in CORE-II and CMIP5 Model

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Griffies, S. M.; Farneti, R.; Marsland, S. J.; Uotila, P.; Hogg, A.

    2014-12-01

    The Southern Ocean circulation, influenced by buoyancy, momentum and sea ice processes, varies on seasonal to centennial timescales. Incomplete spatio-temporal observations of the full ocean water column, overlying ocean-ice-atmosphere fluxes, and adjacent polar dynamics challenge our ability to model the Southern Ocean. However, several studies have indicated this region is particularly important in the evolving climate, including the anthropogenic influences. Models coherently capture large-scale Southern Ocean patterns, however it is the magnitude and location of these patterns that varies widely. In particular, difficulties with modelling of small scale processes remains an outstanding issue. Here we review the representation of the Southern Ocean circulation, including fluxes at the ocean-ice and ocean-atmosphere interfaces, in numerous coupled climate models from two international modeling efforts, namely the Coordinated Ocean-ice Reference Experiments Phase II (CORE-II) and Coupled Model Intercomparison Project Phase 5 (CMIP5). We focus on the relationships between large scale and mesoscale overturning circulation, formation of key water masses and the associated deep winter mixed layers, buoyancy and wind fluxes, and sea ice. We identify major uncertainties in the modelling of past, present and projected large-scale ocean processes, and provide insights for future modelling directions.

  5. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements: Evaluation of Aerosol Measurements from SAGE II, HALOE, and Balloonborne Optical Particle Counters

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Deshler, Terry; Moddrea, G. (Technical Monitor)

    2002-01-01

    Stratospheric aerosol measurements from the University of Wyoming balloonborne optical particle counters (OPCs), the Stratospheric Aerosol and Gas Experiment (SAGE) II, and the Halogen Occultation Experiment (HALOE) were compared in the period 1982-2000, when measurements were available. The OPCs measure aerosol size distributions, and HALOE multiwavelength (2.45-5.26 micrometers) extinction measurements can be used to retrieve aerosol size distributions. Aerosol extinctions at the SAGE II wavelengths (0.386-1.02 micrometers) were computed from these size distributions and compared to SAGE II measurements. In addition, surface areas derived from all three experiments were compared. While the overall impression from these results is encouraging, the agreement can change with latitude, altitude, time, and parameter. In the broadest sense, these comparisons fall into two categories: high aerosol loading (volcanic periods) and low aerosol loading (background periods and altitudes above 25 km). When the aerosol amount was low, SAGE II and HALOE extinctions were higher than the OPC estimates, while the SAGE II surface areas were lower than HALOE and the OPCS. Under high loading conditions all three instruments mutually agree to within 50%.

  6. SIMMER-II: A computer program for LMFBR disrupted core analysis

    SciTech Connect

    Bohl, W.R.; Luck, L.B.

    1990-06-01

    SIMMER-2 (Version 12) is a computer program to predict the coupled neutronic and fluid-dynamics behavior of liquid-metal fast reactors during core-disruptive accident transients. The modeling philosophy is based on the use of general, but approximate, physics to represent interactions of accident phenomena and regimes rather than a detailed representation of specialized situations. Reactor neutronic behavior is predicted by solving space (r,z), energy, and time-dependent neutron conservation equations (discrete ordinates transport or diffusion). The neutronics and the fluid dynamics are coupled via temperature- and background-dependent cross sections and the reactor power distribution. The fluid-dynamics calculation solves multicomponent, multiphase, multifield equations for mass, momentum, and energy conservation in (r,z) or (x,y) geometry. A structure field with nine density and five energy components; a liquid field with eight density and six energy components; and a vapor field with six density and on energy component are coupled by exchange functions representing a modified-dispersed flow regime with a zero-dimensional intra-cell structure model.

  7. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R. D.

    1991-09-01

    Operations and material control and accountancy requirements for the Fuel Cycle Facility will demand accurate prediction of the mass flow from EBR-2 into the facility. This will require validated calculational tools that can predict the burnup and isotopic distribution in irradiated binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 assemblies. The present study demonstrates that the REBUS- 3/RCT methodologies can meet these requirements. Validation is achieved via a two-step procedure. First, a set of detailed core- follow depletion calculations using the REBUS-3/RCT codes is performed for an extensive series of EBR-2 runs. Second, the results of this analysis are compared with experimental determinations of burnup and U and Pu isotopic weight fractions that have been measured in IFR fueled test assemblies irradiated in EBR-2. The results of these comparisons are very good and indicate that mass flow predictions based on the methods and models used in this study are adequate for operational and MCA requirements in FCF. 26 refs., 6 figs., 11 tabs.

  8. THE MASS-SIZE RELATION FROM CLOUDS TO CORES. II. SOLAR NEIGHBORHOOD CLOUDS

    SciTech Connect

    Kauffmann, J.; Shetty, R.; Goodman, A. A.; Pillai, T.; Myers, P. C.

    2010-06-10

    We measure the mass and size of cloud fragments in several molecular clouds continuously over a wide range of spatial scales (0.05 {approx}< r/pc {approx}< 3). Based on the recently developed 'dendrogram-technique', this characterizes dense cores as well as the enveloping clouds. 'Larson's Third Law' of constant column density, m(r) {proportional_to} r {sup 2}, is not well suited to describe the derived mass-size data. Solar neighborhood clouds not forming massive stars ({approx}<10 M {sub sun}; Pipe Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) {<=} 870 M {sub sun}(r/pc){sup 1.33}. In contrast to this, clouds forming massive stars (Orion A, G10.15 - 0.34, G11.11 - 0.12) do exceed the aforementioned relation. Thus, this limiting mass-size relation may approximate a threshold for the formation of massive stars. Across all clouds, cluster-forming cloud fragments are found to be-at given radius-more massive than fragments devoid of clusters. The cluster-bearing fragments are found to roughly obey a mass-size law m {proportional_to} r {sup 1.27} (where the exponent is highly uncertain in any given cloud, but is certainly smaller than 1.5).

  9. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs.

  10. Dielectric response of II-VI semiconductor core-shell ensembles: Study of the lossless optical condition

    NASA Astrophysics Data System (ADS)

    de la Cruz, R. M.; Kanyinda-Malu, C.

    2014-09-01

    We theoretically investigate optical properties of II-VI core-shell distribution mixtures made of two type-I sized-nanoshells as a plausible negative dielectric function material. The nonlocal optical response of the semiconductor QD is described by using a resonant excitonic dielectric function, while the shell response is modeled with Demangeot formula. Achieving the zero-loss at an optical frequency ω, i.e., ɛeff =ɛeff‧ + iɛeff″ with ɛeff‧ < 0 and ɛeff″ = 0, is of fundamental importance in nanophotonics. Resonant states in semiconductors provide a source for negative dielectric function provided that the dipole strength and the oscillator density are adequate to offset the background. Furthermore, the semiconductor offers the prospect of pumping, either optically or electrically, to achieve a gain mechanism that can offset the loss. We analyse optimal conditions that must be satisfied to achieve semiconductor-based negative index materials. By comparing with II-VI semiconductor quantum dots (QDs) previously reported in the literature, the inclusion of phonon and shell contributions in the ɛeff along with the finite barrier Effective Mass Approximation (EMA) approach, we found similar qualitative behaviours for the ɛeff. The lossless optical condition along with ɛeff‧ < 0 is discussed in terms of sizes, volume fractions and embedding medium of the mixtures' distributions. Furthermore, we estimated optical power to maintain nanocrystals density in excited states and this value is less than that previously obtained in II-VI semiconductor QDs.

  11. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  12. Backreaction of Tracer Particles on Vortex Tangle in Helium II Counterflow

    NASA Astrophysics Data System (ADS)

    Varga, E.; Barenghi, C. F.; Sergeev, Y. A.; Skrbek, L.

    2016-05-01

    We report computer simulations of the interaction of seeding particles with quantized vortices and with the normal fluid flow in thermal counterflow of superfluid ^4He. We show that if the number of particles is too large, the vortex tangle is significantly affected, posing problems in the interpretation of visualization experiments. The main effects are an increase in vortex line density and a change in polarization of the vortex tangle, caused by the action of the Stokes drag of the viscous normal fluid on the trapped particles. We argue that in the case of large particle number, typically used for the particle image velocimetry technique, the tangle properties might become significantly changed. On the contrary, the particle tracking velocimetry technique that uses smaller particle concentration should not be appreciably affected.

  13. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  14. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO2 Core-Shell Nanoparticles.

    PubMed

    Yan, Ya; Meng, Lingyan; Zhang, Wenqiang; Zheng, Yan; Wang, Shuo; Ren, Bin; Yang, Zhilin; Yan, Xiaomei

    2017-09-22

    Metal-enhanced fluorescence (MEF) based on localized surface plasmon resonance (LSPR) is an effective strategy to increase the detection sensitivity in biotechnology and biomedicine. Because plasmonic nanoparticles are intrinsically heterogeneous, high-throughput single-particle analysis of MEF in free solution are highly demanded for the mechanistic understanding and control of this nanoscale process. Here, we report the application of a laboratory-built high-sensitivity flow cytometer (HSFCM) to investigate the fluorescence-enhancing effect of individual plasmonic nanoparticles on nearby fluorophore molecules. Ag@SiO2 core-shell nanoparticles were used as the model system which comprised a silver core, a silica shell, and an FITC-doped thin layer of silica shell. FITC-doped silica nanoparticles of the same particle size but without silver core were used as the counterparts. Both the side scattering and fluorescence signals of single nanoparticles in suspension were measured simultaneously by the HSFCM at a speed of thousands of particles per minute. The roles of silver core size (40-100 nm) and fluorophore-metal distance (5-30 nm) were systematically examined. Fluorescence enhancement factor exceeding 30 was observed at silver core size of 70 nm and silica shell thickness of 5 nm. Compared with ensemble-averaged spectrofluorometric measurements, our experimental observation at the single-particle level was well supported by the finite difference time domain (FDTD) calculation. It allows us to achieve a fundamental understanding of MEF, which is important to the design and control of plasmonic nanostructures for efficient fluorescence enhancement.

  15. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles.

    PubMed

    Xue, Chao-Hua; Yin, Wei; Jia, Shun-Tian; Ma, Jian-Zhong

    2011-10-14

    ZnO/SiO(2) core/shell particles were fabricated by successive coating of multilayer polyelectrolytes and then a SiO(2) shell onto ZnO particles. The as-prepared ZnO/SiO(2) core/shell particles were coated on poly(ethylene terephthalate) (PET) textiles, followed by hydrophobization with hexadecyltrimethoxysilane, to fabricate superhydrophobic surfaces with UV-shielding properties. Transmission electron microscopy and ζ potential analysis were employed to evidence the fabrication of ZnO/SiO(2) core/shell particles. Scanning electron microscopy and thermal gravimetric analysis were conducted to investigate the surface morphologies of the textile and the coating of the fibers. Ultraviolet-visible spectrophotometry and contact angle measurement indicated that the incorporation of ZnO onto fibers imparted UV-blocking properties to the textile surface, while the coating of SiO(2) shell on ZnO prohibited the photocatalytic degradation of hexadecyltrimethoxysilane by ZnO, making the as-treated PET textile surface show stable superhydrophobicity with good UV-shielding properties.

  16. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  17. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity.

    PubMed

    Otoguro, Teruhime; Tanaka, Tomohisa; Kasai, Hirotake; Yamashita, Atsuya; Moriishi, Kohji

    2016-11-01

    Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.

  18. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy.

    PubMed

    Li, Qinran; Yang, Kaiguang; Liang, Yu; Jiang, Bo; Liu, Jianxi; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-12-24

    A novel kind of lysozyme (Lys) surface imprinted core-shell particles was synthesized by reversible addition-fragmentation chain transfer (RAFT) strategy. With controllable polymer shell chain length, such particles showed obviously improved selectivity for protein recognition. After the RAFT initial agent and template protein was absorbed on silica particles, the prepolymerization solution, with methacrylic acid and 2-hydroxyethyl methacrylate as the monomers, and N,N'-methylenebis(acrylamide) as the cross-linker, was mixed with the silica particles, and the polymerization was performed at 40 °C in aqueous phase through the oxidation-reduction initiation. Ater polymerization, with the template protein removal and destroying dithioester groups with hexylamine, the surface Lyz imprinted particles were obtained with controllable polymer chain length. The binding capacity of the Lys imprinted particles could reach 5.6 mg protein/g material, with the imprinting factor (IF) as 3.7, whereas the IF of the control material prepared without RAFT strategy was only 1.6. The absorption equilibrium could be achieved within 60 min. Moreover, Lys could be selectively recognized by the imprinted particles from both a four-proteins mixture and egg white sample. All these results demonstrated that these particles prepared by RAFT strategy are promising to achieve the protein recognition with high selectivity.

  19. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles.

    PubMed

    Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin

    2015-12-01

    In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Farouqi, K.; Truran, J. W.; Kratz, K.-L.; Pfeiffer, B.; Rauscher, T.; Thielemann, F.-K. E-mail: truran@nova.uchicago.ed E-mail: k-l.Kratz@mpic.d E-mail: F-K.Thielemann@unibas.c

    2010-04-01

    The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has still to be undertaken. Sufficiently high neutron-to-seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy S, electron abundance Y{sub e} , and expansion velocity V{sub exp}. We investigate the termination point of charged-particle reactions, and we define a maximum entropy S{sub final} for a given V{sub exp} and Y{sub e} , beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a beta-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from beta-delayed neutron emission can play. Furthermore, we analyze the impact of nuclear properties from different theoretical mass models on the final abundances after these late freeze-out phases and beta-decays back to stability. As only a superposition of astrophysical conditions can provide a good fit to the solar r-abundances, the question remains how such superpositions are attained, resulting in the apparently robust r-process pattern observed in low

  1. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles.

    PubMed

    Liu, Qiang; Liu, Qinze; Ruan, Zining; Chang, Xiaoqing; Yao, Jinshui

    2016-07-01

    A novel poly(catechol-diethylenetriamine-pphenylenediamine)(PCEA) adsorbent was synthesized in methanol, with chelating groups supplied by catechol and diethylenetriamine, which showed a strong removal performance and efficient adsorption toward Cu(II) ions in aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Besides, factors such as adsorbent dosage, pH, initial ionic and metal concentrations, contact time, and temperature on the adsorption of Cu(II) were studied. The data revealed that the adsorption followed a pseudo-second order kinetic model and the adsorption rate was influenced by the intra-particle diffusion. Furthermore, the adsorption process followed the Langmuir isotherm model, and the maximum adsorption capacity (Qm) was 44.2mg/g at 298K in simulated wastewater. The value of ΔG (kJ/mol) and ΔH (kJ/mol) also demonstrated that the adsorption process was spontaneous and endothermic. Studies revealed that PCEA particles were powerful and stable for the removal of Cu(II) in water, and it could be directly applied to the Cu(II)-contaminated water.

  2. Mechanochemical surface functionalisation of superparamagnetic microparticles with in situ formed crystalline metal-complexes: a fast novel core-shell particle formation method.

    PubMed

    Brede, F A; Mandel, K; Schneider, M; Sextl, G; Müller-Buschbaum, K

    2015-05-21

    An innovative mechanochemical method is reported for the in situ formation of crystalline metal-complexes on the surface of superparamagnetic nanocomposite microparticles. The process is demonstrated for coating Fe3O4 multicore-silica matrix particles with the 1,2,4-1H-triazole complex [ZnCl2(TzH)2]. The use of mechanochemistry demonstrates a flexible process to obtain functional shells on magnetic particle cores without the need for complicated surface-functionalisation reactions in solution. Simple mixing of the desired shell-precursors ZnCl2 and 1,2,4-1H-triazole (TzH) with the magnetic particles in a ball mill is sufficient to tailor the particle surfaces with novel functionalities while retaining the superparamagnetic behaviour.

  3. Atomistic Simulation of Stacked Nucleosome Core Particles: Tail Bridging, the H4 Tail, and Effect of Hydrophobic Forces.

    PubMed

    Saurabh, Suman; Glaser, Matthew A; Lansac, Yves; Maiti, Prabal K

    2016-03-31

    We report the first atomistic simulation of two stacked nucleosome core particles (NCPs), with an aim to understand, in molecular detail, how they interact, the effect of salt concentration, and how different histone tails contribute to their interaction, with a special emphasis on the H4 tail, known to have the largest stabilizing effect on the NCP-NCP interaction. We do not observe specific K16-mediated interaction between the H4 tail and the H2A-H2B acidic patch, in contrast with the findings from crystallographic studies, but find that the stacking was stable even in the absence of this interaction. We perform simulations with the H4 tail (partially/completely) removed and find that the region between LYS-16 and LYS-20 of the H4 tail holds special importance in mediating the inter-NCP interaction. Performing similar tail-clipped simulations with the H3 tail removed, we compare the roles of the H3 and H4 tails in maintaining the stacking. We discuss the relevance of our simulation results to the bilayer and other liquid-crystalline phases exhibited by NCPs in vitro and, through an analysis of the histone-histone interface, identify the interactions that could possibly stabilize the inter-NCP interaction in these columnar mesophases. Through the mechanical disruption of the stacked nucleosome system using steered molecular dynamics, we quantify the strength of inter-NCP stacking in the presence and absence of salt. We disrupt the stacking at some specific sites of internucleosomal tail-DNA contact and perform a comparative quantification of the binding strengths of various tails in stabilizing the stacking. We also examine how hydrophobic interactions may contribute to the overall stability of the stacking and find a marked difference in the role of hydrophobic forces as compared with electrostatic forces in determining the stability of the stacked nucleosome system.

  4. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking.

    PubMed

    Scalettar, B A; Jacobs, C; Fulwiler, A; Prahl, L; Simon, A; Hilken, L; Lochner, J E

    2012-09-01

    Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs. Copyright © 2011 Wiley Periodicals, Inc.

  5. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking

    PubMed Central

    Scalettar, B. A.; Jacobs, C.; Fulwiler, A.; Prahl, L.; Simon, A.; Hilken, L.; Lochner, J. E.

    2012-01-01

    Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically-localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically-localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically-localized DCGs. PMID:21976424

  6. N-terminal α7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function.

    PubMed

    Yashiroda, Hideki; Toda, Yousuke; Otsu, Saori; Takagi, Kenji; Mizushima, Tsunehiro; Murata, Shigeo

    2015-01-01

    The proteasome core particle (CP) is a conserved protease complex that is formed by the stacking of two outer α-rings and two inner β-rings. The α-ring is a heteroheptameric ring of subunits α1 to α7 and acts as a gate that restricts entry of substrate proteins into the catalytic cavity formed by the two abutting β-rings. The 31-kDa proteasome inhibitor (PI31) was originally identified as a protein that binds to the CP and inhibits CP activity in vitro, but accumulating evidence indicates that PI31 is required for physiological proteasome activity. To clarify the in vivo role of PI31, we examined the Saccharomyces cerevisiae PI31 ortholog Fub1. Fub1 was essential in a situation where the CP assembly chaperone Pba4 was deleted. The lethality of Δfub1 Δpba4 was suppressed by deletion of the N terminus of α7 (α7ΔN), which led to the partial activation of the CP. However, deletion of the N terminus of α3, which activates the CP more efficiently than α7ΔN by gate opening, did not suppress Δfub1 Δpba4 lethality. These results suggest that the α7 N terminus has a role in CP activation different from that of the α3 N terminus and that the role of Fub1 antagonizes a specific function of the α7 N terminus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Ru(II) Tris(3,8-Dibromo-1,10-Phenanthro1ine): A New Versatile Core for the Divergent Synthesis of Hyperbranched Systems

    NASA Technical Reports Server (NTRS)

    Sotiriou-Leventis, Chariklia; Yang, Jinhua; Duan, Penggao; Leventis, Nicholas

    2004-01-01

    We report the first synthesis of Ru(II) tris(3,8-dibromo-1,lO-phenanthroline) bishexafluorophosphate, and we demonstrate its utility as a building core for the divergent synthesis of hyperbranched systems by coupling with phenylacetylene in the preparation of Rum tris(3,8-diphenylethynyl- 1,lO-phenanthroline) dihexafluorophosphate.

  8. Uniform particle-droplet partitioning of 18 organic and elemental components measured in and below DYCOMS-II stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Russell, L. M.; Twohy, C. H.; Anderson, J. R.

    2008-07-01

    Microphysical and chemical aerosol measurements collected during DYCOMS-II research flights in marine stratocumulus clouds near San Diego in 2001 were used to evaluate the partitioning of 18 organic and elemental components between droplet residuals and unactivated particles. Bulk submicron particle (between 0.2 and 1.3 μm dry diameter) and droplet residual (above 9 μm ambient diameter) filter samples analyzed by Fourier Transform Infrared (FTIR) spectroscopy and X-ray Fluorescence (XRF) were dominated by sea salt, ammonium, sulfate, and organic compounds. For the four nighttime and two daytime flights studied, the mass concentration of unactivated particles and droplet residuals were correlated (R2 > 0.8) with consistent linear relationships for mass scavenging of all 18 components on each flight, meaning that the measured particle population partitions between droplet residuals and unactivated particles as if the particles contain internal mixtures of the measured components. Scanning electron microscopy (SEM) for flights 3, 5, and 7 support some degree of internal mixing since more than 90% of measured submicron particles larger than 0.26 μm included sea salt-derived components. The observed range of 0.26 to 0.40 of mass scavenging coefficients for the four nighttime flights results from the small variations in temperature profile, updraft velocity, and mixed layer depth among the flights. The uniformity of scavenging coefficients for multiple chemical components is consistent with the aged or processed internal mixtures of sea salt, sulfate, and organic compounds expected at long distances downwind from major particle sources.

  9. Single-particle inductively coupled plasma mass spectroscopy analysis of size and number concentration in mixtures of monometallic and bimetallic (core-shell) nanoparticles.

    PubMed

    Merrifield, Ruth C; Stephan, Chady; Lead, Jamie R

    2017-01-01

    It is challenging to separate and measure the physical and chemical properties of monometallic and bimetallic engineered nanoparticles (NPs), especially when mixtures are similar in size and at low concentration. We report that single particle inductively coupled mass spectroscopy (SP-ICP-MS), alongside field flow fractionation (FFF), has allowed for the accurate measurement of size and particle number concentrations of mixed metallic nanoparticles (NPs) containing monometallic NPs of gold (Au) and silver (Ag) and a bimetallic core-shell structured NP (Au@Ag) of equivalent size. Two sets of these NPs were measured. The first contained only 60nm particles, where the Au@Ag NP had a 30nm core and 15nm shell to make a total diameter of 60nm. The second contained only 80nm particles (Au@Ag NP core particle of 50nm with a 15nm shell). FFF separation was used here as a sizing technique rather than a separation technique. It was used to confirm that suspensions containing either individual or mixtures of the Au 60nm, Ag 60nm and AuAg 60nm suspensions eluted together and were of the same size. Similarly, FFF was used to show that suspensions containing individual or mixtures of the equivalent 80nm, eluted together and were of the same size. Although the 60nm and 80nm suspensions did not elute at the same time they were not run together. SP-ICP-MS is then used to identify the size and concentration of the particles within the suspension. Successful separation of the NPs was effected and the limits of the instrument were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparing addition of ZrO II particles in micron and nano scale on microstructure and mechanical behavior of aluminum-matrix composites produced by vortex route

    NASA Astrophysics Data System (ADS)

    Baghchesara, M. A.; Karimi, M.; Abdizadeh, H.; Baharvandi, H. R.

    2007-07-01

    Aluminum matrix composites are important engineering materials in automotive, aerospace and other applications because of their low weight, high specific strength and better physical and mechanical properties compared to pure aluminum. ZrO II particles as reinforcement were selected to add aluminum with micron and nano size. Al/ZrO II composites were produced by direct incorporation (vortex method) in different temperatures and 5 volume percents of ZrO II particles. Microstructure of the samples was studied by scanning electron microscopy (SEM). Chemical composition of the phases was studied by XRD. Hardness, and density of these composites were also measured. The microstructure and mechanical properties tests of composites and study the effect of particle size, resulted the better properties compared to matrix aluminum. Homogeneous dispersion of the reinforcement particles in the matrix aluminum was observed. The results show enhancing the composites properties for all samples compared to the monolithic alloy. However there are some differences in results because of particle size of ceramics and therefore differences between particles surface area. Maximum volume percent that can be added to A356 aluminum alloy is 5 vol.%, for nano ZrO II particles, but it seems that is more than 5 vol.% for micron particles. Increasing of viscosity, porosities and much more defects are caused by increasing volume percents and using smaller particles. The casting processing is difficult in these conditions. Furthermore, optimum temperatures of casting for micron and nano zirconia particles are not the same.

  11. Radiation chemistry of heavy-particle tracks. II. Fricke dosimeter system

    SciTech Connect

    Chatterjee, A.; Magee, J.L.

    1980-12-25

    A heavy-particle-track model suggested by considerations presented in a companion paper is used in a calculation of the differential (G') and integral (G) yields of the Fricke dosimeter system for six selected particles over a wide range of energies. The particles are H, He, C, Ne, Ar, and Fm; the energy range for the first two is 10/sup -3/-10/sup 3/ MeV/n, and for the last four is 10/sup -1/-10/sup 3/ MeV/n. The calculated G' and G values are compared with experimental values as far as possible, and the heavy-particle-track model situation is discussed.

  12. Core phenomenology. TEC report on CRBRP PRA Phase II, Task 6C. Final draft report, Revision 1

    SciTech Connect

    1984-04-04

    As part of the determination of the risk potential associated with core-damage accident sequences for the CRBRP, a review of the core