Science.gov

Sample records for ii ebr-ii instrumentation

  1. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    SciTech Connect

    Yingling, G. E.; Curran, R. N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II.

  2. Experimental Breeder Reactor II (EBR-II): Instrumentation for core surveillance

    SciTech Connect

    Christensen, L.J.

    1989-01-01

    EBR-II has operated for 25 years in support of several major programs. During this time period, several of the original, non-replaceable, flow sensors, RDT sensors and thermocouples have failed in the primary system. This has led to the development of new sensors and the use of calculated values using computer models of the plant. It is important for the next generation of LMR reactors to minimize or eliminate the use of non-replaceable sensors. EBR-II is perhaps the best modeled reactor in the world, thanks to a dedicated T-H analysis program. The success of this program relied on excellent measurements of temperature and flow in subassemblies in the core. The instrumented subassemblies of the XX series provided that measurement capability. From this test series, EBR-II calculations showed that the core could withstand a loss-of-flow without scram accident and a loss-of-heat sink without scram accident from full reactor power without core damage. From this, reactor designers can now design with confidence, inherently safe reactors. 11 refs., 8 figs.

  3. EBR-II Data Digitization

    SciTech Connect

    Yoon, Su-Jong; Rabiti, Cristian; Sackett, John

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  4. EBR-II fuel slug casting experience

    SciTech Connect

    Wilkes, C. W.; Batte`, G. L.; Tracy, D. B.; Griffiths, V.

    1987-07-01

    The following paper presents a chronology of EBR-II fuel slug casting experience. Starting with the early vendor campaigns, the paper explains how production of EBR-II fuel, as well as fuel for off-site reactors, has evolved. The production facilities (i.e., EFL, Room 20, FMF, etc.) and casting techniques are discussed in detail. The paper also presents how the original casting operations have improved and the problems encountered as the techniques were developed. Extensive descriptions and data are given on the major experimental programs currently ongoing at EBR-II. Major programs include the IFR lead subassemblies, large diameter slugs, IFR metal fuel RBCB, and the FFTF subassembly program. Concluding the paper is a brief description of future development projects being considered and a summation of how EBR-II Fuels and Materials has been able to overcome various administration obstacles (i.e., improved security and safeguards measures) to continue to meet the increasing demands of fuel production while maintaining an aggressive and active research and development program in fuel slug production.

  5. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  6. EBR-II and TREAT Digitization Project

    SciTech Connect

    Griffith, George W.; Rabiti, Cristian

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  7. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  8. Benchmark specifications for EBR-II shutdown heat removal tests

    SciTech Connect

    Sofu, T.; Briggs, L. L.

    2012-07-01

    Argonne National Laboratory (ANL) is hosting an IAEA-coordinated research project on benchmark analyses of sodium-cooled fast reactor passive safety tests performed at the Experimental Breeder Reactor-II (EBR-II). The benchmark project involves analysis of a protected and an unprotected loss of flow tests conducted during an extensive testing program within the framework of the U.S. Integral Fast Reactor program to demonstrate the inherently safety features of EBR-II as a pool-type, sodium-cooled fast reactor prototype. The project is intended to improve the participants' design and safety analysis capabilities for sodium-cooled fast reactors through validation and qualification of safety analysis codes and methods. This paper provides a description of the EBR-II tests included in the program, and outlines the benchmark specifications being prepared to support the IAEA-coordinated research project. (authors)

  9. Analysis of grid-assembly shielding of EBR-II

    SciTech Connect

    Meneghetti, D.; Franklin, F.C.; Kucera, D.A.

    1983-01-01

    Differing neutron exposure rates to the EBR-II lower grid plenum assembly resulting from the historical changes in reactor configuration and shielding are analyzed to obtain the fluences and the steel displacements-per-atom values in this irreplaceable component.

  10. PRD components of an EBR-II configuration

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The linear components of the power reactivity decrement (PRD) for a heterogeneous loading (run 93A) of Experimental Breeder Reactor II (EBR-II) have been calculated using the EBRPOCO program together with an addition to the program, RODCO, which accounts for effects of axial positionings of control rods. The program calculates detailed axially delineated contributions of the components of the PRD for every subassembly of the reactor configuration. The sum of these contributions is subtracted from the corresponding measured PRD value to give the nonlinear (subassembly-bowing) component.

  11. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  12. Simplified modeling of the EBR-II control rods

    SciTech Connect

    Angelo, P.L.

    1995-06-25

    Simplified models of EBR-II control and safety rods have been developed for core modeling under various operational and shutdown conditions. A parametric study was performed on normal worth, high worth, and safety rod type control rods. A summary of worth changes due to individual modeling approximations is tabulated. Worth effects due to structural modeling simplification are negligible. Fuel region homogenization and burnup compression contributes more than any other factor. Reference case C/E values (ratio of calculated worth from detailed model to measured worth) of 1.072 and 1.142 for safety and normal worth rods indicate acceptable errors when the approximations are used. Fuel burnup effect illustrates rod worth sensitivity to the modeling approximation. Aggregate effects are calculated under a reduced mesh.

  13. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  14. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-12-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  15. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  16. An overview of the EBR-II PRA (Probabilistic Risk Assessment)

    SciTech Connect

    Hill, D.J.; Chang, Y.W.; Deitrich, L.W.; Ragland, W.A. ); Lehto, W.K.; Schaeffer, R.W. )

    1990-01-01

    Experimental Breeder Reactor-II, EBR-II, is a 60 MW(t) liquid sodium cooled, pool type fast reactor which has operated successfully as a power reactor and irradiation facility for over 25 years. Argonne National Laboratory is currently performing a Probabilistic Risk Assessment of EBR-II. An overview of the PRA is presented with special attention to those issues which are important to EBR-II such as the passive decay heat removal capabilities and the passive shut down capability provided by the reactivity feedbacks. 7 refs., 3 figs., 1 tab.

  17. Approximating axially dependent radial-displacement reactivities of EBR-II subassembly rows

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    Reactivities resulting from radial displacement of the Experimental Breeder reactor II (EBR-II) subassembly rows are used in calculations of bowing components of reactivity and of grid-plate expansion reactivity. The method uses perturbation-quantity outputs from a modified R-Z geometry diffusion theory calculation to obtain axially delineated reactivity coefficients for an azimuthally homogenized approximation of an EBR-II configuration.

  18. Flow dependence of the PRD in EBR-II

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    The linear (and Doppler) feedback components of the power reactivity decrement (PRD) for various loading configurations of the Experimental Breeder Reactor II (EBR-II) have been reported. (The PRD at a power is here the negative of the reactivity required to bring the reactor from zero-power, hot-critical, to that power.) The delineation of the feedback components into power dependent and power-to-flow dependent parts have also been reported. The nonlinear feedback component, primarily due to bowings of the subassembly ducts, is deduced by subtraction of the calculated total linear (and small Doppler) component from the measured values of PRD as a function of reactor power. Furthermore, this component is generally assumed to be a function of the power-to-flow ratio of the reactor for purposes of estimating PRD values at differing flows. If the nonlinear reactivity component is indeed solely power-to-flow dependent, then the values of measured total PRDs for differing flows should lie for the respective power values, corresponding to equivalent power-to-flow values, on a straight line having a negative slope. (This slope would be the power rate of the solely power part of the linear component of the PRD). Evidence that this may not be a reasonable assumption is reported.

  19. A survey of recent EBR-II passive safety testing

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Singer, R.M.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Sevy, R.H.

    1987-01-01

    During the last two years, the testing program at EBR-II has investigated the capabilities of liquid metal reactors (LMRs) to perform vital safety functions passively. In particular the tests have examined post shutdown decay heat removal by natural circulation and passive shutdown of the reactor after accidents which lead to undercooling. The undercooling accidents have been divided into two categories - the loss of flow without scram (LOFWS) (a family of events involving a loss of forced flow through the reactor), and the loss of heat sink without scram (LOHSWS) (a family of events involving a loss of the ability to transfer reactor heat to down stream components which generate steam and electricity.) The type of ''passive shutdown'' that has been examined is caused by natural processes - principally thermal expansion of the reactor structures, fuel and coolant. As used in this paper the term excludes automatic control of power, operator intervention or negative reactivity generated by special in-core devices. 18 refs., 7 figs., 1 tab.

  20. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

    2008-06-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

  1. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  2. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    SciTech Connect

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-05-08

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad.

  3. Tightly coupled'' simulation utilizing the EBR-II LMR: A real-time supercomputing and AI environment

    SciTech Connect

    Makowitz, H.; Barber, D.G.; Cordes, G.A.; Powers, A.K.; Scott, R. Jr.; Ward, L.W. ); Sackett, J.I.; King, R.W.; Lehto, W.K.; Lindsay, R.W.; Staffon, J.D. ); Gross, K.C. ); Doster, J.M. ); Edwards, R.M. (Pennsylvania State Univ., University P

    1990-01-01

    An integrated Supercomputing and AI environment utilizing a CRAY X-MP/216, a fiber-optic communications link, a distributed network of workstations and the Experimental Breeder Reactor II (EBR-II) Liquid Metal Reactor (LMR) and its associated instrumentation and control system is being developed at the Idaho National Engineering Laboratory (INEL). This paper summarizes various activities that make up this supercomputing and AI environment. 5 refs., 4 figs.

  4. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses, are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition ((TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially-delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration. This paper provides the results of the EBR-II kinetics analysis and lists the temperature coefficients of reactivity for varying subassembly types and conditions.

  5. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.

    SciTech Connect

    Grimm, K. N.

    1998-07-13

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved.

  6. Off-normal performance of EBR-II (Experimental Breeder Reactor) driver fuel

    SciTech Connect

    Seidel, B.R.; Batte, G.L.; Lahm, C.E.; Fryer, R.M.; Koenig, J.F.; Hofman, G.L.

    1986-09-01

    The off-normal performance of EBR-II Mark-II driver fuel has been more than satisfactory as demonstrated by robust reliability under repeated transient overpower and undercooled loss-of-flow tests, by benign run-beyond-cladding-breach behavior, and by forgiving response to fabrication defects including lack of bond. Test results have verified that the metallic driver fuel is very tolerant of off-normal events. This behavior has allowed EBR-II to operate in a combined steady-state and transient mode to provide test capability without limitation from the metallic driver fuel.

  7. Electrorefining Experience For Pyrochemical Reprocessing of Spent EBR-II Driver Fuel

    SciTech Connect

    S. X. Li; T. A. Johnson; B. R. Westphal; K. M. Goff; R. W. Benedict

    2005-10-01

    Pyrochemical processing has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor-II (EBR-II) at Idaho National Laboratory since 1996. This report summarizes technical advancements made in electrorefining of spent EBR-II driver fuel in the Mk-IV electrorefiner since the pyrochemical processing was integrated into the AFCI program in 2002. The significant advancements include improving uranium dissolution and noble metal retention from chopped fuel segments, increasing cathode current efficiency, and achieving co-collection of zirconium along with uranium from the cadmium pool.

  8. Feedback-reactivity time-dependencies for a negative reactivity insertion in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Knowledge of time-dependencies (and magnitudes) of feedback components is necessary for interpretation and understanding of transient behaviors. Described herein is one analysis of negative insertion (approx. 36 cents) of a control rod from full power during Experimental Breeder Reactor-II (EBR-II) run 93a. The time-dependencies of the component feedbacks have been analyzed using 24 channels in the EROS computer code. Seventy distinct temperature coefficients of reactivity were used in conjunction with this 24-channel EBR-II model. These temperature coefficients of reactivity were obtained using an addition (TEMCO) to the EBRPOCO code.

  9. Fluence, dosimetry, and steel-dpa rates in EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1984-01-01

    Sensitivities of steel displacements-per-atom (dpa) rates to fluence-rate spectra in regions of th Experimental Breeder Reactor II (EBR-II) are presented. Low sensitivities in EBR-II of ratios of dpa-to-fission rates assuming /sup 240/Pu as a dosimeter suggests its possible use for adjusting calculated dpa-rates for effects of errors in calculated fluence-spectra. Extension of the method to outer regions, having more degraded spectra, by use of /sup 10/B-shielded /sup 240/Pu dosimeters is also suggested.

  10. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition (TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration.

  11. Vanadium alloy irradiation experiment X530 in EBR-II{sup *}

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.

    1995-04-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994.

  12. Subtask 12H1: Vanadium alloy irradiation experiment X530 in EBR-II

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.; Chung, H.M.; Nowicki, L.J.; Smith, D.L.

    1995-03-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994. To obtain early irradiation performance data on the new 500-kg production heat of the V-4Cr-4Ti material before the scheduled EBR-II shutdown, an experiment, X530, was expeditiously designed and assembled. Charpy, compact tension, tensile and TEM specimens with different thermal mechanical treatments (TMTs), were enclosed in two capsules and irradiated in the last run of EBR-II, Run 170, from August 9 through September 27. For comparison, specimens from some of the previous heats were also included in the test. The accrued exposure was 35 effective full power days, yielding a peak damage of {approx}4 dpa in the specimens. The irradiation is now complete and the vehicle is awaiting to be discharged from EBR-II for postirradiation disassembly. 4 figs., 2 tabs.

  13. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems

    SciTech Connect

    Steven R. Sherman; Collin J. Knight

    2006-03-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

  14. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    SciTech Connect

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  15. Evidence of fast nonlinear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) has indicated that some relatively fast feedback may exist that cannot be accounted for by the linear feedback mechanisms. The magnitude of the positive insertion appears dependent on the amount of inserted reactivity and the run configuration. This phenomenon may be caused by a small, but rapid, change in core dimensions.

  16. Unprotected loss-of-heat sink simulation in the EBR-II plant

    SciTech Connect

    Feldman, E.E.; Mohr, D.

    1984-01-01

    Two unprotected loss-of-heat sink transients initiated from near full power conditions in the Experimental Breeder Reactor-II (EBR-II) plant have been simulated. In one transient the secondary sodium flow is reduced to nearly zero (0.5% of its initial value) while in the other the flow simply coasts down to a natural-convective rate of about 8%. In spite of the large difference in primary heat removal rates, which the difference in secondary flow rates represents, both transients have very similar overall behavior. In addition, the large volume of sodium in the primary tank causes a slowly rising tank temperature in response to net heat addition. An important result is that the negative reactivity feedback characteristics of the reactor cause it to shut itself down in a benign manner in both cases. Experiments based on these simulations are planned for the EBR-II in 1985.

  17. Thermal-hydraulic-structural behavior of the EBR-II IHX for overpower transients

    SciTech Connect

    Mohr, D.; Chang, L.K.; Lee, M.J.; Feldman, E.E.

    1982-01-01

    A detailed study has been made of the effects of the Operational Reliability Testing (ORT) program on major plant components of the Experimental Breeder Reactor No. II (EBR-II). This paper describes the integrated thermal-hydraulic-structural analyses conducted for the intermediate heat exchanger (IHX) with the aid of the NATDEMO, THTB, and ANSYS codes. An extensive analysis revealed the stress limiting area to be the junction between the upper head and upper tube sheet. The analyses indicate, however, that the EBR-II IHX, the major plant component most affected by the ORT program, will be able to withstand the thermal stress and accumulated fatigue damage during the lifetime of the plant including the ORT program.

  18. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop.

  19. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    SciTech Connect

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface. (MMI)

  20. Experimental and calculational analyses of actinide samples irradiated in EBR-II

    SciTech Connect

    Gilai, D.; Williams, M.L.; Cooper, J.H.; Laing, W.R.; Walker, R.L.; Raman, S.; Stelson, P.H.

    1982-10-01

    Higher actinides influence the characteristics of spent and recycled fuel and dominate the long-term hazards of the reactor waste. Reactor irradiation experiments provide useful benchmarks for testing the evaluated nuclear data for these actinides. During 1967 to 1970, several actinide samples were irradiated in the Idaho EBR-II fast reactor. These samples have now been analyzed, employing mass and alpha spectrometry, to determine the heavy element products. A simple spherical model for the EBR-II core and a recent version of the ORIGEN code with ENDF/B-V data were employed to calculate the exposure products. A detailed comparison between the experimental and calculated results has been made. For samples irradiated at locations near the core center, agreement within 10% was obtained for the major isotopes and their first daughters, and within 20% for the nuclides up the chain. A sensitivity analysis showed that the assumed flux should be increased by 10%.

  1. Results and implications of the EBR-II inherent safety demonstration tests

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants.

  2. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  4. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-20

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  5. Delineations of power and power-to-flow feedback components of EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The detailed contributions of feedback components by regions for various experimental breeder reactor-II (EBR-II) configurations have been reported assuming given values for the coolant flows. The separation of these components into power dependent and power-to-flow dependent parts if reported here for EBR-II run 93A. The power-reactivity-decrement (PRD) can then be expressed as the sum of parts which enables the PRD for other values of coolant flow to be estimated. The delineations of the components also enhance the understanding of the contributions of the various components and regions in the feedback process in EBR-II. Separation of the components into power and power-to-flow delineations were made by calculations of the components of the PRD assuming infinite coolant flow and comparing with results previously reported for finite flow. Subtractions of the infinite-flow feedback values from the corresponding finite-flow values give the power-to-flow portions. These linear and Doppler components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) which accounts for the effects of axial positionings of control rods.

  6. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  7. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  8. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    SciTech Connect

    Meneghetti, D.

    1994-03-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement.

  9. EBR-II time constant calculation using the EROS kinetics code

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    System time constants are important parameters in determining the dynamic behavior of reactors. One method of determining basic time constants is to apply a step change in power level and determine the resulting temperature change. This methodology can be done using any computer code that calculates temperature versus time given either a power input or a reactivity input. In the current analysis this is done using the reactor kinetics code EROS. As an example of this methodology, the time constant is calculated for an Experimental Breeder Reactor II (EBR-II) fuel pin.

  10. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    SciTech Connect

    Lell, R. M.; Pope, C. L.

    2000-03-14

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles.

  11. EBR-II facility for cleaning and maintenance of LMR components

    SciTech Connect

    Washburn, R.A.

    1986-01-01

    The cleaning and maintenance of EBR-II sodium wetted components is accomplished in a separate hands-on maintenance facility known as the Sodium Components Maintenance Shop (SCMS). Sodium removal is mostly done using alcohol but steam or water is used. The SCMS has three alcohol cleaning systems: one for small nonradioactive components, one for small radioactive components, and one for large radioactive components. The SCMS also has a water-wash station for the removal of sodium with steam or water. An Alcohol Recovery Facility removes radioactive contaminants from the alcohol and reclaims the alcohol for reuse. Associated with the large components cleaning system is a major component handling system.

  12. A probabilistic method for evaluating reactivity feedbacks and its application to EBR-II

    SciTech Connect

    Schaefer, R.W.

    1991-01-01

    The probability that reactivity feedbacks fail to prevent damage is computed by propagating data and modeling uncertainties through transient calculations, with these uncertainties being constrained by experimental evidence. Screening processes are used to identify the most important parameters and accident initiators. The response surface method is used to facilitate the error propagation and a Monte Carlo rejection technique is used to force the parameter variations to be consistent with the observed distribution of experimental quantities. The reliability of the failure probability estimates is evaluated. This process is applied to ATWS events in the PRA for the EBR-II reactor. The loss-of-normal-power (LONP), loss-of-flow and transient overpower accidents without scram were found to warrant detailed analysis and a complete analysis has been made for the first of these. Six parameters are primarily responsible for the LONP outcome variations. The conditional probability of minor core damage from LONP without scram is 1.2 {times} 10{sup {minus}2}. The uncertainty in this estimate is a factor of 2. This damage estimate would be an order of magnitude higher if experimental information about feedbacks in EBR-II was not used. the conditional probability of major core damage from LONP without scram is <10{sup {minus}6}. 20 refs., 1 fig., 3 tabs.

  13. The EBR-II materials-surveillance program. 4: Results of SURV-4 and SURV-6

    SciTech Connect

    Ruther, W.E.; Hayner, G.O.; Carlson, B.G.; Ebersole, E.R.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. For both the irradiated and thermally aged samples, one half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In addition to the fifteen types of metal samples, graphite blocks were irradiated in the SURV subassemblies to determine the effect of irradiation on the graphite neutron shield. In this report, the properties of these materials irradiated at 370 C to a total fluence of 2.2 x 10{sup 22} n/cm{sup 2} (over 2,994 days) are compared with those of similar specimens thermally aged at 370 C for 2,994 days in the storage basket of the reactor. The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, impact strength, and creep.

  14. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    SciTech Connect

    Allen, N. L.; Keeton, J. M.; Sackett, J. I.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  15. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  16. Comparisons of PRD (power-reactivity-decrements) components for various EBR-II configurations

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-09-19

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated.

  17. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    SciTech Connect

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.

  18. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II (Experimental Breeder Reactor)

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs.

  19. Visual imagery and the user model applied to fuel handling at EBR-II

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.

  20. Initiating the D&D Project for the EBR-II

    SciTech Connect

    Rick Demmer

    2010-08-01

    A novel decommissioning project is underway to close the Experimental Breeder Reactor-II (EBR-II) “fast” reactor at the Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) facility near Idaho Falls, ID. The facility was placed in cold shutdown in 1994 and work began on the removal of the metallic sodium coolant. The bulk of the sodium was drained and treated beginning in 2001. The residual sodium heel was chemically passivated to render it less reactive in 2005 using a novel carbon dioxide treatment. Approximately 700 kg of metallic sodium and 3500 kg of sodium bicarbonate remain in the facility. A RCRA Waste Treatment Permit, issued in 2002 by the State of Idaho Department of Environmental Quality, requires annual progress toward closure of the facility, and that all regulated materials be removed or deactivated, and the waste products removed by 2022. The baseline sodium removal technology would result in about 100,000 gallons of low-level waste solution requiring treatment along with separate handling of the large components (intermediate heat exchanger, rotating plug, etc) outside of the primary tank.

  1. Nonlinear PRD components of EBR-II compared with bowing analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    The nonlinear components of the power reactivity decrements (PRDs) for Experimental Breeder Reactor II (EBR-II) runs 85A, 93A, 99A, and 122A have been reported. These nonlinear components were deduced by subtraction of the calculated linear (and Doppler) components from the measured PRD curves. The linear (and Doppler) components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) that accounts for the effects of positionings of the control rods. Corresponding calculated bowing components of these runs have now been calculated assuming that the hex can ducts are unirradiated and thus have been assumed to have neither swelling nor bowing at the zero-power level in the analyses. Furthermore, the initial separations of the subassemblies at the contact-button levels are all assumed to be the unirradiated nominal 0.002 in. (0.051 mm). Comparison of these calculations with the bowing components deduced from the measurements enable the signs and magnitudes of the effects of the unknown initial conditions to be ascertained.

  2. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    SciTech Connect

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10/sup 26/ neutrons/m/sup 2/ (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs.

  3. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  4. Irradiation and compatibility testing of Li/sub 2/O materials at EBR-II

    SciTech Connect

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Tetenbaum, M.; Walters, L.C.

    1982-12-01

    A study was made of the neutron-irradiation behavior of /sup 6/Li-enriched Li/sub 2/O material in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test compatibility of Li/sub 2/O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li/sub 2/O (approx. 89% dense) lessened with neutron exposure. Helium tritium retention appeared to approach steady-state after approx. 1% /sup 6/Li burnup. The effect was likely caused by the formation of open porosity in the pellets. The stress corrosion studies, using a 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li/sub 2/O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time greatly reducing corrosion rates.

  5. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    SciTech Connect

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J.

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  6. Midplane and off-midplane axial leakage simulation of heterogeneous subassemblies in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1984-01-01

    Generally EBR-II XY geometry and one-dimensional (1D) cylindrical neutron flux calculations using transport theory analysis assume energy independent DB/sup 2/-type absorptions to simulate effects of axial leakages. This assumption, while generally resulting in satisfactory eigenvalues and high- and intermediate-energy flux spectra, gives large errors in the low-energy flux spectra where the flux levels are smaller. These midplane errors, and more importantly the off-midplane errors, can be reduced by using a more realistic leakage model: space and energy dependent leakage absorption cross sections. Analyses have been reported in which transport theory methods using row-wise azimuthally-homogeneous RZ-geometry boundary angular fluxes to calculate space and energy dependent leakage absorptions which were then used in subsequent 1D cylindrical simulations of RZ calculations. The present paper extends the study to include heterogeneous core loading configurations. This study contains modeling of heterogeneous XYZ loadings using heterogeneous XY geometry and space and energy dependent leakage absorptions. Because of the complexities arising from the three-dimensional analysis, the results presented here use diffusion theory. Although the actual negative leakage absorption values can be used in the CITATION diffusion theory code, it was found that the ..sigma../sub s/(1..-->..g) method gave better results in the core region of these studies.

  7. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-12-31

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  8. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  9. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-01-01

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and wholeplant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP- 302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  10. Review of behavior of mixed-oxide fuel elements in extended overpower transient tests in EBR-II

    SciTech Connect

    Tsai, H.; Neimark, L.A.; Nagai, S.; Nakae, N.

    1994-10-01

    From a series of five tests conducted in EBR-II, a substantial data base has been established on the performance of mixed-oxide fuel elements in a liquid-metal-cooled reactor under slow-ramp transient overpower conditions. Each test contained 19 preirradiated fuel elements with varying design and prior operating histories. Elements with aggressive design features, such as high fuel smear density and/or thin cladding, were included to accentuate transient effects. The ramp rates were either 0.1 or 10% {Delta}P/P/s and the overpowers ranged between {approx}60 and 100% of the elements` prior power ratings. Six elements breached during the tests, all with aggressive design parameters. The other elements, including all those with moderate design features for the reference or advanced long-life drivers for PNC`s prototype fast reactor Monju, maintained their cladding integrity during the tests. Posttest examination results indicated that fuel/cladding mechanical interaction (FCMI) was the most significant mechanism causing the cladding strain and breach. In contrast, pressure loading from the fission gas in the element plenum was less important, even in high-burnup elements. During an overpower transient, FCMI arises from fuel/cladding differential thermal expansion, transient fuel swelling, and, significantly, the gas pressure in the sealed central cavity of elements with substantial centerline fuel melting. Fuel performance data from these tests, including cladding breaching margin and transient cladding strain, are correlatable with fuel-element design and operating parameters. These correlations are being incorporated into fuel-element behavior codes. At the two tested ramp rates, fuel element behavior appears to be insensitive to transient ramp rate and there appears to be no particular vulnerability to slow ramp transients as previously perceived.

  11. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect

    LR Greenwood

    1999-06-17

    The Fusion Breeder Reactor (FUBR) and Breeder Exchange Matrix (BEATRIX) experiments were cooperative efforts by members of the International Energy Agency to investigate the irradiation behavior of solid breeder materials for tritium production to support future fusion reactors. Lithium ceramic materials including Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3} with varying {sup 6}Li enrichments from 0 to 95% were irradiated in a series of experiments in the Experimental Breeder Reactor (EBR II) and in the Fast Flux Test Facility (FFTF) over a period of about 10 years from 1982 to 1992. These experiments were characterized in terms of the nominal fast neutron fluences and measured {sup 6}Li burnup factors, as determined by either mass spectrometry or helium measurements. Radiation damage in these compounds is caused by both the {sup 6}Li-burnup reaction and by all other possible neutron reactions with the atoms in the compound materials. In this report, displacements per atom (dpa) values have been calculated for each type of material in each of the various irradiations that were conducted. Values up to 11% {sup 6}Li-burnup and 130 dpa are predicted for the longest irradiations. The dpa cross sections were calculated for each compound using the SPECOMP computer code. Details of the dpa calculations are presented in the report. Total dpa factors were determined with the SPECTER computer code by averaging the dpa cross sections over the measured or calculated neutron flux spectra for each series of irradiations. Using these new calculations, previously measured radiation damage effects in these lithium compounds can be compared or correlated with other irradiation data on the basis of the dpa factor as well as {sup 6}Li-burnup.

  12. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    SciTech Connect

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-03-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training.

  13. EBR-II in-vessel natural circulation experiments on hot and cold pool stratification

    SciTech Connect

    Ragland, W.A.; Feldman, E.E.

    1990-01-01

    The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provide a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests--two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed. 5 refs., 3 figs.

  14. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  15. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling

  16. Characterization of degraded EBR-II fuel from the ICPP-603 basin: National spent nuclear fuel program, FY 1999 final report

    SciTech Connect

    Pahl, R. G.

    2000-04-17

    Characterization data is reported for sodium bonded Experimental Breeder Reactor II (EBR-II) fuel which had been stored underwater in containers since the late 1970's. Sixteen stainless steel storage containers were retrieved from the ICPP-603 storage pool at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. Ten of the containers had leaked water due to improper sealing. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide particulate formed and filled the bottom of the container. Headspace gas analysis determined that greater than 99% hydrogen was present. Cesium-137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a caustic solution of NaOH.

  17. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    SciTech Connect

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  18. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    SciTech Connect

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  19. Validation of the integration of CFD and SAS4A/SASSYS-1: Analysis of EBR-II shutdown heat removal test 17

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.

    2012-07-01

    Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)

  20. The EBR-II spent fuel treatment program

    SciTech Connect

    Lineberry, M.J.; McFarlane, H.F.

    1995-12-01

    Argonne National Laboratory has refurbished and equipped an existing hot cell facility for demonstrating a high-temperature electrometallurgical process for treating spent nuclear fuel from the Experimental Breeder Reactor-11. Two waste forms will be produced and qualified for geologic disposal of the fission and activation products. Relatively pure uranium will be separated for storage. Following additional development, transuranium elements will be blended into one of the high-level waste streams. The spent fuel treatment program will help assess the viability of electrometallurgical technology as a spent fuel management option.

  1. Low-order dynamic modeling of the Experimental Breeder Reactor II

    SciTech Connect

    Berkan, R.C. . Dept. of Nuclear Engineering); Upadhyaya, B.R.; Kisner, R.A. )

    1990-07-01

    This report describes the development of a low-order, linear model of the Experimental Breeder Reactor II (EBR-II), including the primary system, intermediate heat exchanger, and steam generator subsystems. The linear model is developed to represent full-power steady state dynamics for low-level perturbations. Transient simulations are performed using model building and simulation capabilities of the computer software Matrix{sub x}. The inherently safe characteristics of the EBR-II are verified through the simulation studies. The results presented in this report also indicate an agreement between the linear model and the actual dynamics of the plant for several transients. Such models play a major role in the learning and in the improvement of nuclear reactor dynamics for control and signal validation studies. This research and development is sponsored by the Advanced Controls Program in the Instrumentation and Controls Division of the Oak Ridge National Laboratory. 17 refs., 67 figs., 15 tabs.

  2. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-05-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  3. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  4. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs.

  5. Status of RBCB testing of LMR oxide fuel in EBR-II

    SciTech Connect

    Strain, R.V.; Bottcher, J.H.; Gross, K.C.; Lambert, J.D.B. ); Ukai, S.; Nomura, S.; Shikakura, S.; Katsuragawa, M. . Oarai Engineering Center)

    1991-01-01

    The status is given of the the American-Japanese collaborative program in Experimental Breeder Reactor 2 to determine the run-beyond-cladding-breach performance of (UPu)O{sub 2} fuel pins for liquid-metal cooled reactors. Phase 1 of the collaboration involved eighteen irradiation tests over 1981--86 with 5.84-mm pins in 316 or D9 stainless steel. Emphasis in Phase 2 tests from 1989 onwards is with larger diameter (7.5mm) pins in advanced claddings. Results include delayed neutron and fission gas release data from breached pins, the impact of fuel-sodium reaction product formation on pin performance, and fuel and fission product contamination from failures. 13 refs, 1 fig., 4 tabs.

  6. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B/sup 2/ method) or positive downscatter cross sections (the ..sigma../sub s/(1 ..-->.. g) method). 3 refs., 52 figs., 10 tabs.

  7. Comparisons of power transfer functions and flow transfer functions in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described.

  8. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  9. Prediction of stainless steel activation in experimental breeder reactor 2 (EBR-II) reflector and blanket subassemblies

    SciTech Connect

    Bunde, K.A.

    1996-12-31

    Stainless steel structural components in nuclear reactors become radioactive wastes when no longer useful. Prior to disposal, certain physical attributes must be analyzed. These attributes include structural integrity, chemical stability, and the radioactive material content among others. The focus of this work is the estimation of the radioactive material content of stainless steel wastes from a research reactor operated by Argonne National Laboratory.

  10. Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining

    SciTech Connect

    J. A. Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

    2005-09-01

    The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

  11. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  12. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  13. [Surgical instruments (II). An introduction to surgical instruments].

    PubMed

    Illana Esteban, Emilio

    2005-09-01

    In clinical practice, there are many diverse ways to name each instrument. Some names consist of local terms related to the shape or the use of an instrument; others have their origin in confusing references; few of these names tend to be related to known nomenclature. This causes a serious inconvenience for someone who wishes to learn about the intra-surgical medium in an organized manner. Undoubtedly this is an inconvenience for the untrained person who discovers he/she is incapable of retaining an enormous volume of names, often presented without any logic whatsoever This also causes an inconvenience for the trained professional; it is difficult to understand terms since, depending on which surgical ward one refers to, the name for the same instrument changes.

  14. LCLS-II New Instruments Workshops Report

    SciTech Connect

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC

    2012-08-08

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and

  15. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F.

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  16. Instrument Front-Ends at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  17. Design And Performance Of The Stratospheric Aerosol And Gas Experiment II (SAGE II) Instrument

    NASA Astrophysics Data System (ADS)

    Zaun, N. H.; Mauldin, L. E.; McCormick, M. P.

    1984-01-01

    Design and performance data are presented for the Stratospheric Aerosol and Gas Experi-ment II (SAGE II) instrument, which has been developed for the Earth Radiation Budget Satellite (ERBS). SAGE II is designed to monitor globally the vertical distribution of strato-spheric aerosols, ozone, water vapor and nitrogen dioxide by measuring the extinction of solar radiation through the earth's atmosphere during the ERBS observatory solar occultations. Solar radiation is reflected from a flat scanning mirror into a Cassegrain type telescope, which forms a solar image on the entrance slit of a grating spectrometer. The SAGE II instantaneous-field-of-view (IFOV) is scanned along the vertical solar diameter by the elevation scan mirror. The entire optical system is contained within an azimuth gimbal which tracks the solar radiometric centroid during the data event. This spectrometer, with help from three interference filters, isolates seven spectral wavelengths ranging from 0.385 micrometers to 1.02 micrometers. All seven channels use silicon photodiode detectors oper-ated in the photovoltaic mode. Detector outputs are multiplexed into a serial data stream for readout by the ERBS telemetry system. Each output is sampled 64 times per second and digitized to 12 bit resolution. SAGE II is a third generation instrument following the highly successful SAM II and SAGE programs.

  18. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  19. Using the Apple II as a Laboratory Instrument.

    ERIC Educational Resources Information Center

    De Jong, Marvin L.; Layman, John W.

    1984-01-01

    Discusses using Apple II microcomputers for measuring resistance, temperature, and light intensity. Also discusses digital input and output and timing techniques. Although focusing on Apple II, the circuits and programs described may be applicable to other microcomputers. (JN)

  20. Shutdown and Closure of the Experimental Breeder Reactor - II

    SciTech Connect

    Michelbacher, John A.; Baily, Carl E.; Baird, Daniel K.; Henslee, S. Paul; Knight, Collin J.; Rosenberg, Kenneth E.

    2002-07-01

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor - II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m{sup 3} (86,000 gallons) of sodium and the secondary system contained 50 m{sup 3} (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated lay-up plan defining the system end state, as well as instructions for achieving the lay-up condition. A goal of system-by-system lay-up is to minimize

  1. Instrumentation and control improvements at Experimental Breeder Reactor II

    SciTech Connect

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I C systems of the next generation of liquid metal reactor (LMR) plants.

  2. Instrumentation and control improvements at Experimental Breeder Reactor II

    SciTech Connect

    Christensen, L.J.; Planchon, H.P.

    1993-03-01

    The purpose of this paper is to describe instrumentation and control (I&C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I&C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I&C systems of the next generation of liquid metal reactor (LMR) plants.

  3. Planck 2015 results. II. Low Frequency Instrument data processings

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschet, C.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oppermann, N.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release, describing the products (especially timelines) and the ways in which they were obtained. We demonstrate that the pipeline is self-consistent (principally based on simulations) and report all null tests. For the first time, we present LFI maps in Stokes Q and U polarization. We refer to other related papers where more detailed descriptions of the LFI data processing pipeline may be found if needed.

  4. Planck 2013 results. II. Low Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Robbers, G.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44, and 70 GHz. In particular, we discuss the various steps involved in reducing the data, from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least squares map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the ≈- 20 dB level using Jupiter transits, which are also used for the geometrical calibration of the focal plane.

  5. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II.

    SciTech Connect

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-05-28

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF.

  6. Overview of Beam Instrumentation and Diagnostics for the NSLS-II Project

    SciTech Connect

    Singh,O.

    2008-05-04

    A new, ultra-bright 3rd generation light source, the NSLS-II Project, is planned to be built at Brookhaven National Laboratory. The light source being developed will have unprecedently small beam horizontal emittance and will provide the radiation sources with a brightness of 3 x 10{sup 21} photons/sec/0.1%BW/mm{sup 2}/mrad{sup 2}. In this paper we present the detailed specifications and a comprehensive description of the planned beam instrumentation system and the first results of the ongoing instrumentation R&D activities on beyond state-of-the-art subsystems.

  7. Instrumentation of Reentry Plasma Experiments on Trail-Blazer II Rocket A21.220-1

    DTIC Science & Technology

    1974-07-31

    June 1974 BLAZER II ROCKET A21. 220-1 9. PIF~~GOG REPORT NUMBER 7. &TMORCO) J. Spencer Rocbefort L. CONTRACT OR GRANT NUNIIEN(sJ Raimundas Sukys F19628...Fnittei) AFCRL-TR-74-0385 ( INSTRUMENTATION OF REENTRY PLASMA EXPERIMENTS ON TRAILBLAZER II ROCKET A21. 220-1 J. Spencer Rochefort Raimundas Sukys ...J.S. Rochefort, L. J. O’Connor, C.H. Price, Jr., and R, Sukys , "Data Transmission and ’I rajectory Determining Devices For Research Rockets and

  8. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  9. Evaluation of the Quality of Guidelines for Myasthenia Gravis with the AGREE II Instrument

    PubMed Central

    Zhang, Zhenchang; Guo, Jia; Su, Gang; Li, Jiong; Wu, Hua; Xie, Xiaodong

    2014-01-01

    Background Clinical practice guidelines (CPGs) are systematically developed statements to assist practitioners in making decisions about appropriate healthcare in specific clinical circumstances. The methodological quality of CPGs for myasthenia gravis (MG) are unclear. Objective To critically evaluate the methodological quality of CPGs for MG using AGREE II instrument. Method A systematical search strategy on PubMed, EMBASE, DynaMed, the National Guideline Clearinghouse (NGC) and the Chinese Biomedical Literature database (CBM) was performed on September 20th 2013. All guidelines related to MG were evaluated with AGREE II. The software used for analysis was SPSS 17.0. Results A total of 15 CPGs for MG met the inclusion criteria (12 CPGs in English, 3 CPGs in Chinese). The overall agreement among reviews was moderate or high (ICC >0.70). The mean scores (mean ± SD) for al six domains were presented as follows: scope and purpose (60.93% ±16.62%), stakeholder involvement (40.93% ±20.04%), rigor of development (37.22% ±30.46%), clarity of presentation (64.26% ±16.36%), applicability (28.19% ±20.56%) and editorial independence (27.78% ±28.28%). Compared with non-evidence-based CPGs, evidence-based CPGs had statistically significant higher quality scores for all AGREE II domains (P<0.05). All domain scores appear slightly higher for CPGs published after AGREE II instrument development and validation (P>0.05). The quality scores of CPGs developed by NGC/AAN were higher than the quality scores of CPGs developed by other organizations for all domains. The difference was statistically significant for all domains with the exception of clarity of presentation (P = 0.07). Conclusions The qualities of CPGs on MG were generally acceptable with several flaws. The AGREE II instrument should be adopted by guideline developers, particularly in China. PMID:25402504

  10. Inter-comparison and validation of ozone measurements by SAGE II and SBUV/2 instruments

    NASA Astrophysics Data System (ADS)

    Khatun, Sufia

    Ozone is an important trace gas in the Earth's atmosphere. Its distribution and temporal trends are monitored by a number of instruments. The measurement of atmospheric ozone is complicated and inter-comparison of measurements using different techniques is important in validating and developing a confidence when using these different ozone datasets. In this work measurement of ozone by two classes of space-based instruments SAGE II and SBUV/2 are compared. Twenty-one original layers of SBUV/2 ozone data are merged into five thick layers. The agreement in most regions for all four seasons between the SBUV/2 instruments are within 5-10 DU. The behavior of partial ozone column in layers 2 and 3 has a more dynamic nature. This may be due to Dobson circulation carrying ozone-rich air from equatorial higher altitudes to mid-latitude lower altitudes. Monthly averaged data for the four SBUV/2 instruments show annual cycles and in some cases semi-annual cycles. There are about six months in phase difference between the peaks and valleys in the northern mid-latitude region relative to equatorial region. This suggests the dynamic nature of ozone migration from equatorial region towards the pole. Pearson correlation coefficients for the total column ozone for the equatorial zone between NOAA 17 and the other three SBUV/2 instruments are 0.93, 1.00 and 0.99 respectively. Vast majority of the data falls within +/-1%. The maximum ozone is observed in the equatorial region at altitudes corresponding to pressure levels between 20-35 mbar. As we move away from the equatorial region the maximum ozone is observed at lower altitudes. The very highest values of ozone are concentrated in three or four patches with locations corresponding to centers of the Hadley and Ferrel cells. The agreement between SAGE II and SBUV/2 instruments is within 1-3 DU above the 50 mbar pressure level where the ozone content varies from a few to 65 DU. Time dependent comparisons between SAGE II and NOAA 09

  11. Transforaminal lumbar interbody fusion versus instrumented posterolateral fusion in Grade I/II spondylolisthesis

    PubMed Central

    Pooswamy, Shanmugasundaram; Muralidharagopalan, Niranjanan Raghavn; Subbaiah, Sivasubramaniam

    2017-01-01

    Background: Spondylolisthesis refers to slippage of one vertebra over the other, which may be caused by a variety of reasons such as degenerative, trauma, and isthmic. Surgical management forms the mainstay of treatment to prevent further slip and worsening. However, there is no consensus regarding the best surgical option to treat these patients. This study compares TLIF and instrumented PLF in patients with Grade I and II spondylolisthesis and analysis the outcome with respect to functional outcome, pain, fusion rate, adequacy of medial facetectomy for decompression, and complications. Materials and Methods: Forty patients operated for spondylolisthesis by instrumented posterolateral or transforaminal fusion between January 1, 2010, and June 30, 2012 were included in this retrospective study. They were followed up for 3 years. Twenty one cases were of instrumented posterolateral fusion (PLF) and 19 cases were of transforaminal lumbar interbody fusion (TLIF). The patients were asked to fill up the Oswestry disability index (ODI), Dallas Pain Questionnaire (DPQ), and low back pain rating scale (LBPRS) preoperatively, at 1-month postoperatively, and at 6, 12, 24, and 36 months postoperatively. Radiological parameters were assessed using radiographs. Results: No significant differences were found in DPQ, LBPRS, or ODI scores preoperative, 1-month postoperative, and at 6, 12, 24 and 36 months followup. No significant difference was found between the two groups in blood loss. The only significant difference between the two groups was in the operative time, in which the instrumented PLF group had a mean of 50 min lesser than the TLIF group (P = 0.02). Conclusions: TLIF and instrumented PLF are equally efficacious options in the treatment of Grade I and II spondylolisthesis, except lytic type.

  12. Detection of Instrumental Drifts in the PEP II LER BPM System

    SciTech Connect

    Wittmer, W.; Fisher, A.S.; Martin, D.J.; Sebek, J.J.; /SLAC

    2007-11-07

    During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. A large number of BPMs exhibited sudden artificial jumps that interfered with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided by SPEAR III at SSRL), was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before PEP-II closes in Oct.2008, an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.

  13. Electron Temperature and Floating Potential Measurement by TPMU - PROBA II Microsatellite Instrument as Dynamically Evolving System

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina; Hruska, Frantisek; Truhlik, Vladimir

    2014-05-01

    Thermal Plasma Measurement Unit (TPMU) scientific instrument was developed for PROBA II microsatellite and launched in November 2009. The device is working with limitations of scientific measurements caused very probably by installed onboard software. This brings lower data volume as it was planned. Affected are ion measurement and partially electron temperature measurement. This limited function of the instrument is stable and lasting since the beginning of the mission. The data are completed with orbital parameters. We use cluster analysis using time to study seasonal and geographical variations of the floating potential and the electron temperature. Analysis is performed separately for all seasons and Equatorial region, North and South hemisphere. The annual seasonal changes in the floating potential and electron temperature are reflected in the clusters identified in this analysis. Changes in the beginning, the end and duration of seasons over a period of years reflect also changes of Kp index. Using this stochastic cluster analysis method were able to utilize a higher volume of usable measured data and continue with the study of the scientific interesting effects and process the data statistically. Summer seasonal cooling or heating on the South or North hemisphere on the Floating potential is in evidence.

  14. The accuracy in the control of the apical extent of rotary canal instrumentation using Root ZX II and ProTaper instruments: an in vivo study.

    PubMed

    Jakobson, Sandra Joia Mizrahi; Westphalen, Vania Portela Dietzel; da Silva Neto, Ulisses Xavier; Fariniuk, Luis Fernando; Picoli, Fábio; Carneiro, Everdan

    2008-11-01

    The accuracy of Root ZX II (J. Morita, Kyoto, Japan) to control the apical extent of rotary canal instrumentation in vivo was assessed. Twenty-four premolars with a single canal were selected. The roots were divided in two groups according to the calibration of the automatic apical reverse mechanism of Root ZX II, set at levels 1 and 2. After endodontic access, the preparation was performed with ProTaper instruments (Dentsply Maillefer, Ballaigues, Switzerland) connected to the device. Afterwards, the last file used was introduced into the canal and fixed in place with acrylic resin. The teeth were extracted and ground until exposure of the file. The distance from the instrument tip to the apical foramen was obtained. The percentage of acceptable measurements and the difference between means were submitted to statistical analysis. The differences of setting the reverse mechanism at 1 and 2 were not statistically significant. Both settings were not accurate for determining and controlling the apical extent of rotary instrumentation.

  15. Clinical guidelines in pediatric headache: evaluation of quality using the AGREE II instrument

    PubMed Central

    2014-01-01

    Background The Appraisal of Guidelines for Research and Evaluation (AGREE II) tool is a validated questionnaire used to assess the methodological quality of clinical guidelines (CGs). We used the AGREE II tool to assess the development process, the methodological quality, and the quality of reporting of available pediatric CGs for the management of headache in children. We also studied the variability in responses related to the characteristics of eleven Italian neuropediatric centers, showing similarities and differences in the main recommendations reported in CGs. Methods A systematic literature search was conducted from January 2002 to June 2013 on Mediline, the Cochrane database, the National Guideline Clearinghouse website and the NHS evidence search tool, using the following terms: headache, cephalalgia, guidelines and children (MESH or text words). Six CGs providing information on the diagnosis and management of headache and specific recommendations for children were selected. Eleven neuropediatric centers assessed the overall quality and the appropriateness of all available CGs using of the AGREE II instrument. Results Six CGs meeting the inclusion and exclusion criteria were identified and assessed by 11 reviewers. Our study showed that the NICE CGs was “strongly recommended” while the French and Danish CGs were mainly “not recommended”. The comparison between the overall quality score of the French CGs and the NICE CGs was statistically significant (6.54 ± 0.69 vs 4.18 ± 1.08; p =0.001). The correlation analysis between quality domain score and guideline publication date showed a statistically significant association only for the “editorial independence” domain (r = 0.842 p = 0.035). The intra-class coefficients showed that the 11 reviewers had the highest agreement for the Lewis CGs (r = 0.857), and the lowest one for the NICE CGs (r = 0.656). Statistical analyses showed that professionals from outpatient services

  16. Clinical practice guidelines for treatment of acne vulgaris: a critical appraisal using the AGREE II instrument.

    PubMed

    Sanclemente, Gloria; Acosta, Jorge-Luis; Tamayo, Maria-Eulalia; Bonfill, Xavier; Alonso-Coello, Pablo

    2014-04-01

    A significant number of clinical practice guidelines (CPGs) about the treatment of acne vulgaris in adolescents and adults have been published worldwide. However, little is known about the quality of CPGs in this field. The aim of this study was to appraise the methodological quality of published acne vulgaris CPGs. We performed a systematic review of published CPGs on acne vulgaris therapy from July 2002 to July 2012. Three reviewers independently assessed each CPG using the AGREE II instrument. A standardized score was calculated for each of the six domains. Our search strategy identified 103 citations but just six met our inclusion criteria. Agreement among reviewers was very good: 0.981. The domains that scored better were: "scope and purpose" and "clarity and presentation". Those that scored worse were "stakeholder involvement", "rigor of development", and "applicability". The European and the Malaysian CPGs were the only recommended with no further modifications. In addition, the Mexican, Colombian and the United States guidelines were recommended with provisos, with lower scores regarding stakeholder involvement, rigor of development and applicability. Only two guidelines clearly reported outcome measures for evaluating efficacy or included quality of life outcomes. CPGs varied regarding the consideration of light/laser therapy or consideration of complementary/alternative medicines. None of them included cost considerations of drugs such as systemic isotretinoin. In conclusion, published acne vulgaris CPGs for acne therapy vary in quality with a clear need to improve their methodological rigor. This could be achieved with the adherence to current CPGs development standards.

  17. Comparable flow cytometry data can be obtained with two types of instruments, Canto II, and Navios. A GEIL study.

    PubMed

    Solly, Françoise; Rigollet, Lauren; Baseggio, Lucille; Guy, Julien; Borgeot, Jessica; Guérin, Estelle; Debliquis, Agathe; Drenou, Bernard; Campos, Lydia; Lacombe, Francis; Béné, Marie C

    2013-12-01

    Flow cytometry (FC) instruments settings classically rely on local establishment of photomultipliers (PMT) voltages adapted to the measurements expected to be performed. In the era of multiparameter FC (MFC), it appears more and more desirable that comparable patterns of fluorescence are obtained in different settings. This relies on a harmonization of settings between instruments. Although this has been shown to be feasible within a given brand of flow cytometers, little information is available about broader comparisons in a given center or in a multicenter fashion. Here, we report a two-phase series of experiments first performed between a Canto II (BD Biosciences) and a Navios (Beckman Coulter) instruments in the same center. PMT values adjusted on the reference instrument (RI) Canto II were used to establish target values for PMT settings on the paired Navios practice instrument (PI). This allowed to show the good correlation of all but peaks 1 and 2 of Rainbow(®) beads between RI and PI. Using 4- or 8-color stained leukocytes, the similitude of the settings was further confirmed. A complex set of matrices was then established between five centers all equipped with both instruments. Using Bland & Altman difference comparisons for median fluorescence values, it was shown that using either Rainbow beads or CD16 stained polymorphonuclears to set-up target values on the RI CantoII, highly superimposable results could be obtained on all 9 PI. The latter were obtained using Rainbow beads or Compbeads(®) for comparisons. In summary, this two-phase study demonstrates the feasibility of different methods allowing for a robust harmonization of settings for MFC.

  18. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  19. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless

  20. Energy Spectrum Measurements of Cosmic-Ray Hydrogen and Helium Isotopes with the BESS-Polar II Instrument

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas

    2014-03-01

    The Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar II) flew successfully over Antarctica during 24.5 days in December 2007 through January 2008 during a period of minimum solar activity. The long duration of the flight, and the good stability of the detectors, improved by a factor of 5 the number of cosmic-ray events previously recorded with BESS-Polar I, reaching about 4.7 billion collected particles. Energy spectrum of cosmic-ray hydrogen and helium isotopes have been measured with the instrument from 0.2 to about 1.5 GeV/n, with unprecedented accuracy. These new flux and ratio measurements provide important information to better understand the propagation history of cosmic rays in the Galaxy. The results obtained with the BESS-Polar II instrument will be presented and compared with different propagation models.

  1. Method for Determining Language Objectives and Criteria. Volume II. Methodological Tools: Computer Analysis, Data Collection Instruments.

    DTIC Science & Technology

    1979-05-25

    This volume presents (1) Methods for computer and hand analysis of numerical language performance data (includes examples) (2) samples of interview, observation, and survey instruments used in collecting language data. (Author)

  2. Head-mounted spatial instruments II: Synthetic reality or impossible dream

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur

    1989-01-01

    A spatial instrument is defined as a spatial display which has been either geometrically or symbolically enhanced to enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. The design of spatial instruments may not only require the introduction of compensatory distortions to remove the naturally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. However, these image manipulations can cause a loss of visual-vestibular coordination and induce motion sickness. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord.

  3. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  4. X-ray instrumentation in astronomy II; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988

    SciTech Connect

    Golub, L.

    1988-01-01

    Various papers on X-ray instrumentation in astronomy are presented. Individual topics addressed include: concentrating hard X-ray collector, advanced X-ray Astrophysics Facility high resolution camera, Fano-noise-limited CCDs, linear CCD with enhanced X-ray quantum efficiency, advances in microchannel plate detectors, X-ray imaging spectroscopy with EEV CCDs, large aperture imaging gas scintillation proportional counter, all-sky monitor for the X-ray Timing Explorer, and miniature satellite technology capabilities for space astronomy. Also discussed are: high-resolution X-ray spectroscopy using microcalorimeters, high-throughput X-ray astrophysics cornerstone, gas mixtures for X-ray proportional counters, transmission grating spectrometer for SPEKTROSAT, efficiency of X-ray reflection gratings, soft X-ray spectrographs for solar observations, observability of coronal variations, Berkeley extreme-UV calibration facility, SURF-II radiometric instrumentation calibration facility, and evaluation of toroidal gratings in the EUV.

  5. [Historical Archives of Italian Nephrology. The history of instrumentation in nephrology. Part II: microscope and haemodialyzer].

    PubMed

    Timio, M

    2003-01-01

    Medicine in the technological era acquired many of the characteristics that concurrently marked other fields. So, by adopting procedures based on information obtained with instruments and devices, medicine developed an approach to illness that transformed it into a special form of technology. The collective effect of instrumentation deserves consideration and offers the historian opportunities for interpreting the interaction between physician and his patients in other than scientific and technological terms. The very construction of instruments and devices depends on the Author's ideas assembled with the basic theories of the time. For instance, at the end of the nineteenth century, when medical instruments became essential, the bacterial origin of diseases revolutionised their construction and application. In this context, the invention and use of the microscope became an outstanding feature of the clinical approach by disclosing the cellular universe. The microscope had become crucial in locating some major causes of physical suffering and death in man, and was considered the pre-eminent diagnostic instrument in medicine. In the nephrological field, the microscope drew the physician into a universe of physical changes that were concealed to the naked eye. The microscope made possible the verification of some of Bright's brilliant ideas, something that helped physicians classify glomerulonephritis. Many nephrologists confessed "how few things are established in this subject (nephrology) and how many more difficulties are established, we have learned by experience with the microscope". The modesty of this claim is striking. In nephrology, as in other fields, the admission of ignorance proved to be the beginning of wisdom. This wisdom, based on the admission of ignorance and assembled through the commitment and ingenuity of the pioneers of the dialysis treatment, led to the treatment of end-stage renal disease and the guarantee of success. The technique of

  6. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  7. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    NASA Astrophysics Data System (ADS)

    Wright, G. S.; Wright, David; Goodson, G. B.; Rieke, G. H.; Aitink-Kroes, Gabby; Amiaux, J.; Aricha-Yanguas, Ana; Azzollini, Ruymán; Banks, Kimberly; Barrado-Navascues, D.; Belenguer-Davila, T.; Bloemmart, J. A. D. L.; Bouchet, Patrice; Brandl, B. R.; Colina, L.; Detre, Örs; Diaz-Catala, Eva; Eccleston, Paul; Friedman, Scott D.; García-Marín, Macarena; Güdel, Manuel; Glasse, Alistair; Glauser, Adrian M.; Greene, T. P.; Groezinger, Uli; Grundy, Tim; Hastings, Peter; Henning, Th.; Hofferbert, Ralph; Hunter, Faye; Jessen, N. C.; Justtanont, K.; Karnik, Avinash R.; Khorrami, Mori A.; Krause, Oliver; Labiano, Alvaro; Lagage, P.-O.; Langer, Ulrich; Lemke, Dietrich; Lim, Tanya; Lorenzo-Alvarez, Jose; Mazy, Emmanuel; McGowan, Norman; Meixner, M. E.; Morris, Nigel; Morrison, Jane E.; Müller, Friedrich; rgaard-Nielson, H.-U. Nø; Olofsson, Göran; O’Sullivan, Brian; Pel, J.-W.; Penanen, Konstantin; Petach, M. B.; Pye, J. P.; Ray, T. P.; Renotte, Etienne; Renouf, Ian; Ressler, M. E.; Samara-Ratna, Piyal; Scheithauer, Silvia; Schneider, Analyn; Shaughnessy, Bryan; Stevenson, Tim; Sukhatme, Kalyani; Swinyard, Bruce; Sykes, Jon; Thatcher, John; Tikkanen, Tuomo; van Dishoeck, E. F.; Waelkens, C.; Walker, Helen; Wells, Martyn; Zhender, Alex

    2015-07-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 microns. MIRI has, within a single 'package', four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectroscopy, and medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of < 6.7 K. This paper describes the driving principles behind the design of MIRI, the primary design parameters, and their realization in terms of the 'as-built' instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements.

  8. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    NASA Astrophysics Data System (ADS)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  9. Appraising the methodological quality of the clinical practice guideline for diabetes mellitus using the AGREE II instrument: a methodological evaluation

    PubMed Central

    Radwan, Mahmoud; Rashidian, Arash; Takian, Amirhossein; Abou-Dagga, Sanaa; Elsous, Aymen

    2017-01-01

    Objectives To evaluate the methodological quality of the Palestinian Clinical Practice Guideline for Diabetes Mellitus using the Translated Arabic Version of the AGREE II. Design Methodological evaluation. A cross-cultural adaptation framework was followed to translate and develop a standardised Translated Arabic Version of the AGREE II. Setting Palestinian Primary Healthcare Centres. Participants Sixteen appraisers independently evaluated the Clinical Practice Guideline for Diabetes Mellitus using the Translated Arabic Version of the AGREE II. Main outcome measures Methodological quality of diabetic guideline. Results The Translated Arabic Version of the AGREE II showed an acceptable reliability and validity. Internal consistency ranged between 0.67 and 0.88 (Cronbach’s α). Intra-class coefficient among appraisers ranged between 0.56 and 0.88. The quality of this guideline is low. Both domains ‘Scope and Purpose’ and ‘Clarity of Presentation’ had the highest quality scores (66.7% and 61.5%, respectively), whereas the scores for ‘Applicability’, ‘Stakeholder Involvement’, ‘Rigour of Development’ and ‘Editorial Independence’ were the lowest (27%, 35%, 36.5%, and 40%, respectively). Conclusions The findings suggest that the quality of this Clinical Practice Guideline is disappointingly low. To improve the quality of current and future guidelines, the AGREE II instrument is extremely recommended to be incorporated as a gold standard for developing, evaluating or updating the Palestinian Clinical Practice Guidelines. Future guidelines can be improved by setting specific strategies to overcome implementation barriers with respect to economic considerations, engaging of all relevant end-users and patients, ensuring a rigorous methodology for searching, selecting and synthesising the evidences and recommendations, and addressing potential conflict of interests within the development group. PMID:28203385

  10. Balloon-borne ultraviolet stellar spectrograph. I - Instrumentation and observation. II - Highlights of first observational results

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; De Jager, C.; Hoekstra, R.; Van Der Hucht, K. A.; Kamperman, T. M.; Lamers, H. J. G. L. M.; Modisette, J. L.; Morgan, T. H.

    1979-01-01

    A dual star-tracking system and a system including a telescope, an echelle spectrograph, and a SEC vidicon are the chief components of the Balloon-borne Ultraviolet Stellar Spectrograph (BUSS), which has flown four successful missions. The BUSS missions have yielded 81 spectra for 56 stars, recorded with a resolution of 0.1 A in the wavelength range from 2200 to 3400 A. BUSS observations include: profiles of Mg II lines indicating considerable mass flow in early-type supergiants; Mg II features suggesting a cool expanding outer shell above a hotter chromosphere; emission features in Zeta Tau (a shell star) indicating infalling material; and emission features of the Be star Phi Per suggesting mass outflow.

  11. Measurements of Hydrogen and Helium Isotopes with the BESS-Polar II Instrument

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas; BESS-Polar Collaboration

    2015-04-01

    The Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar II) flew successfully over Antarctica for 24.5 days in December 2007 through January 2008 during a period of minimum Solar activity. BESS-Polar II is configured with a solenoidal superconducting magnet and a suite of precision particle detectors. It can accurately identify hydrogen and helium isotopes among the incoming cosmic-ray nuclei with energies from 0.2 up to about 1.5 GeV/n. The long duration of the flight, and the good stability of the detectors increased the number of cosmic-ray events previously recorded with BESS-Polar I by a factor of 5, reaching about 4.7 billion collected particles. This allows to study and measure energy spectrum of hydrogen and helium isotope fluxes with unprecedented precision. The isotope flux and ratio measurements with BESS-Polar II will be presented and compared to previous measurements and theoretical predictions. They provide essential information to constrain cosmic-ray propagation models.

  12. Virtex-II Pro Based Data Processing Unit for Small Spaceborne Camera Instruments

    NASA Astrophysics Data System (ADS)

    Dierker, C.; Fiethe, B.; Michalik, H.; Osterloh, B.; Bubenhagen, F.; Zhou, G.

    2007-08-01

    Individual Data Processing Units (DPUs) are commonly used for operational control and specific data processing of scientific space instruments. To overcome the limitations of traditional rad-hard (RH) or fully commercial design approaches, we show a System-on- Chip (SoC) solution based on a state-of- he-art field programmable gate array (FPGA) with integrated hard- wired processors. Although the design has low resource requirements for both, power and mass, the processing power capabilities are moderate to high. By the shown design, the availability of standard CPUs for general purpose use and programmable logic for special functions in one device allows a very effective partitioning of data processing into hardware and software. High sensor data rates in the order of up to some hundred Mbit/s for advanced sensors can be handled by this approach. Various specific handling methods against radiation induced upsets are used for an efficient design.

  13. Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO.

    PubMed

    Thomas, I R; Vandaele, A C; Robert, S; Neefs, E; Drummond, R; Daerden, F; Delanoye, S; Ristic, B; Berkenbosch, S; Clairquin, R; Maes, J; Bonnewijn, S; Depiesse, C; Mahieux, A; Trompet, L; Neary, L; Willame, Y; Wilque, V; Nevejans, D; Aballea, L; Moelans, W; De Vos, L; Lesschaeve, S; Van Vooren, N; Lopez-Moreno, J-J; Patel, M R; Bellucci, G

    2016-02-22

    NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.

  14. Prospect for UV observations from the Moon. II. Instrumental design of an ultraviolet imager LUCI

    NASA Astrophysics Data System (ADS)

    Mathew, Joice; Prakash, Ajin; Sarpotdar, Mayuresh; Sreejith, A. G.; Nirmal, K.; Ambily, S.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah

    2017-02-01

    We present a design for a near-ultraviolet (NUV) imaging instrument which may be flown on a range of available platforms, including high-altitude balloons, nanosatellites, or space missions. Although all current UV space missions adopt a Ritchey-Chrétien telescope design, this requires aspheric optics, making the optical system complex, expensive and challenging for manufacturing and alignment. An all-spherical configuration is a cost-effective and simple solution. We have aimed for a small payload which may be launched by different platforms and we have designed a compact, light-weight payload which will withstand all launch loads. No other UV payloads have been previously reported with an all-spherical optical design for imaging in the NUV domain and a weight below 2 kg. Our main science goal is focused on bright UV sources not accessible by the more sensitive large space UV missions.

  15. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics.

    PubMed

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A; Cox, Juergen; Mann, Matthias

    2015-07-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum-the highest proteome coverage reported with a QTOF instrument so far.

  16. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics*

    PubMed Central

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A.; Cox, Juergen; Mann, Matthias

    2015-01-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far. PMID:25991688

  17. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), II. Location and seismicity patterns

    NASA Astrophysics Data System (ADS)

    Bondár, I.; Engdahl, E. Robert; Villaseñor, A.; Harris, James; Storchak, D.

    2015-02-01

    We present the final results of a two-year project sponsored by the Global Earthquake Model (GEM) Foundation. The ISC-GEM global catalogue consists of some 19 thousand instrumentally recorded, moderate to large earthquakes, spanning 110 years of seismicity. We relocated all events in the catalogue using a two-tier approach. The EHB location methodology (Engdahl et al., 1998) was applied first to obtain improved hypocentres with special focus on the depth determination. The locations were further refined in the next step by fixing the depths to those from the EHB analysis and applying the new International Seismological Centre (ISC) location algorithm (Bondár and Storchak, 2011) that reduces location bias by accounting for correlated travel-time prediction error structure. To facilitate the relocation effort, some one million seismic P and S wave arrival-time data were added to the ISC database for the period between 1904 and 1970, either from original station bulletins in the ISC archive or by digitizing the scanned images of the International Seismological Summary (ISS) bulletin (Villaseñor and Engdahl, 2005, 2007). Although no substantial amount of new phase data were acquired for the modern period (1964-2009), the number of phases used in the location has still increased by three millions, owing to fact that both the EHB and ISC locators use most well-recorded ak135 (Kennett et al., 1995) phases in the location. We show that the relocation effort yielded substantially improved locations, especially in the first half of the 20th century; we demonstrate significant improvements in focal depth estimates in subduction zones and other seismically active regions; and we show that the ISC-GEM catalogue provides an improved view of 110 years of global seismicity of the Earth. The ISC-GEM Global Instrumental Earthquake Catalogue represents the final product of one of the ten global components in the GEM program, and is available to researchers at the ISC (http://www.isc.ac.uk).

  18. A measurement of the TPMU - PROBA II Microsatellite Instrument and its comparison with the SWARM Langmuir Probes results

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina; Hruska, Frantisek; Truhlik, Vladimir

    2016-04-01

    This contribution deals with the long-term measurement of the floating potential (FP) and the electron temperature (Te) provided by the Thermal Plasma Measurement Unit (TPMU) scientific instrument on-board the PROBA II microsatellite. The device is working with limitations of scientific measurements caused very probably by installed on-board software. This brings lower data volume as it was planned. Affected are the ion measurement and partially the electron temperature measurement. We present comparisons of the TPMU long-term measurement of the FP and the Te with the Te and the FP SWARM Langmuir Probes measured data. We implement the method of stochastic comparison of the probability distribution between measurements of FP and Te of both instruments to recognize seasonal and solar activity similarities. The analysis is performed for all seasons of the period from the years 2013 - 2015 for the Equatorial region, North and South hemisphere. The data are divided into the three groups by the geographical latitude to the Nothern hemisphere (lat>15'), the Southern hemisphere (lat<-5') and Equatorial zone (lat 15'- -15') and to four groups by season. This comparison confirms that the TPMU PROBAII Te and FP measurement statistically corresponds to the SWARM Te and FP measurement. The annual seasonal changes in the floating potential are observed in this analysis. Changes in the beginning, the end and duration of seasons over a period of years reflect also changes of the Kp index. Changes over the solar cycle are also visible. The main TPMU goal is the validation and testing of new design of the instrument which is necessary for possible applications of TPMU design for future scientific missions.

  19. [Laser instrument surgery in preventing and treating retinal detachment (communication II)].

    PubMed

    Ivanov, A N

    2002-01-01

    The paper is devoted to the actual problem of ophthalmology--removal of cysts and retinal detachments caused by cystoid retinal lesions. 3 stages of treatment are identified: stage 1 used YAG-laser dissection of the external wall of the retinal cyst with drainage of its contents. Stage 2 involved extrascleral filling reinforced by argon coagulation of the zone of the emptied cyst or by endolaser coagulation. Laser intervention was performed by the laser combine "Visulas-YAG II" produced by the firm "Karl Zeiss" (Germany) and fitted up by endolaser output. Coagulation energy was 0.2-0.7 W, the power of YAG-laser was 0.1-5.7 mJ with impulses of 120. Almost in all of the cases laser action was realized during one session. The laser's action was associated with hemorrhage in 11 cases (57.9%), and within 1 year of observations 2 relapses were noted (10.5%). YAG perforation of the external wall of a retinal cyst brings on its drainage and evacuation that is a perspective factor in subsequent surgical interventions during operations for retinal detachment due to cystoid degeneration.

  20. Survey Instrument Validity Part II: Validation of a Survey Instrument Examining Athletic Trainers' Knowledge and Practice Beliefs Regarding Exertional Heat Stroke

    ERIC Educational Resources Information Center

    Burton, Laura J.; Mazerolle, Stephanie M.

    2011-01-01

    Objective: The purpose of this article is to discuss the process of developing and validating an instrument to investigate an athletic trainer's attitudes and behaviors regarding the recognition and treatment of exertional heat stroke. Background: Following up from our initial paper, which discussed the process of survey instrument design and…

  1. Stratospheric aerosol and gas experiment II and ROCOZ-A ozone profiles at Natal, Brazil - A basis for comparison with other satellite instruments

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Mcmaster, Leonard R.; Chu, William P.; Mccormick, M. Patrick; Gelman, Melvyn E.

    1991-01-01

    Satellite measurements of ozone carried out during the Stratospheric Aerosol and Gas Experiment II (SAGE II) are compared with in situ measurements made by the ROCOZ-A and electrochemical concentration cell ozonesondes at Natal (Brazil) during the Southern Hemisphere autumn of 1985. It was found that the SAGE II values were higher than the ROCOZ-A values by 3.4 percent, with an average absolute difference of 3.8 percent. It is suggested that the differences between the ozone density and mixing ratio results are due to the auxiliary temperature and pressure values for the satellite and in situ instruments.

  2. Neutron guide system for small-angle neutron scattering instruments of the Jülich Centre for Neutron Science at the FRM-II

    NASA Astrophysics Data System (ADS)

    Radulescu, A.; Ioffe, A.

    2008-02-01

    Following the shut-down of the FRJ-2 research reactor in Jülich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-München. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically "S-shaped" guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally "S-shaped" guide serving the focusing KWS3 instrument, will be reported on.

  3. A Systematic Critical Appraisal of Clinical Practice Guidelines in Juvenile Idiopathic Arthritis Using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) Instrument

    PubMed Central

    Smith, Christine A. M.; Toupin-April, Karine; Jutai, Jeffrey W.; Duffy, Ciarán M.; Rahman, Prinon; Cavallo, Sabrina; Brosseau, Lucie

    2015-01-01

    Objectives The objectives of this review are to: 1) appraise the methodological quality of clinical practice guidelines (CPGs) in juvenile idiopathic arthritis (JIA) providing pharmacological and/or non-pharmacological intervention recommendations, and 2) summarize the recommendations provided by the included CPGs and compare them where possible. Methods A systematic search was performed. Three trained appraisers independently evaluated the methodological quality of the CPGs using a validated and reliable instrument, the Appraisal of Guidelines in Research and Evaluation II. Six domains were considered: 1) score and purpose; 2) stakeholder involvement; 3) rigor of development; 4) clarity of presentation; 5) applicability; and 6) editorial independence. The domains consist of a total of 23 items each scored on a 7-point scale. High quality CPGs were identified if they had a domain score above 60% in rigor of development, and two other domains. Results Of the three included CPGs, the Royal Australian College of General Practitioners (RACGP) and American College of Rheumatology (ACR) CPGs were considered to be of high quality, but the German Society for Pediatric Rheumatology was of lower quality. Domains one to four had high domain scores across the guidelines (mean (standard deviation)): 72.76 (13.80); 66.67 (9.81); 64.67 (7.77); and 87.00 (9.64), respectively. Lower scores were obtained for applicability (14.00 (5.57)) and editorial independence (43.44 (7.02)). Recommendations varied across CPGs due to differences in context, target audience (general practitioners, rheumatologists, and other multidisciplinary healthcare professionals) and patients’ disease presentations. Despite this variability, progression of pharmacological treatment did not conflict between CPGs. Recommendations for non-pharmacological interventions were vague and the interventions considered varied between CPGs. Conclusions Overall, recommendations were based on a paucity of evidence and

  4. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant

  5. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. II. HIPPARCOS STARS OBSERVED IN 2010 JANUARY AND JUNE

    SciTech Connect

    Horch, Elliott P.; Gomez, Shamilia C.; Anderson, Lisa M.; Sherry, William H.; Howell, Steve B.; Ciardi, David R.; Van Altena, William F. E-mail: shamilia.gomez@gmail.com E-mail: wsherry@noao.edu E-mail: ciardi@ipac.caltech.edu

    2011-02-15

    The results of 497 speckle observations of Hipparcos stars and selected other targets are presented. Of these, 367 were resolved into components and 130 were unresolved. The data were obtained using the Differential Speckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.) Since the first paper in this series, the instrument has been upgraded so that it now uses two electron-multiplying CCD cameras. The measurement precision obtained when comparing to ephemeris positions of binaries with very well known orbits is approximately 1-2 mas in separation and better than 0.{sup 0}6 in position angle. Differential photometry is found to be in very good agreement with Hipparcos measures in cases where the comparison is most relevant. We derive preliminary orbits for two systems.

  6. [Evaluation of eight Clinical Protocols and Therapeutic Guidelines under the Brazilian Ministry of Health using the AGREE II instrument: a pilot study].

    PubMed

    Ronsoni, Ricardo De March; Pereira, Claudia Cristina de Aguiar; Stein, Airton Tetelbom; Osanai, Mário Henrique; Machado, Carla Jorge

    2015-06-01

    The number of clinical guidelines is increasing worldwide, while there are concerns regarding their quality. In 2000, the Brazilian Ministry of Health began its process of creating clinical guidelines, called Clinical Protocols and Therapeutic Guidelines (PCDT). The goal of this study was to assess the quality of Brazilian guidelines approved since 2009 using the AGREE II instrument (Appraisal of Guidelines for Research and Evaluation). We identified 59 PCDT from 2009 to 2012, of which eight were randomly selected and evaluated by three independent evaluators. For the item "recommends the guidelines", two evaluators recommended the use of all eight, but with modifications, and one did not recommend any to the guidelines. Regarding the item "global quality of the guidelines" (varying from 1 to 7), the mean was 4.25 (SD = 0.46). The results showed the need for adjustments in the PCDT in relation to AGREE II domains. However, due to the instrument's limitations, further studies are needed, including the quality of evidence used in the PCDT.

  7. ANL calculational methodologies for determining spent nuclear fuel source term

    SciTech Connect

    McKnight, R. D.

    2000-03-24

    Over the last decade Argonne National Laboratory has developed reactor depletion methods and models to determine radionuclide inventories of irradiated EBR-II fuels. Predicted masses based on these calculational methodologies have been validated using available data from destructive measurements--first from measurements of lead EBR-II experimental test assemblies and later using data obtained from processing irradiated EBR-II fuel assemblies in the Fuel Conditioning Facility. Details of these generic methodologies are described herein. Validation results demonstrate these methods meet the FCF operations and material control and accountancy requirements.

  8. Assessment of the quality and content of national and international guidelines on hypertensive disorders of pregnancy using the AGREE II instrument

    PubMed Central

    Bazzano, Alessandra N; Madison, Anita; Barton, Andrew; Gillispie, Veronica; Bazzano, Lydia A L

    2016-01-01

    Objectives High-quality evidence-based clinical practice guidelines can guide diagnosis and treatment to optimise outcomes. The purpose of this study was to evaluate the quality and content of national and international guidelines on hypertensive disorders of pregnancy. Data Sources: The MEDLINE database, the National Guideline Clearinghouse and several international databases were searched for appropriate guidelines from the past 10 years. Study Appraisal and Synthesis Methods: Six guidelines met inclusion and exclusion criteria and were evaluated using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) instrument. Results A total of 695 records were identified and screened by two authors. Disorder definitions, classifications, preventive measures and treatment recommendations were evaluated and compared among guidelines. AGREE II results varied widely across domains and categories. Only two guidelines received consistently high ratings across domains and few demonstrated a high level of methodological rigour. Recommendations regarding classification and treatment were similar across guidelines, while assessment of preventive measures varied widely. Conclusions Clinical practice guidelines for hypertensive disorders of pregnancy vary significantly in quality and with respect to assessment of preventive measures. PMID:26781503

  9. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-05-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  10. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-11-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  11. A systematic critical appraisal for non-pharmacological management of osteoarthritis using the appraisal of guidelines research and evaluation II instrument.

    PubMed

    Brosseau, Lucie; Rahman, Prinon; Toupin-April, Karine; Poitras, Stéphane; King, Judy; De Angelis, Gino; Loew, Laurianne; Casimiro, Lynn; Paterson, Gail; McEwan, Jessica

    2014-01-01

    Clinical practice CPGs (CPGs) have been developed to summarize evidence related to the management of osteoarthritis (OA). CPGs facilitate uptake of evidence-based knowledge by consumers, health professionals, health administrators and policy makers. The objectives of the present review were: 1) to assess the quality of the CPGs on non-pharmacological management of OA; using a standardized and validated instrument--the Appraisal of Guidelines Research and Evaluation (AGREE II) tool--by three pairs of trained appraisers; and 2) to summarize the recommendations based on only high-quality existing CPGs. Scientific literature databases from 2001 to 2013 were systematically searched for the state of evidence, with 17 CPGs for OA being identified. Most CPGs effectively addressed only a minority of AGREE II domains. Scope and purpose was effectively addressed in 10 CPGs on the management of OA, stakeholder involvement in 12 CPGs, rigour of development in 10 CPGs, clarity/presentation in 17 CPGs, editorial independence in 2 CPGs, and applicability in none of the OA CPGs. The overall quality of the included CPGs, according to the 7-point AGREE II scoring system, is 4.8 ± 0.41 for OA. Therapeutic exercises, patient education, transcutaneous electrical nerve stimulation, acupuncture, orthoses and insoles, heat and cryotherapy, patellar tapping, and weight control are commonly recommended for the non-pharmacological management of OA by the high-quality CPGs. The general clinical management recommendations tended to be similar among high-quality CPGs, although interventions addressed varied. Non-pharmacological management interventions were superficially addressed in more than half of the selected CPGs. For CPGs to be standardized uniform creators should use the AGREE II criteria when developing CPGs. Innovative and effective methods of CPG implementation to users are needed to ultimately enhance the quality of life of arthritic individuals.

  12. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  13. An instrumental and numerical method to determine the hydrogenic ratio in isotopic experiments in the TJ-II stellarator

    SciTech Connect

    Baciero, A. Zurro, B.; Martínez, M.

    2014-11-15

    The isotope effect is an important topic that is relevant for future D-T fusion reactors, where the use of deuterium, rather than hydrogen, may lean to improved plasma confinement. An evaluation of the ratio of hydrogen/deuterium is needed for isotope effect studies in current isotopic experiments. Here, the spectral range around H{sub α} and D{sub α} lines, obtained with an intensified multi-channel detector mounted to a 1-m focal length spectrometer, is analyzed using a fit function that includes several Gaussian components. The isotopic ratio evolution for a single operational day of the TJ-II stellarator is presented. The role of injected hydrogen by Neutral Beam Injection heating is also studied.

  14. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  15. Tyre-road grip coefficient assessment - Part II: online estimation using instrumented vehicle, extended Kalman filter, and neural network

    NASA Astrophysics Data System (ADS)

    Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi

    2013-12-01

    The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.

  16. Electrophilic Pt(II) Complexes: Precision Instruments for the Initiation of Transformations Mediated by the Cation–Olefin Reaction

    PubMed Central

    2015-01-01

    A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly

  17. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    SciTech Connect

    Bloom, M.H.; Lederman, S.; Sforza, P.; Matalon, M.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limit of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.

  18. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.

  19. Disassembly of irradiated lithium-bonded capsules containing vanadium alloy specimens

    SciTech Connect

    Tsai, H.; Strain, R.V.

    1996-04-01

    Capsules containing vanadium alloy specimens from irradiation experiments in FFTF and EBR-II are being processed to remove the lithium bond and retrieve the specimens for testing. The work has progressed smoothly.

  20. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  1. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  2. Assessment Instruments for Preschool. AZ-TAS Themes & Issues: A Series of Topical Papers on Special Education. Section II.B.3., Preschool Special Education Resource Book.

    ERIC Educational Resources Information Center

    Busenbark, Lynn, Ed.

    This resource book assists in selecting appropriate instruments to use in assessing preschool children suspected of having disabilities. For each of the 68 tests reviewed, the following information is provided: author, publisher, copyright date, price, purpose, description, range of children, testing time, scoring, examiner, standardization,…

  3. Literacy Behaviors of Kindergarten-Primary Children in High Stimulus-Level Literacy Environments. Part I: The Instruments. Part II: Environments and Literacy Behaviors.

    ERIC Educational Resources Information Center

    Loughlin, Catherine E.; Ivener, Bonnie L.

    A study of patterns of literacy behaviors in high level literacy environments with varying levels of access to the environment began with a study of the instruments involved. Goals were to: (1) examine the reliability of the Survey of Displayed Literacy Stimuli; (2) study the correlation between scores from the Survey of Displayed Literacy Stimuli…

  4. Surgeons and their tools: a history of surgical instruments and their innovators--Part II: The surgeon's wand-evolution from knife to scalpel to electrocautery.

    PubMed

    El-Sedfy, Abraham; Chamberlain, Ronald S

    2014-12-01

    This is the second of five articles reviewing the historical origins of some of the more commonly used surgical instruments and takes "time out" to remind current surgeons about the surgical pioneers on whose shoulders they now stand and whose inventions they now use.

  5. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  6. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    PubMed

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  7. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  8. The Sodium Process Facility at Argonne National Laboratory-West

    SciTech Connect

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  9. Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.

    2016-08-01

    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous

  10. Comparison of CNES spherical and NASA hemispherical large aperture integrating sources. I - Using a laboratory transfer spectroradiometer. II - Using the SPOT-2 satellite instruments

    NASA Technical Reports Server (NTRS)

    Guenther, B.; Mclean, J.; Leroy, M.; Henry, P.

    1990-01-01

    CNES spherical and NASA hemispherical large aperture calibration sources are examined using a laboratory transfer spectroradiometer and SPOT-2 instruments. The sources, collected at Matra in France during October 1987, are compared in terms of absolute calibration, linearity, and uniformity. The laboratory transfer spectroradiometer data reveal that the calibration results correspond to within about 7 percent absolute accuracy level and the linearity of the CNES source with lamp level is good. It is observed using the satellite data that both sources have an excellent uniformity over a 4 deg field of view.

  11. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  12. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  13. Accurate Group Delay Measurement for Radial Velocity Instruments Using the Dispersed Fixed Delay Interferometer Method. II. Application of Heterodyne Combs Using an External Interferometer Filter

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Ge, Jian; Wan, Xiaoke; De Lee, Nathan; Lee, Brian

    2012-11-01

    A fixed delay interferometer is the key component in a DFDI (dispersed fixed delay interferometer) instrument for an exoplanet search using the radial velocity (RV) technique. Although the group delay (GD) of the interferometer can be measured with white light combs (WLCs), the measurement precision is limited by the comb visibility, and the wavelength coverage is constrained by the comb sampling. For instance, this method can calibrate only half of the SDSS-III MARVELS spectra and reach a precision of 2.2 m s-1. This article introduces an innovative method using a sine source for precision delay calibration over very broad wavelengths. The sine source is made of a monolithic Michelson interferometer fed with white light. The interferometer modulated white light (in a sinusoidal form) is fed into a DFDI instrument for calibration. Due to an optimal GD of the sine source, Fourier components from the DFDI interferometer, the sine source, and their frequency beating can be clearly separated and effectively extracted with a chirped Fourier transform to allow precision measurements of the interferometer GD over the entire range of operation wavelengths. The measurements of the MARVELS interferometer with a sine source show that this new calibration method has improved the wavelength coverage by a factor of 2 and the precision by a factor of 3. The RV measurement error induced by GD measurement uncertainties is controlled to be less than 1 m s-1, which has met the requirements for MARVELS moderate-to-high Doppler precision (∼5–30 m s-1) for exoplanet search around V ∼ 8–12 solar-type stars. Heterodyne combs using an external interferometer source can be applied in other areas of optics measurement and calibration.

  14. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  15. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  16. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  17. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation (abstract)

    NASA Astrophysics Data System (ADS)

    Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.

  18. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  19. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  20. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  1. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  2. Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument

    NASA Astrophysics Data System (ADS)

    Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri; Absil, Olivier; Wizinowich, Peter; Matthews, Keith; Huby, Elsa; Bottom, Michael; Campbell, Randy; Chan, Dwight; Carlomagno, Brunella; Cetre, Sylvain; Defrère, Denis; Delacroix, Christian; Gomez Gonzalez, Carlos; Jolivet, Aïssa; Karlsson, Mikael; Lanclos, Kyle; Lilley, Scott; Milner, Steven; Ngo, Henry; Reggiani, Maddalena; Simmons, Julia; Tran, Hien; Vargas Catalan, Ernesto; Wertz, Olivier

    2016-07-01

    On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.

  3. Co-phasing of a diluted aperture synthesis instrument for direct imaging. II. Experimental demonstration in the photon-counting regime with a temporal hypertelescope

    NASA Astrophysics Data System (ADS)

    Bouyeron, L.; Delage, L.; Baudoin, R.; Gomes, J. T.; Grossard, L.; Reynaud, F.

    2014-07-01

    Context. Amongst the new techniques currently developed for high-resolution and high-dynamics imaging, the hypertelescope architecture is very promising for direct imaging of objects such as exoplanets. The performance of this instrument strongly depends on the co-phasing process accuracy. In a previous high-flux experimental study with an eight-telescope array, we successfully implemented a co-phasing system based on the joint use of a genetic algorithm and a sub-aperture piston phase diversity using the object itself as a source for metrology. Aims: To fit the astronomical context, we investigate the impact of photon noise on the co-phasing performance operating our laboratory prototype at low flux. This study provides experimental results on the sensitivity and the dynamics that could be reached for real astrophysical observations. Methods: Simulations were carried out to optimize the critical parameters to be applied in the co-phasing system running in the photon-counting regime. We used these parameters experimentally to acquire images with our temporal hypertelescope test bench for different photon flux levels. A data reduction method allows highly contrasted images to be extracted. Results: The optical path differences have been servo-controlled over one hour with an accuracy of 22.0 nm and 15.7 nm for 200 and 500 photons/frame, respectively. The data reduction greatly improves the signal-to-noise ratio and allows us to experimentally obtain highly contrasted images. The related normalized point spread function is characterized by a 1.1 × 10-4 and 5.4 × 10-5 intensity standard deviation over the dark field (for 15 000 snapshots with 200 and 500 photons/frame, respectively). Conclusions: This laboratory experiment demonstrates the potential of our hypertelescope concept, which could be directly transposed to a space-based telescope array. Assuming eight telescopes with a 30 cm diameter, the I-band limiting magnitude of the main star would be 7.3, allowing

  4. Management of super-grade plutonium in spent nuclear fuel

    SciTech Connect

    McFarlane, H. F.; Benedict, R. W.

    2000-03-20

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel.

  5. Phase II Fort Ord Landfill Demonstration Task 8 - Refinement of In-line Instrumental Analytical Tools to Evaluate their Operational Utility and Regulatory Acceptance

    SciTech Connect

    Daley, P F

    2006-04-03

    The overall objective of this project is the continued development, installation, and testing of continuous water sampling and analysis technologies for application to on-site monitoring of groundwater treatment systems and remediation sites. In a previous project, an on-line analytical system (OLAS) for multistream water sampling was installed at the Fort Ord Operable Unit 2 Groundwater Treatment System, with the objective of developing a simplified analytical method for detection of Compounds of Concern at that plant, and continuous sampling of up to twelve locations in the treatment system, from raw influent waters to treated effluent. Earlier implementations of the water sampling and processing system (Analytical Sampling and Analysis Platform, A A+RT, Milpitas, CA) depended on off-line integrators that produced paper plots of chromatograms, and sent summary tables to a host computer for archiving. We developed a basic LabVIEW (National Instruments, Inc., Austin, TX) based gas chromatography control and data acquisition system that was the foundation for further development and integration with the ASAP system. Advantages of this integration include electronic archiving of all raw chromatographic data, and a flexible programming environment to support development of improved ASAP operation and automated reporting. The initial goals of integrating the preexisting LabVIEW chromatography control system with the ASAP, and demonstration of a simplified, site-specific analytical method were successfully achieved. However, although the principal objective of this system was assembly of an analytical system that would allow plant operators an up-to-the-minute view of the plant's performance, several obstacles remained. Data reduction with the base LabVIEW system was limited to peak detection and simple tabular output, patterned after commercial chromatography integrators, with compound retention times and peak areas. Preparation of calibration curves, method detection

  6. Design and construction of a pipeline for transfer of radioactive sodium at Argonne National Laboratory-West.

    SciTech Connect

    Baily, C. E.

    1998-02-25

    Experimental Breeder Reactor-II (EBR-II), an experimental sodium cooled fast breeder reactor located at Argonne National Laboratory-West (ANL-W), was shut down in 1994, and has since been defueled in preparation for final plant closure. Approximately 100,000 gallons of liquid sodium is contained in the primary and secondary cooling systems of the EBR-II plant. The liquid sodium must be drained from the reactor systems during closure of the plant to place the reactor plant in an industrially and radiologically safe condition for long term storage or dismantlement. Because the liquid sodium is a listed waste under the Resource Conservation Recovery Act (RCRA), it is not suitable for disposal. It therefore must be transferred to the Sodium Process Facility (SPF), which is located approximately nine hundred feet from the reactor complex, where it will be processed into a non-reactive form, suitable for land disposal in Idaho. To facilitate this transfer, a heated pipeline for carrying liquid sodium metal from EBR-II to the SPF was designed and installed. The SPF was originally designed and built to process primary sodium from the Fermi-1 reactor. The sodium is stored at ANL-W in 55 gallon drums. Design of the SPF did not originally accommodate processing of EBR-II sodium. Therefore, no method of introducing the EBR-II sodium into the process existed. As part of modifying the SPF for processing EBR-II sodium, it was necessary to design a method for transferring sodium from the EBR-H complex to the SPF and introducing it into the existing system. This requirement has been fulfilled by design and installation of a pipeline between the two facilities.

  7. Civilian nuclear power on the drawing board: the development of Experimental Breeder Reactor-II.

    SciTech Connect

    Westfall, C.

    2003-02-20

    On September 28, 2001 a symposium was held at Argonne National Laboratory as part of the festivities to mark the 100th birthday of Enrico Fermi. The symposium celebrated Fermi's ''contribution to the development of nuclear power'' and focused on one particular ''line of development'' resulting from Fermi's interest in power reactors: Argonne's fast reactor program. Symposium participants made many references to the ways in which the program was linked to Fermi, who led the team which created the world's first self-sustaining nuclear chain reaction. For example, one presentation featured an April, 1944 memo that described a meeting attended by Fermi and others. The memo came from the time when research on plutonium and the nuclear chain reaction at Chicago's WWII Metallurgical Laboratory was nearing its end. Even as other parts of the Manhattan Engineering Project were building on this effort to create the bombs that would end the war, Fermi and his colleagues were taking the first steps to plan the use of nuclear energy in the postwar era. After noting that Fermi ''viewed the use of [nuclear] power for the heating of cities with sympathy,'' the group outlined several power reactor designs. In the course of discussion, Fermi and his colleagues took the first steps in conjuring the vision that would later be brought to life with Experimental Breeder Reactor I (EBR-I) and Experimental Breeder Reactor II (EBR-II), the celebrated achievements of the Argonne fast reactor program. Group members considered various schemes for a breeder reactor in which the relatively abundant U-238 would be placed near a core of fissionable material. The reactor would be a fast reactor; that is, neutrons would not be moderated, as were most wartime reactors. Thus, the large number of neutrons emitted in fast neutron fission would hit the U-238 and create ''extra'' fissionable material, that is, more than ''invested,'' and at the same time produce power. The group identified the problem of

  8. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  9. Zach's instruments and their characteristics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  10. 17 CFR 34.3 - Hybrid instrument exemption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-of-pocket payments to the issuer during the life of the instrument or at maturity; and (ii) The... the characteristics of a futures contract or a commodity option; and (iii) The instrument does...

  11. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor. [Metal fuel

    SciTech Connect

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented.

  12. Dental Diamond Rotary Instruments. Test and Evaluation

    DTIC Science & Technology

    1983-09-01

    Service, USAF School of Aerospace Med- icine. 17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, it different from Report) 13...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse ide iI neceseay and identify by block number) Dental diamond rotary instruments Diamond instrument cutting...performance Diamond instrument quality ABS.TLRACT fConi on, revere aide It neceeary aid Identify by block number) -’In this test and evaluation of the

  13. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  14. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... also integrate reagent handling, hybridization, washing, dedicated instrument control, and other... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification... process detected signals. (b) Classification. Class II (special controls). The special control is...

  15. 21 CFR 862.2570 - Instrumentation for clinical multiplex test systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... also integrate reagent handling, hybridization, washing, dedicated instrument control, and other... Laboratory Instruments § 862.2570 Instrumentation for clinical multiplex test systems. (a) Identification... process detected signals. (b) Classification. Class II (special controls). The special control is...

  16. 10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., maintenance, or operation of nuclear reactors; or (v) Personnel directly engaged in production, use, storage... employee, who is allowed unescorted access to the control areas of the following DOE reactors: Advanced Test Reactor (ATR); C Production Reactor (C); Experimental Breeder Reactor II (EBR-II); Fast Flux...

  17. 10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., maintenance, or operation of nuclear reactors; or (v) Personnel directly engaged in production, use, storage... employee, who is allowed unescorted access to the control areas of the following DOE reactors: Advanced Test Reactor (ATR); C Production Reactor (C); Experimental Breeder Reactor II (EBR-II); Fast Flux...

  18. 26 CFR 1.1275-7 - Inflation-indexed debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (ii) A debt instrument subject to section 529 (certain debt instruments issued by qualified state... debt instrument is subject to a contingency other than the inflation contingency or the contingencies... the calendar year as its taxable year. (ii) Indexing methodology. The debt instrument provides...

  19. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  20. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  1. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  2. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. FTIR instrumentation for atmospheric observations

    NASA Astrophysics Data System (ADS)

    Knuteson, Robert O.; Revercomb, Henry E.; Best, Fred A.; Smith, William L.

    1993-09-01

    During the last six years, extensive observations of atmospheric emitted radiance in the spectral region from 3.6 - 20 micrometers with resolving powers of 1000 - 4000 have been made, both from the ground and nadir viewing from NASA high altitude aircraft. Two recent field experiments in which both instruments participated are the FIRE II/SPECTRE experiment Nov. - Dec. 1991 in Coffeyville, KS and the STORMFEST experiment Feb. - Mar. 1992 in Seneca, KS. Experience with these instruments has led to instrument designs for advanced sounders on geostationary and polar orbiting satellites. Applications include remote sensing of atmospheric temperature and water vapor for improved weather forecasting, measurement of cloud radiative impact for improvement of global climate modelling, and trace gas retrieval for climate and air pollution monitoring.

  4. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  5. Low activated incore instrument

    DOEpatents

    Ekeroth, Douglas E.

    1994-01-01

    Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

  6. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  7. Gamma II

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, M.; Cline, J.; Owen, L.; Boehme, J.; Rottler, L.; Whitworth, C.; Clavier, D.

    2011-05-01

    GAMMA II is the Guide Star Automatic Measuring MAchine relocated from STScI to the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). GAMMA II is a multi-channel laser-scanning microdensitometer that was used to measure POSS and SERC plates to create the Guide Star Catalog and the Digital Sky Survey. The microdensitometer is designed with submicron accuracy in x and y measurements using a HP 5507 laser interferometer, 15 micron sampling, and the capability to measure plates as large as 0.5-m across. GAMMA II is a vital instrument for the success of digitizing the direct, objective prism, and spectra photographic plate collections in APDA for research. We plan several targeted projects. One is a collaboration with Drs. P.D. Hemenway and R. L. Duncombe who plan to scan 1000 plates of 34 minor planets to identify systematic errors in the Fundamental System of celestial coordinates. Another is a collaboration with Dr. R. Hudec (Astronomical Institute, Academy of Sciences of the Czech Republic) who is working within the Gaia Variability Unit CU7 to digitize objective prism spectra on the Henize plates and Burrell-Schmidt plates located in APDA. These low dispersion spectral plates provide optical counterparts of celestial high-energy sources and cataclysmic variables enabling the simulation of Gaia BP/RP outputs. The astronomical community is invited to explore the more than 140,000 plates from 20 observatories now archived in APDA, and use GAMMA II. The process of relocating GAMMA to APDA, re-commissioning, and starting up the production scan programs will be described. Also, we will present planned research and future upgrades to GAMMA II.

  8. Test description for the Integral Fast Reactor subassemblies X419, X420, and X421

    SciTech Connect

    Pahl, R G; Lahm, C E; Hudman, G D

    1985-07-01

    The main purpose of the three lead IFR irradiation experiments in EBR-II is to demonstrate the acceptable performance and high-burnup capability of U-Pu-Zr metallic fuel. This report summarizes prior U-Pu-Zr experiments, outlines the scope and objectives of the current tests and provides a technical description of the fuel, element hardware and nominal operating conditions.

  9. Postirradiation examination of the HT9 clad fuel test X425 at 2.9% burnup

    SciTech Connect

    Pahl, R G; Beck, W N; Sanecki, J E

    1987-11-01

    The X425 experiment was the first EBR-II subassembly to be irradiated with U-Pu-Zr metallic fuel clad in the HT9 alloy. This report summarizes our initial postirradiation examination of selected elements from X425 at 2.9% peak burnup. Fuel microstructure, swelling behavior, fission gas release, and fuel/clad chemical interaction are discussed.

  10. Integral fast reactor concept. [Pool type; metal fuel; integral fuel cycle

    SciTech Connect

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept. (DLC)

  11. Revised evaluation of steam generator testing alternatives

    SciTech Connect

    1981-01-01

    A scoping evaluation was made of various facility alternatives for test of LMFBR prototype steam generators and models. Recommendations are given for modifications to EBR-II and SCTI (Sodium Components Test Installation) for prototype SG testing, and for few-tube model testing. (DLC)

  12. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  13. The SeaWinds Scatterometer Instrument

    NASA Technical Reports Server (NTRS)

    Wu, C.; Graf, J.; Freilich, M.; Long, D.; Spencer, M.; Tsai, W.; Lisman, D.; Winn, C.

    1994-01-01

    The SeaWinds scatterometer instrument is currently being developed by NASA/JPL, as part of the NASA EOS Program, for flight on the Hapanese ADEOS II mission in 1999. This Ku-band radar scatterometer will infer surface wind speed and direction by measuring the radar normalized backscatter cross-section over several different azimuth angles. This paper presents the design characteristics of and operational approach to the instrument itself.

  14. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  15. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  16. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  17. Aeronautic Instruments. Section VI : Oxygen Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, F L

    1923-01-01

    This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.

  18. 21 CFR 864.5400 - Coagulation instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coagulation instrument. 864.5400 Section 864.5400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Classification. Class II (performance standards)....

  19. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  20. Laparoscopic dissecting instruments.

    PubMed

    Park, A E; Mastrangelo, M J; Gandsas, A; Chu, U; Quick, N E

    2001-03-01

    The authors provide an overview of laparoscopic dissecting instruments and discuss early development, surgical options, and special features. End effectors of different shapes and functions are described. A comparison of available energy sources for laparoscopic instruments includes discussion of thermal dissection, ultrasonic dissection, and water-jet dissection. The ergonomic risks and challenges inherent in the use of current laparoscopic instruments are outlined, as well as ergonomic issues for the design of future instruments. New directions that laparoscopic instrumentation may take are considered in connection with developing technology in robotics, haptic feedback, and MicroElectroMechanical Systems.

  1. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  2. Seismic instrumentation of buildings

    USGS Publications Warehouse

    Çelebi, Mehmet

    2000-01-01

    The purpose of this report is to provide information on how and why we deploy seismic instruments in and around building structures. The recorded response data from buildings and other instrumented structures can be and are being primarily used to facilitate necessary studies to improve building codes and therefore reduce losses of life and property during damaging earthquakes. Other uses of such data can be in emergency response situations in large urban environments. The report discusses typical instrumentation schemes, existing instrumentation programs, the steps generally followed in instrumenting a structure, selection and type of instruments, installation and maintenance requirements and data retrieval and processing issues. In addition, a summary section on how recorded response data have been utilized is included. The benefits from instrumentation of structural systems are discussed.

  3. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. CICADA -- Configurable Instrument Control and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    CICADA (Young et al. 1997) is a multi-process, distributed application for the control of astronomical data acquisition systems. It comprises elements that control the operation of, and data flow from CCD camera systems; and the operation of telescope instrument control systems. CICADA can be used to dynamically configure support for astronomical instruments that can be made up of multiple cameras and multiple instrument controllers. Each camera is described by a hierarchy of parts that are each individually configured and linked together. Most of CICADA is written in C++ and much of the configurability of CICADA comes from the use of inheritance and polymorphism. An example of a multiple part instrument configuration -- a wide field imager (WFI) -- is described here. WFI, presently under construction, is made up of eight 2k x 4k CCDs with dual SDSU II controllers and will be used at Siding Spring's ANU 40in and AAO 3.9m telescopes.

  6. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  7. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed. PMID:27413609

  8. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  9. 26 CFR 1.1275-5 - Variable rate debt instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the preceding sentence, the following restrictions will not cause a variable rate to fail to be a... instrument; (ii) A cap or similar restriction that is not reasonably expected as of the issue date to cause... cause the yield on the debt instrument to be significantly more than the expected yield...

  10. 26 CFR 1.1275-5 - Variable rate debt instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the preceding sentence, the following restrictions will not cause a variable rate to fail to be a... instrument; (ii) A cap or similar restriction that is not reasonably expected as of the issue date to cause... cause the yield on the debt instrument to be significantly more than the expected yield...

  11. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  12. Aircrew Screening Instruments Review

    DTIC Science & Technology

    2007-09-01

    available tools . Several vendors indicated that they will have new selection instruments available within a few months. These are not listed. As noted...AFCAPS-FR-2011-0012 AIRCREW SCREENING INSTRUMENTS REVIEW Diane L. Damos Damos Aviation Services, Inc...June 2007 – August 2007 4. TITLE AND SUBTITLE Aircrew Screening Instruments Review 5a. CONTRACT NUMBER FA3089-06-F-0385 5b. GRANT NUMBER 5c

  13. Sterilization of Medical Instruments

    DTIC Science & Technology

    2007-05-06

    possible use with medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is developing an...Project: DARPA - Sterilization of Medical Instruments Contract: # FA9550-06-C-0054 Principal Investigator: Joseph Birmingham Report: FINAL Report 1...as medical instruments and skin catheters. To address this challenge, MicroStructure Technologies (MicroST) is proposing a compact, low maintenance

  14. Alternative Policy Instruments

    DTIC Science & Technology

    1987-11-01

    CpRE CENTER FOR POLICY RESEARCH IN EDUCATION Alternative Policy o Instruments I Lorraine M. McDonnell Richard F. Elmore November 1987 DTICELECTE...03 Alternative Policy Instruments Lorraine M. McDonnell The RAND Corporation Richard F. Elmore Michigan State University November 1987 THRAND...range of policy instruments available or on the political and organizational conditions needed for each to work as intended. Policy decisions would

  15. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  16. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  17. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  18. [Controlling instruments in radiology].

    PubMed

    Maurer, M

    2013-10-01

    Due to the rising costs and competitive pressures radiological clinics and practices are now facing, controlling instruments are gaining importance in the optimization of structures and processes of the various diagnostic examinations and interventional procedures. It will be shown how the use of selected controlling instruments can secure and improve the performance of radiological facilities. A definition of the concept of controlling will be provided. It will be shown which controlling instruments can be applied in radiological departments and practices. As an example, two of the controlling instruments, material cost analysis and benchmarking, will be illustrated.

  19. Reconstruction of peak water levels, peak discharges and long-term occurrence of extreme- as well as smaller pre-instrumental flood events of river Aare, Limmat, Reuss, Rhine and Saane in Switzerland. Part II.

    NASA Astrophysics Data System (ADS)

    Tuttenuj, Daniel; Wetter, Oliver

    2016-04-01

    The methodology developed by Wetter et al. (2011) combines different documentary and instrumental sources, retaining relevant information for the reconstruction of extreme pre-instrumental flood events. These include hydrological measurements (gauges), historic river profiles (cross and longitudinal profiles), flood marks, historic city maps, documentary flood evidence (reports in chronicles and newspapers) as well as paintings and drawings. It has been shown that extreme river Rhine flood events of the pre-instrumental period can be reconstructed in terms of peak discharges for the last 750 years by applying this methodology to the site of Basel. Pfister & Wetter (2011) furthermore demonstrated that this methodology is also principally transferable to other locations and rivers in Switzerland. Institutional documentary evidence has not been systematically analysed in the context of historical hydrology in Switzerland so far. The term institutional documentary evidence generally outlines sources that were produced by governments or other (public) bodies including the church, hospitals, and the office of the bridge master. Institutional bodies were typically not directly interested in describing climate or hydrological events but they were obliged to document their activities, especially if they generated financial costs (bookkeeping), and in doing so they often indirectly recorded climatologic or hydrological events. The books of weekly expenditures of Basel ("Wochenausgabenbücher der Stadt Basel") were first analysed by Fouquet (1999). He found recurring records of wage expenditures for a squad of craftsmen that was called up onto the bridge with the task of preventing the bridge from being damaged by fishing out drifting logs from the flood waters. Fouquet systematically analysed the period from 1446-1542 and could prove a large number of pre-instrumental flood events of river Rhine, Birs, Birsig and Wiese in Basel. All in all the weekly led account books

  20. JBI instrumentation services

    NASA Astrophysics Data System (ADS)

    Muccio, M.; Lopez, E.; McKeel, R.

    2005-05-01

    The Joint Battlespace Infosphere (JBI) is an information management infrastructure that provides a basic set of flexible core services: publish, subscribe, and query. Managed Information Objects (MIOs) are published by JBI clients and are subsequently managed and disseminated to other subscribing JBI Clients by the JBI Core Services. MIOs can also be archived into a repository managed by the JBI Core Services upon publication and can later be queried for by JBI Clients. A reference implementation (RI) of the JBI Core Services using Java 2 Enterprise Edition (J2EE) technology is currently being developed at the Air Force Research Laboratory Information Directorate (AFRL/IF) in Rome, NY. JBI Instrumentation Services will allow users to gain insight into what activity is occurring inside the JBI Core Services. The phase 1 Instrumentation Services implementation has been developed as a standalone system that interacts with the JBI Core Services through a set of interfaces that provide a low impact, multi-implementation compatible connection. The Instrumentation Services Architecture makes use of the Instrumentation Entity Model to create entities that describe the real elements of the JBI Core Services: platforms, connections, users, nodes, and sequences. These entities populate the Instrumentation Space and are accessed by clients through the Instrumentation Client API (ICAPI). A web-based client that makes use of this ICAPI has been developed to visualize instrumentation information and demonstrate the capabilities of the Instrumentation Services. This client utilizes numerical rate graphs and dynamic graph trees to visualize JBI activity. This paper describes the phase 1 Instrumentation Services Architecture and development efforts involved in creating the JBI Instrumentation Services and prototype instrumentation client.

  1. High Performance Liquid Chromatography/Video Fluorometry. Part I. Instrumentation.

    DTIC Science & Technology

    1981-09-30

    High Performance Liquid Chromatography /Video...PERIOD COVERED High Performance Liquid Chromatography /Video .. / Fluorometry. Part I. Instrumentation. . Interim/ echnicaliepart,. 6. PERFORMING ORG...34Entered SECURITY CLASSIFICATION OF THIS OlAGE (When Data Entered) II1| III I I I I E I II ... .. High Performance Liquid Chromatography

  2. Hemispheric Cognitive Style: A Comparison of Three Instruments

    ERIC Educational Resources Information Center

    Genovese, Jeremy E. C.

    2005-01-01

    In this study, the author tested the reliability, concurrent validity, and predictive validity of three hemispheric cognitive style instruments: (a) the Preference Test (PT; R. Zenhausern, 1978), (b) the Polarity Questionnaire (PQ; B. E. Morton, 2002), and (c) the Wagner Preference Inventory II (WAPI II; R. F. Wagner & K. A. Wells, 1985).…

  3. Instrumentation in endourology

    PubMed Central

    Khanna, Rakesh; Monga, Manoj

    2011-01-01

    Success with endourological procedures requires expertise and instrumentation. This review focuses on the instrumentation required for ureteroscopy and percutaneous nephrolithotomy, and provides a critical assessment of in vitro and clinical studies that have evaluated the comparative effectiveness of these medical devices. PMID:21904568

  4. Instrument for Curriculum Evaluation.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge; Benson, RoseAnn

    A comprehensive Instrument for Curriculum Evaluation (ICE) was developed to qualitatively and quantitatively evaluate curriculum materials. The instrument contains 115 statements for assessing 11 aspects of curriculum: philosophy, needs assessment, theme, goals, learning objectives and standards, scope and sequence, field testing, instructor…

  5. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  6. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  7. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  8. Wind instruments and headaches.

    PubMed

    Martínez-Lage, Juan F; Galarza, Marcelo; Pérez-Espejo, Miguel-Angel; López-Guerrero, Antonio L; Felipe-Murcia, Matías

    2013-03-01

    The authors illustrate the cases of two children with headaches, one diagnosed with Chiari type 1 malformation and the other with hydrocephalus, who played wind instruments. Both patients manifested that their headaches worsened with the efforts made during playing their musical instruments. We briefly comment on the probable role played by this activity on the patients' intracranial pressure and hypothesize that the headaches might be influenced by increases in their intracranial pressure related to Valsalva maneuvers. We had serious doubts on if we should advise our young patients about giving up playing their music instruments.

  9. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  10. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    AD-A095 680 ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GRO--ETC F/S 1/4 TESTING AIRCRAFT INSTRUMENTS .(U) FEB 81 CLASSIFIED TOP-6-3-013 ML I...Test and Evaluation Command -?Final 7, Ts .to .. eg----- ( -4_ Fia - / + I ORG REPORT STesting Aircraft Instruments , j P I- I. AUTHOR(es) S. CONTRACT...Identify by block number) This document presents information and procedures for testing aircraft flight and systems performance instruments in the functional

  11. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  12. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  13. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  14. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  15. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  16. Instrumentation for Materials Research

    ERIC Educational Resources Information Center

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  17. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  18. IXO: The Instrument Complement

    NASA Astrophysics Data System (ADS)

    Nousek, John A.; IWG, IXO

    2009-01-01

    The International X-ray Observatory (IXO) has recently been created as a mission concept by a joint team of NASA, ESA and JAXA scientists, based on the previous Constellation-X and XEUS concepts. Definition of the IXO instruments is still under evolution, but the core instrument complement will include a Wide Field X-ray Imager, an X-ray Calorimeter / Narrow Field X-ray Imager, and an X-ray Grating Spectrometer. Other, modest additional instruments (such as a hard X-ray capability, a polarimeter, and a high time resolution detector) will also be considered. We present the current status of the IXO instrument complement and offer the opportunity for discussion of ideas relevant to the IXO mission concept process.

  19. Carbon Footprint Reduction Instruments

    EPA Pesticide Factsheets

    This page outlines the major differences between Renewable Energy Certificates (REC) and Project Offsets and what types of claims each instrument allows the organization to make in regards to environmental emissions claims.

  20. Mars Observer instrument complement

    NASA Astrophysics Data System (ADS)

    Komro, Fred G.; Hujber, Frank N.

    1991-10-01

    The mechanical and electrical characteristics and the functional designs of the eight scientific instruments of the Mars Observer's instrument complex are described, and their respective principal investigators and sponsoring institutions are listed. These instruments include a gamma-ray spectrometer, a magnetometer/electron reflectometer, the Mars balloon relay, the Mars Observer camera, the Mars Observer laser altimeter, a pressure modulator infrared radiometer, a thermal emission spectrometer, and an ultrastable oscillator. With these instruments, the Mars Observer will be able to determine the elemental and mineralogical character of Martial surface material; to define globally the topography and the gravitational field; to establish the nature of the magnetic field; to determine the spatial and temporal distribution abundances, sources, and sinks of volatile material and dust over a seasonal cycle; and to explore the structure and circulation of Martian atmosphere.

  1. Hetdex: Virus Instrument

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, G. J.; DePoy, D. L.; Tuttle, S.; Marshall, J. L.; Vattiat, B. L.; Prochaska, T.; Chonis, T. S.; Allen, R.; HETDEX Collaboration

    2012-01-01

    The Visible Integral-field-unit Replicable Unit Spectrograph (VIRUS) instrument is made up of 150+ individually compact and identical spectrographs, each fed by a fiber integral-field unit. The instrument provides integral field spectroscopy at wavelengths between 350nm and 550nm of over 33,600 spatial elements per observation, each 1.8 sq. arcsec on the sky, at R 700. The instrument will be fed by a new wide-field corrector (WFC) of the Hobby-Eberly Telescope (HET) with increased science field of view as large as 22arcmin diameter and telescope aperture of 10m. This will enable the HETDEX, a large area blind survey of Lyman-alpha emitting galaxies at redshift z < 3.5. The status of VIRUS instrument construction is summarized.

  2. TES Instrument Operational Status

    Atmospheric Science Data Center

    2017-02-26

    ... UPDATE: (1/24/2017)  The TES instrument metrology laser end of life testing that resumed on January 11, 2017 provided a gradual increase in the laser diode current. This increase has resulted in the restoration of the ...

  3. VIRUS instrument collimator assembly

    NASA Astrophysics Data System (ADS)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  4. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a

  5. Temperature and burnup correlated fuel-cladding chemical interaction in U-10ZR metallic fuel

    NASA Astrophysics Data System (ADS)

    Carmack, William J.

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors and provide a number of advantages over other fuel types considering their fabricability, performance, recyclability, and safety. Resistance to cladding "breach" and subsequent release of fission products and fuel constituents to the nuclear power plant primary coolant system is a key performance parameter for a nuclear fuel system. In metallic fuel, FCCI weakens the cladding, especially at high power-high temperature operation, contributing to fuel pin breach. Empirical relationships for FCCI have been developed from a large body of data collected from in-pile (EBR-II) and out-of-pile experiments [1]. However, these relationships are unreliable in predicting FCCI outside the range of EBR-II experimental data. This dissertation examines new FCCI data extracted from the MFF-series of prototypic length metallic fuel irradiations performed in the Fast Flux Test Facility (FFTF). The fuel in these assemblies operated a temperature and burnup conditions similar to that in EBR-II but with axial fuel height three times longer than EBR-II experiments. Comparing FCCI formation data from FFTF and EBR-II provides new insight into FCCI formation kinetics. A model is developed combining both production and diffusion of lanthanides to the fuel-cladding interface and subsequent reaction with the cladding. The model allows these phenomena to be influenced by fuel burnup (lanthanide concentrations) and operating temperature. Parameters in the model are adjusted to reproduce measured FCCI layer thicknesses from EBR-II and FFTF. The model predicts that, under appropriate conditions, rate of FCCI formation can be controlled by either fission product transport or by the reaction rate of the interaction species at the fuel-cladding interface. This dissertation will help forward the design of metallic fuel systems for advanced sodium cooled fast reactors by allowing the prediction of FCCI layer formation in full

  6. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  7. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  8. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages.

  9. Orthodontic instrument sterilization with microwave irradiation

    PubMed Central

    Yezdani, Arif; Mahalakshmi, Krishnan; Padmavathy, Kesavaram

    2015-01-01

    Objective: This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. Materials and Methods: The orthodontic instruments (hinged and nonhinged), molar bands and mouth mirrorsused in the patient 's mouth were selected for the study. The instruments were divided into two groups – Group I with oral rinse-set A (0.01% chlorhexidine gluconate) and set B (0.025% betadine) and Group II (included sets C and D without oral rinse). The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37 °C for 24 h. For sterility control,Geobacillus stearothermophilus (MTCC 1518) was included. Results: No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculatedwith the microwaved set C instruments. Conclusion: Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min. PMID:26015686

  10. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Loukachine, K.; Wielicki, B. A.; Young, D. F.

    2003-01-01

    Top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth s Radiant Energy System (CERES) are estimated from empirical angular distribution models (ADMs) that convert instantaneous radiance measurements to TOA fluxes. This paper evaluates the accuracy of CERES TOA fluxes obtained from a new set of ADMs developed for the CERES instrument onboard the Tropical Rainfall Measuring Mission (TRMM). The uncertainty in regional monthly mean reflected shortwave (SW) and emitted longwave (LW) TOA fluxes is less than 0.5 W/sq m, based on comparisons with TOA fluxes evaluated by direct integration of the measured radiances. When stratified by viewing geometry, TOA fluxes from different angles are consistent to within 2% in the SW and 0.7% (or 2 W/sq m) in the LW. In contrast, TOA fluxes based on ADMs from the Earth Radiation Budget Experiment (ERBE) applied to the same CERES radiance measurements show a 10% relative increase with viewing zenith angle in the SW and a 3.5% (9 W/sq m) decrease with viewing zenith angle in the LW. Based on multiangle CERES radiance measurements, 18 regional instantaneous TOA flux errors from the new CERES ADMs are estimated to be 10 W/sq m in the SW and, 3.5 W/sq m in the LW. The errors show little or no dependence on cloud phase, cloud optical depth, and cloud infrared emissivity. An analysis of cloud radiative forcing (CRF) sensitivity to differences between ERBE and CERES TRMM ADMs, scene identification, and directional models of albedo as a function of solar zenith angle shows that ADM and clear-sky scene identification differences can lead to an 8 W/sq m root-mean-square (rms) difference in 18 daily mean SW CRF and a 4 W/sq m rms difference in LW CRF. In contrast, monthly mean SW and LW CRF differences reach 3 W/sq m. CRF is found to be relatively insensitive to differences between the ERBE and CERES TRMM directional models.

  11. NSLS-II Beam Diagnostics Overview

    SciTech Connect

    Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

    2009-05-04

    A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

  12. Gotha - the instruments of the observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Around 1800 the Gotha observatory was an international center of astronomy and was the most modern astronomical institute with respect to its instruments 1. Duke Ernst II of Sachsen-Gotha-Altenburg (1745-1804) used the following instruments in his private observatory at castle Friedenstein in Gotha; it should be emphasized that all instruments were coming from London - England was the center of instrument making in the 18th century 2: A 18-inch quadrant made by Sisson, London; a small 2-ft transit instrument made by Ramsden, London [DM 67751]; three Hadley sextants; an achromat heliometer made by Dollond, London [DM 67750]; a 2-ft achromat refractor made by Ramsden, London [DM 67754]; a Gregory reflector made by Short, London [Gotha] and several clocks. In 1787, Franz Xaver von Zach (1754-1832) planned a new observatory outside of Gotha on the top of hill Seeberg, financed by the Duke (building 36000 Taler, instruments 20000 Taler; for comparison: the director got several hundreds Taler/year). The focus of research was astrometry, time keeping, geodetic and meteorological observations. Most of the instruments came from the leading instrument makers of that time: A southern and a northern quadrant; a 8-ft transit instrument made by Ramsden, London, 1788 [DM 67743 a-c]; a 7-ft Herschel reflector [DM 67483]; a 2-ft vertical circle made by Cary, London, 1796; a 8-ft circle made by Ramsden, London, 1800; a 3-ft vertical circle made by Trougthon, London, 1800; a 3-ft equatorial refractor made by Dollond, London, 1796 [DM 67745 a, b]; a 3-ft equatorial refractor made by Schroeder, Gotha [DM 67746 a, b]; a 3-ft double refractor made by Dollond, London [DM 67747]; a 10-ft refractor mady by Dollond, London, 1796; a 2-ft comet seeker made by Baumann & Kinzelbach, Stuttgart [DM 67755]. By analyzing the instrumentation, we can see around 1800 a change in the kind of the instruments on one hand from quadrants and sextants to the vertical circle and on the other hand from the

  13. The AFTA coronagraph instrument

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart; Levine, Marie; Foote, Marc; Rodgers, Michael; Underhill, Michael; Marchen, Luis; Klein, Dan

    2013-09-01

    The Astrophysics Focused Telescope Assets (AFTA) study in 2012-2013 included a high-contrast stellar coronagraph to complement the wide-field infrared survey (WFIRST) instrument. The idea of flying a coronagraph on this telescope was met with some skepticism because the AFTA pupil has a large central obscuration with six secondary mirror struts that impact the coronagraph sensitivity. However, several promising coronagraph concepts have emerged, and a corresponding initial instrument design has been completed. Requirements on the design include observations centered 0.6 deg off-axis, on-orbit robotic serviceability, operation in a geosynchronous orbit, and room-temperature operation (driven by the coronagraph's deformable mirrors). We describe the instrument performance requirements, the optical design, an observational scenario, and integration times for typical detection and characterization observations.

  14. Instrumentation at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Kleinman, S. J.; Boccas, Maxime; Goodsell, Stephen J.; Gomez, Percy; Murowinski, Rick; Chené, André-Nicolas; Henderson, David

    2014-07-01

    Gemini South's instrument suite has been completely transformed since our last biennial update. We commissioned the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and its associated Gemini South Adaptive Optics Imager (GSAOI) as well as Flamingos-2, our long-slit and multi-object infrared imager and spectrograph, and the Gemini Planet Imager (GPI). We upgraded the CCDs in GMOS-S, our multi-object optical imager and spectrograph, with the GMOS-N CCD upgrade scheduled for 2015. Our next instrument, the Gemini High-resolution Optical SpecTrograph (GHOST) is in its preliminary design stage and we are making plans for the instrument to follow:Gen4#3.

  15. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  16. Micro mushroom instrumentation system

    NASA Astrophysics Data System (ADS)

    Davidson, W. F.

    1986-01-01

    An electronics circuit which provides for the recording of instrumentation data on an optical disk is disclosed. The optical disk is formatted in a spiral format instead of concentric tracks. The spiral format allows data to be recorded without the gaps that would be associated with concentric tracks. The instrumentation system provides each channel with a program instrumentation amplifier, a six pole lowpass switched capacitor filter, a sample and hold amplifier, and a digital to analog converter to provide automatic offset capability. Since each channel has its own components, simultaneous samples of every channel can be captured. All of the input signal's channel variables can be captured. All of the input signal's channel variables can be changed under software control without hardware changes. A single board computer is used for a system controller.

  17. Software Framework for Controlling Unsupervised Scientific Instruments

    PubMed Central

    Schmid, Benjamin; Jahr, Wiebke; Weber, Michael; Huisken, Jan

    2016-01-01

    Science outreach and communication are gaining more and more importance for conveying the meaning of today’s research to the general public. Public exhibitions of scientific instruments can provide hands-on experience with technical advances and their applications in the life sciences. The software of such devices, however, is oftentimes not appropriate for this purpose. In this study, we describe a software framework and the necessary computer configuration that is well suited for exposing a complex self-built and software-controlled instrument such as a microscope to laymen under limited supervision, e.g. in museums or schools. We identify several aspects that must be met by such software, and we describe a design that can simultaneously be used to control either (i) a fully functional instrument in a robust and fail-safe manner, (ii) an instrument that has low-cost or only partially working hardware attached for illustration purposes or (iii) a completely virtual instrument without hardware attached. We describe how to assess the educational success of such a device, how to monitor its operation and how to facilitate its maintenance. The introduced concepts are illustrated using our software to control eduSPIM, a fluorescent light sheet microscope that we are currently exhibiting in a technical museum. PMID:27570966

  18. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  19. Instrumentation Cables Test Plan

    SciTech Connect

    Muna, Alice Baca; LaFleur, Chris Bensdotter

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  20. Animation of MARDI Instrument

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    This animation shows a zoom into the Mars Descent Imager (MARDI) instrument onboard NASA's Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  2. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  3. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  4. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  5. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  6. Current status of the Run-Beyond-Cladding Breach (RBCB) tests for the Integral Fast Reactor (IFR). Metallic Fuels Program

    SciTech Connect

    Batte, G.L.; Pahl, R.G.; Hofman, G.L.

    1993-09-01

    This paper describes the results from the Integral Fast Reactor (IFR) metallic fuel Run-Beyond-Cladding-Breach (RBCB) experiments conducted in the Experimental Breeder Reactor II (EBR-II). Included in the report are scoping test results and the data collected from the prototypical tests as well as the exam results and discussion from a naturally occurring breach of one of the lead IFR fuel tests. All results showed a characteristic delayed neutron and fission gas release pattern that readily allows for identification and evaluation of cladding breach events. Also, cladding breaches are very small and do not propagate during extensive post breach operation. Loss of fuel from breached cladding was found to be insignificant. The paper will conclude with a brief description of future RBCB experiments planned for irradiation in EBR-II.

  7. Photobilirubin II.

    PubMed Central

    Bonnett, R; Buckley, D G; Hamzetash, D; Hawkes, G E; Ioannou, S; Stoll, M S

    1984-01-01

    An improved preparation of photobilirubin II in ammoniacal methanol is described. Evidence is presented which distinguishes between the two structures proposed earlier for photobilirubin II in favour of the cycloheptadienyl structure. Nuclear-Overhauser-enhancement measurements with bilirubin IX alpha and photobilirubin II in dimethyl sulphoxide are complicated by the occurrence of negative and zero effects. The partition coefficient of photobilirubin II between chloroform and phosphate buffer (pH 7.4) is 0.67. PMID:6743241

  8. Integrating Nephelometer Instrument Handbook

    SciTech Connect

    Uin, J.

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  9. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  10. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  11. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  12. Instrumentation Control Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 22 units to consider for use in a tech prep competency profile for the occupation of instrumentation control technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific…

  13. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  14. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  15. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  16. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  17. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  18. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  19. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  20. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  1. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  2. Music: Instrumental Techniques, Woodwinds.

    ERIC Educational Resources Information Center

    Baker, Melvin

    A course in introduction to music emphasizing modes and forms is presented. The approach used is a laboratory approach in which pupils will develop skill in playing wood-wind instruments, sing, listen to, read and compose music with emphasis on identification of elementary concepts of mode and form. Course objectives include: (1) pupil will select…

  3. Ozone monitoring instrument (OMI)

    NASA Astrophysics Data System (ADS)

    de Vries, Johan; van den Oord, Gijsbertus H. J.; Hilsenrath, Ernest; te Plate, Maurice B.; Levelt, Pieternel F.; Dirksen, Ruud

    2002-01-01

    The Ozone Monitoring Instrument (OMI) is an UV-Visible imaging spectrograph using two dimensional CCD detectors to register both the spectrum and the swath perpendicular to the flight direction. This allows having a wide swath (114 degrees) combined with a small ground pixel (nominally 13 x 24 km). The instrument is planned for launch on NASA's EOS-AURA satellite in June 2003. Currently the OMI Flight Model is being build. This shortly follows the Instrument Development Model (DM) which was built to, next to engineering purposes, verify the instrument performance. The paper presents measured results from this DM for optical parameters such as distortion, optical efficiency, stray light and polarization sensitivity. Distortion in the spatial direction is shown to be on sub-pixel level and the stray light levels are very low and almost free from ghost peaks. The polarization sensitivity is presently demonstrated to be below 10-3 but we aim to lower the detection limit by an order of magnitude to make sure that spectral residuals do not mix with trace gas absorption spectra. Critical detector parameters are presented such as the very high UV quantum efficiency (60 % at 270 nm), dark current behavior and the sensitivity to radiation.

  4. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  5. Software Aspects of PuMa-II

    NASA Astrophysics Data System (ADS)

    Karuppusamy, R.; Stappers, B.; Stappers, B.

    2006-08-01

    The Pulsar Machine II (PuMa-II) is a state of the art pulsar machine-installed at the Westerbork Synthesis Radio Telescope (WSRT), in December 2005. PuMa-II is a flexible instrument and is designed around an ensemble of 44 high-performance computers running the Linux operating system. Much of the flexibility of PuMa-II comes from the software that is being developed for this instrument. The radio signals reaching the telescope undergo several stages of electronic and software processing before a scientifically useful data product is generated. The electronic processing of signals includes the usual RF to IF conversion, analogue to digital conversion and telescope dependent electronic digital delay compensation that happen in the signal chain of WSRT. Within PuMa-II, this data is acquired, stored and suitably processed. In this poster we present various aspects of PuMa-II software and illustrate its pulsar signal processing capabilities.

  6. Instrument techniques for rheometry

    NASA Astrophysics Data System (ADS)

    Hou, Ying Y.; Kassim, Hamida O.

    2005-10-01

    This article presents a review of some latest advances in rheology measuring techniques. Consideration is given to the modification and approaches in conventional measuring techniques and also to the development of specialty instruments. A number of sensing technologies such as nuclear-magnetic-resonance imaging and ultrasonic pulse Doppler mapping have recently been adopted to produce viscoelastic measurements for both Newtonian and non-Newtonian materials. The working principles of these technologies and their applications are described. Other recent developments in modifications of conventional rheometers for performance enhancement and for complex material characterizations have been thoroughly discussed. Some instrument designs and their special applications, such as interfacial rheometers, extensional rheometers, and high-pressure rheometers, have also been evaluated in detail.

  7. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  8. Instrumentation for Mars Environments

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1997-01-01

    The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.

  9. Computers in Scientific Instrumentation.

    DTIC Science & Technology

    1982-01-13

    The CPU bus Attachment. In the first applications or d 4ata are connected to the central ues parallel digital lines for data an computers to...simple function se- Mg on ae results of its previous opera- designing instruments that can provide hotios by being directly labeled for the ties. In...that the signal from the sensor is with an operating system is powerful , that might be found in appropriately pro- interpretable to give the sought- for

  10. Frontiers of accelerator instrumentation

    SciTech Connect

    Ross, M.

    1992-08-01

    New technology has permitted significant performance improvements of established instrumentation techniques including beam position and profile monitoring. Fundamentally new profile monitor strategies are required for the next generation of accelerators, especially linear colliders (LC). Beams in these machines may be three orders of magnitude smaller than typical beams in present colliders. In this paper we review both the present performance levels achieved by conventional systems and present some new ideas for future colliders.

  11. Simulation and operation of the EBR-2 automatic control rod drive system

    NASA Astrophysics Data System (ADS)

    Lehto, W. K.; Larson, H. A.; Dean, E. M.; Christensen, L. J.

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control rod drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE operational reliability testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady state operation and will be qualified to control power ascent from initial critical to full power.

  12. Development and application of diagnostic systems to achieve fault tolerance

    SciTech Connect

    King, R.W.; Singer, R.M.

    1989-01-01

    Much work is currently being done to develop and apply diagnostic systems that are tolerant to faulted conditions in the process being monitored and in the sensors that measure the critical parameters associated with the process. A fault-tolerant diagnostic system based on state-determination, pattern-recognition techniques is currently undergoing testing and evaluation in certain applications at the EBR-II reactor. Testing and operational experience with the system to date has shown a high degree of tolerance to sensor failures, while being sensitive to very slight changes in the plant operational state. This paper briefly mentions related work being done by others, and describes in more detail the pattern-recognition system and the results of the testing and operational experience with the system at EBR-II. 9 refs., 10 figs.

  13. NEUTRON-INDUCED SWELLING OF Fe-Cr BINARY ALLOYS IN FFTF AT ~400 DEGREES C

    SciTech Connect

    Garner, Francis A.; Greenwood, Lawrence R.; Okita, Taira; Sekimura, Naoto; Wolfer, W. G.

    2002-12-31

    The purpose of this effort is to determine the influence of dpa rate, He/dpa ratio and composition on the void swelling of simple binary Fe-Cr alloys. Contrary to the behavior of swelling of model fcc Fe-Cr-Ni alloys irradiated in the same FFTF-MOTA experiment, model bcc Fe-Cr alloys do not exhibit a dependence of swelling on dpa rate at approximately 400 degrees C. This is surprising in that an apparent flux-sensitivity was observed in an earlier comparative irradiation of Fe-Cr binaries conducted in EBR-II and FFTF. The difference in behavior is ascribed to the higher helium generation rates of Fe-Cr alloys in EBR-II compared to that of FFTF, and also the fact that lower dpa rates in FFTF are accompanied by progressively lower helium generation rates.

  14. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  15. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  16. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  17. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  18. The MMT-POL Instrument Control System

    NASA Astrophysics Data System (ADS)

    Warner, C.; Packham, C.; Jones, T. J.; Varosi, F.; Eikenberry, S. S.; Dewahl, K.; Krejny, M.

    2011-07-01

    Instrument control system (ICS) suites are a continually evolving class of software packages that are highly dependent upon the design choices and application programming interfaces (APIs) of the observatory control system (OCS), as well as the hardware choices for motors and electronics. We present the ICS for MMT-POL, a 1-5 μm polarimeter for the MMT telescope, in the context of being a transitional step between the software packages developed for facility class instruments at the University of Florida (UF), such as Flamingos-II and CanariCam, and in preparation for 30 m-class instruments. Our goals for improving ICS suites are to make them (a) portable (compile once, run anywhere), (b) highly modular and extensible (through the re-use of common libraries), (c) multi-threaded (to allow multiple tasks to be performed in parallel), (d) smart, and (e) easy to use and maintain. An ICS should also be well-defined and use mature languages (we choose Java and Python) and common standards (such as XML and the FITS file format). We also note that as hardware moves away from serial communications to ethernet, the use of TCP sockets makes communication faster and easier. Below, we present our design choices for the MMT-POL ICS and discuss our reasons for these choices and potential issues that must be addressed for future ICS suites ready for thirty meter class instruments.

  19. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  20. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  1. Corrosion assessment of dry fuel storage containers

    SciTech Connect

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  2. The Effects of Yttrium Additions on Void Swelling in Liquid Metal Fast Breeder Reactor Candidate Cladding Alloys.

    DTIC Science & Technology

    1981-04-28

    This is in close agreement with helium production rates found in like alloys (i.e., 316SS, PE-16, INCONEL -600) exposed to the EBR-II environment for...slight electropolish to remove the last little bit of cold work left by the Linde B compound, thus providing a smoother surface. This suggestion was...tried on these alloys and resulted in unsatisfactory surfaces. The electropolishing consisted of removing 2-3 Pm of surface material by a 10 sec polish

  3. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  4. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    SciTech Connect

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  5. ADIP ORNL contribution: 12th ADIP quarterly progress report for period October-December 1980. [Nb-1Zr

    SciTech Connect

    Puigh, R.; Duncan, D.; Ermi, A.M.; Gelles, D.; Zimmerchied, M.

    1980-01-01

    The following ADIP tasks are reported on: MFE-5 in-reactor fatigue crack growth in 316 SS in ORR, titanium alloy tensile properties after neutron irradiation in EBR-II, voids in neutron-irradiated Ti alloys, fabrication of ferritic alloys for RB-1 experiment in HFIR, microstructural examination of commercial ferritic alloys irradiated to very high fluence, microstructural examination of HT-9 archive material from the AD-2 test, and swelling of commercial alloys irradiated to a very high fluence. (DLC)

  6. Irradiation performance of full-length metallic IFR fuels

    SciTech Connect

    Tsai, H.; Neimark, L.A.

    1992-07-01

    An assembly irradiation of 169 full-length U-Pu-Zr metallic fuel pins was successfully completed in FFTF to a goal burnup of 10 at.%. All test fuel pins maintained their cladding integrity during the irradiation. Postirradiation examination showed minimal fuel/cladding mechanical interaction and excellent stability of the fuel column. Fission-gas release was normal and consistent with the existing data base from irradiation testing of shorter metallic fuel pins in EBR-II.

  7. NICER instrument detector subsystem: description and performance

    NASA Astrophysics Data System (ADS)

    Prigozhin, Gregory; Gendreau, Keith; Doty, John P.; Foster, Richard; Remillard, Ronald; Malonis, Andrew; LaMarr, Beverly; Vezie, Michael; Egan, Mark; Villasenor, Jesus; Arzoumanian, Zaven; Baumgartner, Wayne; Scholze, Frank; Laubis, Christian; Krumrey, Michael; Huber, Alan

    2016-07-01

    An instrument called Neutron Star Interior Composition ExploreR (NICER) will be placed on-board the Inter- national Space Station in 2017. It is designed to detect soft X-ray emission from compact sources and to provide both spectral and high resolution timing information about the incoming ux. The focal plane is populated with 56 customized Silicon Drift Detectors. The paper describes the detector system architecture, the electronics and presents the results of the laboratory testing of both ight and engineering units, as well as some of the calibration results obtained with synchrotron radiation in the laboratory of PTB at BESSY II.

  8. Investigation of Damping Liquids for Aircraft Instruments : II

    NASA Technical Reports Server (NTRS)

    Houseman, M R; Keulegan, G H

    1932-01-01

    Data are presented on the kinematic viscosity, in the temperature range -50 degrees to +30 degrees C. of pure liquids and of solutions of animal oils, vegetable oils, mineral oils, glycerine, and ethylene glycol in various low freezing point solvents. It is shown that the thermal coefficient of kinematic viscosity as a function of the kinematic viscosity of the solutions of glycerine and ethylene glycol in alcohols is practically independent of the temperature and the chemical composition of the individual liquids. This is similarly true for the mineral oil group and, for a limited temperature interval, for the pure animal and vegetable oils. The efficiency of naphthol, hydroquinone, and diphenylamine to inhibit the change of viscosity of poppyseed and linseed oils was also investigated.

  9. The Cluster II mission: recent observations and instrument calibrations

    NASA Astrophysics Data System (ADS)

    Elena, Kronberg

    2016-07-01

    For over 15 years, the Cluster mission passes through Earth's radiation belts at least once every two days for several hours, measuring the energetic electron intensity at energies from 30 to 400 keV. This vast amount of data has previously been considered as rather useless due to contamination by penetrating energetic particles (protons at >100 keV and electrons at >400 keV). In this study, we assess the efficiency with which aluminum shielding of RAPID/IES detector filters out contaminating high-energy electrons and protons. We base our estimation on the analysis of experimental data and a radiation transport code (Geant4). In our simulations, we use the incident particle energy distribution of the AE9/AP9 radiation belt models. We identify the Roederer L-values and energy channels that should be used with caution and show examples of misinterpreting the data. Comparison of the data with electron and proton observations from the Van Allen Probes ECT/MagEis indicates that the subtraction of proton intensities at energies ~230-630 keV from the IES electron data cleans the data from the proton contamination. We show that the data from this detector measured in the radiation belts is still useful for many scientific applications. This is valuable as it provides one of the longest available radiation belt data sets.

  10. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  11. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  12. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  13. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  14. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail.

  15. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  16. Beam Instrument Development System

    SciTech Connect

    DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG; SERRANO, CARLOS

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  17. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  18. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs.

  19. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  20. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  1. Mallet Instruments Challenge Beginning Percussionists.

    ERIC Educational Resources Information Center

    Grumley, Fred

    1983-01-01

    Orff mallet instruments should be used in beginning band classes. Adding mallet instruments would expand a beginner's concept of percussion instruments. Just as important, the percussion section would provide a solid melodic and harmonic foundation to assist beginning wind instrumentalists with their insecurities about pitch. (RM)

  2. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  3. Electronic Instruments -- Played or Used?

    ERIC Educational Resources Information Center

    Ulveland, Randall Dana

    1998-01-01

    Compares the experience of playing an acoustic instrument to an electronic instrument by analyzing the constant structures and relationships between the experiences. Concludes that students' understanding of the physical experience of making music increases when experiences with acoustic instruments precede their exposure to electronic…

  4. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  5. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  6. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  7. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  8. Optomechanical medical devices (instruments)

    NASA Astrophysics Data System (ADS)

    Reiss, Roger S.

    2004-03-01

    Optomechanical Medical Devices (Instruments) use lightwaves (UV, Visible, IR) for one or more of the following functions; to observe, to measure, to record, to test (align) and or to cut/repair. The evolution of Optomechanical Medical Devices probably started when the first torch or candle or petrochemical lamp used a polished reflector (possibly with a concave configuration) to examine a part of a patient's body (possibly a wound).Once the glass lens was invented, light sources of any type could be forcussed to increase illuminating power on a selected area. Medical Devices have come a great distance since these early items. Skipping across time to three rather significant inventions and advancements, we are well into the era of Laser and Fiber Optics and Advanced Photodetectors, all being integrated into Medical Devices. The most notable fields have been Ophthalmology, Dermatology, and Surgery. All three fields have been able to incorporate both the use of the Laser and the use of Fiber Optics (and at times the use of Photodetectors), into a single device (instrument). Historical: Philipp Bozzini (a Doctor, maybe) in the early 1800's used a hollow tube (tube material not identified) to project the light of a candle through the tube to view a patient's 'what ever'. Only Philipp, the patient and G-d knows what was being viewed. This ws the first recorded information on what could be considered the very first 'Endoscope examination'

  9. Space science instrumentation

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    1989-03-01

    This grant was intended to be used for the purchase of high quality laboratory and data analysis instrumentation for the pursuit of space plasma physics research. Two of the first purchases were a 6250 BPI magnetic tape drive and a large, fast disk drive. These improved the satellite data analysis capability greatly and reduced the system backup time. With the big disk drive it became possible to dump entire magnetic tapes to disk for faster, more efficient processing. Several microcomputers improve both personnel computing as well as general connectivity within the group and on campus in general. Other microcomputers function in the laboratory setting by acting as hosts for several instrument interfaces for communication with satellite and balloon payloads as well as laboratory VLF signal processing equipment. Perhaps the single most expensive item purchased was an analog tape drive for reading and writing 16 in. analog magnetic tapes. This analog tape drive is used for the direct processing of FM and directly recorded telemetry data from the balloon and rocket payloads.

  10. Far ultraviolet instrument technology

    NASA Astrophysics Data System (ADS)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  11. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  12. New developments in instrumentation at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Adkins, Sean M.; McLean, Ian S.; Fitzgerald, Michael P.; Larkin, James E.; Lewis, Hilton A.; Martin, Christopher; Mawet, Dimitri; Prochaska, J. X.; Wizinowich, Peter

    2016-08-01

    The W. M. Keck Observatory is committed to maintaining the scientific leadership of our observing community by matching our observers' skills and passions in their fields of astronomical science with a continuing dedication by the Observatory and its collaborators to the development of state of the art instrumentation and systems. Our science driven strategic plan guides these developments and informs our plans for the future. In this paper we describe the performance of recently completed new instruments, instrument upgrades, and infrastructure upgrade projects. We also describe the expected performance of projects currently in the development or construction phases. Projects recently completed include a new laser for the Keck II AO system, the upgrade of the spectrograph detector in the OSIRIS instrument, and the upgrade to the telescope control system on the Keck II telescope. Projects in development include an upgrade to the telescope control system on the Keck I telescope, the blue channel of the Keck Cosmic Web Imager, the red channel of the Keck Cosmic Web Imager, the Keck Planet Finder, a deployable tertiary mirror for the Keck I telescope, an upgrade to the imager of OSIRIS, a major upgrade to the NIRSPEC instrument, and a fiber feed from the Keck II AO system to NIRSPEC.

  13. 14 CFR 1260.12 - Choice of award instrument.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... international scientific collaboration. NASA policy on performing research with foreign organizations on a no... grant or cooperative agreement. (ii) The Space Act Agreement(s) or underlying international agreement... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Choice of award instrument. 1260.12...

  14. 14 CFR 1260.12 - Choice of award instrument.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... international scientific collaboration. NASA policy on performing research with foreign organizations on a no... grant or cooperative agreement. (ii) The Space Act Agreement(s) or underlying international agreement... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Choice of award instrument. 1260.12...

  15. 49 CFR 572.137 - Test conditions and instrumentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...—Class 1000 (2) Neck: (i) Forces—Class 1000 (ii) Moments—Class 600 (iii) Pendulum acceleration—Class 180... and pendulum accelerations—Class 180 (iii) Sternum deflection—Class 600 (iv) Forces—Class 1000 (v...—Class 180 (6) Femur forces and knee pendulum—Class 600 (n) Coordinate signs for instrumentation...

  16. 49 CFR 572.137 - Test conditions and instrumentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...—Class 1000 (2) Neck: (i) Forces—Class 1000 (ii) Moments—Class 600 (iii) Pendulum acceleration—Class 180... and pendulum accelerations—Class 180 (iii) Sternum deflection—Class 600 (iv) Forces—Class 1000 (v...—Class 180 (6) Femur forces and knee pendulum—Class 600 (n) Coordinate signs for instrumentation...

  17. 49 CFR 572.137 - Test conditions and instrumentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...—Class 1000 (2) Neck: (i) Forces—Class 1000 (ii) Moments—Class 600 (iii) Pendulum acceleration—Class 180... and pendulum accelerations—Class 180 (iii) Sternum deflection—Class 600 (iv) Forces—Class 1000 (v...—Class 180 (6) Femur forces and knee pendulum—Class 600 (n) Coordinate signs for instrumentation...

  18. 26 CFR 1.1001-3 - Modifications of debt instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... alteration is evidenced by an express agreement (oral or written), conduct of the parties, or otherwise. (ii...) of this section, absent a written or oral agreement to alter other terms of the debt instrument, an... the bond. Upon the creation of the trust, the issuer is released from any recourse liability on...

  19. Void-precipitate association during neutron irradiation of austenitic stainless steel

    SciTech Connect

    Pedraza, D.F.; Maziasz, P.J.

    1986-01-01

    Microstructural data has recently become available on a single heat of 316 stainless steel irradiated in EBR-II and HFIR, over a wide range of irradiation temperature (55 to 750/sup 0/C), dose (7 to 75 dpa), and helium generation rate (0.5 to 55 at. ppM He/dpa). Extensive information on precipitate compositions and characteristics are included. The data reveal several important relationships between the development of voids and precipitation. Precipitate associated voids dominate the swelling of (DO heat) 316 at 500 to 650 C from 8.4 to 36 dpa in EBR-II. Cold work (CW) or helium preinjection delay void formation in EBR-II. Higher helium generation in HFIR also delays void formation at 500 to 640/sup 0/C in SA 316 and CW DO heat 316. The delay persists in CW 316 at least to 61 dpa in HFIR, but abundant matrix and precipitate-associated voids form in SA after 47 dpa. In another heat of CW 316 (N-lot) irradiated in HFIR matrix and precipitate voids form readily after 22 to 44 dpa at 500 to 600/sup 0/C.

  20. Experimental and design experience with passive safety features of liquid metal reactors

    SciTech Connect

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-II with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions.

  1. Instrument specificity in experienced musicians.

    PubMed

    Drost, Ulrich C; Rieger, Martina; Prinz, Wolfgang

    2007-04-01

    Previous studies have shown that experienced pianists have acquired integrated action-effect (A-E) associations. In the present study, we were interested in how specific these associations are for the own instrument by investigating pianists and guitarists. A-E associations were examined by testing whether the perception of a "potential" action-effect has an influence on actions. Participants played chords on their instrument in response to visual stimuli, while they were presented task-irrelevant auditory distractors (congruent or incongruent) in varying instrument timbre. In Experiment 1, pianists exhibited an interference effect with timbres of their own instrument category (keyboard instruments: piano and organ). In Experiment 2 guitarists showed an interference effect only with guitar timbre. Thus, integrated A-E associations primarily seem to consist of a specific component on a sensory-motor level involving the own instrument. Additionally, categorical knowledge about how an instrument is played seems to be involved.

  2. Astronomical Instrumentation System Markup Language

    NASA Astrophysics Data System (ADS)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  3. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  4. ALIDA-II: An Improved Disclosure Scale.

    PubMed

    van Dam, Mary Ann

    2015-01-01

    Disclosure, or degree of "outness" has been recognized as an important measurement in lesbian and gay populations to provide better understanding of various health issues associated with disclosure. In 2008, A Lesbian Identity Disclosure Assessment (ALIDA) was created to quantify the daily degree of disclosure. Reliability for the instrument was adequate for both lesbians with and without children. It was recognized, through statistical analysis, that the instrument may be lacking an important concept that, when included, may raise the instrument's reliability. Hence, the concept of "general public" disclosure was added to ALIDA-II, and the instrument was tested in a new study. Reliability for lesbians with and without children increased to ideal levels with consistent factor analyses and predictive variables on regression models. This instrument should be used widely, and although the instrument has been used in lesbians only, the use in gay men is now being tested.

  5. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  6. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  7. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  8. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  9. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  10. TRU VU rig instrumentation

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  11. Photosystem II

    ScienceCinema

    James Barber

    2016-07-12

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  12. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  13. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  14. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  15. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  16. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  17. Medical Devices; General and Plastic Surgery Devices; Classification of the Magnetic Surgical Instrument System. Final order.

    PubMed

    2016-09-21

    The Food and Drug Administration (FDA) is classifying the Magnetic Surgical Instrument System into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the magnetic surgical instrument system's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  18. Woelter Instrument-Optical Design

    SciTech Connect

    Nederbragt, W W

    2002-10-11

    Hundreds of target assemblies will be constructed annually for use on NIF or OMEGA in the near future. Currently, we do not have the capability to tomographically characterize the target assemblies at the desired resolution. Hence, we cannot verify if an assembly has been assembled correctly. The Engineering Directorate, through the LDRD program, is currently funding an x-ray instruments that could solve this problem. This instrument is based on a Woelter [1] Type-I design. We will refer to this design as the Woelter instrument in the remainder of the report. Ideally, the Woelter instrument will create images with sub-micrometer resolution. Moreover, the instrument will have a field-of-view large enough to cover an entire target assembly (up to a 2 mm square), which would eliminate the need to take multiple radiographs to get one complete target image. This report describes the optical design of the Woelter instrument.

  19. A Critical Comparison of Learning Style Instruments Frequently Used with Adult Learners.

    ERIC Educational Resources Information Center

    Rule, David L.; Grippin, Pauline C.

    Theoretical framework, instrument development, and psychometric qualities are reviewed for some measures of learning style currently in use with adults. Instruments reviewed include: (1) Kolb's Learning Style Inventory I; (2) Kolb's Learning Style Inventory II; (3) the Myers-Briggs Type Indicator; (4) the Productivity Environmental Preferences…

  20. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  1. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  2. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  3. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  4. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  5. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  6. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  7. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  8. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures.

  9. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus.

  10. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas

    2003-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents from the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBW, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  11. SAO Participation in the GOME and SCIAMACHY Satellite Instrument Programs

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest (Technical Monitor); Chance, Kelly; Kurosu, Thomas

    2004-01-01

    This report summarizes the progress on our three-year program of research to refine the measurement capability for satellite-based instruments that monitor ozone and other trace species in the Earth's stratosphere and troposphere, to retrieve global distributions of these and other constituents h m the GOME and SCIAMACHY satellite instruments, and to conduct scientific studies for the ILAS instruments. This continues our involvements as a U.S. participant in GOME and SCIAMACHY since their inception, and as a member of the ILAS-II Science Team. These programs have led to the launch of the first satellite instrument specifically designed to measure height-resolved ozone, including the tropospheric component (GOME), and the development of the first satellite instrument that will measure tropospheric ozone simultaneously with NO2, CO, HCHO, N2O, H2O, and CH4 (SCIAMACHY). The GOME program now includes the GOME-2 instruments, to be launched on the Eumetsat Metop satellites, providing long-term continuity in European measurements of global ozone that complement the measurements of the TOMS, SBUV, OMI, OMPS instruments. The research primarily focuses on two areas: Data analysis, including algorithm development and validation studies that will improve the quality of retrieved data products, in support for future field campaigns (to complement in situ and airborne campaigns with satellite measurements), and scientific analyses to be interfaced to atmospheric modeling studies.

  12. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  13. Ratio imaging instrumentation.

    PubMed

    Dunn, Kenneth; Maxfield, Frederick R

    2003-01-01

    Using ratio imaging to obtain quantitative information from microscope images is a powerful tool that has been used successfully in numerous studies. Although ratio imaging reduces the effects of many parameters that can interfere with accurate measurements, it is not a panacea. In designing a ratio imaging experiment, all of the potential problems discussed in this chapter must be considered. Undoubtedly, other problems that were not discussed can also interfere with accurate and meaningful measurements. Many of the problems discussed here were observed in the authors' laboratories. In our experience there are no standard routines or methods that can foresee every problem before it has been encountered. Good experimental design can minimize problems, but the investigator must continue to be alert. Progress in instrumentation continues to overcome some of the difficulties encountered in ratio imaging. CCD cameras with 12- to 14-bit pixel depth are being used more frequently, and several confocal microscope manufacturers are now also using 12-bit digitization. The dramatic increase in the use of confocal microscopes over the past decade is now causing microscope manufacturers to more critically evaluate the effect of axial chromatic aberration in objectives, and recent designs to minimize this problem are being implemented. Other developments such as the use of AOTFs to attenuate laser lines extend the applicability of ratio imaging. Ratio imaging is clearly applicable to a wide range of cell biological problems beyond its widespread use for measuring ion concentrations. Imaginative but careful use of this technique should continue to provide novel insights into the properties of cells.

  14. Kodaly Strategies for Instrumental Teachers.

    ERIC Educational Resources Information Center

    Howard, Priscella M.

    1996-01-01

    Advocates using the singing voice and the study of folk music in instrumental instruction. Recommends instrumental teachers confer with voice teachers to coordinate ideas and terminology. Includes several excerpts of scores and musical exercises, as well as a list of selected resources. (MJP)

  15. Science Process Instrument. Experimental Edition.

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Washington, DC. Commission on Science Education.

    This instrument contains activities by which one can determine a child's intellectual development in: (1) observing, (2) classifying, (3) measuring, (4) using numbers, (5) using space/time relationships, (6) inferring, and (7) communicating and predicting. The seven sections of the instrument correspond to those processes defined in Science - A…

  16. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  17. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  18. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  19. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  20. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  1. FAQs II

    ERIC Educational Resources Information Center

    Kezar, Adrianna; Frank, Vikki; Lester, Jaime; Yang, Hannah

    2008-01-01

    In their paper entitled "Why should postsecondary institutions consider partnering to offer (Individual Development Accounts (IDAs)?" the authors reviewed frequently asked questions they encountered from higher education professionals about IDAs, but as their research continued so did the questions. FAQ II has more in-depth questions and…

  2. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  3. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  4. Validation Studies for the Diet History Questionnaire II

    Cancer.gov

    Data show that the DHQ I instrument provides reasonable nutrient estimates, and three studies were conducted to assess its validity/calibration. There have been no such validation studies with the DHQ II.

  5. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  6. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  7. A review of health-related workplace productivity loss instruments.

    PubMed

    Lofland, Jennifer H; Pizzi, Laura; Frick, Kevin D

    2004-01-01

    The objective of this review was to identify health-related workplace productivity loss survey instruments, with particular emphasis on those that capture a metric suitable for direct translation into a monetary figure. A literature search using Medline, HealthSTAR, PsycINFO and Econlit databases between 1966 and 2002, and a telephone-administered survey of business leaders and researchers, were conducted to identify health-related workplace productivity measurement survey instruments. This review was conducted from the societal perspective. Each identified instrument was reviewed for the following: (i). reliability; (ii). content validity; (iii). construct validity; (iv). criterion validity; (v). productivity metric(s); (vi). instrument scoring technique; (vii). suitability for direct translation into a monetary figure; (viii). number of items; (ix). mode(s) of administration; and (x). disease state(s) in which it had been tested. Reliability and validity testing have been performed for 8 of the 11 identified surveys. Of the 11 instruments identified, six captured metrics that are suitable for direct translation into a monetary figure. Of those six, one instrument measured absenteeism, while the other five measured both absenteeism and presenteeism. All of the identified instruments except for one were available as paper, self-administered questionnaires and many were available in languages other than English. This review provides a comprehensive overview of the published, peer-reviewed survey instruments available to measure health-related workplace productivity loss. As the field of productivity measurement matures, tools may be developed that will allow researchers to accurately calculate lost productivity costs when performing cost-effectiveness and cost-benefit analyses. Using data captured by these instruments, society and healthcare decision makers will be able to make better informed decisions concerning the value of the medications, disease management and

  8. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  9. SUNRISE: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS

    SciTech Connect

    Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmueller, T. L.; Schuessler, M.; Bonet, J. A.; Pillet, V. MartInez; Domingo, V.; Palacios, J.; Knoelker, M.; Gonzalez, N. Bello; Berkefeld, T.; Franz, M.; Schmidt, W.; Title, A. M.

    2010-11-10

    The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.

  10. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  11. The JCMT future instrumentation project

    NASA Astrophysics Data System (ADS)

    Dempsey, Jessica T.; Ho, Paul T. P.; Walther, Craig; Friberg, Per; Bintley, Dan; Chen, Ming-Tang

    2016-08-01

    Under the new operational purview of the East Asian Observatory, the JCMT continues to produce premier wide-field submillimetre science. Now the Observatory looks to embark on an ambitious series of instrumentation upgrades and opportunities to keep the telescope at the bleeding edge of its performance capabilities, whilst harnessing the collaborative expertise of the participating EAO regions and its JCMT partners. New heterodyne instruments include a new receiver at 230 GHz, a super array (90 pixels) at 345 GHz and the upgrade possibilities for the continuum camera SCUBA-2. In addition, the opportunities for PI and visiting instruments, including TimePilot and Gismo-2 will be described.

  12. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  13. Burried broken extraction instrument fragment

    PubMed Central

    Balaji, S. M.

    2013-01-01

    Despite adequate effort to perform tooth removal carefully, some accidents may happen when defective instruments are unknowingly used. This article reports of a non-symptomatic case of a retained fractured dental elevator tip during an uneventful extraction a decade earlier. Patient was not aware till routine radiographic examination revealed its presence. Use of three dimensional imaging techniques in this case is highlighted. Rarely, instruments breakage may occur during surgical procedures. It is duty of the dentists to check the surgical instrument for signs of breakage and be prepared to solve a possible emergency. Retained fragments should be carefully studied prior to attempt of removal. PMID:23662269

  14. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  15. Adjustable extender for instrument module

    DOEpatents

    Sevec, J.B.; Stein, A.D.

    1975-11-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.

  16. Genetic markers as instrumental variables

    PubMed Central

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. PMID:26614692

  17. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  18. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    SciTech Connect

    Sienicki, James J.; Grandy, Christopher

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  19. Tailoring Instrumentation to the Operator.

    ERIC Educational Resources Information Center

    Abplanalp, Glen H.; Menzenhauer, Fred C.

    1978-01-01

    This article provides guidelines in selecting appropriate instrumentation for water treatment facilities. Major areas of concern include: technical operating requirements of the process; equipment design and quality; installations; and mechanical aptitude of personnel. (CS)

  20. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  1. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  2. Venus Heat Flow Instrument Development

    NASA Astrophysics Data System (ADS)

    Pauken, M.; Smith, K.; Sujittosakul, S.; Li, B.; Firdosy, S.; Smrekar, S.; Morgan, P.

    2016-10-01

    A heat flux measurement instrument is being developed to determine the heat flow through the Venus surface. Heat flow measurement provides data for distinguishing between various hypotheses of planetary evolution.

  3. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  4. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  5. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  6. Portable instruments for emergency response

    NASA Astrophysics Data System (ADS)

    Swinth, K. L.

    1985-05-01

    The selection and use of instruments for emergency response is complicated by lack of specific guidance, the diversity of potential conditions, and the variable performance of available instruments. The user must examine the projected radiological conditions during an accident and the environmental extremes that could exist. This should assist in determining requirements that the instruments must meet during an emergency. Due to the variable performance of available instrumentation, critical parameters (temperature dependence) should be tested prior to use to assure adequate measurements. Although it is tempting to stock emergency kits with inexpensive monitoring equipment, one should carefully consider the possible conditions (environmental, radiological) and equipment performance since inaccurate measurements could be very costly in terms of decisions regarding lifesaving and evacuation during an emergency.

  7. Instrument detects bacterial life forms

    NASA Technical Reports Server (NTRS)

    Plakas, C.

    1971-01-01

    Instrument assays enzymatic bioluminescent reaction that occurs when adenosine triphosphate /ATP/ combines with lucifrase and luciferin. Module assembly minimizes need for hardware associated with reaction fluid and waste transfer. System is applicable in marine biology and aerospace and medical fields.

  8. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  9. Instruments and attachments for electronystagmography

    NASA Technical Reports Server (NTRS)

    Mironenko, Y. T.; Vilenskiy, A. A.

    1980-01-01

    A portable set of instruments and devices was developed which makes it possible to record spontaneous nystagmus with open and closed eyes. Rotational, caloric, position, and pressure nystagmus under any conditions may also be recorded.

  10. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  11. Instrumentation and testing of a prestressed concrete containment vessel model

    SciTech Connect

    Hessheimer, M.F.; Pace, D.W.; Klamerus, E.W.

    1997-04-01

    Static overpressurization tests of two scale models of nuclear containment structures - a steel containment vessel (SCV) representative of an improved, boiling water reactor (BWR) Mark II design and a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR) - are being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. This paper discusses plans for instrumentation and testing of the PCCV model. 6 refs., 2 figs., 2 tabs.

  12. Instrumentation Research and Support Services.

    DTIC Science & Technology

    1985-09-30

    to accomplish the tasks described below, as quoted from the above referenced section of the contractual docu ment: " Line Item 0001 - Provide...with the Contractor’s Technical Proposal Number EN81-R-62-Q, dated 81JAN02 and the following Sub- Line Items: Sub- Line Item OOO1AA - Instrument fifteen...Research Establish ment, A ustralia. 3 Sub- Line Item 0001A B - Provide services toward operating ground based instrumentation systems in support of

  13. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 25.1337 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit...

  14. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  15. The ESO Paranal instrumentation program

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca

    2016-08-01

    The Paranal Instrumentation Programme is responsible for planning and delivering the instruments and the associated infrastructure needed to keep the VLT and La Silla Observatories at the forefront of ground-based astronomy. The VLT second generation instruments KMOS, MUSE and SPHERE have been delivered and are in operations, GRAVITY is under commissioning at the renewed VLTI facility. The Adapative Optics Facility is moving towards completion, as well as the high resolution spectrograph ESPRESSO and the VLTI second generation instrument MATISSE. The mid-IR imager and spectrograph VISIR has been upgraded, and a major upgrade of the CRIRES spectrograph is under way. Finally, two new Multi Object Spectrographs projects have started, one for the VLT (MOONS), one for the 4M VISTA telescope (4MOST), and two new instruments for La Silla, (SOXS and NIRPS) fully funded by the community, are being agreed. The Programme follows a roadmap that foresees one new instrument/project or one upgrade starting every year. Active management, cost to completion and risk policy are in place.

  16. PESTICINS II. I and II

    PubMed Central

    Brubaker, Robert R.; Surgalla, Michael J.

    1962-01-01

    Brubaker, Robert R. (Fort Detrick, Frederick, Md.) and Michael J. Surgalla. Pesticins. II. Production of pesticin I and II. J. Bacteriol. 84:539–545. 1962.—Pesticin I was separated from pesticin I inhibitor by ion-exchange chromatography of cell-free culture supernatant fluids and by acid precipitation of soluble preparations obtained from mechanically disrupted cells. The latter procedure resulted in formation of an insoluble pesticin I complex which, upon removal by centrifugation and subsequent dissolution in neutral buffer, exhibited a 100- to 1,000-fold increase in antibacterial activity over that originally observed. However, activity returned to the former level upon addition of the acid-soluble fraction, which contained pesticin I inhibitor. Since the presence of pesticin I inhibitor leads to serious errors in the determination of pesticin I, an assay medium containing ethylenediaminetetraacetic acid in excess Ca++ was developed; this medium eliminated the effect of the inhibitor. By use of the above medium, sufficient pesticin I was found to be contained within 500 nonirradiated cells to inhibit growth of a suitable indicator strain; at least 107 cells were required to effect a corresponding inhibition by pesticin II. Although both pesticins are located primarily within the cell during growth, pesticin I may arise extracellularly during storage of static cells. Slightly higher activity of pesticin I inhibitor was found in culture supernatant fluids than occurred in corresponding cell extracts of equal volume. The differences and similarities between pesticin I and some known bacteriocins are discussed. PMID:14016110

  17. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    PubMed Central

    Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2010-01-01

    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663

  18. Psychometric properties of the Beck Depression Inventory II (BDI-II) among community-dwelling older adults.

    PubMed

    Segal, Daniel L; Coolidge, Frederick L; Cahill, Brian S; O'Riley, Alisa A

    2008-01-01

    The psychometric properties of the Beck Depression Inventory-II (BDI-II) as a self-administered screening tool for depressive symptoms were examined in a sample of community-dwelling older and younger adults. Participants completed the BDI-II, the Center for Epidemiologic Studies Depression Scale, the Coolidge Axis II Inventory, the Perceived Stress Scale, and the Short Psychological Well-Being Scale. Internal reliability of the BDI-II was found to be good among older and younger adults. The average BDI-II depression score did not differ between younger and older adults. Solid evidence for convergent and discriminant validity was demonstrated by correlations between the BDI-II with the other measures. The BDI-II appears to have strong psychometric support as a screening measure for depression among older adults in the general population. Implications for using the BDI-II as an assessment instrument in behaviorally based psychotherapy are discussed.

  19. Psychometric Evaluation of the Beck Depression Inventory-II.

    ERIC Educational Resources Information Center

    Dozois, David J. A.; Ahnberg, Jamie L.; Dobson, Keith S.

    1998-01-01

    Provides psychometric information on the second edition of the Beck Depression Inventory (BDI-II) (A. Beck, R. Steer, and G. Brown, 1996) for internal consistency, factorial validity, and gender differences. Results indicate that the BDI-II is a stronger instrument than its predecessor in terms of factor structure. (SLD)

  20. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  1. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  2. Analytical techniques and instrumentation: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information on developments in instrumentation is arranged into four sections: (1) instrumentation for analysis; (2) analysis of matter; (3) analysis of electrical and mechanical phenomena; and (4) structural analysis. Patent information for two of the instruments described is presented.

  3. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  4. Facility instruments for the GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, Jose M.; Garcia-Vargas, Maria Luisa; Hammersley, Peter L.

    2004-09-01

    The Gran Telescopio Canarias (GTC1) 10m telescope is now being integrated at the ORM, in La Palma Spain. Likewise, three instruments are being prepared for first light and, as of this writing, are about to start their laboratory integration. These first light instruments are: 1) OSIRIS, a large field of view imager and multi-object spectrograph, optimized for tuneable filter imaging, 2) ELMER a very sensitive imager and spectrograph, also for the visible range, and 3) CANARICAM, a diffraction-limited imager, spectrograph, polarimeter and coronagrapher for the mid-IR. The GTC set of first light instruments will offer some special observational capabilities to the astronomical community, namely Tuneable filter Imaging in OSIRIS, fast spectroscopy and photometry in both, ELMER and OSIRIS, and 10 microns Coronagraphy and Polarimetry with CANARICAM. Yet another instrument, EMIR, a large field, near-IR multi-object spectrograph and imager is in the Detailed Design phase. EMIR will be the first of the GTC second generation set of instruments. At the planning stage are several future instruments that will arrive to the GTC with different calendars after Day One. In particular, FRIDA, a near-IR diffraction-limited imager and spectrograph, that will operate with the GTC Adaptive Optics system. FRIDA's conceptual design is being started by a consortium lead by UNAM (Mexico) and in which the IAC and the University of Florida also participate. FRIDA should be at the telescope by the time that the AO system is having first light. This is expected by late 2007 early 2008. There is interest in the GTC community for installing visiting instruments on the GTC, thus the GTC board is discussing a policy to allow visitor instruments, some of which have already been proposed to be hosted by the GTC. In particular, CIRCE is a near IR camera that is being built by the Department of Astronomy of the University of Florida in Gainesville for the GTC using private funds, under the GTC visitor

  5. VLT Instruments Pipeline System Overview

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Ballester, P.; Banse, K.; Hummel, W.; Izzo, C.; McKay, D. J.; Kiesgen, M.; Lundin, L. K.; Modigliani, A.; Palsa, R. M.; Sabet, C.

    2004-07-01

    Since the beginning of the VLT operations in 1998, substantial effort has been put in the development of automatic data reduction tools for the VLT instruments. A VLT instrument pipeline is a complex system that has to be able to identify and classify each produced FITS file, optionally retrieve calibration files from a database, use an image processing software to reduce the data, compute and log quality control parameters, produce FITS images or tables with the correct headers, optionally display them in the control room and send them to the archive. Each instrument has its own dedicated pipeline, based on a common infrastructure and installed with the VLT Data Flow System (DFS). With the increase in the number and the complexity of supported instruments and in the rate of produced data, these pipelines are becoming vital for both the VLT operations and the users, and request more and more resources for development and maintenance. This paper describes the different pipeline tasks with some real examples. It also explains how the development process has been improved to both decrease its cost and increase the pipelines quality using the lessons learned from the first instruments pipelines development.

  6. IRIS Controlled Source Seismic Experiments: Continental Structure, Instrumentation, and Education

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Keller, G. R.

    2004-12-01

    The controlled-source seismology program of IRIS/PASSCAL has made major contributions to the study of continental structure and evolution. It has also undergone major developments in seismic instrumentation. The first PASSCAL experiments (1984/85) targeted the Basin and Range Province and the Ouachita orogenic belt. The Basin and Range study provided remarkably clear images of this thin, highly-extended crust, while the Ouachita experiment tested competing hypotheses for the deep structure of this Paleozoic orogen. However, both of these projects were limited by a lack of seismic instruments. The situation improved in the late 1980's with the benefit of a mixed array of 600 seismic recorders from the USGS, Stanford, and the Geological Survey of Canada. The resolution achieved with these instruments was revolutionary. Results include the imaging of such remarkable features as crustal-scale duplexes in the Brooks Range compressional orogen of northern Alaska, and of crustal "core complexes" in the extended crust of southwest Arizona. The 3-channel PASSCAL Jr. instrument was developed, leading to experiments in which ˜1000 instruments were deployed, including three-component recording. This complex mix of instruments served the community well for several years, but required large, complex instrument centers and lots of technical support. With input from PASSCAL and the international community, a newly designed, compact instrument (the Texan) was finalized in the spring of 1998, and the first 200 instruments was delivered to the Univ. of Texas-El Paso in late 1998. The present instrument pool of Texans exceeds 1,400 and these have been used on such projects as the high-resolution imaging of the Los Angeles and San Fernando basins (LARSE I and II experiments), where active thrust faults have been imaged. Controlled-source seismic experiments are now very numerous. During calendar year 2004 alone, portable Texan instruments have traveled from Venezuela to Denmark

  7. Psychometric evaluation of a new instrument in Spanish to measure the wellness of university nursing faculty.

    PubMed

    Hurtado-Pardos, Barbara; Casas, Irma; Lluch-Canut, Teresa; Moreno-Arroyo, Carmen; Nebot-Bergua, Carlos; Roldán-Merino, Juan

    2016-10-20

    The aim of this study was to design and validate an instrument to measure the wellness among university nursing faculty. The study was performed in two phases. Phase I consisted of the development of the instrument with discussion groups and participant consensus. We designed an instrument including the 21 items or psychosocial risk factors identified and estimated an index by evaluating the frequency and intensity of each item. The items were grouped into 3 dimensions: teaching work demands, curricular demands, and organizational difficulties. Phase II, we evaluated the psychometric properties of the tool in a sample of 263 participants. Exploratory factor analysis showed a 3-factor structure that explained 53% of the total variance. The internal consistency of the instrument was 0.91 for the whole instrument. The results indicate that the tool developed is valid and reliable and may be a good instrument to monitor the wellness of university nursing faculty.

  8. Register of Validated Short Dietary Assessment Instruments

    Cancer.gov

    The register contains descriptive information about the instruments identified (over 135) along with any associated validation studies and publications, and copies of the instruments themselves when available.

  9. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  10. [Portable instrument for arteriosclerosis assessment].

    PubMed

    Cao, Shuai; Chen, Xiang

    2014-01-01

    A portable instrument for arteriosclerosis assessment containing sensor module, acquisition board and embedded module was developed for home care in this paper. The sensor module consists of one ECG module and three pulse wave extraction modules, synchronously acquiring human ECG and pulse wave signal of carotid, radial, and dorsal, respectively. The acquisition board converts the sensor module's analog output signals into digital signals and transmits them to the embedded module. The embedded module realizes the functions including signal display, storage and the calculation and output of pulse wave velocity. The structure of the proposed portable instrument is simple, easy to use, and easy to expand. Small size, low cost, and low power consumption are also the advantages of this device. Experimental results demonstrated that the proposed portable instrument for arteriosclerosis assessment has high accuracy, good repeatability and can assess the degree of atherosclerosis appropriately.

  11. Wide Field Instrument Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  12. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  13. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. Instrument performance enhancement and modification through an extended instrument paradigm

    NASA Astrophysics Data System (ADS)

    Mahan, Stephen Lee

    An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.

  15. Small Cold Temperature Instrument Packages

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Feng, S.; Brigham, D.; Beaman, B.

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system with ultra low temperature ultra low power electronics components and power supplies now under development into a 'cold temperature surface operational' version of a planetary surface instrument package. We are already in the process of developing a lower power lower temperature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package. We build on our previous work to develop strategies for incorporating Ultra Low Temperature/Ultra Low Power (ULT/ULP) electronics, lower voltage power supplies, as well as innovative thermal design concepts for instrument packages. Cryotesting has indicated that our small Si RHBD CMOS chips can deliver >80% of room temperature performance at 40K (nominal minimum lunar surface temperature). We leverage collaborations, past and current, with the JPL battery development program to increase power system efficiency in extreme environments. We harness advances in MOSFET technology that provide lower voltage thresholds for power switching circuits incorporated into our low voltage power supply concept. Conventional power conversion has a lower efficiency. Our low power circuit concept based on 'synchronous rectification' could produce stable voltages as low as 0.6 V with 85% efficiency. Our distributed micro-battery-based power supply concept incorporates cold temperature power supplies operating with a 4 V or 8 V battery. This work will allow us to provide guidelines for applying the low temperature, low power system approaches generically to the widest range of surface instruments.

  16. Formation Flying and Deformable Instruments

    NASA Astrophysics Data System (ADS)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  17. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  18. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  19. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  20. Thermography instruments for predictive maintenance

    SciTech Connect

    Palko, E.

    1993-08-12

    Thermography (infrared imaging, or IR scanning) is not only the most versatile predictive maintenance technology available today; it is, in general, the most cost-effective. Plant engineering can apply a virtually unlimited variety of predictive maintenance instruments, but all are restricted regarding the types of existing and incipient problems they can detect. Inplant applications of thermography, however, are truly limited only by the extent of the plant engineer's imagination. Here are ways that thermography can be used to fight downtime in plants, and factors to consider when selecting the best instrument for particular circumstances.

  1. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  2. Remote Instrumentation for Teaching Laboratory

    ERIC Educational Resources Information Center

    Baran, Jit; Currie, Ron; Kennepohl, Dietmar

    2004-01-01

    The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…

  3. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  4. Analysis of Key Education Instrumentation.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; And Others

    The Key Assessment System, consisting of test instruments which measure psychological functioning, work related competencies, and attitudinal and motivational characteristics, is described. The system is a vocational assessment battery designed to differentiate levels of psychophysical capabilities in a nondiscriminatory manner. It provides a…

  5. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  6. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  7. Experimenting with Brass Musical Instruments.

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  8. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  9. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  10. Psychology Needs Realism, Not Instrumentalism

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…

  11. Instrument independent diffuse reflectance spectroscopy.

    PubMed

    Yu, Bing; Fu, Henry L; Ramanujam, Nirmala

    2011-01-01

    Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

  12. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  13. Literature Review of Multicultural Instrumentation

    ERIC Educational Resources Information Center

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  14. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  15. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  16. The MUSE instrument detector system

    NASA Astrophysics Data System (ADS)

    Reiss, Roland; Deiries, Sebastian; Lizon, Jean-Louis; Rupprecht, Gero

    2012-09-01

    The MUSE (Multi Unit Spectroscopic Explorer) instrument (see Bacon et al., this conference) for ESO's Very Large Telescope VLT employs 24 integral field units (spectrographs). Each of these is equipped with its own cryogenically cooled CCD head. The heads are individually cooled by continuous flow cryostats. The detectors used are deep depletion e2v CCD231-84 with 4096x4112 active 15 μm pixels. The MUSE Instrument Detector System is now in the final integration and test phase on the instrument. This paper gives an overview of the architecture and performance of the complex detector system including ESO's New General detector Controllers (NGC) for the 24 science detectors, the detector head electronics and the data acquisition system with Linux Local Control Units. NGC is sub-divided into 4 Detector Front End units each operating 6 CCDs. All CCDs are simultaneously read out through 4 ports to achieve short readout times at low noise levels. All science grade CCDs were thoroughly characterized on ESO's optical detectors testbench facility and the test results processed and documented in a semi-automated, reproducible way. We present the test methodology and the results that fully confirm the feasibility of these detectors for their use in this challenging instrument.

  17. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  18. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  19. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  20. 40 CFR 1066.120 - Measurement instruments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Measurement instruments. 1066.120... CONTROLS VEHICLE-TESTING PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.120 Measurement instruments. The measurement instrument requirements in 40 CFR part...

  1. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  2. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  3. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  4. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  5. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  6. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  7. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  8. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  9. Sonic instruments in root canal therapy.

    PubMed

    Waplington, M; Lumley, P J; Walmsley, A D

    1995-10-01

    Although hand instrumentation is considered the most acceptable method of preparing root canals, sonic instruments may be useful additions to the endodontic armamentarium. Sonic instrumentation may be incorporated as an adjunct to traditional techniques for shaping the root canal. The use of such instruments may assist the practitioner during root canal treatment in general practice.

  10. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  11. Concurrent Validity of Four Androgyny Instruments.

    ERIC Educational Resources Information Center

    Wilson, F. Robert; Cook, Ellen Piel

    1984-01-01

    Compares concurrent validity of four sex-role instruments administered to a group of 281 urban university students. Reports that the instruments are sufficiently different in their measurement characteristics to warrant limiting generalizations about behavior based on these instruments to a particular instrument being used. (KH)

  12. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Microsurgical instrument. 882.4525 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  13. 32 CFR 21.665 - Nonprocurement instrument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Nonprocurement instrument. 21.665 Section 21.665... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.665 Nonprocurement instrument. A legal instrument other than a procurement contract. Examples include instruments of financial assistance, such...

  14. 14 CFR 29.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 29.1333 Section 29.1333... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1333 Instrument systems. For systems that operate the required flight instruments which are located at each pilot's...

  15. 21 CFR 882.4525 - Microsurgical instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsurgical instrument. 882.4525 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4525 Microsurgical instrument. (a) Identification. A microsurgical instrument is a nonpowered surgical instrument used in neurological...

  16. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems. For systems that operate the instruments required by § 25.1303(b) which are located at each...

  17. Application Programming in AWIPS II

    NASA Technical Reports Server (NTRS)

    Smit, Matt; McGrath, Kevin; Burks, Jason; Carcione, Brian

    2012-01-01

    Since its inception almost 8 years ago, NASA's Short-term Prediction Research and Transition (SPoRT) Center has integrated NASA data into the National Weather Service's decision support system (DSS) the Advanced Weather Interactive Processing System (AWIPS). SPoRT has, in some instances, had to shape and transform data sets into various formats and manipulate configurations to visualize them in AWIPS. With the advent of the next generation of DSS, AWIPS II, developers will be able to develop their own plugins to handle any type of data. Raytheon is developing AWIPS II to be a more extensible package written mainly in Java, and built around a Service Oriented Architecture. A plugin architecture will allow users to install their own code modules, and (if all the rules have been properly followed) they will work hand-in-hand with AWIPS II as if it were originally built in. Users can bring in new datasets with existing plugins, tweak plugins to handle a nuance or desired new functionality, or create an entirely new visualization layout for a new dataset. SPoRT is developing plugins to ensure its existing NASA data will be ready for AWIPS II when it is delivered, and to prepare for the future of new instruments on upcoming satellites.

  18. A method for estimating vertical distibution of the SAGE II opaque cloud frequency

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. Patrick; Minnis, Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Skeens, Kristi M.

    1995-01-01

    A method is developed to infer the vertical distribution of the occurrence frequency of clouds that are opaque to the Stratospheric Aerosol and Gas Experiment (SAGE) II instrument. An application of the method to the 1986 SAGE II observations is included in this paper. The 1986 SAGE II results are compared with the 1952-1981 cloud climatology of Warren et al. (1986, 1988)

  19. The Latent Symptom Structure of the Beck Depression Inventory-II in Outpatients with Major Depression

    ERIC Educational Resources Information Center

    Quilty, Lena C.; Zhang, K. Anne; Bagby, R. Michael

    2010-01-01

    The Beck Depression Inventory-II (BDI-II) is a self-report instrument frequently used in clinical and research settings to assess depression severity. Although investigators have examined the factor structure of the BDI-II, a clear consensus on the best fitting model has not yet emerged, resulting in different recommendations regarding how to best…

  20. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    PubMed

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.