Science.gov

Sample records for ii faint infrared

  1. Infrared observations of faint comets

    NASA Technical Reports Server (NTRS)

    Campins, H.; Gradie, J.; Lebofsky, M.; Rieke, G.

    1981-01-01

    Infrared observations of the periodic comets Encke, Stephan-Oterma and Chernykh indicate that the dusty component in this class of comets is not radically different from the dusty component found in nonperiodic comets. The differences in the infrared behavior among these three comets suggest that a range of behaviors rather than a single behavior typifies the cometary activity. The range in albedo (0.02 to 0.10) of the dust calculated for the periodic comets is similar to the range in albedos seen among the asteroids.

  2. Faint Infrared-Excess Field Galaxies: FROGs

    NASA Astrophysics Data System (ADS)

    Moustakas, L. A.; Davis, M.; Zepf, S. E.; Bunker, A. J.

    Deep near-infrared and optical imaging surveys in the field reveal a curious population of galaxies that are infrared-bright (I-K>4), yet with relatively blue optical colors (V-I<2). Their surface density, several per square arcminute at K>20, is high enough that if placed at z>1 as our models suggest, their space densities are about one-tenth of phi-*. The colors of these ``faint red outlier galaxies'' (fROGs) may derive from exceedingly old underlying stellar populations, a dust-embedded starburst or AGN, or a combination thereof. Determining the nature of these fROGs, and their relation with the I-K>6 ``extremely red objects,'' has implications for our understanding of the processes that give rise to infrared-excess galaxies in general. We report on an ongoing study of several targets with HST & Keck imaging and Keck/LRIS multislit spectroscopy.

  3. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  4. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey

    SciTech Connect

    Lonsdale, C.J.; Hacking, P.B.; Conrow, T.P.; Rowan-Robinson, M. Queen Mary College, London )

    1990-07-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling. 105 refs.

  5. Galaxy evolution and large-scale structure in the far-infrared. II - The IRAS faint source survey

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.; Conrow, T. P.; Rowan-Robinson, M.

    1990-01-01

    The new IRAS Faint Source Survey data base is used to confirm the conclusion of Hacking et al. (1987) that the 60 micron source counts fainter than about 0.5 Jy lie in excess of predictions based on nonevolving model populations. The existence of an anisotropy between the northern and southern Galactic caps discovered by Rowan-Robinson et al. (1986) and Needham and Rowan-Robinson (1988) is confirmed, and it is found to extend below their sensitivity limit to about 0.3 Jy in 60 micron flux density. The count anisotropy at f(60) greater than 0.3 can be interpreted reasonably as due to the Local Supercluster; however, no one structure accounting for the fainter anisotropy can be easily identified in either optical or far-IR two-dimensional sky distributions. The far-IR galaxy sky distributions are considerably smoother than distributions from the published optical galaxy catalogs. It is likely that structure of the large size discussed here have been discriminated against in earlier studies due to insufficient volume sampling.

  6. Fainting

    MedlinePlus

    ... tunnel vision) or noises are fading into the background. Causes Fainting may occur while or after you: ... a seizure or heart rhythm disturbance), and to figure out the cause of the fainting episode. If ...

  7. X-ray Counterparts of Infrared Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2infrared fluxes, will constrain the class-specific SED.

  8. Fainting

    MedlinePlus

    ... brain does not get enough oxygen. You lose consciousness, or “pass out,” for a brief time (usually ... syncope, exertional syncope, fainting, hyperventilation, hypovolemic syncope, lose consciousness, loss of consciousness, micturition syncope, orthostatic syncope, pass ...

  9. The Faint Infrared Grism Survey (FIGS)

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    2014-10-01

    We propose uniquely deep near-infrared spectroscopy using the WFC3 IR grism down to a continuum limit of J=26.5, and line flux limit 4e-18 ergs/cm^2/s, yielding spectra of 6000 sources in 4 fields. Only Hubble can achieve such sensitivity, as we have demonstrated in our previous deep grism surveys with ACS.With the deep spectra obtained in the FIGS survey we will:(1) Probe the reionization epoch by spectroscopy of galaxies at z = 5.5-8.5, whether or not they show Lyman-alpha (LyA) line emission. Continuum breaks are hard to detect from the ground and LyA lines may be scarce at these redshifts. Spectroscopic redshifts will probe galaxy clustering and improve luminosity measurements, thereby improving estimatesof reionizing photons by at least 40%.(2) Robustly measure the fraction of galaxies with high EW LyA, to measure the neutral fraction of the IGM. We will be sensitive to LyA lines in the central period of reionization where we expect to see a change in LyA fraction.(3) Illuminate the formation processes of early type galaxies at 1

  10. THE OPTICAL SPECTRA OF SPITZER 24 mum GALAXIES IN THE COSMIC EVOLUTION SURVEY FIELD. II. FAINT INFRARED SOURCES IN THE zCOSMOS-BRIGHT 10k CATALOG

    SciTech Connect

    Caputi, K. I.; Lilly, S. J.; Maier, C.; Carollo, C. M.; Aussel, H.; Floc'h, E. Le; Frayer, D.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Coppa, G.; Bongiorno, A.

    2009-12-20

    We have used the zCOSMOS-bright 10k sample to identify 3244 Spitzer/MIPS 24 mum-selected galaxies with 0.06 mJy < S{sub 24{sub m}}u{sub m} approx< 0.50 mJy and I{sub AB} < 22.5, over 1.5 deg{sup 2} of the COSMOS field, and studied different spectral properties, depending on redshift. At 0.2 < z < 0.3, we found that different reddening laws of common use in the literature explain the dust extinction properties of approx80% of our infrared (IR) sources, within the error bars. For up to 16% of objects, instead, the Halpha lambda6563/Hbeta lambda4861 ratios are too high for their IR/UV attenuations, which is probably a consequence of inhomogeneous dust distributions. In only a few of our galaxies at 0.2 < z < 0.3, the IR emission could be mainly produced by dust heated by old rather than young stars. Besides, the line ratios of approx22% of our galaxies suggest that they might be star-formation/nuclear-activity composite systems. At 0.5 < z < 0.7, we estimated galaxy metallicities for 301 galaxies: at least 12% of them are securely below the upper-branch mass-metallicity trend, which is consistent with the local relation. Finally, we performed a combined analysis of the H{sub d}elta equivalent width versus D{sub n} (4000) diagram for 1722 faint and bright 24 mum galaxies at 0.6 < z < 1.0, spanning two decades in mid-IR luminosity. We found that, while secondary bursts of star formation are necessary to explain the position of the most luminous IR galaxies in that diagram, quiescent, exponentially declining star formation histories can well reproduce the spectral properties of approx40% of the less luminous sources. Our results suggest a transition in the possible modes of star formation at total IR luminosities L{sub TIR} approx (3 +- 2) x 10{sup 11} L{sub sun}.

  11. Are the infrared-faint radio sources pulsars?

    NASA Astrophysics Data System (ADS)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  12. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ˜1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  13. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  14. Morphology and astrometry of Infrared-Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  15. The Faint Object Infrared Camera for the SOFIA Telescope

    NASA Astrophysics Data System (ADS)

    Keller, L. D.; Herter, T. L.; Stacey, G.; Gull, G. E.; Schoenwald, J.; Pirger, B.; Nikola, Tomas

    2002-06-01

    The Faint Object infraRed CAmera for the Sofia Telescope (FORCAST) is a facility-class, mid/far-infrared camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FORCAST is a two-channel design with selectable filters for narrowband and broadband imaging in the 5-8, 17-25 micron, and/or 25-40 micron regions. Simultaneous imaging in the two-channels (lambda < 25 microns and lambda > 25 microns) is possible. FORCAST will sample images at 0.75 arcsec/pixel and have a 3.2?x3.2? instantaneous field-of-view. Imaging is diffraction limited for lambda > 15 microns. Since FORCAST operates in the wavelength range where the seeing from SOFIA is best, it will provide the highest spatial resolution possible with SOFIA. FORCAST may eventually support a spectroscopy mode (resolving power, R ~ 300 and R ~ 1000-2000) using silicon grisms mounted in the filter wheels. The science projects planned by the investigator team include multicolor imaging of the galactic center, Vega-like dust clouds, and star formation regions in normal spiral galaxies and active galaxies. This instrument will be of great value to the SOFIA community for imaging of protostellar environments, young star clusters, molecular clouds, and galaxies. We present details of the FORCAST instrument, including filter lists and sensitivity estimates, that will be useful to astronomers intending to use SOFIA for mid-infrared imaging.

  16. Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David

    2009-04-01

    The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.

  17. FIGS—Faint Infrared Grism Survey: Description and Data Reduction

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Malhotra, Sangeeta; Ryan, Russell E.; Rothberg, Barry; Grogin, Norman; Finkelstein, Steven L.; Koekemoer, Anton M.; Rhoads, James; Larson, Rebecca L.; Christensen, Lise; Cimatti, Andrea; Ferreras, Ignacio; Gardner, Jonathan P.; Gronwall, Caryl; Hathi, Nimish P.; Hibon, Pascale; Joshi, Bhavin; Kuntschner, Harald; Meurer, Gerhardt R.; O’Connell, Robert W.; Oestlin, Goeran; Pasquali, Anna; Pharo, John; Straughn, Amber N.; Walsh, Jeremy R.; Watson, Darach; Windhorst, Rogier A.; Zakamska, Nadia L.; Zirm, Andrew

    2017-09-01

    The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8 μm–1.15 μm continuous coverage) with a total exposure time of 40 orbits (≈100 kilo-seconds) per field. This reaches a 3σ continuum depth of ≈ 26 AB magnitudes and probes emission lines to ∼ {10}-17 {erg} {{{s}}}-1 {{cm}}-2. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10,000 spectra of over 2000 distinct sources brighter than {m}F105W=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D spectra for each object in the survey.

  18. VLBI observations of Infrared-Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven

    2006-10-01

    We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.

  19. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  20. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  1. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  2. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  3. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  4. The Search for Faint Infrared Calibration Standards - Extending Landolt's Standards to V=19

    NASA Astrophysics Data System (ADS)

    Kidger, M.; González-Pérez, J. N.; Martín-Luis, F.; Cohen, M.

    ISO has shown the need to obtain a reliable calibration network of good pedigree to permit data from a wide range of instruments, covering an enormous wavelength range, to be calibrated on a consistent scale. We describe the first results of a programme to extend the Landolt calibration standards to at least V=19. At the same time we calibrate into the near-infrared JHK bands and measure fields separated from the celestial equator. This programme is one of several coordinated efforts to find faint type AV and KIII stars suitable for the mid-IR calibration of the Spanish 10-m Gran Telescopio Canarias (GTC). We have obtained a total of 34 712 measurements of 373 stars in 26 quasar fields between Declination -30o and +70o, calculating magnitudes with high precision in the visible and near-infrared (UBVRIJHK). We describe the results obtained and the characteristics of the sample of stars. The typical error on the magnitude in a single band is <1%, including all error sources. Very few candidate type AV or KIII stars are found, either in our sample, or amongst the fainter Landolt stars. We conclude that both samples are increasingly dominated by local dwarfs at increasingly faint magnitudes. We discuss the implications for taking mid-infrared calibration to the increasingly faint limits required by post-ISO instrumentation. The next steps in this project will be: -- To increase significantly the number of fields covered to ˜40. -- To take additional observations of all poorly covered fields and to add JHK data where none is available. -- To use our existing database to extend Landolt photometry of Selected Areas to include many stars not previously measured. -- To assign a spectral type to all candidate KIII and AV stars in our sample.

  5. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by

  6. 2D Emission Line Galaxies in the Faint Infrared Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Pirzkal, Nor; Ryan, Russell E.; Rothberg, Barry; Meurer, Gerhardt R.; Malhotra, Sangeeta; Rhoads, James E.; Koekemoer, Anton M.; Finkelstein, Steven; Grogin, Norman A.

    2015-08-01

    The Faint Infrared Galaxy Survey (FIGS) provides us with a unique opportunity to identify emission line galaxies. Emission lines such as [OII], [OIII], Hα and Lya lines can be identified in the FIGS slitless spectroscopic observations down to faint line fluxes of a few times 10-17 erg/s/cm2. Crucially, the use of multiple observations, taken at different position angles on the sky allows us to accurately determine the location of these star forming regions within individual galaxies using the Emission Line 2D (EM2D) method. Our ability to detect high equivalent width lines independently of any host galaxies allows us to search for naked emission line objects. Combining this method with the wavelength coverage of the G102 grism, we are able to identify emission line objects using [OII] and [OIII], and Hα over 0.2 < z < 2 and using Lyman alpha from 6 < z < 8. Here, we present the first results on star forming galaxies selected using this method and demonstrate the wealth of data to be expected from the FIGS project.

  7. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  8. The Faint Hot Component of Debris Disks Revealed by Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    di Folco, E.; Absil, O.; Augereau, J.-C.; Du Foresto, C.

    2007-06-01

    Very few main-sequence stars exhibit warm dust in their 5-10AU close environment, where terrestrial planets are expected to have formed. Near-infrared interferometry is a powerful means, combining high dynamic range and high spatial resolution, to directly detect faint emission from hot grains in exozodiacal clouds. We will review the results of our search for 2 micron excesses around Vega-like stars, including the nearby Sun-like stars Tau Ceti and Epsilon Eridani, with the FLUOR interferometric instrument and the CHARA Array of telescopes. Our recent detections, combined with Spitzer observations around 10 micron, put strong constrains on the properties and distribution of hot grains in these inner planetary systems. We will present the conclusions of our preliminary modeling for the detected hot grains as well as their implication for the selection of targets for future planet finding missions like DARWIN or TPF.

  9. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  10. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  11. The first VLBI image of an infrared-faint radio source

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  12. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  13. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  14. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  15. NOTE: Red, Gray, and Blue: Near Infrared Spectrophotometry of Faint Moons of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Brown, Robert H.

    2000-11-01

    Using the CoCo Cold Coronagraph at NASA's Infrared Telescope Facility on Mauna Kea, we observed the uranian satellites Miranda, Puck, Portia, and Rosalind and the neptunian satellite Proteus in the near infrared (JHK) to determine the albedos of those faint satellites. In V-J, all of Puck, Portia, Rosalind, and Proteus are very blue, similar to the colors of many icy satellites and of water ice. The satellites we observed have a wide range of J-H colors, with Miranda being blue, Proteus being gray, and Puck, Portia, and Rosalind being red. For the satellites for which we could determine H-K (Miranda, Puck, and Proteus), the colors are gray to red. As a whole, spectrally, these five satellites lie between icy Solar System satellites (e.g., saturnian satellites or the major uranian satellites) and Kuiper belt objects. The redness of Proteus and Puck and perhaps other satellites suggests the presence of organic material, although the redness is also similar to that of C- and D-class asteroids and some outer jovian moons. In all cases, diagnostic spectral features could be masked by broadband photometry.

  16. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2010-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  17. A search for AGN activity in Infrared-Faint Radio Sources (IFRS)

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie

    2009-04-01

    We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.

  18. OPTICAL–INFRARED PROPERTIES OF FAINT 1.3 mm SOURCES DETECTED WITH ALMA

    SciTech Connect

    Hatsukade, Bunyo; Yabe, Kiyoto; Ohta, Kouji; Seko, Akifumi; Makiya, Ryu; Akiyama, Masayuki

    2015-09-10

    We report optical-infrared (IR) properties of faint 1.3 mm sources (S{sub 1.3mm} = 0.2–1.0 mJy) detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey field. We searched for optical/IR counterparts of eight ALMA-detected sources (≥4.0σ, the sum of the probability of spurious source contamination is ∼1) in a K-band source catalog. Four ALMA sources have K-band counterpart candidates within a 0.″4 radius. Comparison between ALMA-detected and undetected K-band sources in the same observing fields shows that ALMA-detected sources tend to be brighter, more massive, and more actively forming stars. While many of the ALMA-identified submillimeter-bright galaxies (SMGs) in previous studies lie above the sequence of star-forming galaxies in the stellar mass–star formation rate plane, our ALMA sources are located in the sequence, suggesting that the ALMA-detected faint sources are more like “normal” star-forming galaxies rather than “classical” SMGs. We found a region where multiple ALMA sources and K-band sources reside in a narrow photometric redshift range (z ∼ 1.3–1.6) within a radius of 5″ (42 kpc if we assume z = 1.45). This is possibly a pre-merging system and we may be witnessing the early phase of formation of a massive elliptical galaxy.

  19. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of i=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ∼ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  20. VizieR Online Data Catalog: Infrared-faint radio sources catalog (Collier+, 2014)

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; Banfield, J. K.; Norris, R. P.; Schnitzeler, D. H. F. M.; Kimball, A. E.; Filipovic, M. D.; Jarrett, T. H.; Lonsdale, C. J.; Tothill, N. F. H.

    2014-11-01

    The 20cm radio data come from the Unified Radio Catalog (URC) compiled by Kimball & Ivezic (2008AJ....136..684K). This radio catalogue combines data from the National Radio Astronomy Observatory (NRAO) VLA Sky Survey (NVSS; Condon et al., 1998, Cat. VIII/65), Faint Images of the Radio Sky at Twenty Centimeters (FIRST; Becker, White & Helfand, 1995, cat. VIII/92), Green Bank 6cm survey (GB6; Gregory et al., 1996, Cat. VIII/40), the Westerbork Northern Sky Survey (WENSS; Rengelink et al. 1997; de Bruyn et al. 2000, Cat. VIII/62) and the Sloan Digital Sky Survey Data Release 6 (SDSS DR6; Adelman-McCarthy et al., 2008, Cat. II/282). We use updated NVSS and FIRST data from the URC version 2.0 (Kimball & Ivezic, in preparation), which includes a number of new sources as well as updated positions and flux densities. The IR data come from WISE (Wright et al. (WISE Team) 2009, Cat. II/311), which is an all-sky survey centred at 3.4, 4.6, 12 and 22um (referred to as bands W1, W2, W3 and W4), with respective angular resolutions of 6.1, 6.4, 6.5 and 12.0-arcsec (full width at half-maximum, FWHM), and typical 5σ sensitivity levels of 0.08, 0.11, 1 and 6mJy, with sensitivity increasing towards the ecliptic poles. (1 data file).

  1. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    NASA Astrophysics Data System (ADS)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.; Vaccari, M.

    2015-11-01

    A complete, flux density limited sample of 96 faint (>0.5 mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including Spitzer Extragalactic Representative Volume Survey, Spitzer Wide-area Infrared Extragalactic survey, United Kingdom Infrared Telescope Infrared Deep Sky Survey and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric redshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and star-forming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below ˜1 mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the Square Kilometre Array Design Studies Simulated Skies; a population of low-redshift star-forming galaxies predicted by the simulation is not found in the observed sample.

  2. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  3. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    SciTech Connect

    Koch, Andreas; Rich, R. Michael

    2014-10-10

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliers found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.

  4. Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and Andromeda XXV

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-07-01

    The recent detection of two faint and extended star clusters in the central regions of two Local Group dwarf galaxies, Eridanus II and Andromeda XXV, raises the question of whether clusters with such low densities can survive the tidal field of cold dark matter halos with central density cusps. Using both analytic arguments and a suite of collisionless N-body simulations, I show that these clusters are extremely fragile and quickly disrupted in the presence of central cusps ρ ˜ {r}-α with α ≳ 0.2. Furthermore, the scenario in which the clusters were originally more massive and sank to the center of the halo requires extreme fine tuning and does not naturally reproduce the observed systems. In turn, these clusters are long lived in cored halos, whose central regions are safe shelters for α ≲ 0.2. The only viable scenario for hosts that have preserved their primordial cusp to the present time is that the clusters formed at rest at the bottom of the potential, which is easily tested by measurement of the clusters proper velocity within the host. This offers means to readily probe the central density profile of two dwarf galaxies as faint as {L}V˜ 5× {10}5 {L}⊙ and {L}V˜ 6× {10}4 {L}⊙ , in which stellar feedback is unlikely to be effective.

  5. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    SciTech Connect

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of $62.8\\pm 0.5\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$ and a velocity dispersion of $3.3\\pm 0.7\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$. The mass-to-light ratio of Ret II within its half-light radius is $470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $\\mathrm{km}\\ {{\\rm{s}}}^{-1}$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with ${\\rm{[Fe/H]}}\\lt -3$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of ${\\rm{[Fe/H]}}=-2.65\\pm 0.07$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is ${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.

  6. Stellar Kinematics and Metallicities in the Ultra-faint Dwarf Galaxy Reticulum II

    NASA Astrophysics Data System (ADS)

    Simon, J. D.; Drlica-Wagner, A.; Li, T. S.; Nord, B.; Geha, M.; Bechtol, K.; Balbinot, E.; Buckley-Geer, E.; Lin, H.; Marshall, J.; Santiago, B.; Strigari, L.; Wang, M.; Wechsler, R. H.; Yanny, B.; Abbott, T.; Bauer, A. H.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dodelson, S.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; March, M.; Martini, P.; Miller, C. J.; Miquel, R.; Ogando, R.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Vikram, V.; Walker, A. R.; Wester, W.; DES Collaboration

    2015-07-01

    We present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8+/- 0.5 {km} {{{s}}}-1 and a velocity dispersion of 3.3+/- 0.7 {km} {{{s}}}-1. The mass-to-light ratio of Ret II within its half-light radius is 470+/- 210 {M}⊙ /{L}⊙ , demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 {km} {{{s}}}-1, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with {{[Fe/H]}}\\lt -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of {{[Fe/H]}}=-2.65+/- 0.07, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is {{log}}10(J)=18.8+/- 0.6 {GeV}{ }2 {{cm}}-5 within 0.°2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies. Based on data obtained from the ESO Science Archive Facility under request number 157689.

  7. Strategies for Imaging Faint Extended Sources in the Near-Infrared

    NASA Astrophysics Data System (ADS)

    Vaduvescu, Ovidiu; McCall, Marshall L.

    2004-07-01

    Quantitative information about variations in the background at J and K' are presented and used to develop guidelines for the acquisition and reduction of ground-based images of faint extended sources in the near-infrared, especially those that occupy a significant fraction of the field of view of a detector or that are located in areas crowded with foreground or background sources. Findings are based primarily on data acquired over three photometric nights with the 3.6m×3.6m CFHT-IR array on the Canada-France-Hawaii Telescope (CFHT) atop Mauna Kea. Although some results are specific to CFHT, overall conclusions should be useful in guiding observing and reduction strategies of extended objects elsewhere. During the run, the mean brightness of the background (more than 70% of which was from the sky) varied significantly on a very short timescale: by 0.7% per minute in J and 0.5% per minute in K', on average. Changes in the optical depth of the sky were partly responsible, because stars faded as the background level increased. A changing pattern in the background was evident from differences of consecutive pairs of frames (0.3% per minute in J and 0.2% per minute in K'), but this originated primarily in the instrumentation. Any pattern over 3.6m associated with the atmosphere changed at a rate less than about 0.06% per minute in K' relative to the signal from the sky alone. To measure the background to a precision of 1% per frame, exposures of extended targets should be alternated with identical exposures of the background. In J and K', target and sky exposures ought to be separated by no more than 90 and 130 s, respectively. To observe a target larger than about 40% of the field of view, background samples ought to be taken with the target shifted completely out of the field. For smaller targets, gains in efficiency can be made by shifting the target to a different place on the array. The signal-to-noise ratio of the reduced image of a target is maximized by

  8. Chemical Diversity in the Ultra-faint Dwarf Galaxy Tucana II

    NASA Astrophysics Data System (ADS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-11-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = -3.2 to -2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < -1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = -2.6) and shows [Na, α, Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < -3 are mildly carbon-enhanced ([C/Fe] ˜ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = -3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. The Dark Matter Content of the Triangulum II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.

    2017-01-01

    Triangulum II is an ultra-faint galaxy with a luminosity of 450 L⊙ discovered through Pan-STARRS imaging in 2015. Since then, two independent studies—including one of our own—based on Keck/DEIMOS spectroscopy found that the galaxy has a stellar velocity dispersion of about 5 km/s, indicating a very high concentration of dark matter. Here, we present additional DEIMOS observations over six epochs. We show that a combination of radial velocity variability (likely due to binarity) and inaccuracies in the previous measurements led to a spurious detection of a velocity dispersion in excess of what would be expected from the stellar population alone. Instead, we place an upper limits of 3.4 km/s (90% C.L.) and 4.3 km/s (95% C.L.) on the velocity dispersion. While these limits are compatible with very high mass-to-light ratios (1700 at 90% C.L. or 2600 at 95% C.L.), Triangulum II no longer seems extreme compared to dwarf galaxies of similar luminosity. Because the stars still span a large range of metallicity (-2.8 < [Fe/H] < -1.5), the galactic nature of Triangulum II is not in dispute.

  10. FAR-INFRARED AND MOLECULAR CO EMISSION FROM THE HOST GALAXIES OF FAINT QUASARS AT z {approx} 6

    SciTech Connect

    Wang Ran; Wagg, Jeff; Carilli, Chris L.; Neri, Roberto; Walter, Fabian; Omont, Alain; Riechers, Dominik A.; Bertoldi, Frank; Menten, Karl M.; Cox, Pierre; Strauss, Michael A.; Fan Xiaohui; Jiang Linhua

    2011-10-15

    We present new millimeter and radio observations of nine z {approx} 6 quasars discovered in deep optical and near-infrared surveys. We observed the 250 GHz continuum in eight of the nine objects and detected three of them. New 1.4 GHz radio continuum data have been obtained for four sources, and one has been detected. We searched for molecular CO (6-5) line emission in the three 250 GHz detections and detected two of them. Combined with previous millimeter and radio observations, we study the far-infrared (FIR) and radio emission and quasar-host galaxy evolution with a sample of 18 z {approx} 6 quasars that are faint at UV and optical wavelengths (rest-frame 1450 A magnitudes of m{sub 1450} {>=} 20.2). The average FIR-to-active galactic nucleus (AGN) UV luminosity ratio of this faint quasar sample is about two times higher than that of the bright quasars at z {approx} 6 (m{sub 1450} < 20.2). A fit to the average FIR and AGN bolometric luminosities of both the UV/optically faint and bright z {approx} 6 quasars, and the average luminosities of samples of submillimeter/millimeter-observed quasars at z {approx} 2-5, yields a relationship of L{sub FIR} {approx} L{sub bol}{sup 0.62}. Five of the 18 faint z {approx} 6 quasars have been detected at 250 GHz. These 250 GHz detections, as well as most of the millimeter-detected optically bright z {approx} 6 quasars, follow a shallower trend of L{sub FIR} {approx} L{sub bol}{sup 0.45} defined by the starburst-AGN systems in local and high-z universe. The millimeter continuum detections in the five objects and molecular CO detections in three of them reveal a few x 10{sup 8} M{sub sun} of FIR-emitting warm dust and 10{sup 10} M{sub sun} of molecular gas in the quasar host galaxies. All these results argue for massive star formation in the quasar host galaxies, with estimated star formation rates of a few hundred M{sub sun} yr{sup -1}. Additionally, the higher FIR-to-AGN luminosity ratio found in these 250 GHz detected faint

  11. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    DOE PAGES

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity ofmore » $$62.8\\pm 0.5\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$ and a velocity dispersion of $$3.3\\pm 0.7\\;\\mathrm{km}\\;{\\rm{s}}^{-1}$$. The mass-to-light ratio of Ret II within its half-light radius is $$470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $$\\mathrm{km}\\ {{\\rm{s}}}^{-1}$$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with $${\\rm{[Fe/H]}}\\lt -3$$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of $${\\rm{[Fe/H]}}=-2.65\\pm 0.07$$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is $${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.« less

  12. Deep 610-MHz Giant Metrewave Radio Telescope observations of the Spitzer extragalactic First Look Survey field - III. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Garn, Timothy; Alexander, Paul

    2008-12-01

    Infrared-faint radio sources (IFRSs) are a class of source which are bright at radio frequencies, but do not appear in deep infrared images. We report the detection of 14 IFRSs within the Spitzer extragalactic First Look Survey field, eight of which are detected near to the limiting magnitude of a deep R-band image of the region, at R ~ 24.5. Sensitive Spitzer Space Telescope images are stacked in order to place upper limits on their mid-infrared flux densities, and using recent 610-MHz and 1.4-GHz observations we find that they have spectral indices which vary between α = 0.05 and 1.38, where we define α such that Sν = S0ν-α, and should not be thought of as a single source population. We place constraints on the luminosity and linear size of these sources, and through comparison with well-studied local objects in the Revised Revised Third Cambridge catalogue demonstrate that they can be modelled as being compact (<20 kpc) Fanaroff-Riley type II (FRII) radio galaxies located at high redshift (z ~ 4).

  13. Faint Submillimeter Galaxies Identified through Their Optical/Near-infrared Colors. I. Spatial Clustering and Halo Masses

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, James M.; Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.; Mortlock, Alice; Simpson, Chris; Wilkinson, Aaron

    2016-11-01

    The properties of submillimeter galaxies (SMGs) that are fainter than the confusion limit of blank-field single-dish surveys ({S}850 ≲ 2 mJy) are poorly constrained. Using a newly developed color selection technique, Optical-Infrared Triple Color (OIRTC), that has been shown to successfully select such faint SMGs, we identify a sample of 2938 OIRTC-selected galaxies, dubbed Triple Color Galaxies (TCGs), in the UKIDSS-UDS field. We show that these galaxies have a median 850 μm flux of {S}850=0.96+/- 0.04 mJy (equivalent to a star formation rate SFR ˜ 60{--}100 {M}⊙ yr-1 based on spectral energy distribution fitting), representing the first large sample of faint SMGs that bridges the gap between bright SMGs and normal star-forming galaxies in S 850 and L IR. We assess the basic properties of TCGs and their relationship with other galaxy populations at z˜ 2. We measure the two-point autocorrelation function for this population and derive a typical halo mass of log10({M}{halo}) = {12.9}-0.3+0.2, {12.7}-0.2+0.1, and {12.9}-0.3+0.2 {h}-1 {M}⊙ at z=1{--}2, 2-3, and 3-5, respectively. Together with the bright SMGs ({S}850≳ 2 mJy) and a comparison sample of less far-infrared luminous star-forming galaxies, we find a lack of dependence between spatial clustering and S 850 (or SFR), suggesting that the difference between these populations may lie in their local galactic environment. Lastly, on the scale of ˜ 8{--}17 {kpc} at 1\\lt z\\lt 5 we find a tentative enhancement of the clustering of TCGs over the comparison star-forming galaxies, suggesting that some faint SMGs are physically associated pairs, perhaps reflecting a merging origin in their triggering.

  14. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  15. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  16. Stellar wind paleontology. II - Faint halos and historical mass ejection in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Balick, Bruce; Gonzalez, Guillermo; Frank, Adam; Jacoby, George

    1992-06-01

    The large, faint, generally circular, and limb-brightened nebular structures (called "halos") surrounding some planetary nebulae (PN) are explored using deep CCD images of NGC 40, 650-1, 1535, 2392, 6210, 6543, 6720, 6803, 6804, 6826, 6853, 6891, 6894, 7009, 7662, IC 1454, 3568, 4593, Abell 1, 2, 3, and BD +30 deg 3639. New halos have been discovered in a few objects (IC 1454, 4593, and possibly NGC 40, 6210, and 6803), and known halos have been mapped in detail in several PN (e.g., NGC 6543, 6720, 6826, 6853 and 7662). The present deep search does not reveal similar large and faint halos in NGC 1535, 2392, 6894, 7009, and IC 3568-PN whose inner regions are morphologically similar to others with easily observable halos.

  17. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  18. FAINT CO LINE WINGS IN FOUR STAR-FORMING (ULTRA)LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Zschaechner, Laura; Bolatto, Alberto; Weiss, Axel

    2015-09-20

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s{sup −1}-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  19. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  20. TURNING THE TIDES ON THE ULTRA-FAINT DWARF SPHEROIDAL GALAXIES: COMA BERENICES AND URSA MAJOR II

    SciTech Connect

    Munoz, Ricardo R.; Geha, Maria; Willman, Beth E-mail: marla.geha@yale.ed

    2010-07-15

    We present deep CFHT/MegaCam photometry of the ultra-faint Milky Way satellite galaxies: Coma Berenices (ComBer) and Ursa Major II (UMa II). These data extend to r {approx} 25, corresponding to 3 mag below the main-sequence turn-offs in these galaxies. We robustly calculate a total luminosity of M{sub V} = -3.8 {+-} 0.6 for ComBer and M{sub V} = -3.9 {+-} 0.5 for UMa II, in agreement with previous results and confirming that these galaxies are among the faintest of the known dwarf satellites of the Milky Way. ComBer shows a fairly regular morphology with no signs of active tidal stripping down to a surface brightness limit of 32.4 mag arcsec{sup -2}. Using a maximum likelihood analysis, we calculate the half-light radius of ComBer to be r{sub half} = 74 {+-} 4 pc (5.8 {+-} 0.'3) and its ellipticity {epsilon} = 0.36 {+-} 0.04. In contrast, UMa II shows signs of ongoing disruption. We map its morphology down to {mu}{sub V} = 32.6 mag arcsec{sup -2} and found that UMa II is larger than previously determined, extending at least {approx}600 pc (1.{sup 0}1 on the sky) and it is also quite elongated with an overall ellipticity of {epsilon} = 0.50 {+-} 0.2. However, our estimate for the half-light radius, 123 {+-} 3 pc (14.1 {+-} 0.'3) is similar to previous results. We discuss the implications of these findings in the context of potential indirect dark matter detections and galaxy formation. We conclude that while ComBer appears to be a stable dwarf galaxy, UMa II shows signs of ongoing tidal interaction.

  1. Fainting (Syncope)

    MedlinePlus

    ... Adults Making Your Wishes Known Home & Community Home › Aging & Health A to Z › Fainting (Syncope) Font size A A A Print Share Glossary Basic Facts & Information Causes & Symptoms Diagnosis & Tests Care & Treatment Lifestyle & Management Other Resources Caregiving How ...

  2. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    SciTech Connect

    Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it; and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  3. On the nature of infrared-faint radio sources in the Subaru X-ray Deep and Very Large Array-VIMOS VLT Deep Survey fields

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Wadadekar, Yogesh; Ishwara-Chandra, C. H.; Sirothia, Sandeep; Sievers, Jonathan; Beelen, Alexandre; Omont, Alain

    2017-10-01

    Infrared-faint radio sources (IFRSs) are an unusual class of objects that are relatively bright at radio wavelengths but have faint or undetected infrared counterparts, even in deep surveys. We identify and investigate the nature of IFRSs using deep radio (S1.4 GHz ˜ 100 μJy beam-1 at 5σ), optical (mr ˜ 26-27.7 at 5σ) and near-infrared (S3.6 μm ˜ 1.3-2.0 μJy beam-1 at 5σ) data that are available in two deep fields: the Subaru X-ray Deep Field (SXDF) and the Very Large Array-VIMOS VLT Deep Survey (VLA-VVDS) field. In 1.8 deg2 of the two fields, we identify a total of nine confirmed and ten candidate IFRSs. We find that our IFRSs are high-redshift radio-loud active galactic nuclei, with 12/19 sources having redshift estimates in the range of z ˜ 1.7-4.3, while a limit of z ≥ 2.0 is placed on the remaining seven sources. Notably, for the first time, our study finds IFRSs with measured redshift >3.0, and also redshift estimates for IFRSs in the faintest 3.6-μm flux regime (i.e. S3.6 μm < 1.3 μJy). Radio observations show that our IFRSs exhibit both compact unresolved and extended double-lobe morphologies, and have predominantly steep radio spectra between 1.4 GHz and 325 MHz. The non-detection of all but one IFRSs in the X-ray band and the optical-to-mid-infrared colour (mr-m24 μm) suggest that a significant fraction of IFRSs are likely to be hosted in dusty obscured galaxies.

  4. Active galactic nuclei cores in infrared-faint radio sources. Very long baseline interferometry observations using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.

    2015-06-01

    Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.

  5. First Simultaneous Detection of Lyman-alpha Emission and Lyman Break from a Galaxy at Redshift 7.51 from Faint Infrared Grism Survey (FIGS)

    NASA Astrophysics Data System (ADS)

    Tilvi, Vithal; Pirzkal, Norbert; Malhotra, Sangeeta; Finkelstein, Steven L.; Rhoads, James E.; Windhorst, Rogier A.; Grogin, Norman A.; Koekemoer, Anton M.; Zakamska, Nadia L.; Ryan, Russell E.; Christensen, Lise; Hathi, Nimish P.; Pharo, John; Joshi, Bhavin; Yang, Huan; Gronwall, Caryl; Cimatti, Andrea; Walsh, J.; O'Connell, Robert W.; Straughn, Amber; Östlin, Göran; Rothberg, Barry; Livermore, Rachael C.; Hibon, Pascale; Gardner, Jonathan P.; FIGS Team

    2017-01-01

    Galaxies at high-redshifts provide a powerful tool to probe cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of a Lyman-alpha line and a Lyman break from a galaxy (FIGS_GN1_1292) at z=7.51, observed in the Faint Infrared Grism Survey (FIGS: PI Mlahotra). FIGS is currently the most sensitive G102 grism survey, with 160-orbit depth equally distributed in four different fields in GOODS-N and GOODS-S. FIGS_GN1_1292 is detected independently in multiple position angles, and has a Lyman-alpha line flux of 1.06e-17 erg/s/cm^2, nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This higher flux in the grism data is consistent with other recent observations implying that ground-based near-infrared spectroscopy may underestimate the total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-alpha measurements. The successful detection of continuum in such a high-redshift galaxy demonstrates the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization using upcoming missions like the Wide Field Infrared Survey Telescope (WFIRST).

  6. Near-infrared spectroscopy of faint discrete X-ray point sources constituting the Galactic ridge X-ray emission

    NASA Astrophysics Data System (ADS)

    Morihana, Kumiko; Tsujimoto, Masahiro; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-08-01

    The Galactic Ridge X-ray Emission (GRXE) is an apparently extended X-ray emission along the Galactic plane. The X-ray spectrum is characterized by a hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (˜80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations; thus GRXE is mostly composed of dim Galactic X-ray point sources, at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out near-infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l, b) = (0.1°, -1.4°) and (28.5°, 0.0°) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as H I (Brγ), He I, and He II (2 objects), (B) soft X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (46 objects), and (C) hard X-ray spectra and NIR absorption features such as H I, Na I, Ca I, and CO (17 objects). From these features, we argue that class A sources are cataclysmic variables (CVs), and class B sources are late-type stars with enhanced coronal activity, which is in agreement with current knowledge. Class C sources possibly belong to a new group of objects, which has been poorly studied so far. We argue that the candidate sources for class C are the binary systems hosting white dwarfs and late-type companions with very low accretion rates. It is likely that this newly recognized class of sources contribute to a non-negligible fraction of the GRXE, especially in the Fe K band.

  7. STELLAR POPULATIONS AND STRUCTURAL PROPERTIES OF ULTRA FAINT DWARF GALAXIES, CANES VENATICI I, BOOeTES I, CANES VENATICI II, AND LEO IV

    SciTech Connect

    Okamoto, Sakurako; Arimoto, Nobuo; Yamada, Yoshihiko; Onodera, Masato

    2012-01-10

    We take deep images of four ultra faint dwarf (UFD) galaxies, Canes Venatici I (CVn I), Booetes I (Booe I), Canes Venatici II (CVn II), and Leo IV, using the Suprime-Cam on the Subaru Telescope. Color-magnitude diagrams (CMDs) extend below main-sequence turnoffs (MSTOs) and yield measurements of the ages of stellar populations. The stellar populations of three faint galaxies, the Booe I, CVn II, and Leo IV dwarf spheroidal galaxies (dSphs), are estimated to be as old as the Galactic globular cluster M92. We confirm that Booe I dSph has no intrinsic color spread in the MSTO and no spatial difference in the CMD morphology, which indicates that Booe I dSph is composed of an old single stellar population. One of the brightest UFDs, CVn I dSph, shows a relatively younger age ({approx}12.6 Gyr) with respect to Booe I, CVn II, and Leo IV dSphs, and the distribution of red horizontal branch (HB) stars is more concentrated toward the center than that of blue HB stars, suggesting that the galaxy contains complex stellar populations. Booe I and CVn I dSphs show the elongated and distorted shapes. CVn II dSph has the smallest tidal radius of a Milky Way satellite and has a distorted shape, while Leo IV dSph shows a less concentrated spherical shape. The simple stellar population of faint UFDs indicates that the gases in their progenitors were removed more effectively than those of brighter dSphs at the occurrence of their initial star formation. This is reasonable if the progenitors of UFDs belong to less massive halos than those of brighter dSphs.

  8. HUBBLE SPACE TELESCOPE Near-infrared and Optical Imaging of Faint Radio Sources in the Distant Cluster CL 0939+4713

    NASA Astrophysics Data System (ADS)

    Smail, Ian; Morrison, G.; Gray, M. E.; Owen, F. N.; Ivison, R. J.; Kneib, J.-P.; Ellis, R. S.

    1999-11-01

    We present deep Hubble Space Telescope Near-Infrared Camera and Multiobject Spectrograph (NICMOS) and Wide Field and Planetary Camera 2 (WFPC2) optical imaging of a small region in the core of the distant rich cluster Cl 0939+4713 (z=0.41). We compare the optical and near-infrared morphologies of cluster members and find apparent small-scale optical structures within the galaxies that are absent in the near-infrared. We conclude that strong dust obscuration is a common feature in the late-type galaxies in distant clusters. We then concentrate on a sample of 10 faint radio galaxies lying within our NICMOS field and selected from a very deep 1.4 GHz VLA map of the cluster with a 1 σ flux limit of 9 μJy. Using published data we focus on the spectral properties of the eight radio-selected cluster members and show that these comprise a large fraction of the poststarburst population in the cluster. The simplest interpretation of the radio emission from these galaxies is that they are currently forming massive stars, contradicting their classification as poststarburst systems based on the optical spectra. We suggest that this star formation is hidden from view in the optical by the same obscuring dust that is apparent in our comparison on the optical and near-infrared morphologies of these galaxies. We caution that even in the rest-frame optical the effects of dust cannot be ignored when comparing samples of distant galaxies to low-redshift systems, particularly if dust is as prevalent in distant galaxies as appears to be the case in our study.

  9. First Results from Faint Infrared Grism Survey (Figs): First Simultaneous Detection of Ly Alpha Emission and Lyman Break From a Galaxy at Z =7.51

    NASA Technical Reports Server (NTRS)

    Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.; hide

    2016-01-01

    Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-Alpha emission and the Lyman break from a z = 7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble SpaceTelescope (HST), show a significant emission line detection (6 Sigma) in two observational position angles (PA), with Lyman-Alpha line flux of 1.06 +/- 0.19 x 10(exp -17) erg s(exp -1) cm(exp -2). The line flux is nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-Alpha measurements. A 4-Alpha detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), and if confirmed would make this source the highest-redshift AGN yet found.These observations from the Hubble Space Telescope thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.

  10. First Results from the Faint Infrared Grism Survey (FIGS): First Simultaneous Detection of Lyα Emission and Lyman Break from a Galaxy at z = 7.51

    NASA Astrophysics Data System (ADS)

    Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.; Christensen, L.; Hathi, N.; Pharo, J.; Joshi, B.; Yang, H.; Gronwall, C.; Cimatti, A.; Walsh, J.; O'Connell, R.; Straughn, A.; Ostlin, G.; Rothberg, B.; Livermore, R. C.; Hibon, P.; Gardner, Jonathan P.

    2016-08-01

    Galaxies at high redshifts are a valuable tool for studying cosmic dawn, therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyα emission and the Lyman break from a z=7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with the G102 grism on the Hubble Space Telescope (HST), show a significant emission line detection (6σ ) in two observational position angles (PAs), with Lyα line flux of 1.06+/- 0.19× {10}-17 {erg} {{{s}}}-1 {{cm}}-2. The line flux is nearly a factor of four higher than that in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations, implying that ground-based near-infrared spectroscopy underestimates the total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyα measurements. A 4σ detection of the NV line in one PA also suggests a weak active galactic nucleus (AGN), and if confirmed, would make this source the highest-redshift AGN yet found. These observations from HST thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy for studying the epoch of reionization.

  11. HerMES: Current Cosmic Infrared Background Estimates Can Be Explained by Known Galaxies and Their Faint Companions at z < 4

    NASA Astrophysics Data System (ADS)

    Viero, M. P.; Moncelsi, L.; Quadri, R. F.; Béthermin, M.; Bock, J.; Burgarella, D.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conversi, L.; Duivenvoorden, S.; Dunlop, J. S.; Farrah, D.; Franceschini, A.; Halpern, M.; Ivison, R. J.; Lagache, G.; Magdis, G.; Marchetti, L.; Álvarez-Márquez, J.; Marsden, G.; Oliver, S. J.; Page, M. J.; Pérez-Fournon, I.; Schulz, B.; Scott, Douglas; Valtchanov, I.; Vieira, J. D.; Wang, L.; Wardlow, J.; Zemcov, M.

    2015-08-01

    We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their faint companions at submillimeter wavelengths. Using the publicly available UltraVISTA catalog and maps at 250, 350, and 500 μm from the Herschel Multi-tiered Extragalactic Survey, we perform a novel measurement that exploits the fact that uncataloged sources may bias stacked flux densities—particularly if the resolution of the image is poor—and intentionally smooth the images before stacking and summing intensities. By smoothing the maps we are capturing the contribution of faint (undetected in {K}S˜ 23.4) sources that are physically associated, or correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing, reaching 9.82 ± 0.78, 5.77 ± 0.43 and 2.32+/- 0.19 {{nWm}}-2 {{sr}}-1 at 250, 350, and 500 μm at 300 {arcsec} FWHM. This corresponds to a fraction of the fiducial CIB of 0.94 ± 0.23, 1.07 ± 0.31, and 0.97 ± 0.26 at 250, 350, and 500 μm, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from galaxies with log(M/{M}⊙ )\\gt 8.5 can account for most of the measured total intensities and argue against contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z\\gt 4.

  12. Detection of faint broad emission lines in type 2 AGN - I. Near-infrared observations and spectral fitting

    NASA Astrophysics Data System (ADS)

    Onori, F.; La Franca, F.; Ricci, F.; Brusa, M.; Sani, E.; Maiolino, R.; Bianchi, S.; Bongiorno, A.; Fiore, F.; Marconi, A.; Vignali, C.

    2017-01-01

    We present medium resolution near-infrared spectroscopic observations of 41 obscured and intermediate class active galactic nuclei (AGN; type 2, 1.9 and 1.8; AGN2) with redshift z ≲ 0.1, selected from the Swift/Burst Alert Telescope 70-month catalogue. The observations have been carried out in the framework of a systematic study of the AGN2 near-infrared spectral properties and have been executed using Infrared Spectrometer And Array Camera/VLT, X-shooter/VLT and LUCI/LBT, reaching an average S/N ratio of ˜30 per resolution element. For those objects observed with X-shooter, we also obtained simultaneous optical and UV spectroscopy. We have identified a component from the broad line region in 13 out of 41 AGN2, with full width at half-maximum (FWHM) > 800 km s-1. We have verified that the detection of the broad line region components does not significantly depend on selection effects due to the quality of the spectra, the X-ray or near-infrared fluxes, the orientation angle of the host galaxy or the hydrogen column density measured in the X-ray band. The average broad line region components found in AGN2 has a significantly (a factor 2) smaller FWHM if compared with a control sample of type 1 AGN.

  13. Antimonide type-II superlattice barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Höglund, Linda; Keo, Sam A.; Rafol, B., , Sir; Hill, Cory J.; Fisher, Anita M.; Luong, Edward M.; Nguyen, Jean; Liu, John K.; Mumolo, Jason M.; Pepper, Brian J.; Gunapala, Sarath D.

    2017-02-01

    We provide a brief overview of recent progress in III-V semiconductor infrared photodetectors resulting from advances in infrared detector materials, including type-II superlattices (T2SL) and InAsSb alloy, and the unipolar detector architecture. We summarize T2SL unipolar barrier infrared detector and focal plane array development at the NASA Jet Propulsion Laboratory in support of the Vital Infrared Sensor Technology Acceleration (VISTA) Program. We also comment on the connection of T2SL barrier infrared detector to MCT infrared detectors.

  14. The invisible AGN catalogue: a mid-infrared-radio selection method for optically faint active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-06-01

    A large fraction of active galactic nuclei (AGN) are 'invisible' in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared (IR)-bright AGN is predicted by models of galaxy-supermassive black hole coevolution and is required to explain the observed X-ray and IR backgrounds. Recently, IR colour cuts with Wide-field Infrared Survey Explorer have identified a portion of this missing population. However, as the host galaxy brightness relative to that of the AGN increases, it becomes increasingly difficult to differentiate between IR emission originating from the AGN and from its host galaxy. As a solution, we have developed a new method to select obscured AGN using their 20-cm continuum emission to identify the objects as AGN. We created the resulting invisible AGN catalogue by selecting objects that are detected in AllWISE (mid-IR) and FIRST (20 cm), but are not detected in SDSS (optical) or 2MASS (near-IR), producing a final catalogue of 46 258 objects. 30 per cent of the objects are selected by existing selection methods, while the remaining 70 per cent represent a potential previously unidentified population of candidate AGN that are missed by mid-IR colour cuts. Additionally, by relying on a radio continuum detection, this technique is efficient at detecting radio-loud AGN at z ≥ 0.29, regardless of their level of dust obscuration or their host galaxy's relative brightness.

  15. Infrared Space Observatory Measurements of a [C II] 158 micron Line Deficit in Ultraluminous Infrared Galaxies

    DTIC Science & Technology

    1998-07-23

    INFRARED SPACE OBSERVATORY1 MEASUREMENTS OF A [C ii] 158 MICRON LINE DEFICIT IN ULTRALUMINOUS INFRARED GALAXIES M. L. Luhman,2,3 S. Satyapal,4,5 J. Fischer...1998 July 23 ABSTRACT We report measurements of the [C ii] 157.74 mm fine-structure line in a sample of seven ultraluminous infrared galaxies (ULIGs) ( L...detection rate of high-z sources and on the usefulness of [C ii] as an eventual tracer of protogalaxies. Subject headings: galaxies: active — galaxies: ISM

  16. The Chandra Deep Survey of the Hubble Deep Field-North Area. II. Results from the Caltech Faint Field Galaxy Redshift Survey Area

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Brandt, W. N.; Garmire, G. P.; Schneider, D. P.; Barger, A. J.; Broos, P. S.; Cowie, L. L.; Townsley, L. K.; Bautz, M. W.; Burrows, D. N.; Chartas, G.; Feigelson, E. D.; Griffiths, R. E.; Lumb, D.; Nousek, J. A.; Ramsey, L. W.; Sargent, W. L. W.

    2001-06-01

    A deep X-ray survey of the Hubble Deep Field-North (HDF-N) and its environs is performed using data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Currently a 221.9 ks exposure is available, the deepest ever presented, and here we give results on X-ray sources located in the 8.6‧×8.7‧ area covered by the Caltech Faint Field Galaxy Redshift Survey (the ``Caltech area''). This area has (1) deep photometric coverage in several optical and near-infrared bands; (2) extensive coverage at radio, submillimeter, and mid-infrared wavelengths; and (3) some of the deepest and most complete spectroscopic coverage ever obtained. It is also where the X-ray data have the greatest sensitivity; the minimum detectable fluxes in the 0.5-2 keV (soft) and 2-8 keV (hard) bands are ~1.3×10-16 and ~6.5×10-16 ergs cm-2 s-1, respectively. More than ~80% of the extragalactic X-ray background in the hard band is resolved. The 82 Chandra sources detected in the Caltech area are correlated with more than 25 multiwavelength source catalogs, and the results of these correlations as well as spectroscopic follow-up results obtained with the Keck and Hobby-Eberly Telescopes are presented. All but nine of the Chandra sources are detected optically with R<~26.5. Redshifts are available for 39% of the Chandra sources, including 96% of the sources with R<23 the redshift range is 0.1-3.5, with most sources having z<1.5. Eight of the X-ray sources are located in the HDF-N itself, including two not previously reported. A population of X-ray faint, optically bright, nearby galaxies emerges at soft-band fluxes of <~3×10-16 ergs cm-2 s-1. Our multiwavelength correlations have set the tightest constraints to date on the X-ray emission properties of μJy radio sources, mid-infrared sources detected by the Infrared Space Observatory (ISO), and very red (R-Ks>5.0) objects. A total of 16 of the 67 1.4 GHz μJy sources in the Caltech area are detected in the

  17. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  18. A search for near-infrared counterparts of two faint neutron star X-ray transients: XMMU J174716.1-281048 and SAX J1806.5-2215

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Wijnands, Rudy; Kamble, Atish; Cackett, Edward M.; Kutulla, Ralf; Kaplan, David; Degenaar, Nathalie

    2017-01-01

    We present our near-infrared (NIR) imaging observations of two neutron star low-mass X-ray binaries XMMU J174716.1-281048 and SAX J1806.5-2215 obtained using the PANIC instrument on the 6.5-metre Magellan telescope and the WIYN High-Resolution Infrared Camera instrument on the 3.5-metre WIYN telescope, respectively. Both sources are members of the class of faint to very faint X-ray binaries and undergo very long X-ray outburst, hence classified as `quasi-persistent X-ray binaries'. While XMMU J174716.1-281048 was active for almost 12 yr between 2003 and 2015, SAX J1806.5-2215 has been active for more than 5 yr now since 2011. From our observations, we identify two NIR stars consistent with the Chandra X-ray error circle of XMMU J174716.1-281048. The comparison of our observations with the United Kingdom Infrared Telescope (UKIRT) Galactic plane observations taken during the same outburst, colour-colour diagram analysis and spectral energy distribution suggest that both stars are probably a part of the field population and are likely high-mass stars. Hence possibly neither of the two stars is a true NIR counterpart. For the faint X-ray binary SAX J1806.5-2215 during its current outburst, we detected an NIR star in our K-band WIYN observations consistent with its Chandra error circle. The identified NIR star was not detected during the UKIRT observations taken during its quiescent state. The comparison of two observations suggests that there was an increase in flux by at least one magnitude of the detected star during our observations, and hence suggests the detection of the likely counterpart of SAX J1806.5-2215.

  19. Type-II superlattice materials for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Brown, Gail J.; Haugan, Heather; Szmulowicz, Frank; Mahalingam, Krishnamur; Grazulis, L.; Houston, Shanee

    2005-03-01

    Type-II superlattices composed of alternating thin layers of InAs and GaSb, have been shown to be a highly flexible infrared materials system in which the energy band gap can be adjusted anywhere between 360 meV and 40 meV. These superlattices (SLs) are the III-V equivalent to the well established HgxCd1-xTe alloys used for infrared detection in the short, mid and long wavelength bands of the infrared spectrum. There are many possible designs for these superlattices that will produce the same narrow band gap by adjusting individual layer thicknesses and interface composition. Systematic growth and characterization studies were performed to determine optimum superlattice designs suitable for infrared detection in the 3 to 5 μm wavelength band. For these studies the individual layer thicknesses were less than 35Å. The effects of adding different thickness InSb-like interfaces were also studied. Through precision molecular beam epitaxy, design changes as small as 3Å to the SL layers could be studied. Significant changes were observed in the infrared photoresponse spectra of the various SL samples. The infrared properties of the various designs of these type-II superlattices were modeled using an 8-band Envelope Function Approximation. The infrared photoresponse spectra, combined with quantum mechanical modeling of predicted absorption spectra, were a key factor in the design optimization of the InAs/GaSb superlattices with band gaps in the range of 200 to 360 meV.

  20. Dizziness and Fainting Spells

    MedlinePlus

    ... or Animals Genitals and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic ... Vaccine Preventable Diseases Healthy Children > Health Issues > Conditions > Head Neck & Nervous System > Dizziness and Fainting Spells Health Issues ...

  1. Fainting: First Aid

    MedlinePlus

    ... brain is momentarily inadequate, causing you to lose consciousness. This loss of consciousness is usually brief. Fainting can have no medical ... be a serious disorder. Therefore, treat loss of consciousness as a medical emergency until the signs and ...

  2. Imaging stellar faint companions

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Canales, Vidal F.

    . The conclusion is that the use of the Dark Speckle technique in a compensated nulling interferometer could be a promising way to detect faint objects, although the application of the technique in the infrared range requires the development of appropriate detectors.

  3. Type-II superlattice infrared detector technology at Fraunhofer IAF

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Daumer, Volker; Hugger, Tsvetelina; Kohn, Norbert; Luppold, Wolfgang; Müller, Raphael; Niemasz, Jasmin; Schmidt, Johannes; Rutz, Frank; Stadelmann, Tim; Wauro, Matthias; Wörl, Andreas

    2016-05-01

    For more than two decades, Antimony-based type-II superlattice photodetectors for the infrared spectral range between 3-15 μm are under development at the Fraunhofer Institute for Applied Solid State Physics (IAF). Today, Fraunhofer IAF is Germany's only national foundry for InAs/GaSb type-II superlattice detectors and we cover a wide range of aspects from basic materials research to small series production in this field. We develop single-element photodetectors for sensing systems as well as two-dimensional detector arrays for high-performance imaging and threat warning systems in the mid-wavelength and long-wavelength region of the thermal infrared. We continuously enhance our production capabilities by extending our in-line process control facilities. As a recent example, we present a semiautomatic wafer probe station that has developed into an important tool for electrooptical characterization. A large amount of the basic materials research focuses on the reduction of the dark current by the development of bandgap engineered device designs on the basis of heterojunction concepts. Recently, we have successfully demonstrated Europe's first LWIR InAs/GaSb type-II superlattice imager with 640x512 pixels with 15 μm pitch. The demonstrator camera already delivers a good image quality and achieves a thermal resolution better than 30 mK.

  4. Optical properties of infrared FELs from the FELI Facility II

    SciTech Connect

    Saeki, K.; Okuma, S.; Oshita, E.

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  5. Development of quantum well, quantum dot, and type II superlattice infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Keo, Sam A.; Rafol, B., , Sir; Mumolo, Jason M.; Liu, John K.; Hill, Cory J.; Khoshakhlagh, Arezou; Höglund, Linda; Luong, Edward M.; Gunapala, Sarath D.

    2014-01-01

    We present an overview of III-V semiconductor-based infrared detector and focal plane array development at the NASA Jet Propulsion Laboratory in recent years. Topics discussed include: (1) the development of long-wavelength quantum well infrared photodetector for imaging spectrometer applications, (2) the concept and realization of the submonolayer quantum dot infrared photodetector (SML-QDIP) as an alternative to the standard QDIP-based on Stranski-Krastanov (SK) quantum dots, (3) the mid-wavelength infrared quantum dot barrier infrared detector with extended cutoff wavelength, and (4) high-performance type-II superlattice long-wavelength infrared detectors based on the complementary barrier infrared detector architecture.

  6. Near-Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K ~ 24.5

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Yoshii, Yuzuru; Maihara, Toshinori; Iwamuro, Fumihide; Motohara, Kentaro

    2001-10-01

    Galaxy counts in the K band, (J-K) colors, and apparent size distributions of faint galaxies in the Subaru Deep Field (SDF) down to K~24.5 were studied in detail. Special attention has been paid to take into account various selection effects, including the cosmological dimming of surface brightness, to avoid any systematic bias that may be the origin of controversy in previously published results. We also tried to be very careful about systematic model uncertainties; we present a comprehensive survey of these systematic uncertainties and dependence on various parameters, and we have shown that the dominant factors to determine galaxy counts in this band are cosmology and number evolution. We found that the pure luminosity evolution (PLE) model is very consistent with all the SDF data down to K~22.5, without any evidence for number or size evolution in a low-density, Λ-dominated flat universe, which is now favored by various cosmological observations. On the other hand, a number evolution of galaxies with η~2, when invoked as the luminosity conserving mergers as φ*~(1+z)η and L*~(1+z)-η for all types of galaxies, is necessary to explain the data in the Einstein-de Sitter universe. If the popular Λ-dominated universe is taken for granted, our result then gives a strong constraint on the number evolution of giant elliptical or early-type galaxies to z~1-2 that must be met by any models in the hierarchically clustering universe, since such galaxies are the dominant population in this magnitude range (K<~22.5). A number evolution with η~1 is already difficult to reconcile with the data in this universe. On the other hand, number evolution of late-type galaxies and/or dwarf galaxies, which has been suggested by previous studies of optical galaxies, is allowed from the data. In the fainter magnitude range of K>~22.5, we found a slight excess of observed counts over the prediction of the PLE model when elliptical galaxies are treated as a single population. We

  7. Proposal for strained type II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Mailhiot, C.

    1987-09-01

    It is shown that strained type II superlattices made of InAs-Ga(1-x)In(x)Sb(x) about 0.4 have favorable optical properties for infrared detection. By adjusting the layer thicknesses and the alloy composition, a wide range of wavelengths can be reached. Optical absorption calculations for a case where the cutoff wavelength is about 10 microns show that, near threshold, the absorption is as good as for the HgCdTe alloy with the same band gap. The electron effective mass is nearly isotropic and equal to 0.04 m. This effective mass should give favorable electrical properties, such as small diode tunneling currents and good mobilities, and diffusion lengths.

  8. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  9. WIDE INTEGRAL-FIELD INFRARED SPECTROSCOPY OF THE BRIGHT [Fe II] SHELL IN THE YOUNG SUPERNOVA REMNANT G11.2-0.3

    SciTech Connect

    Lee, Ho-Gyu; Onaka, Takashi; Moon, Dae-Sik; Rahman, Mubdi; Koo, Bon-Chul; Kim, Hyun-Jeong; Chun, Won-Seok; Eikenberry, Stephen S.; Gruel, Nicolas; Raines, S. Nicholas; Guzman, Rafael; Raymond, John E-mail: onaka@astron.s.u-tokyo.ac.jp E-mail: koo@astro.snu.ac.kr E-mail: mubdi@pha.jhu.edu E-mail: raines@astro.ufl.edu

    2013-06-20

    We present the results of wide integral-field near-infrared (1.0-1.8 {mu}m) spectroscopic observations of the southeastern shell of the young core-collapse supernova remnant (SNR) G11.2-0.3. We first construct [Fe II] 1.644 {mu}m line images of three bright clumps from the obtained spectral image cubes and compare them with those of other transitions such as [Fe II] 1.257, [Fe II] 1.534, and He I 1.083 {mu}m line images. This allows us to estimate the electron density ({approx}4700-9400 cm{sup -3}) and extinction (A{sub V} {approx} 16-20 mag) of the shell, including a detailed two-dimensional distribution of the properties in the brightest clump, as well as the discovery of a faint high-velocity ({approx} - 440 km s{sup -1}) component in the clump. Our SNR shock model calculations estimate the pre-shock number density of {approx}250-500 cm{sup -3} and shock speed of {approx}80-250 km s{sup -1} in the [Fe II]-emitting region of the SNR. The comparison between the observed and modeled radial profiles of the line intensities and their ratios reveals that the shell is composed of multiple thin filaments which have been likely formed in episodic mass-loss processes of a progenitor star. The discovery of the faint high-velocity component supports the interpretation that the southeastern shell of G11.2-0.3 is mainly composed of circumstellar material with contamination by supernova ejecta and also that its ejected material was expelled primarily in the southeast-northwest direction.

  10. How Faint Can You Go?

    NASA Astrophysics Data System (ADS)

    Henden, Arne

    2017-06-01

    For many scientific projects, knowledge of the faint limit of your exposure can be extremely important. In addition, it can be just plain fun to know how faint your equipment can go under varying circumstances. This paper describes the concept and gives some guidance as to how to increase the scientific value of your reports.

  11. Detection of faint broad emission lines in type 2 AGN - II. On the measurement of the black hole mass of type 2 AGN and the unified model

    NASA Astrophysics Data System (ADS)

    Onori, F.; Ricci, F.; La Franca, F.; Bianchi, S.; Bongiorno, A.; Brusa, M.; Fiore, F.; Maiolino, R.; Marconi, A.; Sani, E.; Vignali, C.

    2017-06-01

    We report the virial measurements of the black hole (BH) mass of a sample of 17 type 2 active galactic nuclei (AGN), drawn from the Swift/BAT 70-month 14-195 keV hard X-ray catalogue, where a faint BLR component has been measured via deep NIR (0.8-2.5 μm) spectroscopy. We compared the type 2 AGN with a control sample of 33 type 1 AGN. We find that the type 2 AGN BH masses span the 5 < log(MBH/M⊙) < 7.5 range, with an average log(MBH/M⊙) = 6.7, which is ∼0.8 dex smaller than found for type 1 AGN. If type 1 and type 2 AGN of the same X-ray luminosity log(L_{14-195}/erg s-1) ∼ 43.5 are compared, type 2 AGN have 0.5 dex smaller BH masses than type 1 AGN. Although based on few tens of objects, this result disagrees with the standard AGN unification scenarios in which type 1 and type 2 AGN are the same objects observed along different viewing angles with respect to a toroidal absorbing material.

  12. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  13. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  14. SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS

    SciTech Connect

    Huang, Kuang-Han; Bradač, Maruša; Hoag, Austin; Cain, Benjamin; Lubin, L. M.; Knight, Robert I.; Lemaux, Brian C.; Ryan, R. E. Jr.; Brammer, Gabriel B.; Castellano, Marco; Amorin, Ricardo; Fontana, Adriano; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; Linden, Anja von der E-mail: astrokuang@gmail.com

    2016-01-20

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios  ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ∼1.2–5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M{sub 1600} are between −21.2 and −18.9 mag, while their intrinsic stellar masses are between 2 × 10{sup 8}M{sub ⊙} and 2.9 × 10{sup 9}M{sub ⊙}. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at z{sub Lyα} = 6.76 (in RXJ 1347) and one at z{sub Lyα} = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]–[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  15. Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-detected Lyman-Break Galaxies at 6 ≲ z ≲ 10 behind Strong-lensing Clusters

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Bradač, Maruša; Lemaux, Brian C.; Ryan, R. E., Jr.; Hoag, Austin; Castellano, Marco; Amorín, Ricardo; Fontana, Adriano; Brammer, Gabriel B.; Cain, Benjamin; Lubin, L. M.; Merlin, Emiliano; Schmidt, Kasper B.; Schrabback, Tim; Treu, Tommaso; Gonzalez, Anthony H.; von der Linden, Anja; Knight, Robert I.

    2016-01-01

    We study the stellar population properties of the IRAC-detected 6 ≲ z ≲ 10 galaxy candidates from the Spitzer UltRa Faint SUrvey Program. Using the Lyman Break selection technique, we find a total of 17 galaxy candidates at 6 ≲ z ≲ 10 from Hubble Space Telescope images (including the full-depth images from the Hubble Frontier Fields program for MACS 1149 and MACS 0717) that have detections at signal-to-noise ratios ≥ 3 in at least one of the IRAC 3.6 and 4.5 μm channels. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of ˜1.2-5.5. Due to the magnification of the foreground galaxy clusters, the rest-frame UV absolute magnitudes M1600 are between -21.2 and -18.9 mag, while their intrinsic stellar masses are between 2 × 108M⊙ and 2.9 × 109M⊙. We identify two Lyα emitters in our sample from the Keck DEIMOS spectra, one at zLyα = 6.76 (in RXJ 1347) and one at zLyα = 6.32 (in MACS 0454). We find that 4 out of 17 z ≳ 6 galaxy candidates are favored by z ≲ 1 solutions when IRAC fluxes are included in photometric redshift fitting. We also show that IRAC [3.6]-[4.5] color, when combined with photometric redshift, can be used to identify galaxies which likely have strong nebular emission lines or obscured active galactic nucleus contributions within certain redshift windows.

  16. Deep infrared galaxies

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew; Houck, J. R.; Hacking, Perry B.

    1992-01-01

    High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.

  17. Diffuse far-infrared [C II] line emission from high Galactic latitude

    NASA Astrophysics Data System (ADS)

    Makiuti, S.; Shibai, H.; Nakagawa, T.; Okuda, H.; Okumura, K.; Matsuhara, H.; Hiromoto, N.; Doi, Y.

    2002-02-01

    The Far-Infrared Line Mapper (FILM) onboard the Infrared Telescope in Space (IRTS) made a survey for the far-infrared [C Ii] 158 mu m line emission with high sensitivity and moderate spatial resolution. We have found that diffuse [C Ii] line emission extends to high Galactic latitude regions. The [C Ii] line intensity at | b | ~ 60deg ranges from 2*E-7 to 1.5*E-6 erg cm-2 s-1 sr-1. Comparisons of the distribution of the [C Ii] line emission with those of the H I column density and far-infrared radiation show some correlations, but the [C Ii] line emission differs from the far-IR and HI emission at high Galactic latitudes. These differences suggest that the [C Ii] line primarily comes from ionized gas in the high-latitude regions. The intensities of the [C Ii] line emission on the southern side (b < 0deg) of the Galactic plane are systematically larger than those on the northern side (b > 0deg). We infer from this difference that there is a displacement of the Sun with respect to the center of interstellar medium from which the [C Ii] line comes. When an exponential distribution is assumed for the [C Ii] emitting gas, it is expected that the Sun is located at the distance of about 17% of the scale height above the center of the gas. This is consistent with the previously reported displacement of the Sun from the Galactic plane.

  18. 77 FR 36579 - II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased Workers From Adecco, Carol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... Employment and Training Administration II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased...., Infrared Optics-Saxonburg Division, Saxonburg, PA; Notice of Revised Determination on Reconsideration The... period. The determination was applicable to workers and former workers of II-VI, Inc., Infrared Optics...

  19. GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION

    SciTech Connect

    Barmby, P.; Marengo, M.; Evans, N. R.; Huelsman, D.; Fazio, G. G.; Bono, G.; Su, K. Y. L.; Welch, D. L.

    2011-02-15

    A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was already known to possess extended infrared emission, while the extended emission around the other two stars (S Mus and {delta} Cep) is newly discovered in our observations. Four other stars (GH Lup, l Car, T Mon, and X Cyg) show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass-loss rate upper limits for S Mus and {delta} Cep are in the range from 10{sup -9} to 10{sup -8} M{sub sun} yr{sup -1}, with the upper limit for RS Pup as high as 10{sup -6} M{sub sun} yr{sup -1}. Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass-loss rate we estimate for our sources show that dusty mass loss can only account for part of the Cepheid mass-loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars and should be taken into account in the calibration of the Cepheid distance scale.

  20. Galactic Cepheids with Spitzer. II. Search for Extended Infrared Emission

    NASA Astrophysics Data System (ADS)

    Barmby, P.; Marengo, M.; Evans, N. R.; Bono, G.; Huelsman, D.; Su, K. Y. L.; Welch, D. L.; Fazio, G. G.

    2011-02-01

    A deep and detailed examination of 29 classical Cepheids with the Spitzer Space Telescope has revealed three stars with strong nearby extended emission detected in multiple bands which appears to be physically associated with the stars. RS Pup was already known to possess extended infrared emission, while the extended emission around the other two stars (S Mus and δ Cep) is newly discovered in our observations. Four other stars (GH Lup, ell Car, T Mon, and X Cyg) show tentative evidence for extended infrared emission. An unusual elongated extended object next to SZ Tau appears to be a background or foreground object in a chance alignment with the Cepheid. The inferred mass-loss rate upper limits for S Mus and δ Cep are in the range from 10-9 to 10-8 M sun yr-1, with the upper limit for RS Pup as high as 10-6 M sun yr-1. Mass loss during post-main-sequence evolution has been proposed as a resolution to the discrepancy between pulsational and dynamical masses of Cepheid variable stars: dust in the lost material would make itself known by the presence of an infrared bright nebula or unresolved infrared excess. The observed frequency of infrared circumstellar emission (<24%) and the mass-loss rate we estimate for our sources show that dusty mass loss can only account for part of the Cepheid mass-loss discrepancy. Nevertheless, our direct evidence that mass loss is active during the Cepheid phase is an important confirmation that these processes need to be included in evolutionary and pulsation models of these stars and should be taken into account in the calibration of the Cepheid distance scale.

  1. The Infrared and Radio Flux Densities of Galactic H ii regions

    NASA Astrophysics Data System (ADS)

    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.

    2017-09-01

    We derive infrared and radio flux densities of all ∼1000 known Galactic H ii regions in the Galactic longitude range 17\\buildrel{\\circ}\\over{.} 5< {\\ell }< 65^\\circ . Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic H ii regions. We compute flux densities at six wavelengths in the infrared (Spitzer GLIMPSE 8 μm, WISE 12 μm and 22 μm, Spitzer MIPSGAL 24 μm, and Herschel Hi-GAL 70 μm and 160 μm) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All H ii region infrared flux densities are strongly correlated with their ∼20 cm flux densities. All H ii regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions (r < 1 pc), have slightly elevated IR to radio ratios. The colors {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}70μ {{m}}/{F}12μ {{m}})≥slant 1.2, and {{log}}10({F}24μ {{m}}/{F}12μ {{m}})≥slant 0 and {{log}}10({F}160μ {{m}}/{F}70μ {{m}})≤slant 0.67 reliably select H ii regions, independent of size. The infrared colors of ∼22% of H ii regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of Wood & Churchwell for H ii regions, after adjusting the criteria to the wavelengths used here. Because these color criteria are commonly thought to select only ultra-compact H ii regions, this result indicates that the true ultra-compact H ii region population is uncertain. Compared to a sample of IR color indices from star-forming galaxies, H ii regions show higher {{log}}10({F}70μ {{m}}/{F}12μ {{m}}) ratios. We find a weak trend of decreasing infrared to ∼20 cm flux density ratios with increasing R gal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.

  2. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    SciTech Connect

    Shimonishi, Takashi; Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki; Ita, Yoshifusa; Kawamura, Akiko; Kaneda, Hidehiro

    2013-02-01

    We performed a near-infrared spectroscopic survey toward an area of {approx}10 deg{sup 2} of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R {approx} 20) spectra in 2-5 {mu}m for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 {mu}m, and 67% of the sources also have photometric data up to 24 {mu}m. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 {mu}m can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the

  3. A Deep Search For Faint Galaxies Associated With Very Low-redshift C IV Absorbers. II. Program Design, Absorption-line Measurements, and Absorber Statistics

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.; Tumlinson, Jason; O'Meara, John M.; Bordoloi, Rongmon; Katz, Neal; Willmer, C. N. A.

    2015-12-01

    To investigate the evolution of metal-enriched gas over recent cosmic epochs as well as to characterize the diffuse, ionized, metal-enriched circumgalactic medium, we have conducted a blind survey for C iv absorption systems in 89 QSO sightlines observed with the Hubble Space Telescope Cosmic Origins Spectrograph. We have identified 42 absorbers at z < 0.16, comprising the largest uniform blind sample size to date in this redshift range. Our measurements indicate an increasing C iv absorber number density per comoving path length (d{N}/{dX}= 7.5 ± 1.1) and modestly increasing mass density relative to the critical density of the universe (ΩC iv = 10.0 ± 1.5 × 10-8) from z ˜ 1.5 to the present epoch, consistent with predictions from cosmological hydrodynamical simulations. Furthermore, the data support a functional form for the column density distribution function that deviates from a single power law, also consistent with independent theoretical predictions. As the data also probe heavy element ions in addition to C iv at the same redshifts, we identify, measure, and search for correlations between column densities of these species where components appear to be aligned in velocity. Among these ion-ion correlations, we find evidence for tight correlations between C ii and Si ii, C ii and Si iii, and C iv and Si iv, suggesting that these pairs of species arise in similar ionization conditions. However, the evidence for correlations decreases as the difference in ionization potential increases. Finally, when controlling for observational bias, we find only marginal evidence for a correlation (86.8% likelihood) between the Doppler line width b(C iv) and column density N(C iv).

  4. CANOES II; Dynamics of Atmospheric Infrared Thermochemical Excitation. Volume 2

    DTIC Science & Technology

    1989-03-01

    4 8 which carried at least 6.5 eV internal energy, in their studies on the excitation of mercuric halides by N2 (A). The energy of the companion...as auroral precursors of infrared radiation ., 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION MUNCLASSIFIED/tINLIMITED...investigate chemiluminescent reactions of atmospherically important radiators which could significantly contribute to emissions in several important

  5. Advances in low-cost infrared imaging using II-VI colloidal quantum dots (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pimpinella, Richard E.; Buurma, Christopher; Ciani, Anthony J.; Grein, Christoph H.; Guyot-Sionnest, Philippe

    2017-02-01

    II-VI colloidal quantum dots (CQDs) have made significant technological advances over the past several years, including the world's first demonstration of MWIR imaging using CQD-based focal plane arrays. The ultra-low costs associated with synthesis and device fabrication, as well as compatibility with wafer-level focal plane array fabrication, make CQDs a very promising infrared sensing technology. In addition to the benefit of cost, CQD infrared imagers are photon detectors, capable of high performance and fast response at elevated operating temperatures. By adjusting the colloidal synthesis, II-VI CQD photodetectors have demonstrated photoresponse from SWIR through LWIR. We will discuss our recent progress in the development of low cost infrared focal plane arrays fabricated using II-VI CQDs.

  6. Detecting stellar-wind bubbles through infrared arcs in H ii regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H ii regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H ii regions around individual stars to predict the infrared emission properties of the dust within the H ii region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H ii region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H ii region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H ii regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  7. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  8. Methane clathrate hydrate infrared spectrum. II. Near-infrared overtones, combination modes and cages assignments

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Deboffle, D.; Bouzit, M.

    2010-05-01

    Context. Recently, we recorded the infrared spectrum of the methane clathrate hydrate stretching mode at low temperature, a caged compound of possible interest for solar system studies as well as interstellar ice mantles. Aims: We provide a practical infrared spectroscopic identification for methane clathrate hydrate to examine its astrophysical presence or absence. We investigate the crystal field induced shifts, and assign the different transitions to the different encaged molecules environments in this clathrate hydrate. Methods: A methane clathrate crystal is produced in an infrared transmitting moderate-pressure closed cell. Using Fourier transform infrared (FTIR) spectroscopy, the overtones (3ν4, 2ν3) and combination modes (ν2+2ν4, ν1+ν4, ν3+ν4, ν2+ν3, ν3+2ν4, 2ν2+2ν4, ν2+ν3+ν4) falling in the 6000-3000 cm-1 (~1.65-3.4 μm) and their temperature behaviour are investigated. In addition, non-astrophysical CH4/CF4 gas mixtures are used to build clathrates with different methane large and small cage occupancies to help in assignments. Results: Combination modes show the two distinct cages and the quasi-free rotor low temperature ro-vibrational structure expected for methane clathrate hydrates. A comparison with the pure phase I is performed. Implications for methane clathrate hydrate detection are clearly identified. Conclusions: Solid methane actual remote observations of solar system objects surfaces do not display the clathrate hydrates' specific shift and occupancy signatures. Observationnally, a search for their infrared spectroscopic specific signatures should be performed, focusing on thermodynamically favourable objects like trans- neptunian objects (TNOs) or recently exposed (e.g. fresh impact) planet (or their satellites) surfaces. On the modeling side, efforts must be undertaken to progressively implement clathrate formation kinetics.

  9. HST NICMOS snapshot survey of faint galaxies at z < 1

    NASA Astrophysics Data System (ADS)

    Hinkley, S.; Im, M.; DEEP Team

    2000-12-01

    During Cycle 7 HST observations, we have obtained NICMOS H-band images of faint field galaxies for which both HST morphological information (in V and/or I) and spectroscopic redshifts are available. The purpose of the NICMOS observation is to provide their morphology in rest frame NIR wavelengths (8000 - 16000 Å), where the effect of dust extinction is less severe, and to obtain their near infrared (NIR) colors. The objects in our field are partly contained in the Groth Strip being studied in detail by the DEEP team. In addition, we have made use of a software package called GIM2D (Simard et al. 2001). This package is designed to perform detailed 2-dimensional decompositions for images of distant galaxies. Using this software, we have obtained structural parameters for the objects in the H-band to complement those parameters in V and I. We will present: i) color gradients inside elliptical galaxies to test models of their formation; ii) the effect of dust extinction on the properties of field galaxies at 0 < z < 1; iii) evolution of V-H, and V-I colors of bulges as well as the B/T ratio of spiral galaxies as a function of redshift; iv) morphological k-correction. The median redshift of our sample is z ~ 0.5 and this corresponds to about one half of the current age of the universe. This work is supported by the STScI grant GO-07895.02-96A.

  10. CALCULATION OF INTENSITY RATIOS OF OBSERVED INFRARED [Fe II] LINES

    SciTech Connect

    Deb, Narayan C.; Hibbert, Alan

    2010-03-10

    Two recent observational studies of the [Fe II] {lambda}12567/{lambda}16435 line ratio by Smith and Hartigan and Rodriguez-Ardila et al. have suggested that the available theoretical A-values could be incorrect to 10%-40%. We have carried out an extensive configuration interaction calculation of [Fe II] lines to investigate this claim, as well as the variability in observed line ratios for {lambda}8617/{lambda}9052 and {lambda}8892/{lambda}9227 of Dennefeld. For these transitions, we are generally in good agreement with the results of Nussbaumer and Storey, less so with those of Quinet et al. In comparison, the ratios derived from observations appear either to be less secure, or other factors influence those results.

  11. Kinematics of faint white dwarfs.

    PubMed

    Luyten, W J

    1978-10-01

    An analysis has been made for solar motion for 128 very faint white dwarfs of color class b or a. While about 40% of these stars may be high-velocity objects, it seems definitely indicated that the luminosity of all of them is considerably lower than that for the "normal" white dwarf of the same color.

  12. Type-II indium arsenide/gallium antimonide superlattices for infrared detectors

    NASA Astrophysics Data System (ADS)

    Mohseni, Hooman

    In this work, the unique properties of type-II InAs/GaSb heterojunctions were utilized for the realization of novel infrared photodetectors with higher operating temperature, detectivity and uniformity than the commonly available infrared detectors. This effort was concentrated on two major devices: uncooled infrared detectors in the long wavelength infrared (LWIR) range, and cooled devices in the very long wavelength infrared (VLWIR) range. Uncooled infrared (IR) detectors are required for low-cost, lightweight sensor systems that have many industrial and medical applications. Commercially available uncooled IR sensors use ferroelectric or microbolometer detectors. These sensors are inherently slow and cannot detect rapid signal changes needed for high-speed infrared systems. Some of the applications which require a fast detector (tau < 30 msec) are: freespace communication, active infrared countermeasure, non-invasive medical monitoring, and LIDARs. Although photon detectors have frequency responses in the megahertz range, their high temperature detectivity is severely degraded due to high Auger recombination rates. Bandgap engineering was used in order to suppress Auger recombination at room temperature in type-II superlattices. Our experimental results demonstrated nearly one order of magnitude lower Auger recombination rate at room temperature in these type-II superlattices compared to typical intrinsic detectors, such as HgCdTe, with similar bandgap. Uncooled detectors based on the engineered superlattices showed a detectivity of 1.3 x 108g cmHz 1/2/W at 11 Et m, which is comparable to microbolometers. However, the measured response time of the detectors was more than five orders of magnitude faster than microbolometers. In parallel, devices for operation in the VLWIR were developed. High-performance infrared detectors with cutoff wavelength above 14 mum are highly needed for many space-based applications. Commonly used detectors are extrinsic silicon and Hg

  13. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors.

    PubMed

    Lu, Rongtao; Christianson, Caleb; Kirkeminde, Alec; Ren, Shenqiang; Wu, Judy

    2012-12-12

    Despite the potentials and the efforts put in the development of uncooled carbon nanotube infrared detectors during the past two decades, their figure-of-merit detectivity remains orders of magnitude lower than that of conventional semiconductor counterparts due to the lack of efficient exciton dissociation schemes. In this paper, we report an extraordinary photocurrent harvesting configuration at a semiconducting single-walled carbon nanotube (s-SWCNT)/polymer type-II heterojunction interface, which provides highly efficient exciton dissociation through the intrinsic energy offset by designing the s-SWCNT/polymer interface band alignment. This results in significantly enhanced near-infrared detectivity of 2.3 × 10(8) cm·Hz(1/2)/W, comparable to that of the many conventional uncooled infrared detectors. With further optimization, the s-SWCNT/polymer nanohybrid uncooled infrared detectors could be highly competitive for practical applications.

  14. Type II strained layer superlattice: a potential infrared sensor material for space

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Tidrow, M. Z.; Novello, A.; Weichel, H.; Vohra, S.

    2008-02-01

    The Missile Defense Agency's Advanced Technology Office is developing advanced passive electro-optical and infrared sensors for future space-based seekers by exploring new infrared detector materials. A Type II strained layer superlattice, one of the materials under development, has shown great potential for space applications. Theoretical results indicate that strained layer superlattice has the promise to be superior to current infrared sensor materials, such as HgCdTe, quantum well infrared photodetectors, and Si:As. Strained layer superlattice-based infrared detector materials combine the advantages of HgCdTe and quantum well infrared photodetectors. The bandgap of strained layer superlattice can be tuned for strong broadband absorption throughout the short-, mid-, long-, and very long wavelength infrared bands. The electronic band structure can be engineered to suppress Auger recombination noise and reduce the tunneling current. The device structures can be easily stacked for multicolor focal plane arrays. The III-V semiconductor fabrication offers the potential of producing low-defect-density, large-format focal plane arrays with high uniformity and high operability. A current program goal is to extend wavelengths to longer than 14 μm for space applications. This paper discusses the advantages of strained layer superlattice materials and describes efforts to improve the material quality, device design, and device processing.

  15. Infrared Extraction Change for the NSLS-II Storage Ring

    SciTech Connect

    Blednykh,A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-05-04

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are {approx}50mrad horizontal and {approx}25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.

  16. Hα kinematics of the Spitzer Infrared Nearby Galaxies Survey - II

    NASA Astrophysics Data System (ADS)

    Dicaire, I.; Carignan, C.; Amram, P.; Hernandez, O.; Chemin, L.; Daigle, O.; de Denus-Baillargeon, M.-M.; Balkowski, C.; Boselli, A.; Fathi, K.; Kennicutt, R. C.

    2008-04-01

    This is the second part of an Hα kinematics follow-up survey of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The aim of this paper is to shed new light on the role of baryons and their kinematics and on the dark/luminous matter relation in the star-forming regions of galaxies, in relation with studies at other wavelengths. The data for 37 galaxies are presented. The observations were made using Fabry-Perot interferometry with the photon-counting camera FaNTOmM on four different telescopes, namely the Canada-France-Hawaii 3.6-m, the ESO La Silla 3.6-m, the William Herschel 4.2-m and the Observatoire du mont Mégantic 1.6-m telescopes. The velocity fields are computed using custom IDL routines designed for an optimal use of the data. The kinematical parameters and rotation curves are derived using the GIPSY software. It is shown that non-circular motions associated with galactic bars affect the kinematical parameters fitting and the velocity gradient of the rotation curves. This leads to incorrect determinations of the baryonic and dark matter distributions in the mass models derived from those rotation curves. Based on observations made with the ESO 3.60-m telescope at La Silla Observatories under programme ID 076.B-0859 and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. E-mail: isabelle@astro.umontreal.ca (ID);claude.carignan@umontreal.ca (CC) ‡ Visiting Astronomer, Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.

  17. THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS

    SciTech Connect

    Fernandez, Elizabeth R.; Komatsu, Eiichiro; Shapiro, Paul R.; Iliev, Ilian T.

    2010-02-20

    The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information

  18. The Hawaii Infrared Parallax Program. II. Young Ultracool Field Dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Dupuy, Trent J.; Allers, Katelyn N.

    2016-12-01

    We present a large, uniform analysis of young (≈10-150 Myr) ultracool dwarfs, based on new high-precision infrared (IR) parallaxes for 68 objects. We find that low-gravity (vl-g) late-M and L dwarfs form a continuous sequence in IR color-magnitude diagrams, separate from the field population and from current theoretical models. These vl-g objects also appear distinct from young substellar (brown dwarf and exoplanet) companions, suggesting that the two populations may have a different range of physical properties. In contrast, at the L/T transition, young, old, and spectrally peculiar objects all span a relatively narrow range in near-IR absolute magnitudes. At a given spectral type, the IR absolute magnitudes of young objects can be offset from ordinary field dwarfs, with the largest offsets occurring in the Y and J bands for late-M dwarfs (brighter than the field) and mid-/late-L dwarfs (fainter than the field). Overall, low-gravity (vl-g) objects have the most uniform photometric behavior, while intermediate gravity (int-g) objects are more diverse, suggesting a third governing parameter beyond spectral type and gravity class. We examine the moving group membership for all young ultracool dwarfs with parallaxes, changing the status of 23 objects (including 8 previously identified planetary-mass candidates) and fortifying the status of another 28 objects. We use our resulting age-calibrated sample to establish empirical young isochrones and show a declining frequency of vl-g objects relative to int-g objects with increasing age. Notable individual objects in our sample include high-velocity (≳100 km s-1) int-g objects, very red late-L dwarfs with high surface gravities, candidate disk-bearing members of the MBM20 cloud and β Pic moving group, and very young distant interlopers. Finally, we provide a comprehensive summary of the absolute magnitudes and spectral classifications of young ultracool dwarfs, using a combined sample of 102 objects found in the field

  19. Faint Submillimeter Galaxies Behind the Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Cowie, Lennox; Barger, Amy; Wang, Wei-Hao; Chen, Chian-Chou

    2015-08-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. To explore this faint submillimeter population, we have been observing nine galaxy clusters with the SCUBA-2 camera on the James Clerk Maxwell Telescope, including five of the clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array to determine the positions of our detected sources precisely. Our recent observations have discovered several high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies but which are undetected in current deep radio, optical and near-infrared images. These remarkable results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  20. Chandra Observations of Faint LMXB's

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Patel, S. K.; Kouveliotou, C.; vanderKlis, M.; Belloni, T.; Lewin, W. H. G.; Six, N. Frank (Technical Monitor)

    2002-01-01

    There exists a group of persistently faint galactic X-ray sources that based on their location in the galaxy, high Lx/Lopt, association with X-ray bursts, and absence of X-ray pulsations are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for 7 of these systems: 1708-409, 1711-339, 1735-269, 1736-297, 1746-331, 1746.7-3224, and 1812-12. Improved locations for all sources, excluding 1736-297 and 1746-331 (which were not detected) are presented. Our observations are consistent with previously reported transient behavior of 1736-297, 1746-331, and 1711-339 (which we detect in one of two observations). Energy and power spectra are presented for 1735-269, 1711-339, and 1746.7-3224. The energy spectra are hard, consistent with typical faint LMXB spectra. Further, we present a newly discovered source, a very faint, soft, source, separated by 2.7' from 1746.7-3224.

  1. Luminosities and infrared excess in Type II and anomalous Cepheids in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Jurkovic, M. I.

    2017-07-01

    Type II and anomalous Cepheids (ACs) are useful distance indicators when there are too few classical Cepheids or when RR Lyrae stars are too faint. Type II and ACs follow a period-luminosity relation as well, but they are less well-studied classes of objects. In this paper we study the sample of 335 Type II and ACs in the Small and Large Magellanic Clouds detected in OGLE-III data. The spectral energy distributions (SEDs) are constructed from photometric data available in the literature and fitted with a dust radiative transfer model, thereby leading to a determination of luminosity and effective temperature. In addition, a subsample of targets is investigated for possible binarity by looking for the light-time travel effect (LITE). Hertzsprung-Russell diagrams (HRD) are constructed and compared to evolutionary tracks and theoretical instability strips (ISs). In agreement with previous suggestions, the BL Her subclass can be explained by the evolution of 0.5-0.6 M⊙ stars evolving off the zero-age horizontal branch and the ACs can be explained by the evolution of 1.1-2.3 M⊙ stars. The evolution of the W Vir subclass is not clear. These objects are at higher luminosities than ACs and evolutionary tracks of 2.5-4 M⊙ stars cross this region in the HRD, but the periods of the W Vir are longer than those of the short period classical Cepheids at these luminosities, which indicates the former have lower masses. A low-mass star experiencing a thermal pulse when the envelope mass is small can make a blue loop into the IS region of the W Vir stars. But the timescale is extremely short, so this is also no explanation for the W Vir as a class. A relation to binarity might be at the origin of the W Vir stars, which has already been explicitly suggested for the peculiar W Vir stars. For 60% of the RV Tau and 10% of the W Vir objects an infrared excess is detected from the SED fitting. A recent result is confirmed that stars exist with luminosities below that predicted from

  2. PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovae

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Yuan, F.; Taubenberger, S.; Maguire, K.; Pastorello, A.; Benetti, S.; Smartt, S. J.; Cappellaro, E.; Howell, D. A.; Bildsten, L.; Moore, K.; Stritzinger, M.; Anderson, J. P.; Benitez-Herrera, S.; Bufano, F.; Gonzalez-Gaitan, S.; McCrum, M. G.; Pignata, G.; Fraser, M.; Gal-Yam, A.; Le Guillou, L.; Inserra, C.; Reichart, D. E.; Scalzo, R.; Sullivan, M.; Yaron, O.; Young, D. R.

    2014-01-01

    We present optical and infrared monitoring data of SN 2012hn collected by the Public European Southern Observatory Spectroscopic Survey for Transient Objects. We show that SN 2012hn has a faint peak magnitude (MR ˜ -15.65) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca II lines at all epochs, which relates this transient to previously described `Ca-rich' or `gap' transients. However, the photospheric spectra (from -3 to +32 d with respect to peak) of SN 2012hn show a series of absorption lines which are unique and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti II and Cr II are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150 d shows prominent Ca II, O I, C I and possibly Mg I lines which appear similar in strength to those displayed by core-collapse supernovae (SNe). To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious star-forming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.

  3. Faint radio sources and gravitational lensing

    SciTech Connect

    Langston, G.I.; Conner, S.R.; Heflin, M.B.; Lehar, J.; Burke, B.F. MIT, Cambridge, MA )

    1990-04-01

    Measurements of the surface density of radio sources resulting from a deep VLA integration at 5 GHz and the MIT-Green Bank (MG) II 5 GHz survey are summarized. The faint source counts are combined with previous observations and fitted to a power-law function of surface density vs. limiting flux density. The surface density of radio sources brighter than 1 mJy is k = 0.019 + or - 0.004/arcmin. The power-law exponent is best fit by -0.93 + or - 0.14. Between 15 and 100 mJy, the surface density of radio sources varies nearly as predicted by Euclidian models of the universe. Estimates are given for the number of chance alignments of radio sources in the VLA snapshot observations of the MIT-Princeton-Caltech gravitational lens search. The probability of lens candidate configurations occurring by chance alignment is calculated. 28 refs.

  4. Fainting

    MedlinePlus

    ... usually because changes in the nervous system and circulatory system cause a temporary drop in the amount of ... a lot of changes, including changes in the circulatory system. This leads to low blood pressure that may ...

  5. Fainting

    MedlinePlus

    ... usually because changes in the nervous system and circulatory_system cause a temporary drop in the amount of ... a lot of changes, including changes in the circulatory system. This leads to low blood pressure that may ...

  6. Faintness

    MedlinePlus

    ... yourself? About Stephen J. Schueler, M.D News Advertising How It Works FAQ for Consumers FAQ for Physicians Testimonials Site Map Terms of Use Contact Us FreeMD is provided for information purposes only and should not be used as a ...

  7. Near infrared fluorescence quenching properties of copper (II) ions for potential applications in biological imaging

    NASA Astrophysics Data System (ADS)

    Maji, Dolonchampa; Zhou, Mingzhou; Sarder, Pinaki; Achilefu, Samuel

    2014-03-01

    Fluorescence quenching properties of copper(II) ions have been used for designing Cu(II) sensitive fluorescent molecular probes. In this paper, we demonstrate that static quenching plays a key role in free Cu(II)-mediated fluorescence quenching of a near infrared (NIR) fluorescent dye cypate. The Stern-Volmer quenching constant was calculated to be KSV = 970,000 M-1 in 25 mM MES buffer, pH 6.5 at room temperature. We synthesized LS835, a compound containing cypate attached covalently to chelated Cu(II) to study fluorescence quenching by chelated Cu(II). The fluorescence quenching mechanism of chelated Cu(II) is predominantly dynamic or collisional quenching. The quenching efficiency of chelated Cu(II) was calculated to be 58% ± 6% in dimethylsulfoxide at room temperature. Future work will involve further characterization of the mechanism of NIR fluorescence quenching by Cu(II) and testing its reversibility for potential applications in designing fluorophore-quencher based molecular probes for biological imaging.

  8. The faint quasar luminosity function

    NASA Technical Reports Server (NTRS)

    Kron, Richard G.; Bershady, Matthew A.; Munn, Jeffrey A.; Smetanka, John J.; Majewski, Steven; Koo, David C.

    1991-01-01

    Preliminary results of an expanded program to determine the faint-quasar luminosity function are described. Quasars have been selected in four fields totaling 1.2 sq deg from four-band photometry. Out of a total of 130 quasars with good spectroscopy, 37 have J greater than 21.5 and 46 have F greater than 21.0. The spectroscopic sample is representative of all of the color-selected candidates. An estimate of the luminosity function as a function of redshift is derived.

  9. High-resolution mid-infrared spectra of Co II, Ni I, and Fe II in SN 1987A

    NASA Astrophysics Data System (ADS)

    Jennings, D. E.; Boyle, R. J.; Wiedemann, G. R.; Moseley, S. H.

    1993-05-01

    Ground-based infrared observations of SN 1987A on day 612 after the explosion have yielded resolved line profiles of Co II, Ni I, Fe II at 10.52, 11.31, and 17.94 micron, respectively. The spectra were taken at a resolving power of about 1000 with an array grating spectrometer on the 4 m telescope of Cerro Tololo Inter-American Observatory. Based on the observed line intensities we have estimated the minimum mass of each ion: M(Co II) = (6.0 +/- 1.8) x 10 exp -5 solar mass; M(Ni I) = (1.1 +/- 0.1) x 10 exp -3 solar mass; and M(Fe II) = (8.0 +/- 1.5) x 10 exp -3 solar mass. From these we infer total masses for cobalt, nickel, and iron in the ejecta. The nickel and iron line profiles are markedly asymmetric. We interpret these as arising from two components, one centered on the stellar rest velocity with an approximately 3250 km/s full width, and the second at about +1200 km/s with an approximately 1100 km/s full width. The asymmetry may represent a large-scale fracturing of the ejecta by Rayleigh-Taylor instabilities.

  10. High-resolution mid-infrared spectra of Co II, Ni I, and Fe II in SN 1987A

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyle, R. J.; Wiedemann, G. R.; Moseley, S. H.

    1993-01-01

    Ground-based infrared observations of SN 1987A on day 612 after the explosion have yielded resolved line profiles of Co II, Ni I, Fe II at 10.52, 11.31, and 17.94 micron, respectively. The spectra were taken at a resolving power of about 1000 with an array grating spectrometer on the 4 m telescope of Cerro Tololo Inter-American Observatory. Based on the observed line intensities we have estimated the minimum mass of each ion: M(Co II) = (6.0 +/- 1.8) x 10 exp -5 solar mass; M(Ni I) = (1.1 +/- 0.1) x 10 exp -3 solar mass; and M(Fe II) = (8.0 +/- 1.5) x 10 exp -3 solar mass. From these we infer total masses for cobalt, nickel, and iron in the ejecta. The nickel and iron line profiles are markedly asymmetric. We interpret these as arising from two components, one centered on the stellar rest velocity with an approximately 3250 km/s full width, and the second at about +1200 km/s with an approximately 1100 km/s full width. The asymmetry may represent a large-scale fracturing of the ejecta by Rayleigh-Taylor instabilities.

  11. CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution Observations

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Barry, D. J.; Goes, C.; Sloan, G. C.; Spoon, H. W. W.; Weedman, D. W.; Bernard-Salas, J.; Houck, J. R.

    2015-06-01

    The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R=λ /{Δ }λ ≈ 60-127) spectra over ≈ 5-38 μm and high-resolution (R≈ 600) spectra over 10-37 μm. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and here we present the addition of the high-resolution spectra. The high-resolution observations represent approximately one-third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super-sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations.

  12. Empirical calibration of the near-infrared Ca II triplet - III. Fitting functions

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Vazdekis, A.; Peletier, R. F.

    2002-02-01

    Using a near-infrared stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the CaII triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar population models to provide accurate predictions for integrated CaII strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted CaII are compared with those of previous works in the field.

  13. Near-infrared (Fe II) and Pa Beta imaging and spectroscopy of Arp 220

    NASA Technical Reports Server (NTRS)

    Armus, L.; Shupe, D. L.; Matthews, K.; Soifer, B. T.; Neugebauer, G.

    1995-01-01

    We have imaged the ultraluminous infrared galaxy Arp 220 in light of the near-infrared (Fe II) 1.257 micron and Pa-beta lines, and have obtained spectra in the J- and H-band atmospheric windows. Arp 220 is a strong source of (Fe II) and Pa-beta emission, with luminosities of 1.3 x 10(exp 41) and 9.2 x 10(exp 40) ergs/s, respectively. The (Fe II) and Pa-beta emission are both extended over the central 2 sec-3 sec, but with different morphologies. We suggest that the extended (Fe II) emission is produced through the interaction of fast shocks with ambient gas in the interstellar medium (ISM) at the base of the outflowing, supernovae-driven superwind mapped by Heckman et al. (1987). The bolometric luminosity of the starburst required to power this wind is estimated to be at least 2 x 10(exp 11) solar luminosity. If the spatially unresolved (Fe II) emission is produced via a large number of supernova remnants, the implied rate is approximately 0.6/yr. The overall luminosity of such a starburst could account for a large fraction (1/2-1/3) of the Arp 220 energy budget, but the large deficit of ionizing photons (as counted by the Pa-beta luminosity) requires that the starburst be rapidly declining and/or have a low upper mass cutoff. Alternatively, dust may effectively compete with the gas for ionizing photons, or much of the ionizing radiation may escape through 'holes' in the ISM. It is also possible that a buried active galactic nuclei (AGN) produces a large fraction of the unresolved (Fe II) and Pa-beta emission. We briefly discuss these possibilities in light of these new imaging and spectroscopic data.

  14. Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anupam; Macri, Lucas M.; Rejkuba, Marina; Kanbur, Shashi M.; Ngeow, Chow-Choong; Singh, Harinder P.

    2017-04-01

    We present time-series observations of Population II Cepheids in the Large Magellanic Cloud at near-infrared (JHK s ) wavelengths. Our sample consists of 81 variables with accurate periods and optical (VI) magnitudes from the OGLE survey, covering various subtypes of pulsators (BL Herculis, W Virginis, and RV Tauri). We generate light-curve templates using high-quality I-band data in the LMC from OGLE and K s -band data in the Galactic bulge from VISTA Variables in Via Láctea survey and use them to obtain robust mean magnitudes. We derive period–luminosity (P–L) relations in the near-infrared and Period–Wesenheit (P–W) relations by combining optical and near-infrared data. Our P–L and P–W relations are consistent with published work when excluding long-period RV Tauris. We find that Pop II Cepheids and RR Lyraes follow the same P–L relations in the LMC. Therefore, we use trigonometric parallax from the Gaia DR1 for VY Pyx and the Hubble Space Telescope parallaxes for k Pav and 5 RR Lyrae variables to obtain an absolute calibration of the Galactic K s -band P–L relation, resulting in a distance modulus to the LMC of {μ }{LMC}=18.54+/- 0.08 mag. We update the mean magnitudes of Pop II Cepheids in Galactic globular clusters using our light-curve templates and obtain distance estimates to those systems, anchored to a precise late-type eclipsing binary distance to the LMC. We find that the distances to these globular clusters based on Pop II Cepheids are consistent (within 2σ ) with estimates based on the {M}V-[{Fe}/{{H}}] relation for horizontal branch stars.

  15. The Faint Young Sun and Faint Young Stars Paradox

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.

    2017-10-01

    The purpose of this paper is to explore a resolution for the Faint Young Sun Paradox that has been mostly rejected by the community, namely the possibility of a somewhat more massive young Sun with a large mass loss rate sustained for two to three billion years. This would make the young Sun bright enough to keep both the terrestrial and Martian oceans from freezing, and thus resolve the paradox. It is found that a large and sustained mass loss is consistent with the well observed spin-down rate of Sun-like stars, and indeed may be required for it. It is concluded that a more massive young Sun must be considered a plausible hypothesis.

  16. The infrared emission of G333.6-0.2 - An extremely nonspherical H II region

    NASA Technical Reports Server (NTRS)

    Hyland, A. R.; Mcgregor, P. J.; Robinson, G.; Thomas, J. A.; Becklin, E. E.; Gatley, I.; Werner, M. W.

    1980-01-01

    The southern H II region G333.6-0.2, which has a total luminosity of 3.3 million solar luminosities (for an assumed distance of 4 kpc) was mapped at 2.2, 10, 30, 50, and 100 microns. At all wavelengths, the surface brightness of the infrared radiation is unusually high and the structure of the source is compact and symmetrical. The present observations, along with previous data, suggest that G333.6-0.2 is excited by a single luminous object or a very compact cluster, which has formed on the front surface of a dense molecular cloud as seen from the earth. It is shown that the spectral and spatial characteristics of the infrared radiation can be understood in terms of this blister model.

  17. Low dark current in mid-infrared type-II superlattice heterojunction photodiodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Johannes; Rutz, Frank; Wörl, Andreas; Daumer, Volker; Rehm, Robert

    2017-09-01

    A mid-infrared (MWIR, 3-5 μm) InAs/GaSb type-II superlattice (T2SL) photodiode device with very low dark current is presented. The novel heterojunction device is compared to a conventional pn-homojunction device. Photodetectors with reduced dark current allow an increased operating temperature and thus to lower the cooling requirements for high performance infrared imaging applications. We report on a dark current reduction by a factor of more than 100 at a typical operation voltage of -100 mV at 77 K, which was realized merely by device design. This measured dark current is the lowest reported to our knowledge for T2SL-detectors operating in the 3-5 μm range. At the same time, the photo current signal is unaffected by the heterostructure design over the entire bias voltage range.

  18. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    DOE PAGES

    Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; ...

    2016-12-22

    Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency.more » The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.« less

  19. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    SciTech Connect

    Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, S.; Coon, Wesley Thomas; Keeler, Gordon Arthur; Fortune, Torben Ray; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul S.; Kim, Jin K.; Peters, David W.

    2016-12-22

    Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  20. The infrared emission of G333.6-0.2 - An extremely nonspherical H II region

    NASA Technical Reports Server (NTRS)

    Hyland, A. R.; Mcgregor, P. J.; Robinson, G.; Thomas, J. A.; Becklin, E. E.; Gatley, I.; Werner, M. W.

    1980-01-01

    The southern H II region G333.6-0.2, which has a total luminosity of 3.3 million solar luminosities (for an assumed distance of 4 kpc) was mapped at 2.2, 10, 30, 50, and 100 microns. At all wavelengths, the surface brightness of the infrared radiation is unusually high and the structure of the source is compact and symmetrical. The present observations, along with previous data, suggest that G333.6-0.2 is excited by a single luminous object or a very compact cluster, which has formed on the front surface of a dense molecular cloud as seen from the earth. It is shown that the spectral and spatial characteristics of the infrared radiation can be understood in terms of this blister model.

  1. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    NASA Astrophysics Data System (ADS)

    Goldflam, M. D.; Kadlec, E. A.; Olson, B. V.; Klem, J. F.; Hawkins, S. D.; Parameswaran, S.; Coon, W. T.; Keeler, G. A.; Fortune, T. R.; Tauke-Pedretti, A.; Wendt, J. R.; Shaner, E. A.; Davids, P. S.; Kim, J. K.; Peters, D. W.

    2016-12-01

    We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  2. Optically faint radio sources: reborn AGN?

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Brinchmann, J.; Lobo, C.; Antón, S.

    2011-12-01

    We present our discovery of several relatively strong radio sources in the field-of-view of SDSS galaxy clusters that have no optical counterparts down to the magnitude limits of the SDSS. The optically faint radio sources appear as double-lobed or core-jet objects in the FIRST radio images and have projected angular sizes ranging from 0.5 to 1.0 arcmin. We followed-up these sources with near-infrared imaging using the wide-field imager HAWK-I on the VLT. We detected Ks-band emitting regions, about 1.5 arcsec in size and coincident with the centers of the radio structures, in all sources, with magnitudes in the range 17-20 mag. We used spectral modelling to characterize the sample sources. In general, the radio properties are similar to those observed in 3CRR sources but the optical-radio slopes are consistent with those of moderate to high redshift (z < 4) gigahertz-peaked spectrum sources. Our results suggest that these unusual objects are galaxies whose black hole has been recently re-ignited but that retain large-scale radio structures, which are signatures of previous AGN activity.

  3. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  4. Far-Infrared Observations of Radio Quasars and FR II Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Rieke, G. H.; Hines, D. C.; Neugebauer, G.; Blaylock, M.; Rigby, J.; Egami, E.; Gordon, K. D.; Alonso-Herrero, A.

    2005-08-01

    We report MIPS photometry of 20 radio-loud quasars and galaxies at 24 and 70 μm (and of five at 160 μm). We combine this sample with additional sources detected in the far-infrared by IRAS and ISO for a total of 47 objects, including 23 steep-spectrum type I AGNs: radio-loud quasars and broad-line radio galaxies; and 24 type II AGNs: narrow-line and weak-line FR II radio galaxies. Of this sample, the far-infrared emission of all but 3C 380 appears to be dominated by emission by dust heated by the AGN and by star formation. The AGN appears to contribute more than 50% of the far-infrared luminosity in most of the sources. It is also expected that the material around the nucleus is optically thin in the far-infrared. Thus, the measurements at these wavelengths can be used to test the orientation-dependent unification model. As predicted by the model, the behavior of the sources is consistent with the presence of an obscuring circumnuclear torus; in fact, we find that it may still have significant optical depth at 24 μm. In addition, as expected for the radio-loud quasars, there is a significant correlation between the low-frequency radio (178 MHz) and the 70 μm emission, two presumably isotropic indicators of nuclear activity. This result is consistent with the simple unified scheme. However, there is a population of radio galaxies that are underluminous at 70 μm compared with the radio-loud quasars and hence are a challenge to the simple unified model.

  5. The [C II] 158 Micron Line in Ultraluminous Infrared Galaxies Revisited

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Satyapal, S.; Fischer, J.; Wolfire, M. G.; Sturm, E.; Dudley, C. C.; Lutz, D.; Genzel, R.

    2003-01-01

    We present a study of the [C II] 157.74 micron fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (IR luminosity L(sub IR greater than or equal to 10(exp 12)L.; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [C II] line relative to the far-infrared (FIR) dust continuum emission found in our initial report, but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4 out of 5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([C II], [OI] 63 and 145 micron, and FIR continuum emission), which suggests that a high ultraviolet flux G(sub 0) incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [C I] (1-0), and 6.2 micron polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G(sub 0)/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [C II] deficiency. Here, unusually high G(sub 0) and/ or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [C II] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [C II] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.

  6. Faint dwarfs in nearby groups

    SciTech Connect

    Speller, Ryan; Taylor, James E. E-mail: taylor@uwaterloo.ca

    2014-06-20

    The number and distribution of dwarf satellite galaxies remain a critical test of cold dark matter-dominated structure formation on small scales. Until recently, observational information about galaxy formation on these scales has been limited mainly to the Local Group. We have searched for faint analogues of Local Group dwarfs around nearby bright galaxies, using a spatial clustering analysis of the photometric catalog of the Sloan Digital Sky Survey (SDSS) Data Release 8. Several other recent searches of SDSS have detected clustered satellite populations down to Δm{sub r} ≡ (m{sub r,} {sub sat} – m{sub r,} {sub main}) ∼ 6-8, using photometric redshifts to reduce background contamination. SDSS photometric redshifts are relatively imprecise, however, for faint and nearby galaxies. Instead, we use angular size to select potential nearby dwarfs and consider only the nearest isolated bright galaxies as primaries. As a result, we are able to detect an excess clustering signal from companions down to Δm{sub r} = 12, 4 mag fainter than most recent studies. We detect an overdensity of objects at separations <400 kpc, corresponding to about 4.6 ± 0.5 satellites per central galaxy, consistent with the satellite abundance expected from the Local Group, given our selection function. Although the sample of satellites detected is incomplete by construction, since it excludes the least and most compact dwarfs, this detection provides a lower bound on the average satellite luminosity function, down to luminosities corresponding to the faintest ''classical'' dwarfs of the Local Group.

  7. The ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Smith, Harding E.

    1999-01-01

    As part of the ISO-IRAS Faint Galaxy Survey ISO Satellite observations of over 600 IRAS sources have been obtained with the ISOCAM instrument. Because our survey strategy involved relatively short integrations, great care was required in developing analysis software including cosmic-ray and transient removal and calibration. These observations have now been through final pipeline processing at IPAC and ground-based follow-up is ongoing. The observations are for sources from two samples: a " Filler' sample selected to be at z greater than 0.1 and a fainter sample which selected for the highest redshift galaxies in the IRAS survey, with redshifts 0.2 less than z less than 1.0. I now have obtained ground-based follow-up spectrophotometry at Lick and Palomar observatories for 100 LFIRGs with 0.1 less than z less than 0.7. Our observations have confirmed that these systems are comparable to nearby LFIRGs such as Arp 220, with L (sub -)(fir) greater than 10(exp 11) L(sub -) sun and typically HII/Liner optical excitation. About 10% of the galaxies show true AGN (Sy2) excitation. Based on our work on a nearby complete sample of LFIRGS, we believe that the majority of these systems are luminous Starbursts, thus this project is tracing the luminous end of the galaxy star-forming luminosity function - the (infrared) star-formation history of the Universe to z approx. 1, a topic of some considerable recent interest. A by-product of these ISOCAM observations is approximately 1 square degree of deep 2 microns pointings outside the IRAS error boxes, allowing us an independent estimate of the mid-infrared log N - log S relation. Ground-based observations of this sample are continuing.

  8. The ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Smith, Harding E.

    1999-01-01

    As part of the ISO-IRAS Faint Galaxy Survey ISO Satellite observations of over 600 IRAS sources have been obtained with the ISOCAM instrument. Because our survey strategy involved relatively short integrations, great care was required in developing analysis software including cosmic-ray and transient removal and calibration. These observations have now been through final pipeline processing at IPAC and ground-based follow-up is ongoing. The observations are for sources from two samples: a " Filler' sample selected to be at z greater than 0.1 and a fainter sample which selected for the highest redshift galaxies in the IRAS survey, with redshifts 0.2 less than z less than 1.0. I now have obtained ground-based follow-up spectrophotometry at Lick and Palomar observatories for 100 LFIRGs with 0.1 less than z less than 0.7. Our observations have confirmed that these systems are comparable to nearby LFIRGs such as Arp 220, with L (sub -)(fir) greater than 10(exp 11) L(sub -) sun and typically HII/Liner optical excitation. About 10% of the galaxies show true AGN (Sy2) excitation. Based on our work on a nearby complete sample of LFIRGS, we believe that the majority of these systems are luminous Starbursts, thus this project is tracing the luminous end of the galaxy star-forming luminosity function - the (infrared) star-formation history of the Universe to z approx. 1, a topic of some considerable recent interest. A by-product of these ISOCAM observations is approximately 1 square degree of deep 2 microns pointings outside the IRAS error boxes, allowing us an independent estimate of the mid-infrared log N - log S relation. Ground-based observations of this sample are continuing.

  9. Globular Clusters for Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions

  10. Fourier transform infrared spectrum of the radical cation of beta-carotene photoinduced in photosystem II.

    PubMed

    Noguchi, T; Mitsuka, T; Inoue, Y

    1994-12-19

    A Fourier-transform infrared (FTIR) spectrum of the radical cation of beta-carotene photoinduced in photosystem II (PSII) membranes was obtained at 80K under oxidizing conditions, by utilizing the light-induced FTIR difference technique. Formation of the beta-carotene cation was monitored with the electronic absorption band at 993 nm. An FTIR spectrum of a chemically-generated beta-carotene cation in chloroform was also measured and compared with the spectrum of PSII. Since the FTIR bands of carotenoid cation have characteristic features with strong intensities, they can be useful markers in studying the reaction of carotenoid in PSII.

  11. Interpretation of colors of faint galaxies

    SciTech Connect

    Kron, R.G.

    1980-10-01

    We present new calculations for evolving light in galaxies which allow the color distribution expected for faint field galaxies to be computed. We normalize the expected counts to data in catalogs of bright galaxies, and find that an excellent fit to Kron's faint photometry can be achieved with a Friedmann model and no other special assumptions.

  12. Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II

    NASA Astrophysics Data System (ADS)

    Kaucikas, Marius; Maghlaoui, Karim; Barber, Jim; Renger, Thomas; van Thor, Jasper J.

    2016-12-01

    In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities.

  13. The appearance of dusty H II blisters at radio and infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Icke, V.; Gatley, I.; Israel, F. P.

    1980-01-01

    Detailed calculations for the observational appearance of nonspherical Stromgren regions at radio and infrared wavelengths are presented. The computations are made feasible by two assumptions, namely (1) no stellar photon leaves the solid angle within which it was emitted, and (2) the radiation spectrum can be represented by three delta functions corresponding to Lyman continuum, Lyman alpha, and softer radiation. These calculations are used to develop models for the H II blisters M17 A and 30 Doradus, and also first order parameters for a sample of other well-studied galactic H II regions. It is concluded that the observations are well explained by an ionizing object in a density gradient, without the need for peculiar dust properties or distribution.

  14. The appearance of dusty H II blisters at radio and infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Icke, V.; Gatley, I.; Israel, F. P.

    1980-01-01

    Detailed calculations for the observational appearance of nonspherical Stromgren regions at radio and infrared wavelengths are presented. The computations are made feasible by two assumptions, namely (1) no stellar photon leaves the solid angle within which it was emitted, and (2) the radiation spectrum can be represented by three delta functions corresponding to Lyman continuum, Lyman alpha, and softer radiation. These calculations are used to develop models for the H II blisters M17 A and 30 Doradus, and also first order parameters for a sample of other well-studied galactic H II regions. It is concluded that the observations are well explained by an ionizing object in a density gradient, without the need for peculiar dust properties or distribution.

  15. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes

    SciTech Connect

    Lin, Youxi; Suchalkin, Sergey; Kipshidze, Gela; Hosoda, Takashi; Westerfeld, David; Shterengas, Leon; Belenky, Gregory; Laikhtman, Boris

    2015-04-28

    The effect of hole transport on the performance of infrared light emitting diodes (LED) was investigated. The active area of the LEDs comprised two type-II superlattices with different periods and widths connected in series. Electroluminescence spectra of the devices with different positions of long wave and mid wave superlattice sections were mostly contributed by the superlattice closest to the p-contact. The experimental results indicate that due to suppressed vertical hole transport, the recombination of electrically injected electrons and holes in a type II superlattice LED active region takes place within a few superlattice periods near p-barrier. Possible reason for the effect is reduction of hole diffusion coefficient in an active area of a superlattice LED under bias.

  16. Development status of Type-II superlattice infrared detector in JAXA

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Murooka, Junpei; Kumeta, Ayaka; Katayama, Haruyoshi; Kimura, Toshiyoshi; Inada, Hiroshi; Iguchi, Yasuhiro; Hiroe, Yuta; Kimata, Masafumi

    2016-09-01

    One of JAXA's future missions, using an imaging Fourier Transform Spectrometer (FTS), require the focal plane array (FPA) that has high sensitivity and a very long-wavelength infrared (VLWIR) cutoff wavelength. Since a Type-II superlattice (T2SL) is the only known infrared material to have a theoretically predicted performance superior to that of HgCdTe and the cutoff wavelength can be tailored in the wavelength region of 3-30 μm, we started the research and development of the T2SL detector in 2009. In order to confirm our final goal which is to realize an FPA with a cutoff wavelength of 15 μm, we fabricated InAs/GaInSb T2SL infrared detectors with a cutoff wavelength of 15 μm. We show the results of the dark current and responsivity measurement of single pixel detectors and the development status of FPAs including the image taken by a 320 × 256 InAs/GaInSb T2SL FPA with a cutoff wavelength of 15 μm.

  17. The faint end of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Treyer, Marie A.; Silk, Joseph

    1994-01-01

    The evolution of the B- and K-band luminosity functions of galaxies is inferred in a relatively model-independent way from deep spectroscopic and photometric surveys. We confirm earlier evidence by Eales for an increase in the amplitude of the B-band galaxy luminosity function at modest redshift (z less than or approx. 0.2). We find in addition that the slope of the faint end of the luminosity function must systematically steepen and progress toward more luminous galaxies with increasing lookback time, assuming that the galaxy redshift distribution may be smoothly extrapolated 2 mag fainter than observed, as suggested by recent gravitational lensing studies. This evolution is shown to be color-dependent, and we predict the near-infrared color distribution of faint galaxies. The luminosity function of blue (B - K less than or approx. 4) galaxies in the range 0.2 less than or approx. z less than or approx. 1 can be represented by a Schechter function with characteristic light density phi(sup *) L(sup *) comparable to that of present-day late-type galaxies, but with a steeper faint end slope alpha approx. 1.4.

  18. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    PubMed Central

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850

  19. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE PAGES

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...

    2017-05-19

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  20. Multifunctional in vivo vascular imaging using near-infrared II fluorescence

    PubMed Central

    Hong, Guosong; Lee, Jerry C.; Robinson, Joshua T.; Raaz, Uwe; Xie, Liming; Huang, Ngan F.; Cooke, John P.; Dai, Hongjie

    2013-01-01

    In vivo real-time epifluorescence imaging of mouse hindlimb vasculatures in the second near-infrared region (NIR-II, 1.1–1.4 µm) is performed using single-walled carbon nanotubes (SWNTs) as fluorophores. Both high spatial resolution (~30 µm) and temporal resolution (<200 ms/frame) for small vessel imaging are achieved 1~3 mm deep in the tissue owing to the beneficial NIR-II optical window that affords deep anatomical penetration and low scattering. This spatial resolution is unattainable by traditional NIR imaging (NIR-I, 0.75–0.9 µm) or microscopic computed tomography (micro-CT), while the temporal resolution far exceeds scanning microscopic imaging techniques. Arterial and venous vessels are unambiguously differentiated using a dynamic contrast-enhanced NIR-II imaging technique based on their distinct hemodynamics. Further, the deep tissue penetration, high spatial and temporal resolution of NIR-II imaging allow for precise quantifications of blood velocity in both normal and ischemic femoral arteries, which are beyond the capability of ultrasonography at lower blood velocity. PMID:23160236

  1. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    NASA Astrophysics Data System (ADS)

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-05-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ~50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.

  2. EXTENDED [C II] EMISSION IN LOCAL LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Díaz-Santos, T.; Armus, L.; Surace, J. A.; Charmandaris, V.; Stacey, G.; Murphy, E. J.; Haan, S.; Stierwalt, S.; Evans, A. S.; Malhotra, S.; Appleton, P.; Inami, H.; Magdis, G. E.; Elbaz, D.; Van der Werf, P. P.; Meijerink, R.; and others

    2014-06-10

    We present Herschel/PACS observations of extended [C II] 157.7 μm line emission detected on ∼1-10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey. We find that most of the extra-nuclear emission show [C II]/FIR ratios ≥4 × 10{sup –3}, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse interstellar medium of our Galaxy. The [C II] ''deficits'' found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [C II]/FIR ratios. We find an anti-correlation between [C II]/FIR and the luminosity surface density, Σ{sub IR}, for the extended emission in the spatially resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ∼6% relative to their nuclei. We confront the observed trend to photo-dissociation region models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [C II]/FIR and Σ{sub IR} with measurements of high-redshift starbursting IR-luminous galaxies.

  3. Correlation of infrared spectra of zinc(II) carboxylates with their structures

    NASA Astrophysics Data System (ADS)

    Zeleňák, V.; Vargová, Z.; Györyová, K.

    2007-02-01

    The correlation of the infrared spectra of zinc(II) carboxylates with their structures was investigated in the paper. The complexes with different modes of the carboxylate binding, from chelating, through bridging ( syn-syn, syn-anti, monatomic), ionic to monodentate were used for the study, namely [Zn(C 6H 5CHCHCOO) 2(H 2O) 2] ( I) with chelating carboxylate group (C 6H 5CHCHCOO = cinnamate), [Zn 2(C 6H 5COO) 4(pap) 2] ( II) with syn-syn bridging carboxylate (C 6H 5COO = benzoate; pap = papaverine), [Zn(C 6H 5CHCHCOO) 2(mpcm)] n ( III) with syn-anti carboxylate bridge (mpcm = methyl-3-pyridylcarbamate), [Zn(C 5H 4NCOO) 2(H 2O) 4] ( IV) with ionic carboxylate group (C 5H 4NCOO = nicotinate), [Zn(C 6H 5COO) 2(pcb) 2] n ( V) with monodentate carboxylate coordination (pcb = 3-pyridylcarbinol) and [Zn 3(C 6H 5COO) 6(nia) 2] ( VI) with syn-syn and monatomic carboxylate bridges (nia = nicotinamide). First, the mode of the carboxylate binding was assigned from the infrared spectra using the magnitude of the separation between the carboxylate stretches, Δexp = νas(COO -) - νs(COO -). Then the values Δexp were compared with those calculated from structural data of the carboxylate anion ( Δcalc). The conclusions about the carboxylate binding which resulted from the Δ values, were confronted with the crystal structure of the complexes. The limitations and recommendations were formulated to assign the mode of the carboxylate binding from the infrared spectra. The dependence of the Δexp values on the magnitudes of Zn-O-C angles in bidentate carboxylate coordination was observed.

  4. The infrared echo of Type II supernovae with circumstellar dust shells. II - A probe into the presupernova evolution of the progenitor star

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1985-01-01

    This paper studies the spectral appearance and evolution of the infrared light curve, also referred to as the infrared echo, of Type II supernovae embedded in carbon- or oxygen-rich circumstellar dust shells. The distinct spectral signature of the echo and its temporal evolution can be used to estimate the mass of the shell and identify the composition of the dust. Since the shell mass and dust composition are determined by the combined effect of stellar mass loss and the dredging of newly synthesized heavy elements to the stellar surface, observations of the infrared echo may provide useful clues to the presupernova evolution of the progenitor star.

  5. Far-infrared emission from H II regions. II - Multicolor photometry of selected sources and 2.2 min resolution maps of M42 and NGC 2024

    NASA Technical Reports Server (NTRS)

    Harper, D. A.

    1974-01-01

    Medium- and broad-bandwidth photometric measurements have been made of seven compact H II regions at wavelengths between 30 and 650 microns. The results are consistent with the hypothesis that the far-infrared flux is continuum radiation from dust grains. Color temperatures range from 33 to 85 K. For most of the sources, the infrared flux is low enough so that the dust could conceivably be mixed with the ionized gas. In at least one case, however, the far-infrared spectrum and luminosity of the source cannot be reconciled with reasonable grain models unless the far-infrared flux comes from a shell surrounding the H II region. M42 (Orion) and NGC 2024 (Orion B) have been mapped at 90 microns with a resolution (half-power beam diameter) of 2.2 min. Although the peak far-infrared brightness in M42 occurs at the position of the Kleinmann-Low infrared nebula, most of the flux originates in a more extended (about 6 x 8 min) source. The energy for the diffuse component could be supplied by the stars in the Trapezium cluster. However, the single early-type star visible in NGC 2024 is not luminous enough to account for either the infrared flux or the observed free-free flux.

  6. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

  7. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  8. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  9. The Ca II infrared triplet's performance as an activity indicator compared to Ca II H and K. Empirical relations to convert Ca II infrared triplet measurements to common activity indices

    NASA Astrophysics Data System (ADS)

    Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.

    2017-09-01

    Aims: A large number of Calcium infrared triplet (IRT) spectra are expected from the Gaia and CARMENES missions. Conversion of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find such a conversion formula and to determine its robustness. Methods: We have compared 2274 Ca II IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity indices derived from the Ca II H and K lines, the spectra of which were obtained simultaneously to the infrared spectra. Results: The excess flux in the Ca II IRT is found to correlate well with R'HK and R+HK, as well as SMWO, if the B - V-dependency is taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the measurement of another, by comparing groups of datapoints of stars with similar B - V.

  10. An Infrared Spectroscopy Study Of Pb(II) And Siderophore Sorption To Montmorillonite

    NASA Astrophysics Data System (ADS)

    Maurice, P. A.; Hunter, E. L.; Quicksall, A. N.; Haack, E.; Johnston, C. T.

    2010-12-01

    Aerobic microorganisms exude low molecular weight organic ligands known as siderophores in order to acquire nutrient Fe. Because siderophores can also bind other metals such as Pb, Zn, and Cd, they may affect metal sorption, fate, and transport. This study combined batch sorption experiments, thermodynamic modeling, X-ray diffraction (XRD), and spectroscopic analysis, to investigate Pb(II) and desferrioxamine B (DFOB) sorption to montmorillonite, alone and in combination, at pH 3-9, ~22 C, and in 0.1 M NaCl. Samples at pH 3, 5.5, and 7.5 were analyzed by XRD and Fourier-Transform Infrared Spectroscopy (FTIR) and samples at pH5.5 were analyzed by in-situ Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR). DFOB does not bind Pb substantially at pH 3, and sorption results showed that the ligand only minimally affects Pb sorption at this pH. However, combination of batch sorption experiments with XRD, FTIR, and ATR-FTIR analysis suggested that Pb(II)/DFOB (co)absorption in the interlayer is likely an important sorption mechanism at pH 5.5 and 7.5 under both air-dried and aqueous conditions. The precise structure of the sorption complex(es) could not be determined by these methods. Some adsorption of Pb(II)/DFOB to the external clay surface is also possible. In the absence of DFOB, a Pb-carbonate complex or precipitate (perhaps hydrocerrusite) was detected by FTIR. Overall, results showed that a microbial siderophore may affect Pb sorption to montmorillonite, that (co)absorption in the interlayer region can be important, and that sorption effects can vary substantially depending upon solution conditions.

  11. Faint High-Latitude Carbon Stars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    1992-10-01

    Since carbon giants are ideal for study of the structure and kinematics of the outer galactic halo, we have undertaken a wide-area survey to search for faint high-latitude carbon (FHLC) stars. We use two-color photometric selection with large format CCDs to cover 52 deg^2 of sky to a depth of about V=18. Below this limit, we find good (< 20%) agreement between our object counts as a function of magnitude and the galactic models of Bahcall and Coneira (1984) at a variety of latitudes and longitudes. Our spectroscopic followup began with low-resolution spectra of 19 unconfirmed C-star candidates from the Case objective-prism photographic survey of Sanduleak and Pesch (1988). Four of these we find to be M stars. The 15 C stars we classify on the two-parameter Keenan-Morgan (1941) system as warm (color class < 4), with moderate to weak carbon band strengths (C class < 3). Of 94 faint C-star candidates from our own CCD survey, one highly ranked V=17 candidate was found to have strong carbon and CN bands. We estimate that to a depth of V=18, the surface density of FHLC stars is 0.019^0.044_-0.016 deg^-2. We identify two FHLC stars with previously cataloged high-proper-motion objects. These objects are thus inferred to be dwarf carbon (dC) stars, supplementing the one previously known case, G 77-61. Not all dC stars will have detectable proper motions, so other luminosity/distance indicators are needed: we find that C dwarfs all have similar JHK colors, and possibly an unusually strong lambda-6191 bandhead of carbon. By comparing positions of the HST Guide Star Catalog and the original Palomar Observatory Sky Survey, we detect proper motions in two additional FHLC stars. Our proper-motion survey, spanning a 30-yr base line, thus identifies four new dC's, and provides proper-motion upper limits for another 44 FHLC stars. Kinematic simulations suggest that virtually all Population II dCs will have detectable proper motions in a survey as sensitive as our own, and that to a

  12. Platinum (II) azatetrabenzoporphyrins for near-infrared organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, L.; Park, C. D.; Fleetham, T.; Li, J.

    2016-12-01

    This article describes a series of platinum (II) azatetrabenzoporphyrin emitters for near-infrared (NIR) organic light emitting diode (OLED) applications. Platinum (II) aza-triphenyltetrabenzoporphyrin (PtNTBP) results in a 72 nm shift in the photoluminescent (PL) emission spectrum to 842 nm compared to 770 nm of the platinum (II) tetraphenyltetrabenzoporphyrin (PtTPTBP). Also, the full width at half maximum of the emission spectrum of PtNTBP was significantly narrowed to 27 nm compared to 40 nm for PtTPTBP. The multilayer devices fabricated by thermal vacuum evaporation process employing PtTPTBP, PtNTBP, and cis-PtN2TBP exhibit electroluminescent (EL) emission peak at 770 nm, 848 nm, and 846 nm with the peak external quantum efficiency (EQE) of 8.0%, 2.8%, and 1.5%, respectively. Even with the decrease in EQE of devices employing PtNTBP and cis-PtN2TBP compared with those employing PtTPTBP, the combination of the spectral narrowing and the bathochromic shift to lower energy EL emission demonstrates the promise of PtNTBP for NIR applications. In the meanwhile, the solution-processed single-layer device using PtNTBP demonstrates the EQE of 0.33% and the peak EL emission at 844 nm.

  13. Mid-infrared [NeII] Imaging of Young Massive Star Clusters Near Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Tsai, Chao-Wei; Geballe, Thomas R.; Herrera, Cinthya N.

    2015-08-01

    We present a straightforward approach to study young and highly obscured massive star clusters in ground-based MIR observations. The Kennicutt-Schmitt Law does not necessarily operate near galactic nuclei, and the universality of the cluster formation efficiency (CFE) and mass function is yet to be validated. Ground-based, mid-infrared imaging of [NeII] at 12.8 μm does not suffer from severe extinction, and it simultaneously delivers sub-arcsecond angular resolution and recovers extended emission. We mapped the nuclei of NGC 6946, IC 342, Maffei 2, and NGC 7714 in [NeII] using Subaru Telescope. We identified ~20 compact thermal sources which are likely to be young massive clusters, as well as very extended emission which is presumably associated with non-compact, field star formation. The masses of the clusters are estimated to be 104 to 105 M⊙. By comparing [NeII] fluxes of the compact sources and extended emission, we estimated the CFE to be ~ 5% to 13% in the target galaxies, while a CFE of 10% is found in other galactic environments. We will discuss the cluster physical properties, cluster formation efficiency, cluster mass function, their implications, and the followup spectroscopic work.

  14. High resolution far-infrared observations of the evolved H II region M16

    SciTech Connect

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-03-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.

  15. Food for the photometrists - Faint galaxies revealed

    NASA Astrophysics Data System (ADS)

    Malin, D. F.

    The advantages of photographic plates over CCD detectors for some types of astronomical photometry (uniformity over large areas and information-storage capacity) are discussed, and illustrated using images of faint galaxies and faint galactic structures. It is pointed out that the photographic amplification technique (Malin, 1978), although at present only qualitative, is much more time-efficient than digital scanning. Consideration is also given to the production of full-color images by superimposition of B, V, and R plates.

  16. The Near-Infrared Ca II Triplet-σ Relation for Bulges of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Peletier, Reynier F.; Vazdekis, Alexandre; Balcells, Marc

    2003-05-01

    We present measurements of the near-infrared Ca II triplet (CaT, CaT*), Paschen (PaT), and magnesium (Mg I) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decrease with central velocity dispersion σ with small scatter. This dependence is similar to that recently found by Cenarro for elliptical galaxies, implying a uniform CaT*-σ relation that applies to galaxies from ellipticals to intermediate-type spirals. The decrease of CaT and CaT* with σ contrasts with the well-known increase of another α-element index, Mg2, with σ. We discuss the role of Ca underabundance ([Ca/Fe]<0) and initial mass function variations in the onset of the observed relations.

  17. Infrared and optical studies of the Chamaeleon II and Lupus low-mass star forming regions .

    NASA Astrophysics Data System (ADS)

    Spezzi, L.; Alcalá, J. M.; Chapman, N.; Covino, E.; Evans, N. J., II; Frasca, A.; Gandolfi, D.; Huard, T. L.; Oliveira, I.; Jørgensen, J. K.; Merín, B.; Stapelfeldt, K. R.

    The Spitzer Legacy survey ``From Molecular Cores to Planet-forming Disks'' \\citep[c2d][]{Eva03} provided infrared observations of sources that span the evolutionary sequence from molecular cores to proto-planetary disks, encompassing a wide range of star-forming environments. These overall observations allowed to study crucial steps in the formation of stars and planets with unprecedented sensitivity. We present some results from the Spitzer observations and complementary data in the low-mass star forming regions in Chamaeleon II and Lupus. We focus, in particular, on the star-formation history and activity of these clouds, the low-mass end of their IMF and the envelope/disk properties of their young populations.

  18. Strain-balanced Si/SiGe type-II superlattices for near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Ali, Dyan; Richardson, Christopher J. K.

    2014-07-01

    Strain balanced silicon-silicon germanium type-II superlattice p-i-n photodetectors grown on a silicon germanium relaxed buffer layer are shown to exhibit an absorption band that extends beyond 0.7 eV (λ = 1.77 μm) with dark current densities of 27 μA cm-2. Simulations of the absorption edge, which are based on x-ray diffraction characterization, low observed dark current densities, and low dislocation densities, are consistent with fully strained heterostructures. Potential applications for devices made from this heterostructure design could include integrated silicon detectors, or low-noise absorption regions for infrared-extended silicon based avalanche photodiodes.

  19. Isotope effects in far-infrared spectra of bis(theophyllinato)copper(II)-complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    1998-07-01

    Far-infrared spectra have been measured for 63Cu and 65Cu isotope substituted theophylline (Tp)-metal ion complexes: Cu(Tp) 2(NH 3) 2 · 2H 2O, Cu(Tp) 2(NH 3) 2, Cu(Tp) 2 · 2H 2O and Cu(Tp) 2. In addition, spectrum of Cu(Tp) 2(ND 3) 2 · 2D 2O has been recorded. Metal-theophylline, metal-ammine and water librational and translational modes have been assigned based on observed isotope shifts and complex dehydration effects. The copper-ammine vibrations have been found at 453 and 224 cm -1, whereas the bis(theophyllinato)copper(II) modes have been detected at 192 cm -1 for Cu(Tp) 2(NH 3) 2 and presumably at about 170 cm -1 for Cu(Tp) 2.

  20. Far Infrared Spectroscopy of H II Regions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ward, D. B.

    1975-01-01

    The far infrared spectra of H II regions are investigated. A liquid helium cooled grating spectrometer designed to make observations from the NASA Lear Jet is described along with tests of the instrument. The observing procedure on the Lear Jet telescope is described and the method of data analysis is discussed. Results are presented from a search for the (O III) 88.16 micron line. An upper limit on the emission in this line is obtained and line detection is described. Results are compared to theoretical predictions, and future applications of fine structure line observations are discussed. Coarse resolution results are given along with calibration problems. The spectra obtained are compared to models for dust emission.

  1. The infrared CA II triplet - A luminosity indicator for stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Jones, J. E.; Alloin, D. M.; Jones, B. J. T.

    1984-08-01

    The authors study the properties of the Ca II infrared triplet (Ca T) from a sample of Reticon spectra of 62 stars. The stars range over spectral types B though mid-M, and the sample spans some four orders of magnitude in gravity g, and almost a factor of 10 in metallicity. It is found that, over all spectral types, from F to mid-M, and over this large gravity interval, the equivalent width of Ca T correlates strongly with log g. This is an almost one-valued relation, being relatively insensitive to metallicity. Thus, since most of the light from galaxies is thought to come from G and K stars, the Ca T feature should be a useful tool for constraining the dwarf: giant ratio of the light-dominant stellar population. Existing measurements of Ca T are applied in an analysis of the stellar content in the nucleus of M31.

  2. Strain-balanced Si/SiGe type-II superlattices for near-infrared photodetection

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2014-07-21

    Strain balanced silicon-silicon germanium type-II superlattice p-i-n photodetectors grown on a silicon germanium relaxed buffer layer are shown to exhibit an absorption band that extends beyond 0.7 eV (λ = 1.77 μm) with dark current densities of 27 μA cm{sup −2}. Simulations of the absorption edge, which are based on x-ray diffraction characterization, low observed dark current densities, and low dislocation densities, are consistent with fully strained heterostructures. Potential applications for devices made from this heterostructure design could include integrated silicon detectors, or low-noise absorption regions for infrared-extended silicon based avalanche photodiodes.

  3. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  4. Radiation tolerance of type-II strained layer superlattice-based interband cascade infrared photodetectors (ICIP)

    NASA Astrophysics Data System (ADS)

    Cowan, Vincent M.; Treider, Laura A.; Morath, Christian P.; Tian, Zhaobing; Gautam, Nutan; Krishna, Sanjay

    2013-09-01

    For space-based imaging systems radiation tolerance to both displacement damage and total ionizing dose (TID) radiation effects continues to be a major performance concern. Here, the TID and proton irradiance tolerance of mid wave infrared interband cascade infrared photodetectors (ICIPs) based on InAs/GaSb type II strained-layer superlattice (T2SLS) absorbers is presented. Protons of energy of 63 MeV were used to irradiate the unbiased ICIP detectors at room temperature to a proton fluence of 7.5 x 1011 protons/cm2, corresponding to a TID of 100 kRads(Si). A comparison of the detector performance of a variety of ICIPs with different numbers of electron barrier sizes cascade stages is presented. Performance of detectors of varying size was characterized by dark current and quantum efficiency measurements at different temperatures. Results show changes, increase in dark current and a reduction in the quantum efficiency, consistent with an increase in the trap density.

  5. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    SciTech Connect

    Ting, David Z. Soibel, Alexander; Gunapala, Sarath D.

    2016-05-02

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  6. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  7. Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II

    PubMed Central

    Kaucikas, Marius; Maghlaoui, Karim; Barber, Jim; Renger, Thomas; van Thor, Jasper J.

    2016-01-01

    In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities. PMID:28008915

  8. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane.

    PubMed

    Nekoei, A-R; Vakili, M; Hakimi-Tabar, M; Tayyari, S F; Afzali, R; Kjaergaard, H G

    2014-07-15

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed assignment has been presented. We concluded that, theoretically, the results of charge transfer studies, and experimentally, in-phase symmetric O-Cu-O stretching mode of these complexes are very useful measures for M-L bond strength. The electron delocalization in the chelated rings and the M-L bond strength in Cu(dbm)2 are concluded to be higher than those in Cu(acac)2. The calculated geometries and vibrational results are in good agreement with the experimental data. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. 450 d of Type II SN 2013ej in optical and near-infrared

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Jerkstrand, A.; Valenti, S.; Sollerman, J.; Seitenzahl, I. R.; Pastorello, A.; Schulze, S.; Chen, T.-W.; Childress, M. J.; Fraser, M.; Fremling, C.; Kotak, R.; Ruiter, A. J.; Schmidt, B. P.; Smartt, S. J.; Taddia, F.; Terreran, G.; Tucker, B. E.; Barbarino, C.; Benetti, S.; Elias-Rosa, N.; Gal-Yam, A.; Howell, D. A.; Inserra, C.; Kankare, E.; Lee, M. Y.; Li, K. L.; Maguire, K.; Margheim, S.; Mehner, A.; Ochner, P.; Sullivan, M.; Tomasella, L.; Young, D. R.

    2016-09-01

    We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 d after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline following the initial peak. It has a relatively high peak luminosity (absolute magnitude MV = -17.6) but a small 56Ni production of ˜0.023 M⊙. Its photospheric evolution is similar to other Type II SNe, with shallow absorption in the Hα profile typical for a Type IIL. During transition to the radioactive decay tail at ˜100 d, we find the SN to grow bluer in B - V colour, in contrast to some other Type II supernovae. At late times, the bolometric light curve declined faster than expected from 56Co decay and we observed unusually broad and asymmetric nebular emission lines. Based on comparison of nebular emission lines most sensitive to the progenitor core mass, we find our observations are best matched to synthesized spectral models with a MZAMS = 12-15 M⊙ progenitor. The derived mass range is similar to but not higher than the mass estimated for Type IIP progenitors. This is against the idea that Type IIL are from more massive stars. Observations are consistent with the SN having a progenitor with a relatively low-mass envelope.

  10. Big Fish, Little Fish: Two New Ultra-faint Satellites of the Milky Way

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Walker, M. G.; Evans, N. W.; Gilmore, G.; Irwin, M. J.; Just, D.; Koposov, S.; Mateo, M.; Olszewski, E.; Watkins, L.; Wyrzykowski, L.

    2010-03-01

    We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of ~180 kpc, some 15° away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall Telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of ~60 pc, while Segue 3 is 20 times smaller at only 3 pc.

  11. A single prolific r-process event preserved in an ultra-faint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Ji, Alexander; Frebel, Anna; Chiti, Anirudh; Simon, Joshua

    2016-03-01

    The heaviest elements in the periodic table are synthesized through the r-process, but the astrophysical site for r-process nucleosynthesis is still unknown. Ultra-faint dwarf galaxies contain a simple fossil record of early chemical enrichment that may determine this site. Previous measurements found very low levels of neutron-capture elements in ultra-faint dwarfs, preferring supernovae as the r-process site. I present high-resolution chemical abundances of nine stars in the recently discovered ultra-faint dwarf Reticulum II, which display extremely enhanced r-process abundances 2-3 orders of magnitude higher than the other ultra-faint dwarfs. Stars with such extreme r-process enhancements are only rarely found in the Milky Way halo. The r-process abundances imply that the neutron-capture material in Reticulum II was synthesized in a single prolific event that is incompatible with r-process yields from ordinary core-collapse supernovae. Reticulum II provides an opportunity to discriminate whether the source of this pure r-process signature is a neutron star merger or magnetorotationally driven supernova. The single event is also a uniquely stringent constraint on the metal mixing and star formation history of this ultra-faint dwarf galaxy.

  12. Mass fainting in garment factories in Cambodia.

    PubMed

    Eisenbruch, Maurice

    2017-04-01

    This paper reports an ethnographic study of mass fainting among garment factory workers in Cambodia. Research was undertaken in 2010-2015 in 48 factories in Phnom Penh and 8 provinces. Data were collected in Khmer using nonprobability sampling. In participant observation with monks, factory managers, health workers, and affected women, cultural understandings were explored. One or more episodes of mass fainting occurred at 34 factories, of which 9 were triggered by spirit possession. Informants viewed the causes in the domains of ill-health/toxins and supernatural activities. These included "haunting" ghosts at factory sites in the wake of Khmer Rouge atrocities or recent fatal accidents and retaliating guardian spirits at sites violated by foreign owners. Prefigurative dreams, industrial accidents, or possession of a coworker heralded the episodes. Workers witnessing a coworker fainting felt afraid and fainted. When taken to clinics, some showed signs of continued spirit influence. Afterwards, monks performed ritual ceremonies to appease spirits, extinguish bonds with ghosts, and prevent recurrence. Decoded through its cultural motifs of fear and protest, contagion, forebodings, the bloody Khmer Rouge legacy, and trespass, mass fainting in Cambodia becomes less enigmatic.

  13. On the clustering of faint red galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Haojie; Zheng, Zheng; Guo, Hong; Zhu, Ju; Zehavi, Idit

    2016-08-01

    Faint red galaxies in the Sloan Digital Sky Survey show a puzzling clustering pattern in previous measurements. In the two-point correlation function (2PCF), they appear to be strongly clustered on small scales, indicating a tendency to reside in massive haloes as satellite galaxies. However, their weak clustering on large scales suggests that they are more likely to be found in low-mass haloes. The interpretation of the clustering pattern suffers from the large sample variance in the 2PCF measurements, given the small volume of the volume-limited sample of such faint galaxies. We present improved clustering measurements of faint galaxies by making a full use of a flux-limited sample to obtain volume-limited measurements with an increased effective volume. In the improved 2PCF measurements, the fractional uncertainties on large scales drop by more than 40 per cent, and the strong contrast between small-scale and large-scale clustering amplitudes seen in previous work is no longer prominent. From halo occupation distribution modelling of the measurements, we find that a considerable fraction of faint red galaxies to be satellites in massive haloes, a scenario supported by the strong covariance of small-scale 2PCF measurements and the relative spatial distribution of faint red galaxies and luminous galaxies. However, the satellite fraction is found to be degenerate with the slope of the distribution profile of satellites in inner haloes. We compare the modelling results with semi-analytic model predictions and discuss the implications.

  14. The Coordinated Radio and Infrared Survey for High-mass Star Formation. II. Source Catalog

    NASA Astrophysics Data System (ADS)

    Purcell, C. R.; Hoare, M. G.; Cotton, W. D.; Lumsden, S. L.; Urquhart, J. S.; Chandler, C.; Churchwell, E. B.; Diamond, P.; Dougherty, S. M.; Fender, R. P.; Fuller, G.; Garrington, S. T.; Gledhill, T. M.; Goldsmith, P. F.; Hindson, L.; Jackson, J. M.; Kurtz, S. E.; Martí, J.; Moore, T. J. T.; Mundy, L. G.; Muxlow, T. W. B.; Oudmaijer, R. D.; Pandian, J. D.; Paredes, J. M.; Shepherd, D. S.; Smethurst, S.; Spencer, R. E.; Thompson, M. A.; Umana, G.; Zijlstra, A. A.

    2013-03-01

    The CORNISH project is the highest resolution radio continuum survey of the Galactic plane to date. It is the 5 GHz radio continuum part of a series of multi-wavelength surveys that focus on the northern GLIMPSE region (10° < l < 65°), observed by the Spitzer satellite in the mid-infrared. Observations with the Very Large Array in B and BnA configurations have yielded a 1.''5 resolution Stokes I map with a root mean square noise level better than 0.4 mJy beam-1. Here we describe the data-processing methods and data characteristics, and present a new, uniform catalog of compact radio emission. This includes an implementation of automatic deconvolution that provides much more reliable imaging than standard CLEANing. A rigorous investigation of the noise characteristics and reliability of source detection has been carried out. We show that the survey is optimized to detect emission on size scales up to 14'' and for unresolved sources the catalog is more than 90% complete at a flux density of 3.9 mJy. We have detected 3062 sources above a 7σ detection limit and present their ensemble properties. The catalog is highly reliable away from regions containing poorly sampled extended emission, which comprise less than 2% of the survey area. Imaging problems have been mitigated by down-weighting the shortest spacings and potential artifacts flagged via a rigorous manual inspection with reference to the Spitzer infrared data. We present images of the most common source types found: H II regions, planetary nebulae, and radio galaxies. The CORNISH data and catalog are available online at http://cornish.leeds.ac.uk.

  15. THE COORDINATED RADIO AND INFRARED SURVEY FOR HIGH-MASS STAR FORMATION. II. SOURCE CATALOG

    SciTech Connect

    Purcell, C. R.; Hoare, M. G.; Lumsden, S. L.; Urquhart, J. S.; Cotton, W. D.; Chandler, C.; Churchwell, E. B.; Diamond, P.; Fuller, G.; Garrington, S. T.; Dougherty, S. M.; Fender, R. P.; Gledhill, T. M.; Goldsmith, P. F.; Hindson, L.; Jackson, J. M.; Kurtz, S. E.; Marti, J. [Departamento de Fisica, EPSJ, Universidad de Jaen, Campus Las Lagunillas s and others

    2013-03-01

    The CORNISH project is the highest resolution radio continuum survey of the Galactic plane to date. It is the 5 GHz radio continuum part of a series of multi-wavelength surveys that focus on the northern GLIMPSE region (10 Degree-Sign < l < 65 Degree-Sign ), observed by the Spitzer satellite in the mid-infrared. Observations with the Very Large Array in B and BnA configurations have yielded a 1.''5 resolution Stokes I map with a root mean square noise level better than 0.4 mJy beam{sup -1}. Here we describe the data-processing methods and data characteristics, and present a new, uniform catalog of compact radio emission. This includes an implementation of automatic deconvolution that provides much more reliable imaging than standard CLEANing. A rigorous investigation of the noise characteristics and reliability of source detection has been carried out. We show that the survey is optimized to detect emission on size scales up to 14'' and for unresolved sources the catalog is more than 90% complete at a flux density of 3.9 mJy. We have detected 3062 sources above a 7{sigma} detection limit and present their ensemble properties. The catalog is highly reliable away from regions containing poorly sampled extended emission, which comprise less than 2% of the survey area. Imaging problems have been mitigated by down-weighting the shortest spacings and potential artifacts flagged via a rigorous manual inspection with reference to the Spitzer infrared data. We present images of the most common source types found: H II regions, planetary nebulae, and radio galaxies. The CORNISH data and catalog are available online at http://cornish.leeds.ac.uk.

  16. A difference infrared study of hydrogen bonding to the Z. tyrosyl radical of photosystem II.

    PubMed

    Bernard, M T; MacDonald, G M; Nguyen, A P; Debus, R J; Barry, B A

    1995-01-27

    Photosystem II, the photosynthetic water oxidizing complex, contains two well characterized redox active tyrosines, D and Z. D forms a stable radical of unknown function. Z is an electron carrier between the primary chlorophyll donor and the manganese catalytic site. The vibrational difference spectra associated with the oxidation of tyrosines Z and D have been obtained through the use of infrared spectroscopy (MacDonald, G. M., Bixby, K.A., and Barry, B.A. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11024-11028). Here, we examine the effect of deuterium exchange on these vibrational difference spectra. While the putative C-O vibration of stable tyrosine radical D. downshifts in 2H2O, the putative C-O vibration of tyrosine radical Z. does not. This result is consistent with the existence of a hydrogen bond to the phenol oxygen of the D. radical; we conclude that a hydrogen bond is not formed to the Z. radical. In an effort to identify the amino acid residue that is the proton acceptor for Z, we have performed global 15N labeling. While significant 15N shifts are observed in the vibrational difference spectrum, substitution of a glutamine for a histidine that is predicted to lie in the environment of tyrosine Z has little or no effect on the difference infrared spectrum. There is also no significant change in the yield or lineshape of the Z. EPR signal under continuous illumination in this mutant. Our results are inconsistent with the possibility that this residue, histidine 190 of the D1 polypeptide, acts as the sole proton acceptor for tyrosine Z.

  17. THE SPATIAL EXTENT OF (U)LIRGS IN THE MID-INFRARED. II. FEATURE EMISSION

    SciTech Connect

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Stierwalt, S.; Haan, S.; Howell, J. H.; Petric, A. O.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Murphy, E. J.; Appleton, P.; Evans, A. S.; Sanders, D. B.

    2011-11-01

    We present results from the second part of our analysis of the extended mid-infrared (MIR) emission of the GOALS sample based on 5-14 {mu}m low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for all galaxies in the sample, FEE{sub {lambda}}, defined as the fraction of the emission that originates outside of the unresolved central component of a source, and spatially separate the MIR spectrum of a galaxy into its nuclear and extended components. We find that the [Ne II]12.81 {mu}m emission line is as compact as the hot dust MIR continuum, while the polycyclic aromatic hydrocarbon (PAH) emission is more extended. In addition, the 6.2 and 7.7 {mu}m PAH emission is more compact than that of the 11.3 {mu}m PAH, which is consistent with the formers being enhanced in a more ionized medium. The presence of an active galactic nucleus (AGN) or a powerful nuclear starburst increases the compactness and the luminosity surface density of the hot dust MIR continuum, but has a negligible effect on the spatial extent of the PAH emission on kpc-scales. Furthermore, it appears that both processes, AGN and/or nuclear starburst, are indistinguishable in terms of how they modify the integrated PAH-to-continuum ratio of the FEE in (ultra)luminous infrared galaxies ((U)LIRGs). Globally, the 5-14 {mu}m spectra of the extended emission component are homogeneous for all galaxies in the GOALS sample. This suggests that, independently of the spatial distribution of the various MIR features, the physical properties of star formation occurring at distances farther than 1.5 kpc from the nuclei of (U)LIRGs are very similar, resembling local star-forming galaxies with L{sub IR} < 10{sup 11} L{sub sun}, as well as star-formation-dominated ULIRGs at z {approx} 2. In contrast, the MIR spectra of the nuclear component of local ULIRGs and LIRGs are very diverse. These results imply that the observed

  18. Observational studies on the near-infrared unidentified emission bands in galactic H II regions

    SciTech Connect

    Mori, Tamami I.; Onaka, Takashi; Sakon, Itsuki; Ohsawa, Ryou; Bell, Aaron C.; Ishihara, Daisuke; Shimonishi, Takashi

    2014-03-20

    Using a large collection of near-infrared spectra (2.5-5.4 μm) of Galactic H II regions and H II region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 μm features, most spectra show a relatively weak emission feature at 5.22 μm with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 μm band (previously reported). By careful analysis, we find good correlations between the 5.25 μm band and both the aromatic hydrocarbon feature at 3.3 μm and the aliphatic hydrocarbon features at around 3.4-3.6 μm. The present results give us convincing evidence that the astronomical 5.25 μm band is associated with C-H vibrations, as suggested by previous studies, and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic-to-aromatic ratio of I {sub 3.4-3.6} {sub μm}/I {sub 3.3} {sub μm} decreases against the ratio of the 3.7 μm continuum intensity to the 3.3 μm band, I {sub cont,} {sub 3.7} {sub μm}/I {sub 3.3} {sub μm}, which is an indicator of the ionization fraction of PAHs. The midinfrared color of I {sub 9} {sub μm}/I {sub 18} {sub μm} also declines steeply against the ratio of the hydrogen recombination line Brα at 4.05 μm to the 3.3 μm band, I {sub Brα}/I {sub 3.3} {sub μm}. These facts indicate possible dust processing inside or at the boundary of ionized gas.

  19. InAs/GaSb type-II superlattice infrared detectors: Future prospect

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2017-09-01

    Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of infrared detector structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL detectors compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future infrared (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability

  20. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    NASA Technical Reports Server (NTRS)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  1. X-Ray diffraction and Fourier transformation infrared spectroscopy studies of copper (II) thiourea chloro and sulphate complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika; Malviya, Pramod

    2014-09-01

    Copper (II) thiourea complexes were synthesized by chemical route method. To analyze the samples, X-Ray diffraction and Fourier transformation infrared spectroscopy method have been used. XRD analysis shows that sample is crystalline in nature and having particle size in the range of nanometres. FTIR spectroscopy shows the organic and inorganic compounds present in the sample. The X-ray diffraction pattern (XRD) using Bruker D-8 advance instrument and Infrared spectra of the complexes were obtained by KBr disc technique by using VERTEX 70 (Bruker).

  2. 77 FR 27081 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, Pennsylvania; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... employment related to the production of infrared and CO 2 laser optics, and related materials. The initial... experienced a decline in the sales or production of infrared and CO 2 laser optics, and related materials... production of infrared and CO 2 laser optics, and related materials (or like or directly competitive...

  3. Optical Spectroscopy of Luminous Infrared Galaxies. II. Analysis of the Nuclear and Long-Slit Data

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Kim, D.-C.; Sanders, D. B.; Mazzarella, J. M.; Soifer, B. T.

    1995-05-01

    A spectroscopic survey of a sample of 200 luminous IRAS galaxies (LIGs: L_ir_^7^ > 3 x 10^10^ L_sun_; H_0_ = 75 km s^-1^ Mpc^-1^) was carried out using the Palomar 5 meter and University of Hawaii 2.2 m telescopes. Kim et al. (1995) described the data-taking and data-reduction procedures and presented line and continuum measurements extracted from the nucleus of these objects. In this paper, the nuclear data are combined with circumnuclear measurements on 23 of these galaxies to investigate the properties of the line-emitting gas and underlying stellar population in and out of the nucleus. The nuclear spectra of these galaxies were classified as H II region-like" or "AGN-like" using a large number of line-ratio diagnostics corrected for the underlying stellar absorption features. This correction is an important source of errors in some previous studies. The emission-line spectra of many AGNs were found to-be of relatively low ionization level and were therefore classified as LINER. We confirm that both the fraction of LIGs with AGN spectra and the fraction of Seyferts among the AGN increase with infrared luminosity, reaching values of 62% and 54% at the highest observed luminosities, respectively. The fraction of LINERs, on the other hand, is relatively constant at ~27%. The source of the ionization of the emission-line gas often is a function of the distance from the nucleus. Based on the emission-line ratios and the strengths of the stellar absorption features, circumnuclear starburst activity is a common feature of LIGs, regardless of their nuclear spectral types. The emission-line, absorption-line, continuum, radio, and IRAS properties of the LINERs suggest that most of the LINER emission in these infrared-selected galaxies is produced through shock ionization rather than photoionization by a genuine active nucleus. The nuclear region of Seyfert LIGs is found to be slightly less reddened than that of the LINERs and H II galaxies. The dust distribution generally

  4. Room temperature and high responsivity short wavelength II-VI quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Ravikumar, Arvind P.; Chen, Guopeng; Zhao, Kuaile; Tian, Yue; Prucnal, Paul; Tamargo, Maria C.; Gmachl, Claire F.; Shen, Aidong

    2013-04-01

    We report the experimental demonstration of a room temperature, high responsivity, short wavelength II-VI Zn0.51Cd0.49Se/Zn0.29Cd0.26Mg0.45Se based quantum well infrared photodetector operating between 3 and 5 μm. Spectral response was observed up to room temperature with a cut off wavelength of 5 μm at 280 K. Measurements with a calibrated blackbody source yielded a peak responsivity of over 30 A/W at 280 K and an applied bias of -3 V. The dark current limited peak detectivity at 80 K and 280 K were measured to be 2 × 109 cm √Hz/W and 4 × 107 cm √Hz/W, respectively. These results are consistent with theoretical calculations that predict a maximum detectivity of the order of 107 cm √Hz/W at room temperature for typical carrier lifetimes and optimized doping levels.

  5. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    SciTech Connect

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin; Kim, Minjin; Park, Won-Kee; Karouzos, Marios; Kim, Ji Hoon; Pak, Soojong E-mail: mim@astro.snu.ac.kr

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  6. Faint detection of exoplanets in microlensing surveys

    SciTech Connect

    Brown, Robert A.

    2014-06-20

    We propose a new approach to discovering faint microlensing signals below traditional thresholds, and for estimating the binary-lens mass ratio and the apparent separation from such signals. The events found will be helpful in accurately estimating the true distribution of planetary semimajor axes, which is an important goal of space microlensing surveys.

  7. Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Haddadi, A.; Hoang, A. M.; Huang, E. K.; Chen, G.; Bogdanov, S.; Darvish, S. R.; Callewaert, F.; McClintock, R.

    2013-07-01

    Type-II InAs/GaSb superlattices (T2SLs), a system of multi-interacting quantum wells, was introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention especially for infrared detection. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of T2SL-based photo-detectors and focal plane arrays for imaging in different infrared regions, from SWIR to VLWIR, and the future outlook of this material system.

  8. A NEAR-INFRARED TEMPLATE DERIVED FROM I Zw 1 FOR THE Fe II EMISSION IN ACTIVE GALAXIES

    SciTech Connect

    Garcia-Rissmann, A.; Rodriguez-Ardila, A.; Sigut, T. A. A.; Pradhan, A. K.

    2012-05-20

    In active galactic nucleus spectra, a series of Fe II multiplets form a pseudo-continuum that extends from the ultraviolet to the near-infrared (NIR). This emission is believed to originate in the broad-line region, and it has been known for a long time that pure photoionization fails to reproduce it in the most extreme cases, as does the collisional excitation alone. The most recent models by Sigut and Pradhan include details of the Fe II ion microphysics and cover a wide range in the ionization parameter log U{sub ion} = (- 3.0 {yields} -1.3) and density log n{sub H} = (9.6 {yields} 12.6). With the aid of such models and a spectral synthesis approach, we studied for the first time in detail the NIR emission of I Zw 1. The main goals were to confirm the role played by Ly{alpha} fluorescence mechanisms in the production of the Fe II spectrum and to construct the first semi-empirical NIR Fe II template that best represents this emission, consequently allowing its clean subtraction in other sources. A good overall match between the observed Fe II+Mg II features with those predicted by the best-fitted model was obtained, corroborating the Ly{alpha} fluorescence as a key process to understand the Fe II spectrum. The best model was fine-tuned by applying a deconvolution method to the observed Fe II+Mg II spectrum. This derived semi-empirical template was then fitted to the spectrum of Ark 564, showing that it nicely reproduced its observed Fe II+Mg II emission. Our work extends the current set of available Fe II templates into the NIR region.

  9. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.

    PubMed

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.

  10. A femtosecond visible/visible and visible/mid-infrared transient absorption study of the light harvesting complex II.

    PubMed

    Stahl, Andreas D; Di Donato, Mariangela; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise

    2009-12-16

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a chemical, storable form. We performed time-resolved femtosecond visible pump/mid-infrared probe and visible pump/visible probe absorption difference spectroscopy on purified LHCII to gain insight into the energy transfer in this complex occurring in the femto-picosecond time regime. We find that information derived from mid-infrared spectra, together with structural and modeling information, provides a unique visualization of the flow of energy via the bottleneck pigment chlorophyll a604.

  11. High-pressure infrared and Raman studies of polymorphism in pharmaceutical compounds: Spironolactone, Forms I and II

    NASA Astrophysics Data System (ADS)

    Pisegna, Gisia L.; Gilson, Denis F. R.; Butler, Ian S.

    2014-12-01

    The infrared and Raman spectra of the two polymorphic forms, I and II, of the synthetic steroid spironolactone (C24H32O4S) have been examined under high pressures up to about 50 kbar with the aid of a diamond-anvil cell. While the differences in peak wavenumbers between the two polymorphs are small, the difference in the pressure dependence is dramatic. Both forms undergo structural transformations under pressure, but over different pressure ranges.

  12. Mid-infrared properties of luminous infrared galaxies. II. Probing the dust and gas physics of the goals sample

    SciTech Connect

    Stierwalt, S.; Armus, L.; Diaz-Santos, T.; Marshall, J.; Haan, S.; Howell, J.; Murphy, E. J.; Inami, H.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Iwasawa, K.; Kim, D. C.; Rich, J. A.; Spoon, H. W. W.; U, V.

    2014-08-01

    The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 μm of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., τ{sub 9.7μm}, τ{sub ice}, neon line ratios, and PAH feature ratios). However, as their EQW{sub 6.2{sub μm}} decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L{sub IR}/L{sub 8{sub μm}}) and the PAH fraction at 8 μm but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ∼6% of the sample but only in the most obscure sources (s{sub 9.7{sub μm}} < –1.24). Ice absorption features are observed in ∼11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H{sub 2})/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H{sub 2})/L

  13. Infrared environment of 6 Cephei

    NASA Astrophysics Data System (ADS)

    Abraham, P.; Kun, M.; Balazs, L. G.; Holl, A.; Fronto, A.

    1993-02-01

    This paper deals with the study of various features in the interstellar environment of the Be star 6 Cephei analyzing IRAS maps and optical data. We suggest that the conspicuous nearly circular arc on the IRAS maps is a stellar wind bubble (SWB). It has been shown that the faint H II region S 133 is probably a part of a chain of ionized arcs surrounding the older group of the Cepheus OB2 association. The relationship of 6 Cephei to a giant infrared ring (Cepheus Bubble) indicates a distance of about 800 pc and an unusually high absolute brightness of -5 mag for the star. 21 H alpha emission stars have been found in the 6 Cep area. We constructed a model for the infrared point source associated with 6 Cephei in terms of the infrared emission of the surrounding reflection nebula, and modeled the extended infrared emission of the reflection nebula adopting the dust model of Desert et al. (1990). The model resulted in a significant underabundance of very small grains and a normal abundance of PAH's with respect to the big grains. The model gives 0.23 solar mass for the dust mass of the reflection nebula which is not sufficient to account for the measured reddening of the star.

  14. Infrared multiple photon dissociation spectroscopy of group I and group II metal complexes with Boc-hydroxylamine.

    PubMed

    Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; Van Stipdonk, Michael J

    2013-08-30

    Hydroxamates are essential growth factors for some microbes, acting primarily as siderophores that solubilize iron for transport into a cell. Here we determined the intrinsic structure of 1:1 complexes between Boc-protected hydroxylamine and group I ([M(L)](+)) and group II ([M(L-H)](+)) cations, where M and L are the cation and ligand, respectively, which are convenient models for the functional unit of hydroxamate siderphores. The relevant complex ions were generated by electrospray ionization (ESI) and isolated and stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Infrared spectra of the isolated complexes were collected by monitoring (infrared) photodissociation yield as a function of photon energy. Experimental spectra were then compared to those predicted by density functional theory (DFT) calculations. The infrared multiple photon dissociation (IRMPD) spectra collected are in good agreement with those predicted to be lowest-energy by DFT. The spectra for the group I complexes contain six resolved absorptions that can be attributed to amide I and II type and hydroxylamine N-OH vibrations. Similar absorptions are observed for the group II cation complexes, with shifts of the amide I and amide II vibrations due to the change in structure with deprotonation of the hydroxylamine group. IRMPD spectroscopy unequivocally shows that the intrinsic binding mode for the group I cations involves the O atoms of the amide carbonyl and hydroxylamine groups of Boc-hydroxylamine. A similar binding mode is preferred for the group II cations, except that in this case the metal ion is coordinated by the O atom of the deprotonated hydroxylamine group. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy

    NASA Astrophysics Data System (ADS)

    Medina, Gustavo E.; Muñoz, Ricardo R.; Vivas, A. Katherina; Förster, Francisco; Carlin, Jeffrey L.; Martinez, Jorge; Galbany, Lluis; González-Gaitán, Santiago; Hamuy, Mario; de Jaeger, Thomas; Maureira, Juan Carlos; San Martín, Jaime

    2017-08-01

    During the analysis of RR Lyrae stars (RRLs) discovered in the High Cadence Transient Survey (HiTS) taken with the Dark Energy Camera at the 4 m telescope at Cerro Tololo Inter-American Observatory, we found a group of three very distant, fundamental mode pulsator RR Lyrae (type ab). The location of these stars agrees with them belonging to the Leo V ultra-faint satellite galaxy, for which no variable stars have been reported to date. The heliocentric distance derived for Leo V based on these stars is 173 ± 5 kpc. The pulsational properties (amplitudes and periods) of these stars locate them within the locus of the Oosterhoff II group, similar to most other ultra-faint galaxies with known RRLs. This serendipitous discovery shows that distant RRLs may be used to search for unknown faint stellar systems in the outskirts of the Milky Way.

  16. MID-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS. II. THE STRUCTURE OF MASSIVE STARLESS CORES AND CLUMPS

    SciTech Connect

    Butler, Michael J.; Tan, Jonathan C.

    2012-07-20

    We develop the mid-infrared extinction (MIREX) mapping technique of Butler and Tan (Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 {mu}m images, this allows us to accurately probe mass surface densities, {Sigma}, up to {approx_equal} 0.5 g cm{sup -2} with 2'' resolution and mitigate one of the main sources of uncertainty associated with Galactic MIREX mapping. We then characterize the structure of 42 massive starless and early-stage cores and their surrounding clumps, selected from 10 infrared dark clouds, measuring {Sigma}{sub cl}(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M{sub cl} = 60 M{sub Sun }. We find that these objects have a mean radius of R{sub cl} {approx_equal} 0.1 pc, mean {Sigma}{sub cl} = 0.3 g cm{sup -} and, if fitted by a power-law (PL) density profile {rho}{sub cl}{proportional_to}r{sup -k{sub {rho}}{sub ,}{sub c}{sub l}}, a mean value of k{sub {rho},cl} = 1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, then we find a mean core density PL index of k{sub {rho},c} = 1.6. We repeat this analysis as a function of radius and derive the best-fitting PL plus uniform clump envelope model for each of the 42 core/clumps. The cores have typical masses of M{sub c} {approx} 100 M{sub Sun} and {Sigma}-bar{sub c} {approx} 0.1 g cm{sup -2}, and are embedded in clumps with comparable mass surface densities. We also consider Bonnor-Ebert density models, but these do not fit the observed {Sigma} profiles as well as PLs. We conclude that massive starless cores exist and are well described by singular polytropic spheres. Their relatively low values of {Sigma} and the fact that they are IR dark may imply that their fragmentation is inhibited by magnetic fields rather than

  17. Extreme Faint Flux Imaging with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien

    2009-08-01

    An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.

  18. Faint-object spectrograph for Space Telescope

    NASA Technical Reports Server (NTRS)

    Harms, r. J.; Beaver, E.; Burbidge, E. M.; Angel, R.; Bartko, F.; Bloomquist, W.; Flemming, J. C.; Bohlin, R.; Davidsen, A. F.; Ford, H.

    1979-01-01

    The paper presents the Faint Object Spectrograph (FOS) for the Space Telescope to provide a digitized spectra of faint astronomical objects over the 115 to 700 nm wavelength range at resolving powers of 1000 and 100. A variety of concave gratings and prisms is employed to form nearly stigmatic spectra on one of the two Digicon photon counting detectors which are optimized for two different but overlapping ranges. The scientific goals associated with quasars, active galaxies, and objects within our solar system are discussed, and the FOS optical design features, including detectors, electronics, signal processing, power supplies, and data handling are examined. The FOS structural system, mechanism, and controls are described, along with the predicted performance capabilities in the spectral and spectropolarimetry modes. Finally, system performance parameters, including spatial resolution, time resolution, noise, and efficiency are discussed.

  19. An Infrared Study of the Dust Properties and Geometry of the Arched Filaments H ii Region with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Lau, R. M.; Morris, M. R.; Herter, T. L.

    2017-03-01

    Massive stellar clusters provide radiation (˜ {10}7{--}{10}8 {L}⊙ ) and winds (˜1000 km s-1) that act to heat dust and shape their surrounding environment. In this paper, the Arched Filaments in the Galactic center were studied to better understand the influence of the Arches cluster on its nearby interstellar medium (ISM). The Arched Filaments were observed with the Faint Object InfraRed CAMera for the SOFIA Telescope at 19.7, 25.2, 31.5, and 37.1 μm. Color-temperature maps of the region created with the 25.2 and 37.1 μm data reveal relatively uniform dust temperatures (70-100 K) over the extent of the filaments (˜25 pc). Distances between the cluster and the filaments were calculated assuming equilibrium heating of standard-size ISM dust grains (˜0.1 μm). The distances inferred by this method are in conflict with the projected distance between the filaments and the cluster, although this inconsistency can be explained if the characteristic grain size in the filaments is smaller (˜0.01 μm) than typical values. DustEM models of selected locations within the filaments show evidence of depleted abundances of polycyclic aromatic hydrocarbons (PAHs) by factors of ˜1.6-10 by mass compared to the diffuse ISM. The evidence for both PAH depletion and a smaller characteristic grain size points to processing of the ISM within the filaments. We argue that the eroding of dust grains within the filaments is not likely attributable to the radiation or winds from the Arches cluster, but may be related to the physical conditions in the Galactic center.

  20. Does faint galaxy clustering contradict gravitational instability?

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1992-01-01

    It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.

  1. Deriving remote sensing reflectance from turbid Case II waters using green-shortwave infrared bands based model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Yin, Shoujing; Xiao, Rulin; Xu, Qianxiang; Lin, Changsong

    2014-04-01

    The objectives of this study are to validate the applicability of a shortwave infrared atmospheric correction model (SWIR-based model) in deriving remote sensing reflectance in turbid Case II waters, and to improve that model using a proposed green-shortwave infrared model (GSWIR-based model). In a GSWIR-based model, the aerosol type is determined by a SWIR-based model and the reflectance due to aerosol scattering is calculated using spectral slope technology. In this study, field measurements collected from three independent cruises from two different Case II waters were used to compare models. The results indicate that both SWIR- and GSWIR-based models can be used to derive the remote sensing reflectance at visible wavelengths in turbid Case II waters, but GSWIR-based models are superior to SWIR-based models. Using the GSWIR-based model decreases uncertainty in remote sensing reflectance retrievals in turbid Case II waters by 2.6-12.1%. In addition, GSWIR-based model’s sensitivity to user-supplied parameters was determined using the numerical method, which indicated that the GSWIR-based model is more sensitive to the uncertainty of spectral slope technology than to that of aerosol type retrieval methodology. Due to much lower noise tolerance of GSWIR-based model in the blue and near-infrared regions, the GSWIR-based model performs poorly in determining remote sensing reflectance at these wavelengths, which is consistent with the GSWIR-based model’s accuracy evaluation results.

  2. Fourier Transform Infrared Spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales.

    PubMed

    Nadeem, Raziya; Ansari, Tariq Mahmood; Khalid, Ahmad Mukhtar

    2008-08-15

    The present study reports the use of locally available fish (Labeo rohita) scales for Pb(II) removal from aqueous solutions under different experimental conditions. Maximum Pb(II) adsorption (196.8 mg g(-1)) occurred at pH 3.5. Pb(II) sorption was found to be pH, dose, initial metal concentration, contact time and shaking speed dependent while particle size and temperature independent. Experimental data of Pb(II) biosorption onto fish scales fitted well to Freundlich isotherm model in comparison to the model of Langmuir. The fast adsorption process in first 30 min followed by subsequent slow adsorption rate was suitably described by pseudo-second order model. In addition, this study was designed to evaluate the effect of physical and chemical pretreatments on surface properties of fish scales by the application of Fourier Transform Infrared (FTIR) Spectroscopic analysis. Physical pretreatments resulted in partial degradation of some functional groups. Alkaline pretreatments of fish scales did not have any significant influence on the nature of functional groups responsible for Pb(II) uptake, while acidic pretreatments resulted in degeneration of the most of functional groups on biosorbent cell wall. FTIR analysis confirmed the involvement of amino, carboxylic, phosphate and carbonyl groups in Pb(II) biosorption by fish scales.

  3. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial

    PubMed Central

    Pellicer, Adelina; Alderliesten, Thomas; Austin, Topun; van Bel, Frank; Benders, Manon; Claris, Olivier; Dempsey, Eugene; Franz, Axel R; Fumagalli, Monica; Gluud, Christian; Grevstad, Berit; Hagmann, Cornelia; Lemmers, Petra; van Oeveren, Wim; Pichler, Gerhard; Plomgaard, Anne Mette; Riera, Joan; Sanchez, Laura; Winkel, Per; Wolf, Martin; Greisen, Gorm

    2015-01-01

    Objective To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. Design Phase II randomised, single blinded, parallel clinical trial. Setting Eight tertiary neonatal intensive care units in eight European countries. Participants 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. Interventions Monitoring of cerebral oxygenation using NIRS in combination with a dedicated treatment guideline during the first 72 hours of life (experimental) compared with blinded NIRS oxygenation monitoring with standard care (control). Main outcome measures The primary outcome measure was the time spent outside the target range of 55-85% for cerebral oxygenation multiplied by the mean absolute deviation, expressed in %hours (burden of hypoxia and hyperoxia). One hour with an oxygenation of 50% gives 5%hours of hypoxia. Secondary outcomes were all cause mortality at term equivalent age and a brain injury score assessed by cerebral ultrasonography. Randomisation Allocation sequence 1:1 with block sizes 4 and 6 in random order concealed for the investigators. The allocation was stratified for gestational age (<26 weeks or ≥26 weeks). Blinding Cerebral oxygenation measurements were blinded in the control group. All outcome assessors were blinded to group allocation. Results The 86 infants randomised to the NIRS group had a median burden of hypoxia and hyperoxia of 36.1%hours (interquartile range 9.2-79.5%hours) compared with 81.3 (38.5-181.3) %hours in the control group, a reduction of 58% (95% confidence interval 35% to 73%, P<0.001). In the experimental group the median burden of hypoxia was 16.6 (interquartile range 5.4-68.1) %hours, compared with 53.6 (17.4-171.3) %hours in the control group (P=0.0012). The

  4. Charting the Winds that Change the Universe, II: The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Benford, D. J.; Harvey, P. M.; Lawrence, C. R.; Leisawitz, D. T.; Lester, D. F.; Mather, J. C.; Stacey, G. J.; Werner, M. W.; Yorke, H. W.

    2004-01-01

    SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  5. Galaxies with extreme infrared and Fe II emission. 1: Markarian 231: The signature of a young infrared QSO

    NASA Astrophysics Data System (ADS)

    Lipari, Sebastian; Colina, Luis; Macchetto, F.

    1994-05-01

    We investigate the ultraluminous IR Galaxy/QSO Mrk 231 by means of long-slit optical spectroscopy, high spatial resolution broad-band optical imaging and UV International Ultraviolet Explorer (IUE) spectra. The spectrum shows an extreme Fe II optical emission (Fe IIOPT/H beta approx. equals 8), broad Balmer and Na ID lines, weak high-excitation lines, double-peaked optical narrow emission lines with velocity differences of about 1000 km s-1, a steep UV spectrum, and a weak Ly alpha line. These spectral features are explained 'mainly' by the presence of nuclear and circumnuclear starbursts. The high spatial resolution broad-band images show details of two interesting blue circumnuclear subregions, in particular: (1) a blue region 2 sec-5 sec west of the nucleus; and (2) a blue arc 'horseshoe' at approx. 3.5 sec S. In 'region I' circumnuclear star-forming region located at approx. 2 sec-5 sec to the west from the nucleus) we detect an emission-line system (E0) with a velocity (VE0 = 7941 +/- 80 km s-1) similar to that of the nuclear system Broad Absorption Line (BAL)1 VBAL1 approx. 7800 km/s), the strongest of the three broad absorption-line systems. Moreover, in this region we also detect the probable presence of this BAL1 system (VNaID = 7840 +/- 120 km s-1). Consequently, Mrk 231 is the first candidate where a direct link, at least kinematical, between a star-formation process and the BAL phenomenon is observed. We discuss physical, kinematic and morphological evidence of a strong nuclear and circumnuclear starburst (with superwind/superbubble and supernova of Type II), in Mrk 231. These results and studies are consistent with a scenario where this ultraluminous IR galaxy has a composite nature inthe nuclear region, which is the consequence of the final phases of an ongoing merger process. The starburst is the dominant source of nuclear energy and the nonthermal active galactic nuclei remains strongly obscured. We also discuss the extreme properties of Mrk 231 as

  6. The subarcsecond mid-infrared view of local active galactic nuclei - II. The mid-infrared-X-ray correlation

    NASA Astrophysics Data System (ADS)

    Asmus, D.; Gandhi, P.; Hönig, S. F.; Smette, A.; Duschl, W. J.

    2015-11-01

    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18μm continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR-X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (˜1045 erg s-1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR-X-ray ratio that is only ≤0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log NH < 23) actually show the highest MIR-X-ray ratio on average. Radio-loud objects show a higher mean MIR-X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR-X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the

  7. The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited

    DTIC Science & Technology

    2003-09-10

    structure line in a sample of 15 ultraluminous infrared ( IR ) galaxies ( IR luminosity LIRk1012 L; ULIRGs) using the Long Wavelength Spectrometer (LWS...a sample of seven ultraluminous infrared ( IR ) galaxies ( IR luminosity LIR > 1012 L; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the...absorption line characteristics of the FIR spectra of a small sample of IR - bright galaxies, including the ULIRG Arp 220, and modeled the

  8. An infrared spectroscopic based method for mercury(II) detection in aqueous solutions.

    PubMed

    Chandrasoma, Asela; Hamid, Amer Al Abdel; Bruce, Alice E; Bruce, Mitchell R M; Tripp, Carl P

    2012-05-30

    A new method that uses solid phase extraction (SPE) coupled with FTIR spectroscopy to detect Hg(II) in aqueous samples is described. The technique is envisioned for on-site, field evaluation rather than lab-based techniques. This paper presents the "proof of principle" of this new approach toward measurements of Hg(II) in water and identifies mass transport issues that would need to be overcome in order to migrate from a lab based method to field operation. The SPE material supported on a Si wafer is derivatized with an acylthiosemicarbazide, which undergoes a reaction in the presence of aqueous Hg(II) to form an oxadiazole ring. The progress of the reaction is monitored by IR spectroscopy. Following EPA guidelines, the method of detection limit (MDL) for the SPE/IR was 5 μg of Hg(II)cm(-2). In a 1L sample and a 1cm(2) Si wafer, this translates to a detection limit of 5 ppb. This system shows a high selectivity toward aqueous Hg(II) over other thiophilic heavy metal ions such as Pb(II), Cd(II), Fe(III), and Zn(II) and other metal ions such as Ni(II), Mn(II), Co(II), Cu(II), In(III), Ru(III), Na(I), and Ag(I) in aqueous solutions.

  9. Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy

    2017-01-01

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of >5 M⊙ as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least ten such galaxies places independent limits on MACHO dark matter of masses >10 M⊙. Both Eri II's cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M⊙ and half-light radii of 13 pc (for the cluster) and 30 pc (for the ultra-faint dwarfs). These systems close the 20 -100 M⊙ window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from 10-7 M⊙ up to arbitrarily high masses. NASA Sagan Fellow.

  10. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices

    SciTech Connect

    Olson, B. V.; Grein, C. H.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.

    2015-12-29

    The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1×10–26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K–80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K•p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. In conclusion, the experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe.

  11. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices

    DOE PAGES

    Olson, B. V.; Grein, C. H.; Kim, J. K.; ...

    2015-12-29

    The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1×10–26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K–80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K•p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. In conclusion, the experimental superlattice Auger coefficients are found to be anmore » order-of-magnitude smaller than HgCdTe.« less

  12. Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.

    2005-10-01

    The interactions of manganese acetate, ferric chloride and cobalt sulphate with norfloxacin (NOR) in acetone or methanol were studied. The isolated solid complexes were characterized by elemental analysis, infrared, electronic, mass spectra and thermal analysis. The results support the formation of complexes of the formula [Fe(NOR) 3]Cl 3·12H 2O and [M(NOR) 2]X 2·8H 2O (M=Mn(II) or Co(II) and X=(CH 3COO -) or SO4-2). The infrared spectra of the isolated solid complexes suggested, indicated that NOR act as bidentate ligands through one of the oxygen atoms of the carboxylic group and the ring carbonyl oxygen atom. The interpretation, mathematical analysis and evaluation of kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, pre-exponential factors, activation energy evaluated by using Coats-Redfern and Horowitz-Metzger equations for two complexes are carried out. General mechanisms describing the decomposition of the solid complexes are suggested.

  13. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  14. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  15. Molecular clouds and star formation in the inner galaxy - A comparison of CO, H II, and far-infrared surveys

    NASA Technical Reports Server (NTRS)

    Myers, P. C.; Dame, T. M.; Thaddeus, P.; Cohen, R. S.; Silverberg, R. F.; Dwek, E.; Hauser, M. G.

    1986-01-01

    Surveys of the galactic plane over galactic latitudes from -1 degree to +1 degree and galactic longitudes from 12 degrees to 60 degrees are compared in the CO line at 2.6 mm, in the far-infrared (FIR) continuum at 150 micrometers and 250 micrometers, and in the radio continuum and H 110-alpha recombination line at 6 cm. The main purposes are to determine the degree of association between FIR sources, H II regions, and molecular clouds in the first quadrant and to describe and analyze the stellar content of these molecular clouds. Among the conclusions it is noted that most FIR sources coincide with HII regions, and nearly all H II regions coincide with molecular clouds, and that clouds in the inner galaxy are probably several tens of millions of years old and may have been producing O stars for only about the most recent 20 percent of their lives.

  16. The formation of Jupiter's faint rings

    PubMed

    Burns; Showalter; Hamilton; Nicholson; de Pater I; Ockert-Bell; Thomas

    1999-05-14

    Observations by the Galileo spacecraft and the Keck telescope showed that Jupiter's outermost (gossamer) ring is actually two rings circumscribed by the orbits of the small satellites Amalthea and Thebe. The gossamer rings' unique morphology-especially the rectangular end profiles at the satellite's orbit and the enhanced intensities along the top and bottom edges of the rings-can be explained by collisional ejecta lost from the inclined satellites. The ejecta evolves inward under Poynting-Robertson drag. This mechanism may also explain the origin of Jupiter's main ring and suggests that faint rings may accompany all small inner satellites of the other jovian planets.

  17. Faint variable stars observed with Kepler

    NASA Astrophysics Data System (ADS)

    Lovekin, Catherine; Tompkins, Jasmin

    2017-09-01

    We present preliminary analysis of approximately 10 variable stars observed with Kepler. The sample stars are faint, and have temperatures greater than 8000 K. The stars were observed for up to three quarters (Q14-Q16) in long cadence mode. Frequencies were extracted with Period04, and 1-21 frequencies were detected in each quarter, with an average of 8 frequencies per quarter. Some variability is detected from quarter to quarter, while the dominant frequencies remain unchanged. We fit the frequencies using MESA models between 1.5 and 3 solar masses, and varied the core overshoot. Best fitting properties of each of these stars will be discussed.

  18. DUST AROUND R CORONAE BOREALIS STARS. II. INFRARED EMISSION FEATURES IN AN H-POOR ENVIRONMENT

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, D. L. E-mail: nkrao@iiap.res.in

    2013-08-20

    Residual Spitzer/Infrared Spectrograph spectra for a sample of 31 R Coronae Borealis (RCB) stars are presented and discussed in terms of narrow emission features superimposed on the quasi-blackbody continuous infrared emission. A broad {approx}6-10 {mu}m dust emission complex is seen in the RCBs showing an extreme H-deficiency. A secondary and much weaker {approx}11.5-15 {mu}m broad emission feature is detected in a few RCBs with the strongest {approx}6-10 {mu}m dust complex. The Spitzer infrared spectra reveal for the first time the structure within the {approx}6-10 {mu}m dust complex, showing the presence of strong C-C stretching modes at {approx}6.3 and 8.1 {mu}m as well as of other dust features at {approx}5.9, 6.9, and 7.3 {mu}m, which are attributable to amorphous carbonaceous solids with little or no hydrogen. The few RCBs with only moderate H-deficiencies display the classical ''unidentified infrared bands (UIRs)'' and mid-infrared features from fullerene-related molecules. In general, the characteristics of the RCB infrared emission features are not correlated with the stellar and circumstellar properties, suggesting that the RCB dust features may not be dependent on the present physical conditions around RCB stars. The only exception seems to be the central wavelength of the 6.3 {mu}m feature, which is blueshifted in those RCBs showing also the UIRs, i.e., the RCBs with the smallest H deficiency.

  19. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  20. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE PAGES

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  1. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    SciTech Connect

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y. -Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; Marel, R. P. van der; Yanny, B.

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness ($\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of ${45}_{-4}^{+5}\\,\\mathrm{kpc}$. The physical size (${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$) and low luminosity (${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located ${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  2. An Ultra-faint Galaxy Candidate Discovered in Early Data from the Magellanic Satellites Survey

    NASA Astrophysics Data System (ADS)

    Drlica-Wagner, A.; Bechtol, K.; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y.-Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; van der Marel, R. P.; Yanny, B.

    2016-12-01

    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ ={28.5}-1+1 {mag} {arcsec}{}-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of {45}-4+5 {kpc}. The physical size ({r}1/2={46}-11+15 {pc} ) and low luminosity ({M}V=-{3.2}-0.5+0.4 {mag} ) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located {11.3}-0.9+3.1 {kpc} from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  3. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    SciTech Connect

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; Tucker, D. L.; Gruendl, R. A.; Johnson, M. D.; Walker, A. R.; James, D. J.; Nidever, D. L.; Olsen, K. A. G.; Wechsler, R. H.; Cioni, M. R. L.; Conn, B. C.; Kuehn, K.; Li, T. S.; Mao, Y. -Y.; Martin, N. F.; Neilsen, E.; Noel, N. E. D.; Pieres, A.; Simon, J. D.; Stringfellow, G. S.; Marel, R. P. van der; Yanny, B.

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness ($\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of ${45}_{-4}^{+5}\\,\\mathrm{kpc}$. The physical size (${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$) and low luminosity (${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located ${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.

  4. An ultra-faint galaxy candidate discovered in early data from the Magellanic Satellites Survey

    DOE PAGES

    Drlica-Wagner, A.; Bechtol, Keith; Allam, S.; ...

    2016-11-30

    Here, we report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644–5953 (Pictor II or Pic II) is a low surface brightness (more » $$\\mu ={28.5}_{-1}^{+1}\\,\\mathrm{mag}\\,\\,\\mathrm{arcsec}{}^{-2}$$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of $${45}_{-4}^{+5}\\,\\mathrm{kpc}$$. The physical size ($${r}_{1/2}={46}_{-11}^{+15}\\,\\mathrm{pc}\\,$$) and low luminosity ($${M}_{V}=-{3.2}_{-0.5}^{+0.4}\\,\\mathrm{mag}\\,$$) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644–5953 (Pic II) is located $${11.3}_{-0.9}^{+3.1}\\,\\mathrm{kpc}\\,$$ from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644–5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.« less

  5. Near-infrared spectra and intrinsic luminosities of candidate type II quasars at 2 < z < 3.4

    SciTech Connect

    Greene, Jenny E.; Strauss, Michael A.; Pattarakijwanich, Petchara; Alexandroff, Rachael; Zakamska, Nadia L.; Liu, Guilin; Lang, Dustin; Hamann, Frederick; Ross, Nicholas P.; Myers, Adam D.; Brandt, W. Niel; Schneider, Donald P.; York, Donald

    2014-06-10

    We present JHK near-infrared (NIR) spectroscopy of 25 candidate Type II quasars selected from the Sloan Digital Sky Survey (SDSS), using Triplespec on the Apache Point Observatory 3.5 m telescope, the Folded-port InfraRed Echellette at the Magellan/Baade 6.5 m telescope, and the Gemini Near-Infrared Spectrograph on Gemini. At redshifts of 2 < z < 3.4, our NIR spectra probe the rest-frame optical region of these targets, which were initially selected to have strong lines of C IV and Ly α, with FWHM < 2000 km s{sup –1} from the SDSS pipeline. We use the [O III] λ5007 line shape as a model for the narrow-line region emission and find that Hα consistently requires a broad component with FWHMs ranging from 1000 to 7500 km s{sup –1}. Interestingly, the C IV lines also require broad bases, but with considerably narrower widths of 1000-4500 km s{sup –1}. Estimating the extinction using the Balmer decrement and also the relationship in lower-z quasars between rest equivalent width and luminosity in the [O III] line, we find typical A{sub V} values of 0-2 mag, which naturally explains the attenuated C IV lines relative to Hα. We propose that our targets are moderately obscured quasars. We also describe one unusual object with three distinct velocity peaks in its [O III] spectrum.

  6. Star formation rates from [C II] 158 μm and mid-infrared emission lines for starbursts and active galactic nuclei

    SciTech Connect

    Sargsyan, L.; Lebouteiller, V.; Weedman, D.; Barry, D.; Spoon, H.; Samsonyan, A.; Bernard-Salas, J.; Houck, J. E-mail: dweedman@isc.astro.cornell.edu

    2014-07-20

    A summary is presented for 130 galaxies observed with the Herschel Photodetector Array Camera and Spectrometer instrument to measure fluxes for the [C II] 158 μm emission line. Sources cover a wide range of active galactic nucleus to starburst classifications, as derived from polycyclic aromatic hydrocarbon strength measured with the Spitzer Infrared Spectrograph. Redshifts from [C II] and line to continuum strengths (equivalent width (EW) of [C II]) are given for the full sample, which includes 18 new [C II] flux measures. Calibration of L([C II)]) as a star formation rate (SFR) indicator is determined by comparing [C II] luminosities with mid-infrared [Ne II] and [Ne III] emission line luminosities; this gives the same result as determining SFR using bolometric luminosities of reradiating dust from starbursts: log SFR = log L([C II)]) – 7.0, for SFR in M{sub ☉} yr{sup –1} and L([C II]) in L{sub ☉}. We conclude that L([C II]) can be used to measure SFR in any source to a precision of ∼50%, even if total source luminosities are dominated by an active galactic nucleus (AGN) component. The line to continuum ratio at 158 μm, EW([C II]), is not significantly greater for starbursts (median EW([C II]) = 1.0 μm) compared to composites and AGNs (median EW([C II]) = 0.7 μm), showing that the far-infrared continuum at 158 μm scales with [C II] regardless of classification. This indicates that the continuum at 158 μm also arises primarily from the starburst component within any source, giving log SFR = log νL{sub ν}(158 μm) – 42.8 for SFR in M{sub ☉} yr{sup –1} and νL{sub ν}(158 μm) in erg s{sup –1}.

  7. Cold H I in faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  8. BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY

    SciTech Connect

    Belokurov, V.; Walker, M. G.; Evans, N. W.; Gilmore, G.; Irwin, M. J.; Koposov, S.; Watkins, L.; Wyrzykowski, L.; Just, D.; Olszewski, E.; Mateo, M. E-mail: walker@ast.cam.ac.uk

    2010-03-20

    We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of {approx}180 kpc, some 15 deg. away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall Telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of {approx}60 pc, while Segue 3 is 20 times smaller at only 3 pc.

  9. Conversion of the spin state of the manganese complex in photosystem II induced by near-infrared light.

    PubMed

    Boussac, A; Girerd, J J; Rutherford, A W

    1996-06-04

    The manganese complex (Mn4) which is responsible for water oxidation in photosystem II is EPR detectable in the S2 state, one of the five redox states of the enzyme cycle. The S2 state is observable at 10 K either as a multiline signal (spin 1/2) or as a signal at g = 4.1 (spin 3/2 or spin 5/2). It is shown here that at around 150 K the state responsible for the multiline signal is converted to that responsible for the g = 4.1 signal upon the absorption of infrared light. This conversion is fully reversible at 200 K. The action spectrum of this conversion has its maximum at 820 nm (12 200 cm-1) and is similar to the intervalence charge transfer band in di-mu-oxo-(MnIIIMnIV) model systems. It is suggested that the conversion of the multiline signal to the g = 4.1 signal results from absorption of infrared light by the Mn cluster itself, resulting in electron transfer from MnIII to MnIV. The g = 4.1 signal is thus proposed to arise from a state which differs from that which gives rise to the multiline signal only in terms of this change in its valence distribution. The near-infrared light effect was observed in the S2 state of Sr(2+)-reconstituted photosystem II and in Ca(2+)-depleted, EGTA (or citrate-)-treated photosystem II but not in ammonia-treated photosystem II. Earlier results in the literature which showed that the g = 4.1 state was preferentially formed by illumination at 130 K are reinterpreted as being the result of two photochemical events: the first being photosynthetic charge separation resulting in an S2 state which gives rise to the multiline signal and the second being the conversion of this state to the g = 4.1 state due to the simultaneous and inadvertent presence of 820 nm light in the broad-band illumination given. There is therefore no reason to consider the state responsible for the g = 4.1 signal as a precursor of that which gives rise to the multiline signal.

  10. A multifrequency radio continuum and IRAS faint source survey of markarian galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Kojoian, G.; Seal, J.; Dickinson, D. F.; Malkan, M. A.

    1995-01-01

    Results are presented from a multifrequency radio continumm survey of Markarian galaxies (MRKs) and are supplemented by IRAS infrared data from the Faint Source Survey. Radio data are presented for 899 MRKs observed at nu = 4.755 GHz with the National Radio Astronomy Observatory (NRAO)-Green Bank 300 foot (91 m) telescope, including nearly 88% of those objects in Markarian lists VI-XIV. In addition, 1.415 GHz measurements of 258 MRKs, over 30% of the MRKs accessible from the National Aeronomy and Ionosphere Center (NAIC)-Arecibo, are reported. Radio continuum observations of smaller numbers of MRKs were made at 10.63 GHz and at 23.1 GHz and are also presented. Infrared data from the IRAS Faint Source Survey (Ver. 2) are presented for 944 MRKs, with reasonably secure identifications extracted from the NASA/IPAC Extragalactic Database. MRKs exhibit the same canonical infrared characteristics as those reported for various other galaxy samples, that is well-known enhancement of the 25 micrometer/60 micrometer color ratio among Seyfert MRKs, and a clear tendency for MRKs with warmer 60 micrometer/100 micrometer colors to also possess cooler 12 micrometer/25 micrometer colors. In addition, non-Seyfert are found to obey the well-documented infrared/radio luminosity correlation, with the tightest correlation seen for starburst MRKs.

  11. A multifrequency radio continuum and IRAS faint source survey of markarian galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Kojoian, G.; Seal, J.; Dickinson, D. F.; Malkan, M. A.

    1995-01-01

    Results are presented from a multifrequency radio continumm survey of Markarian galaxies (MRKs) and are supplemented by IRAS infrared data from the Faint Source Survey. Radio data are presented for 899 MRKs observed at nu = 4.755 GHz with the National Radio Astronomy Observatory (NRAO)-Green Bank 300 foot (91 m) telescope, including nearly 88% of those objects in Markarian lists VI-XIV. In addition, 1.415 GHz measurements of 258 MRKs, over 30% of the MRKs accessible from the National Aeronomy and Ionosphere Center (NAIC)-Arecibo, are reported. Radio continuum observations of smaller numbers of MRKs were made at 10.63 GHz and at 23.1 GHz and are also presented. Infrared data from the IRAS Faint Source Survey (Ver. 2) are presented for 944 MRKs, with reasonably secure identifications extracted from the NASA/IPAC Extragalactic Database. MRKs exhibit the same canonical infrared characteristics as those reported for various other galaxy samples, that is well-known enhancement of the 25 micrometer/60 micrometer color ratio among Seyfert MRKs, and a clear tendency for MRKs with warmer 60 micrometer/100 micrometer colors to also possess cooler 12 micrometer/25 micrometer colors. In addition, non-Seyfert are found to obey the well-documented infrared/radio luminosity correlation, with the tightest correlation seen for starburst MRKs.

  12. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  13. INFRARED MULTIPLE-PHOTON PHOTODISSOCIATION OF GAS-PHASE GROUP II METAL-NITRATE ANIONS

    SciTech Connect

    Jos Oomens; Linda Myers; Ryan Dain; Chris Leavitt; Vy Pham; Garold Gresham; Gary Groenewold; Mike Van Stipdonk

    2008-06-01

    Infrared spectra of gas-phase metal-nitrate anions M(NO3)3-, where M=Mg2+, Ca2+, Sr2+ and Ba2+, were recorded by infrared multiple photon dissociation (IRMPD) spectroscopy. Photodissociation of each of the precursors produces NO3- through the elimination of a neutral M(NO3)2 unit. An absorption pattern characteristic of metal nitrates is observed in the IRMPD spectra, including the symmetric and antisymmetric NO3 stretches. The latter is split into high and low frequency components as a result of perturbation of the nitrate symmetry by complexation to the metal ion, and the magnitude of the splitting decreases following the trend Mg2+ > Ca2+ > Sr2+ ? Ba2+. The experimental spectra are in good general agreement with those obtained from density functional theory calculations.

  14. Understanding Active Galactic Nuclei using near-infrared high angular resolution polarimetry II: Preliminary results

    NASA Astrophysics Data System (ADS)

    Marin, F.; Grosset, L.; Goosmann, R.; Gratadour, D.; Rouan, D.; Clénet, Y.; Pelat, D.; Rojas Lobos, P. A.

    2016-12-01

    In this second research note of a series of two, we present the first near-infrared results we obtained when modeling Active Galactic Nuclei (AGN). Our first proceedings showed the comparison between the MontAGN and STOKES Monte Carlo codes. Now we use our radiative transfer codes to simulate the polarization maps of a prototypical, NGC 1068-like, type-2 radio-quiet AGN. We produced high angular resolution infrared (1 μm) polarization images to be compared with recent observations in this wavelength range. Our preliminary results already show a good agreement between the models and observations but cannot account for the peculiar linear polarization angle of the torus such as observed. tet{Gratadour2015} found a polarization position angle being perpendicular to the bipolar outflows axis. Further work is needed to improve the models by adding physical phenomena such as dichroism and clumpiness.

  15. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  16. Demonstration of dual-band infrared thermal imaging for bridge inspection. Phase II, final report

    SciTech Connect

    Durbin, P.F.; Del Grande, N.K.; Schaich, P.C.

    1996-03-01

    Developing and implementing methods of effective bridge rehabilitation is a major issue for the Federal Highway Administration (FHWA). The nation spends $5 billion annually to replace, rehabilitate or construct new bridges. According to the National Bridge Inventory, over 100,000 U.S. bridges are structurally deficient. About 40,000 of these bridges have advanced deck deterioration. The most common causes of serious deck deterioration is delamination. Delaminations result when steel reinforcements within the bridge deck corrode, creating gaps that separate the concrete into layers. A reliable inspection technology, capable of identifying delaminations, would represent a power new tool in bridge maintenance. To date, most bridge inspections rely on human interpretation of surface visual features of chain dragging. These methods are slow, disruptive, unreliable and raise serious safety concerns. Infrared thermal imaging detects subsurface delaminations and surface clutter, which is introduced by foreign material on the roadway. Typically, foreign material which is not always evident on a video tape image, produces a unique IR reflectance background unlike the thermal response of a subsurface delamination. Lawrence Livermore National Laboratory (LLNL) uses dual-band infrared (DBIR) thermal imaging to identify and remove nonthermal IR reflectance backgrounds from foreign material on the roadway. DBIR methods improve the performance of IR thermal imaging by a factor of ten, compared to single-band infrared (SBIR) methods. DBIR thermal imaging allows precise temperature measurement to reliably locate bridge deck delaminations and remove wavelength-dependent emissivity variations due to foreign material on the roadway.

  17. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  18. A Search For Optically Faint GEO Debris

    NASA Astrophysics Data System (ADS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2011-09-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan telescope ‘Walter Baade’ at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe preliminary results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r’ filter. The limiting magnitude for 5 second exposures is measured to be fainter tan R = 21. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  19. Prediction of potential mushroom yield by visible and near-infrared spectroscopy using fresh phase II compost.

    PubMed

    Sharma, H S S; Kilpatrick, M; Lyons, G

    2005-08-01

    Potential mushroom (Agaricus bisporus) yield of phase II compost is determined by interactions of key quality parameters including dry matter, nitrogen dry matter, ammonia, pH, conductivity, thermophilic microorganisms, C : N ratio, fiber fractions, ash, and certain minerals. This study was aimed at generating robust visible and near-infrared (Vis-NIR) calibrations for predicting potential yield, using spectra from fresh phase II compost. Four compost comparative trials were carried out during the winter and summer months of 2001-2003, under controlled experimental conditions employing six commercially prepared composts, with eight replicate (8 bag) plots per treatment (48 x 8 = 384). The substrates were prepared by windrow or bunker phase I, followed by phase II production. The fresh samples were scanned for Vis-NIR (400-2498 nm) spectra, averaged, transformed, and regressed against the recorded yield by employing a modified partial least squares algorithm. The best calibration model generated from the database explained 84% of yield variation within the data set with a standard error of calibration of 13.75 kg/tonne of fresh compost. The model was successfully tested for robustness with yield results obtained from a validation trial, carried out under similar experimental conditions in early 2004, and the standard error of prediction was 18.21 kg/tonne, which was slightly higher than the mean experimental error (17.94 kg/tonne) of the trial. The accuracy of the model is acceptable for estimating potential yield by classifying phase II substrate as poor (180-220 kg), medium (220-260 kg), and high (260-300 kg) yielding compost. The yield prediction model is being transferred to a new instrument based at Loughgall for routine evaluation of commercial phase II samples.

  20. Helium shells and faint emission lines from slitless flash spectra

    PubMed Central

    Bazin, Cyril; Koutchmy, Serge

    2013-01-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence. PMID:25685435

  1. Helium shells and faint emission lines from slitless flash spectra.

    PubMed

    Bazin, Cyril; Koutchmy, Serge

    2013-05-01

    At the time of the two last solar total eclipses of August 1st, 2008 in Siberia and July 11th, 2010 in French Polynesia, high frame rate CCD flash spectra were obtained. These eclipses occurred in quiet Sun period and after. The slitless flash spectra show two helium shells, in the weak Paschen α 4686 Å line of the ionized helium HeII and in the neutral helium HeI line at 4713 Å. The extensions of these helium shells are typically 3 Mm. In prominences, the extension of the interface with the corona is much more extended. The observations and analysis of these lines can properly be done only in eclipse conditions, when the intensity threshold reaches the coronal level, and the parasitic scattered light is virtually zero. Under the layers of 1 Mm above the limb, many faint low FIP lines were also seen in emission. These emission lines are superposed on the continuum containing absorption lines. The solar limb can be defined using the weak continuum appearing between the emission lines at the time of the second and third contact. The variations of the singly ionized iron line, the HeI and HeII lines and the continuum intensity are analyzed. The intensity ratio of ionized to neutral helium is studied for evaluating the ionization rate in low layers up to 2 Mm and also around a prominence.

  2. FORCAST: the faint object infared camera for the SOFIA telescope

    NASA Astrophysics Data System (ADS)

    Keller, Luke D.; Herter, Terry L.; Stacey, Gordon J.; Gull, George E.; Schoenwald, Justin; Pirger, Bruce; Nikola, Tomas

    2003-02-01

    We report final design details and development progress for the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). FORCAST is a two-channel camera with selectable filters for continuum and line imaging in the 5-40 micron wavelength region. Simultaneous imaging will be possible in the two-channels--5-25 microns using a Si:As 256×256 blocked impurity band (BIB) detector array, and 25-40 microns using a Si:Sb BIB. FORCAST will sample 0.75 arcseconds per pixel allowing a 3.2'×3.2' instantaneous field-of-view in both channels simultaneously. Imaging will be diffraction limited for lambda > 15 microns. Since FORCAST operates in the wavelength range where the seeing is best from SOFIA, it will provide the highest spatial resolution possible from the airborne observatory. In addition to imaging, the FORCAST optical design provides for a simple upgrade to include spectroscopic observations using grisms mounted in the filter wheels. We report improvements to the optical system and progress in construction of this SOFIA facility instrument and its subsystems. FORCAST will be available for facility testing and astronomical observations at SOFIA first (f)light.

  3. Spectroscopy of faint asteroids, satellites, and comets

    NASA Technical Reports Server (NTRS)

    Degewij, J.

    1980-01-01

    Nineteen asteroids with orbital elements comparable to those of short-period comets and the outer Jovian satellites J6 Himalia and J7 Elara have been observed with the 228-cm telescope and image-tube spectrograph of Steward Observatory. No activity indicating cometary outgassing was detected. If comets are being perturbed into asteroidal orbits, then this lack of activity can be explained by an apparently short transition time between active and extinct phase. In addition, spectra of the faint comets Sanguin 1977p, Chernykh 1977l, Arend-Rigaux 1950 VII, West 1978a, and van Biesbroeck 1954 IV were obtained, showing CN(0,0) and in some cases C2(1,0) and C3 emission. Comet Arend-Rigaux was active again in the fall of 1977 and Comet West showed on May 31, 1978 a weak tail at a distance from the sun of 6.0 AU.

  4. CCD time-resolved photometry of faint cataclysmic variables. II

    SciTech Connect

    Szkody, P.; Howell, S.B.; Mateo, M.; Kreidl, T.J. Planetary Science Institute, Tucson, AZ Mount Wilson and Las Campanas Observatories, Pasadena, CA Lowell Observatory, Flagstaff, AZ )

    1989-10-01

    Time-resolved optical broad-band light curves obtained from differential photometry on sequential CCD frames of the known or suspected cataclysmic variable FO And, EH Aqr, WX Cet, XX Cet, AL Com, V503 Cyg, AH Eri, CP Eri, IR Gem, RW UMi, PG0134+070, and US 3215 are presented. The analysis of the light curves with coverage of greater than 2 hrs shows repeatable periodicity in five objects. PG0134+070 exhibits eclipses of 1.3-1.8 mag depth with a period of 313 min. V503 Cyg has a 0.7-1.0 mag peak-to-peak modulation with a period of 109 min. IR Gem shows a large modulation at the orbital period of 99 min, and comparison with previous data indicates that this modulation may have an amplitude dependent on outburst phase. AH Eri reveals a 0.1-0.3 mag modulation, at a period of 42 min. Better time-resolved data on AL Com confirm the 0.4-mag variation reported by Howell and Szkody (1988) at a period of 42 min. These latter two short periods likely indicate magnetic systems. There is also some evidence of periodicity in RW UMi and WX Cet which must be confirmed with further data. 25 refs.

  5. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  6. Spectrum from Faint Galaxy IRAS F00183-7111

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Spitzer Space Telescope has detected the building blocks of life in the distant universe, albeit in a violent milieu. Training its powerful infrared eye on a faint object located at a distance of 3.2 billion light-years, Spitzer has observed the presence of water and organic molecules in the galaxy IRAS F00183-7111. With an active galactic nucleus, this is one of the most luminous galaxies in the universe, rivaling the energy output of a quasar. Because it is heavily obscured by dust (see visible-light image in the inset), most of its luminosity is radiated at infrared wavelengths.

    The infrared spectrograph instrument onboard Spitzer breaks light into its constituent colors, much as a prism does for visible light. The image shows a low-resolution spectrum of the galaxy obtained by the spectrograph at wavelengths between 4 and 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition and to determine such physical properties as temperature and density.

    The broad depression in the center of the spectrum denotes the presence of silicates (chemically similar to beach sand) in the galaxy. An emission peak within the bottom of the trough is the chemical signature for molecular hydrogen. The hydrocarbons (orange) are organic molecules comprised of carbon and hydrogen, two of the most common elements on Earth. Since it has taken more than three billion years for the light from the galaxy to reach Earth, it is intriguing to note the presence of organics in a distant galaxy at a time when life is thought to have started forming on our home planet.

    Additional features in the spectrum reveal the presence of water ice (blue), carbon dioxide ice (green) and carbon monoxide (purple) in both gas and solid forms. The magenta peak corresponds to singly ionized neon gas, a spectral line often used by

  7. Are the Faint Structures Ahead of Solar Coronal Mass Ejections Real Signatures of Driven Shocks?

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, Sujin; Lee, Kangjin

    2014-11-01

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s-1 and median = 1199 km s-1) than Group 2 events (average = 598 km s-1 and median = 518 km s-1). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V >= 1000 km s-1, 0.65 (34/52) for intermediate CMEs with 500 km s-1 <= V < 1000 km s-1, and 0.14 (3/21) for slow CMEs with V < 500 km s-1. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.

  8. ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?

    SciTech Connect

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Kangjin; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, Sujin E-mail: moonyj@khu.ac.kr

    2014-11-20

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s{sup –1} and median = 1199 km s{sup –1}) than Group 2 events (average = 598 km s{sup –1} and median = 518 km s{sup –1}). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s{sup –1}, 0.65 (34/52) for intermediate CMEs with 500 km s{sup –1} ≤ V < 1000 km s{sup –1}, and 0.14 (3/21) for slow CMEs with V < 500 km s{sup –1}. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.

  9. Infrared spectra of rubidium and cesium diaquatetrachloro-manganates. II. External vibrations of the water molecules

    NASA Astrophysics Data System (ADS)

    Stefov, Viktor; Šoptrajanov, Bojan; Petruševski, Vladimir

    1992-03-01

    Three bands of librational origin are found in the infrared spectra of Rb 2[MnCl 4 (H 2O) 2] and of its cesium analogue. On the basis of the behaviour on partial deuteration, the band having the lowest frequency can be attributed to a mode which is essentially rocking in character. The remaining two librations are the result of the partial mixing of the twisting and wagging modes. For the HDO molecules the out-of-plane ( oop) modes are mixed to a much higher degree, giving rise to modes which are best described as oop motions of the proton (H-motion) and the deuteron (D-motion) respectively.

  10. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor.

    PubMed

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-29

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using 'greener' chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50–75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 10(3) mA cm−2 and 17.7 mW cm−2 at 8 V; it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  11. Polarizer mechanism for the space telescope faint object spectrograph

    NASA Technical Reports Server (NTRS)

    Thulson, M. D.

    1983-01-01

    The polarizer mechanism for the Space Telescope Faint Object Spectrograph is described. This device will allow spectropolarimetric measurements of faint astronomical objects. The mechanism employs a unique arrangement to meet functional requirements in a compact package and with only one actuator. Detailed tolerance analysis and a variety of tests indicate that the polarizer is capable of accurate and reliable performance.

  12. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  13. First Results from the ISO-IRAS Faint Galaxy Survey

    NASA Technical Reports Server (NTRS)

    Wolstencroft, R. D.; Wehrle, A. E.; Levine, D. A.

    1997-01-01

    We present the first result from the ISO-IRAS Faint Galaxy Survey (IIFGS), a program designed to obtain ISO observations of the most distant and luminous galaxies in the IRAS Faint Source Survey by filling short gaps in the ISO observing schedule with pairs of 12um ISOCAM AND 90um ISOPHOT observation.

  14. Strong Infrared NLO Tellurides with Multifunction: CsX(II)4In5Te12 (X(II) = Mn, Zn, Cd).

    PubMed

    Lin, Hua; Liu, Yi; Zhou, Liu-Jiang; Zhao, Hua-Jun; Chen, Ling

    2016-05-02

    Chalcogenides are the most promising mid- and far-infrared materials for nonlinear optical (NLO) applications. Yet, most of them are sulfides and selenides, and tellurides are still rare. Herein, we report three new KCd4Ga5S12-structure type NLO-active tellurides, CsX(II)4In5Te12 (X(II) = Mn, Zn, Cd), synthesized by solid-state reactions. The structure features a 3D diamond-like framework constructed by vertex-sharing asymmetric MTe4 tetrahedra that are stacked along the c-axis. CsCd4In5Te12 exhibits the strongest powder second-harmonic generation (SHG) intensity at 2050 nm (0.61 eV) among tellurides to date, 9 × benchmark AgGaS2 in the range of 46-74 μm particle size. The primary studies reveal the 1.42 eV direct band gap and high absorption coefficient in the visible spectral region for CsCd4In5Te12, suggesting it is a new potential solar cell absorber material. In addition, CsMn4In5Te12 also displays a spin-canted antiferromagnetic property below 50 K.

  15. Carrier transport properties of Be-doped InAs/InAsSb type-II infrared superlattices

    SciTech Connect

    Steenbergen, E. H. Mitchel, W. C.; Mou, Shin; Brown, G. J.; Elhamri, S.

    2014-01-06

    The InAs/InAsSb type-II superlattice materials studied to date for infrared detector applications have been residually n-type, but p-type absorber regions with minority carrier electrons can result in increased photodiode quantum efficiency, R{sub o}A, and detectivity. Therefore, Be-doped InAs/InAsSb superlattices were investigated to determine the p-type InAs/InAsSb superlattice material transport properties essential to developing high quality photodiode absorber materials. Hall measurements performed at 10 K revealed that the superlattice converted to p-type with Be-doping of 3 × 10{sup 16} cm{sup −3} and the hole mobility reached 24 400 cm{sup 2}/Vs. Photoresponse measurements at 10 K confirmed the 175 meV bandgap and material optical quality.

  16. High quantum efficiency N-structure type-II superlattice mid-wavelength infrared detector with resonant cavity enhanced design

    NASA Astrophysics Data System (ADS)

    Wu, Haoyue; Xu, Yun; Li, Jian; Jiang, Yu; Bai, Lin; Yu, Hailong; Fu, Dong; Zhu, Haijun; Song, Guofeng

    2017-05-01

    We propose a resonant cavity enhanced (RCE) N-structure type-II superlattice (T2SL) mid-wavelength infrared (MWIR) photodetector which can be used for the detection of methane gas at 3.3 μm. The theoretical analysis of quantum efficiency (QE) shows that the peak QE can be enhanced from 0.45 to 0.80 at 3.3 μm after 12 period AlAs0.09Sb0.91/GaSb DBR is introduced to the N-structure T2SL detector and QE exhibits the narrow bandwidth characteristic near the target wavelength. By analyzing the refractive indices of different materials and the reflectance of different DBRs, we also discuss how to determine the component materials of quarter-wavelength DBR reflectors.

  17. Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate

    SciTech Connect

    Ryan P. Dain; Gary Gresham; Gary S. Groenewold; Jeffrey D. Steill; Jos Oomens; Michael J. van Stipdonk

    2011-07-01

    Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.

  18. First Detection of Mid-infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Heida, M.; Kasliwal, M. M.; Walton, D. J.

    2017-04-01

    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the Spitzer Space Telescope at 3.6 and 4.5 μm in the Spitzer Infrared Intensive Transients Survey. The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature ({T}{{d}}∼ 600{--}800 {{K}}), IR luminosity ({L}{IR}∼ 3× {10}4 {L}ȯ ), mass ({M}{{d}}∼ 1{--}3× {10}-6 {M}ȯ ), and equilibrium temperature radius ({R}{eq}∼ 10{--}20 {au}). A comparison of X-1 with a sample of spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color–magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe ii] (λ =1.644 μ {{m}}) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to the increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX, given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.

  19. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  20. Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Hsiao, E.; Valenti, S.; Taddia, F.; Rivera-Thorsen, T. J.; Leloudas, G.; Maeda, K.; Pastorello, A.; Phillips, M. M.; Pignata, G.; Baron, E.; Burns, C. R.; Contreras, C.; Folatelli, G.; Hamuy, M.; Höflich, P.; Morrell, N.; Prieto, J. L.; Benetti, S.; Campillay, A.; Haislip, J. B.; LaClutze, A. P.; Moore, J. P.; Reichart, D. E.

    2014-01-01

    A comprehensive set of optical and near-infrared (NIR) photometry and spectroscopy is presented for the faint and fast 2008ha-like supernova (SN) 2010ae. Contingent on the adopted value of host extinction, SN 2010ae reached a peak brightness of -13.8 > MV > -15.3 mag, while modeling of the UVOIR light curve suggests it produced 0.003-0.007 M⊙ of 56Ni, ejected 0.30-0.60 M⊙ of material, and had an explosion energy of 0.04-0.30 × 1051 erg. The values of these explosion parameters are similar to the peculiar SN 2008ha -for which we also present previously unpublished early phase optical and NIR light curves - and places these two transients at the faint end of the 2002cx-like SN population. Detailed inspection of the post-maximum NIR spectroscopic sequence indicates the presence of a multitude of spectral features, which are identified through SYNAPPS modeling to be mainly attributed to Co ii. Comparison with a collection of published and unpublished NIR spectra of other 2002cx-like SNe, reveals that a Co ii footprint is ubiquitous to this subclass of transients, providing a link to Type Ia SNe. A visual-wavelength spectrum of SN 2010ae obtained at +252 days past maximum shows a striking resemblance to a similar epoch spectrum of SN 2002cx. However, subtle differences in the strength and ratio of calcium emission features, as well as diversity among similar epoch spectra of other 2002cx-like SNe indicates a range of physical conditions of the ejecta, highlighting the heterogeneous nature of thispeculiar class of transients. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 082.A-0526, 084.D-0719, 088.D-0222, 184.D-1140, and 386.D-0966); the Gemini Observatory, Cerro Pachon, Chile (Gemini Programs GS-2010A-Q-14 and GS-2010A-Q-38); the Magellan 6.5 m telescopes at Las Campanas Observatory; and the SOAR telescope.Tables 1-5 and Appendix A are available in electronic form at http

  1. An Interferometric Study of the Fomalhaut Inner Debris Disk. II. Keck Nuller Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Mennesson, B.; Absil, O.; Lebreton, J.; Augereau, J.-C.; Serabyn, E.; Colavita, M. M.; Millan-Gabet, R.; Liu, W.; Hinz, P.; Thébault, P.

    2013-02-01

    We report on high-contrast mid-infrared observations of Fomalhaut obtained with the Keck Interferometer Nuller (KIN) showing a small resolved excess over the level expected from the stellar photosphere. The measured null excess has a mean value of 0.35% ± 0.10% between 8 and 11 μm and increases from 8 to 13 μm. Given the small field of view of the instrument, the source of this marginal excess must be contained within 2 AU of Fomalhaut. This result is reminiscent of previous VLTI K-band (sime2μm) observations, which implied the presence of a ~0.88% excess, and argued that thermal emission from hot dusty grains located within 6 AU from Fomalhaut was the most plausible explanation. Using a parametric two-dimensional radiative transfer code and a Bayesian analysis, we examine different dust disk structures to reproduce both the near- and mid-infrared data simultaneously. While not a definitive explanation of the hot excess of Fomalhaut, our model suggests that the most likely inner few AU disk geometry consists of a two-component structure, with two different and spatially distinct grain populations. The 2-11 μm data are consistent with an inner hot ring of very small (sime10-300 nm) carbon-rich grains concentrating around 0.1 AU. The second dust population—inferred from the KIN data at longer mid-infrared wavelengths—consists of larger grains (size of a few microns to a few tens of microns) located further out in a colder region where regular astronomical silicates could survive, with an inner edge around 0.4 AU-1 AU. From a dynamical point of view, the presence of the inner concentration of submicron-sized grains is surprising, as such grains should be expelled from the inner planetary system by radiation pressure within only a few years. This could either point to some inordinate replenishment rates (e.g., many grazing comets coming from an outer reservoir) or to the existence of some braking mechanism preventing the grains from moving out.

  2. InAs/Ga(In)Sb type-II superlattices short/middle dual color infrared detectors

    NASA Astrophysics Data System (ADS)

    Shi, Yanli; Hu, Rui; Deng, Gongrong; He, Wenjing; Feng, Jiangmin; Fang, Mingguo; Li, Xue; Deng, Jun

    2015-06-01

    Short wavelength and middle wavelength dual color infrared detector were designed and prepared with InAs/Ga(In)Sb type-II superlattices materials. The Crosslight software was used to calculate the relation between wavelength and material parameter such as thickness of InAs, GaSb, then energy strucutre of 100 periods 8ML/8ML InAs/GaSb and the absorption wavelength was calculated. After fixing InAs/GaSb thickness parameter, devices with nBn and pin structure were designed and prepared to compare performance of these two structures. Comparison results showed both structure devices were available for high temperature operation which black detectivity under 200K were 7.9×108cmHz1/2/W for nBn and 1.9×109cmHz1/2/W for pin respectively. Considering the simultaneous readout requirement for further FPAs application the NIP/PIN InAs/GaSb dual-color structure was grown by MBE method. Both two mesas and one mesa devices structure were designed and prepared to appreciate the short/middle dual color devices. Cl2-based ICP etching combined with phosphoric acid based chemicals were utilized to form mesas, silicon dioxide was deposited via PECVD as passivation layer. Ti/Au was used as metallization. Once the devices were finished, the electro-optical performance was measured. Measurement results showed that optical spectrum response with peak wavelength of 2.7μm and 4.3μm under 77K temperature was gained, the test results agree well with calculated results. Peak detectivity was measured as 2.08×1011cmHz1/2/W and 6.2×1010cmHz1/2/W for short and middle wavelength infrared detector respectively. Study results disclosed that InAs/Ga(In)Sb type-II SLs is available for both short and middle wavelength infrared detecting with good performance by simply altering the thickness of InAs layer and GaSb layer.

  3. Hot Young Solution to Faint Sun Paradox

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2006-12-01

    The "Faint Young Sun" has been a paradox of astrophysics. The standard solar model predicts that 4 billion years ago Earth was too cold to support life. Geology and the fossil record contradict this prediction. The paradox and possible solution are a fascinating combination of astrophysics, relativity and the Earth sciences. Models predict that 4 billion years ago the Sun shone with only 70 % of its present luminosity. Since power P is related to temperature T by the Stefan-Boltzmann Law P ∝ T4, Earth temperature would have been only 91 % of its present value. That temperature is approximately 283K, so temperature in the past would have been only 258K. Earth's surface would have frozen solid, making evolution of life very unlikely. Geology shows evidence of extensive sedimentation 4 billion years ago. Other geological markers corroborate the presence of liquid water on Earth during this period. Paleontology dates the earliest organisms at least 3.4 to 4 billion years old. Clearly liquid water and life both existed when the model predicts Earth was frozen solid. This conflict with observations is the Faint Young Sun paradox. Fortunately, Relativity and Space/Time can help save the standard solar model. The Sun converts its fuel to energy according to E=mc2. Unified Space/Time predicts that c is given by: GM=tc3. Where t is age of the Universe, GM combines its mass and gravitational constant. Solving, we have c(t)=(GM)^{1/3} t^{-1/3}. Billions of years ago, solar output and temperature were therefore higher than originally calculated. Earth is estimated to be 4.6 billion years and the Universe 13.7 billion years old, 1.5 times its age at the time of Earth's formation. Energy e=mc2 is adjusted by (1.5)^{2/3} = 1.31 times the initial estimate. Multiplying by that estimate of 70 %, the Sun's actual output was 0.917 of the present value. Temperature was then (0.917)^{1/4} = 98 % of today's value. If we start with an estimate of 76 %, the Sun's true output was exactly

  4. Novel type-II material system for laser applications in the near-infrared regime

    PubMed Central

    Berger, C.; Möller, C.; Hens, P.; Fuchs, C.; Stolz, W.; Koch, S. W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-01-01

    The design and experimental realization of a type-II “W”-multiple quantum well heterostructure for emission in the λ > 1.2 μm range is presented. The experimental photoluminescence spectra for different excitation intensities are analyzed using microscopic quantum theory. On the basis of the good theory–experiment agreement, the gain properties of the system are computed using the semiconductor Bloch equations. Gain values comparable to those of type-I systems are obtained. PMID:25874159

  5. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  6. EVOLVING STARBURST MODELING OF FAR-INFRARED/SUBMILLIMETER/MILLIMETER LINE EMISSION. II. APPLICATION TO M 82

    SciTech Connect

    Yao Lihong

    2009-11-01

    We present starburst models for far-infrared/sub-millimeter/millimeter line emission of molecular and atomic gas in an evolving starburst region, which is treated as an ensemble of noninteracting hot bubbles that drive spherical shells of swept-up gas into a surrounding uniform gas medium. These bubbles and shells are driven by stellar winds and supernovae within massive star clusters formed during an instantaneous starburst. The underlying stellar radiation from the evolving clusters affects the properties and structure of photodissociation regions (PDRs) in the shells, and hence the spectral energy distributions (SEDs) of the molecular and atomic line emission from these swept-up shells and the associated parent giant molecular clouds contain a signature of the stage of evolution of the starburst. The physical and chemical properties of the shells and their structure are computed using a simple, well-known similarity solution for the shell expansion, a stellar population synthesis code, and a time-dependent PDR chemistry model. The SEDs for several molecular and atomic lines ({sup 12}CO and its isotope {sup 13}CO, HCN, HCO{sup +}, C, O, and C{sup +}) are computed using a nonlocal thermodynamic equilibrium line radiative transfer model. By comparing our models with the available observed data of nearby infrared bright galaxies, especially M 82, we constrain the models and in the case of M 82, we provide estimates for the ages (5-6 Myr, 10 Myr) of recent starburst activity. We also derive a total H{sub 2} gas mass of approx(2-3.4) x 10{sup 8} M {sub sun} for the observed regions of the central 1 kpc starburst disk of M 82.

  7. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    SciTech Connect

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin; Chapman, Scott; Pak, Soojong; Edge, Alastair

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  8. Nuclear Infrared Spectral Energy Distribution of Type II Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Videla, Liza; Lira, Paulina; Andrews, Heather; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-01

    We present near- and mid-IR observations of a sample of Seyfert II galaxies drawn from the 12 μm Galaxy sample. The sample was observed in the J, H, K, L, M and N bands. Galaxy surface brightness profiles are modeled using nuclear, bulge, bar (when necessary), and disk components. To check the reliability of our findings, the procedure was tested using Spitzer observations of M 31. Nuclear spectral energy distributions (SEDs) are determined for 34 objects, and optical spectra are presented for 38, including analysis of their stellar populations using the STARLIGHT spectral synthesis code. Emission line diagnostic diagrams are used to discriminate between genuine active galactic nuclei (AGNs) and H II nuclei. Combining our observations with those found in the literature, we have a total of 40 SEDs. It is found that about 40% of the SEDs are characterized by an upturn in the near-IR, which we have quantified as a NIR slope α < 1 for an SED characterized as λf λvpropλα. The three objects with an H II nucleus and two Seyfert nuclei with strong contamination from a circumnuclear also show an upturn. For genuine AGNs, this component could be explained as emission from the accretion disk, a jet, or from a very hot dust component leaking from the central region through a clumpy obscuring structure. The presence of a very compact nuclear starburst as the origin for this NIR excess emission is not favored by our spectroscopic data for these objects.

  9. Abundances of argon, sulfur, and neon in six galactic H II regions from infrared forbidden lines

    NASA Technical Reports Server (NTRS)

    Herter, T.; Helfer, H. L.; Forrest, W. J.; Mccarthy, J.; Houck, J. R.; Willner, S. P.; Puetter, R. C.; Rudy, R. J.; Soifer, B. T.; Pipher, J. L.

    1981-01-01

    Airborne measurements of the Ar II (6.99 micron) and S III (18.71 micron) forbidden lines for six compact H II regions are presented, as well as ground-based 2-4 micron and 8-13 micron spectroscopy if not already published. From these data and radio data, lower limits to the elemental abundances of Ar, Ne, and S are deduced. G29.9-0.0, at 5 kpc from the galactic center, is overabundant in all these elements. The other five regions (at distances 6-13 kpc from the center) mainly appear to be consistent with standard abundances, with the exception of G75.84 + 0.4 at 10 kpc from the galactic center, which is overabundant in S. However, preliminary results on G12.8-0.2 at 6 kpc from the galactic center suggest a possible underabundance. A large statistical sample of H II regions is required in order to determine if there is a radial gradient in the heavy element abundances of the Galaxy.

  10. Is the faint young Sun paradox solved?

    NASA Astrophysics Data System (ADS)

    Wolf, E. T.; Toon, O. B.

    2013-12-01

    How did the early Earth remain warm despite weak solar luminosity? The faint young Sun paradox has stubbornly resisted a self-consistent solution since it was first introduced by Sagan and Mullen [1] over four decades ago. However, recent revisions to expected paleo-ocean temperatures [2, 3] along with new results from three-dimensional climate models [4] may allow this long standing problem to be finally put to rest. Here we use a modified version of the Community Atmosphere Model version 3 from the National Center for Atmospheric Research to study early climate. We find that resolving the faint young Sun paradox becomes less problematic when viewing a full representation of the climate system. For the late Archean climate (80% solar constant), relatively modest amounts of CO2 (≤0.02 bar) and CH4 (0.001 bar) yield surface temperatures equal to the present day with no other alterations to climate. Cooler climates with large ice caps but with temperate tropical regions can be supported with considerably smaller greenhouse gas burdens. The incorporation of systematic climate system elements expected for the Archean such as fewer cloud condensation nuclei (CCN) [5], reduced land albedos [5], and an increased atmospheric inventory of N2 [6], can provide a combined 10 to 20 K of additional surface warming given reasonable assumptions. With the inclusion of 0.001 bar of CH4, 2 PAL of N2, reduced land albedos, and reduced CCN, present day mean surface temperatures can be maintained for the earliest Archean (75% solar constant) with only ~0.01 bar of CO2. However, lower requirements for atmospheric CO2 may imply that photochemical hazes were frequent during the Archean. [1] Sagan, C., & Mullen, G. Science 177, 52 (1972) [2] Hren, M.T., Tice, M.M., & Chamberlin, C.P. Nature 462, 205 (2009) [3] Blake. R.E., Chang, S.J., & Lepland, A. Nature 464, 1029 (2010) [4] Wolf, E.T., & Toon, O.B. Astrobiology 13(7), 1 (2013) [5] Rosing, M.T., Bird, D.K., Sleep, N.H., & Bjerrum, C

  11. Faint high-latitude carbon stars

    NASA Astrophysics Data System (ADS)

    Green, Paul Jonathan

    We have undertaken a wide area survey to search for faint high latitude carbon (FHLC) stars. Carbon giants are ideal for study of the structure and kinematics of the outer galactic halo. We use two color photometric selection with large format charge-coupled devices (CCD's) to cover 52 deg2 of sky to a depth of about V = 18. Below this limit, we find good (approximately less than 20 percent) agreement between our object counts as a function of magnitude and the galactic models of Bahcall and Soneira at a variety of latitudes and longitudes. Our spectroscopic followup began with low-resolution spectra of 19 unconfirmed C star candidates from the Case objective-prism photographic survey of Sanduleak and Pesch. Four of these we find to be M stars. The 15 C stars we classify on the two-parameter Keenan-Morgan system as warm (color class less than 3). Of 94 faint C star candidates from our own CCD survey, one highly ranked V = 17 candidate was found to have strong carbon and CN bands. We estimate that to a depth of V = 18, the surface density FHLC stars is 0.019+0.044-.016 deg-2. We identify two FHLC stars with previously catalogued high proper motion objects. These objects are thus inferred to be dwarf carbon (dC) stars, supplementing the one previously known case, G77-61. Not all dC stars will have detectable proper motions, so other luminosity/distance indicators are needed: we find that C dwarfs all have similar JHK colors, and possibly an unusually strong lambda-6191 bandhead of carbon. By comparing positions in the HST Guide Star Catalog and the original Palomar Observatory Sky Survey, we detect proper motions in two additional FHLC stars. Our proper motion survey, spanning a 30 year baseline, thus identifies two new dC's, and provides proper motion upper limits for another 44 FHLC stars. Kinematic simulations suggest that virtually all Population 2 dC's will have detectable proper motions in a survey as sensitive as our own, and that to a limit of V approximately

  12. Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots.

    PubMed

    Dennis, Allison M; Mangum, Benjamin D; Piryatinski, Andrei; Park, Young-Shin; Hannah, Daniel C; Casson, Joanna L; Williams, Darrick J; Schaller, Richard D; Htoon, Han; Hollingsworth, Jennifer A

    2012-11-14

    Nonblinking excitonic emission from near-infrared and type-II nanocrystal quantum dots (NQDs) is reported for the first time. To realize this unusual degree of stability at the single-dot level, novel InP/CdS core/shell NQDs were synthesized for a range of shell thicknesses (~1-11 monolayers of CdS). Ensemble spectroscopy measurements (photoluminescence peak position and radiative lifetimes) and electronic structure calculations established the transition from type-I to type-II band alignment in these heterostructured NQDs. More significantly, single-NQD studies revealed clear evidence for blinking suppression that was not strongly shell-thickness dependent, while photobleaching and biexciton lifetimes trended explicitly with extent of shelling. Specifically, very long biexciton lifetimes-up to >7 ns-were obtained for the thickest-shell structures, indicating dramatic suppression of nonradiative Auger recombination. This new system demonstrates that electronic structure and shell thickness can be employed together to effect control over key single-dot and ensemble NQD photophysical properties.

  13. SN 2009E: a faint clone of SN 1987A

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Pumo, M. L.; Navasardyan, H.; Zampieri, L.; Turatto, M.; Sollerman, J.; Taddia, F.; Kankare, E.; Mattila, S.; Nicolas, J.; Prosperi, E.; San Segundo Delgado, A.; Taubenberger, S.; Boles, T.; Bachini, M.; Benetti, S.; Bufano, F.; Cappellaro, E.; Cason, A. D.; Cetrulo, G.; Ergon, M.; Germany, L.; Harutyunyan, A.; Howerton, S.; Hurst, G. M.; Patat, F.; Stritzinger, M.; Strolger, L.-G.; Wells, W.

    2012-01-01

    H, Na I, [Ca II] and [O I], with the [O I] feature being relatively strong compared to the [Ca II] doublet. The overall spectroscopic evolution is reminiscent of that of the faint 56Ni-poor type II-plateau supernovae. This suggests that SN 2009E belongs to the low-luminosity, low 56Ni mass, low-energy tail in the distribution of the 1987A-like objects in the same manner as SN 1997D and similar events represent the faint tail in the distribution of physical properties for normal type II-plateau supernovae. Appendices A and B are available in electronic form at http://www.aanda.orgFull Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A141

  14. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. No climate paradox under the faint early Sun.

    PubMed

    Rosing, Minik T; Bird, Dennis K; Sleep, Norman H; Bjerrum, Christian J

    2010-04-01

    Environmental niches in which life first emerged and later evolved on the Earth have undergone dramatic changes in response to evolving tectonic/geochemical cycles and to biologic interventions, as well as increases in the Sun's luminosity of about 25 to 30 per cent over the Earth's history. It has been inferred that the greenhouse effect of atmospheric CO(2) and/or CH(4) compensated for the lower solar luminosity and dictated an Archaean climate in which liquid water was stable in the hydrosphere. Here we demonstrate, however, that the mineralogy of Archaean sediments, particularly the ubiquitous presence of mixed-valence Fe(II-III) oxides (magnetite) in banded iron formations is inconsistent with such high concentrations of greenhouse gases and the metabolic constraints of extant methanogens. Prompted by this, and the absence of geologic evidence for very high greenhouse-gas concentrations, we hypothesize that a lower albedo on the Earth, owing to considerably less continental area and to the lack of biologically induced cloud condensation nuclei, made an important contribution to moderating surface temperature in the Archaean eon. Our model calculations suggest that the lower albedo of the early Earth provided environmental conditions above the freezing point of water, thus alleviating the need for extreme greenhouse-gas concentrations to satisfy the faint early Sun paradox.

  16. Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245

    NASA Astrophysics Data System (ADS)

    Carrera, R.; Casamiquela, L.; Ospina, N.; Balaguer-Núñez, L.; Jordi, C.; Monteagudo, L.

    2015-06-01

    Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R ~ 8000) in the infrared region Ca ii triplet lines (~8500 Å) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5 m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca ii lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain ⟨Vr⟩ = 48.6 ± 3.4, -58.4 ± 6.8, 26.0 ± 4.3, and -65.3 ± 3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603, and NGC 7245, respectively. We found [ Fe/H ] = -0.25 ± 0.14 and -0.15 ± 0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has low metallicity, [ Fe/H ] = -0.42 ± 0.13, which is similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived high metallicity ([ Fe/H ] = +0.43 ± 0.15) for NGC 6603, which places this system among the most metal-rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members. Based on observations made with the 2.5 m Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the

  17. InAs/GaSb type-II superlattice infrared detectors: three decades of development

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Kopytko, M.; Martyniuk, P.

    2017-02-01

    Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.

  18. Faint Compact Galaxy in the Early Universe

    NASA Image and Video Library

    2015-12-03

    This is a Hubble Space Telescope view of a very massive cluster of galaxies, MACS J0416.1-2403, located roughly 4 billion light-years away and weighing as much as a million billion suns. The cluster's immense gravitational field magnifies the image of galaxies far behind it, in a phenomenon called gravitational lensing. The inset is an image of an extremely faint and distant galaxy that existed only 400 million years after the big bang. It was discovered by Hubble and NASA's Spitzer Space Telescope. The gravitational lens makes the galaxy appear 20 times brighter than normal. The galaxy is comparable in size to the Large Magellanic Cloud (LMC), a diminutive satellite galaxy of our Milky Way. It is rapidly making stars at a rate ten times faster than the LMC. This might be the growing core of what was to eventually evolve into a full-sized galaxy. The research team has nicknamed the object Tayna, which means "first-born" in Aymara, a language spoken in the Andes and Altiplano regions of South America. http://photojournal.jpl.nasa.gov/catalog/PIA20054

  19. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  20. The Population of Optically Faint GEO Debris

    NASA Astrophysics Data System (ADS)

    Seitzer, P.; Barker, E.; Buckalew, B.; Burkhardt, A.; Cowardin, H.; Frith, J.; Kaleida, C.; Lederer, S.; Lee, C.

    2016-09-01

    The 6.5-m Magellan telescope, 'Walter Baade', at the Las Campanas Observatory in Chile has been used for spot surveys of the geosynchronous Earth orbit (GEO) regime to study the population of optically faint GEO debris. The goal is to estimate the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude has been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The detections have a wide range of characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections that vary in brightness ("flashers") during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected product of size * albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm.

  1. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  2. Empirical calibration of the near-infrared CaII triplet - IV. The stellar population synthesis models

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Peletier, R. F.

    2003-04-01

    We present a new evolutionary stellar population synthesis model, which predicts spectral energy distributions for single-age single-metallicity stellar populations (SSPs) at resolution 1.5 Å (FWHM) in the spectral region of the near-infrared CaII triplet feature. The main ingredient of the model is a new extensive empirical stellar spectral library that has been recently presented by Cenarro et al., which is composed of more than 600 stars with an unprecedented coverage of the stellar atmospheric parameters. Two main products of interest for stellar population analysis are presented. The first is a spectral library for SSPs with metallicities -1.7 < [Fe/H] < +0.2, a large range of ages (0.1-18 Gyr) and initial mass function (IMF) types. They are well suited to modelling galaxy data, since the SSP spectra, with flux-calibrated response curves, can be smoothed to the resolution of the observational data, taking into account the internal velocity dispersion of the galaxy, allowing the user to analyse the observed spectrum in its own system. We also produce integrated absorption-line indices (namely CaT*, CaT and PaT) for the same SSPs in the form of equivalent widths. We find the following behaviour for the CaII triplet feature in old-aged SSPs: (i) the strength of the CaT* index does not change much with time for all metallicities for ages larger than ~3 Gyr; (ii) this index shows a strong dependence on metallicity for values below [M/H]~-0.5 and (iii) for larger metallicities this feature does not show a significant dependence either on age or on the metallicity, being more sensitive to changes in the slope of power-like IMF shapes. The SSP spectra have been calibrated with measurements for globular clusters by Armandroff & Zinn, which are well reproduced, probing the validity of using the integrated CaII triplet feature for determining the metallicities of these systems. Fitting the models to two early-type galaxies of different luminosities (NGC 4478 and 4365

  3. Visible and near-infrared calibrations for quality assessment of fresh phase I and II mushroom (Agaricus bisporus) compost.

    PubMed

    Sharma, H S S; Kilpatrick, M; Lyons, G; Sturgeon, S; Archer, J; Moore, S; Cheung, L; Finegan, K

    2005-11-01

    Previous studies have shown that visible and near-infrared spectra (Vis-NIR) of dry and milled compost can be used for generating partial least squares (PLS) calibrations of phase II compost parameters including ammonia, nitrogen dry matter (NDM), dry matter (DM), pH, conductivity, carbon, microbial population, and potential productivity. The objective of this study was to develop robust calibrations for some of the key parameters from the spectra of fresh phase I and II composts. Samples of substrates from six commercial production yards were obtained during winter and summer months of 2000-2004 to monitor changes in quality and were analyzed for the test factors. Vis-NIR reflectance measurements of fresh samples (740) were made over the range of 400-2500 nm. After mathematical pretreatments, PLS calibrations of the key parameters were developed using the NIR (1100-2500 nm) and visible and NIR (400-2500 nm) regions and subsequently validated using an independent sample set of 123 phase I and II samples obtained during 2004-2005. The phase I and II standard errors of laboratory measurements of ammonia, pH, conductivity, DM, NDM, and ash were lower than the standard error of predictions of the same parameters, respectively, by the best NIR or Vis-NIR models. The degree of precision for some of the calibrations, especially ammonia, NDM, and DM, is suitable for composters to monitor changes in quality parameters during production. The laboratory measurement errors for phase I samples were greater than those of the phase II samples, except for ash, due to a higher degree of heterogeneity in the substrate. The calibrations, especially for pH, conductivity, and ash, need to be improved with new sample sets. A major advantage of NIR spectroscopy is the ability to assess substrate quality for a range of target parameters simultaneously, within a few hours of receiving the samples. The main drawbacks are the expensive instrumentation, expertise, and training necessary for

  4. DEEP NEAR-INFRARED SURVEY OF THE PIPE NEBULA. II. DATA, METHODS, AND DUST EXTINCTION MAPS

    SciTech Connect

    Roman-Zuniga, Carlos G.; Lada, Charles J.; Lombardi, Marco

    2010-12-20

    We present a new set of high-resolution dust extinction maps of the nearby and essentially starless Pipe Nebula molecular cloud. The maps were constructed from a concerted deep near-infrared imaging survey with the ESO-VLT, ESO-NTT, CAHA 3.5 m telescopes, and 2MASS data. The new maps have a resolution three times higher than the previous extinction map of this cloud by Lombardi et al. and are able to resolve structures down to 2600 AU. We detect 244 significant extinction peaks across the cloud. These peaks have masses between 0.1 and 18.4 M{sub sun}, diameters between 1.2 and 5.7 x 10{sup 4} AU (0.06 and 0.28 pc), and mean densities of about 10{sup 4} cm{sup -3}, all in good agreement with previous results. From the analysis of the mean surface density of companions we find a well-defined scale near 1.4 x 10{sup 4} AU below which we detect a significant decrease in structure of the cloud. This scale is smaller than the Jeans length calculated from the mean density of the peaks. The surface density of peaks is not uniform but instead it displays clustering. Extinction peaks in the Pipe Nebula appear to have a spatial distribution similar to the stars in Taurus, suggesting that the spatial distribution of stars evolves directly from the primordial spatial distribution of high-density material.

  5. A systematic search for near-infrared counterparts of nearby ultraluminous X-ray sources (II)

    NASA Astrophysics Data System (ADS)

    López, K. M.; Heida, M.; Jonker, P. G.; Torres, M. A. P.; Roberts, T. P.; Walton, D. J.; Moon, D.-S.; Harrison, F. A.

    2017-07-01

    We present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs. Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has two candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for active galactic nuclei (AGNs), strongly suggesting that they are likely stellar clusters or background galaxies. The RSG candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.

  6. Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces

    SciTech Connect

    Plis, E.; Annamalai, S.; Posani, K. T.; Krishna, S.; Rupani, R. A.; Ghosh, S.

    2006-07-01

    We report the growth and fabrication of midwave infrared InAs/GaSb strain layer superlattice (SLS) detectors. Growth of alternate interfaces leads to a reduced strain between the GaSb buffer and SLS ({delta}a{sub parallel}/a=-5x10{sup -4}), enabling the growth of active regions up to 3 {mu}m (625 periods). The structural, optical, and electrical properties of the active region were characterized using x-ray crystallography and photoluminescence, respectively. p-i-n detectors were grown using 625 periods of 8 ML (monolayer) InAs/8 ML GaSb as the active region. The {lambda}{sub cutoff} for the detectors was 4.6 {mu}m with a conversion efficiency of 32% at V{sub b}=-0.2 V. Detectivity was obtained using noise power spectral density measurements under 300 K 2{pi} field of view illumination and was equal to 5.2x10{sup 10} and 3x10{sup 10} cm Hz{sup 1/2}/W (V{sub b}=-0.02 V, T=80 K) in the white noise and 1/f noise limit (at 50 Hz)

  7. The Kondo problem. II. Crossover from asymptotic freedom to infrared slavery

    NASA Astrophysics Data System (ADS)

    Schlottmann, P.

    1982-04-01

    In the preceding paper we transformed the s-d Hamiltonian onto a resonance level with a large perturbation and derived the scaling equations for the vertices, the invariant coupling, and the resonance width. The scaling equations are integrated under the assumption that the energy dependence of the resonance width can be neglected. The transcendental equation obtained in this way for the renormalized resonance width is solved in the relevant limits and allows a calculation of the static and dynamical susceptibility. At high temperatures the perturbation expansion for the relaxation rate and the susceptibility is reproduced up to third order in Jρ. At low temperatures the lifetime and χ0 remain finite and vary according to a Fermi-liquid theory. The approximation scheme interpolates in this way between the asymptotic freedom and the infrared slavery, yielding a smooth crossover. The present results are in quantitative agreement with previous ones obtained with the relaxation-kernel method by Götze and Schlottmann. The advantages and drawbacks of the method are discussed. The calculation of the dynamical susceptibility is extended to nonzero external magnetic fields. The quasielastic peak of χ''(ω)ω is suppressed at low temperatures and large magnetic fields and shoulders develop at ω=+/-B.

  8. Faint spatial object classifier construction based on data mining technology

    NASA Astrophysics Data System (ADS)

    Lou, Xin; Zhao, Yang; Liao, Yurong; Nie, Yong-ming

    2016-11-01

    Data mining can effectively obtain the faint spatial object's patterns and characteristics, the universal relations and other implicated data characteristics, the key of which is classifier construction. Faint spatial object classifier construction with spatial data mining technology for faint spatial target detection is proposed based on theoretical analysis of design procedures and guidelines in detail. For the one-sidedness weakness during dealing with the fuzziness and randomness using this method, cloud modal classifier is proposed. Simulating analyzing results indicate that this method can realize classification quickly through feature combination and effectively resolve the one-sidedness weakness problem.

  9. Near-infrared absorbing and emitting Ru(II)-Pt(II) heterodimetallic complexes of dpdpz (dpdpz = 2,3-di(2-pyridyl)-5,6-diphenylpyrazine).

    PubMed

    Wu, Si-Hai; Burkhardt, Stephen E; Yao, Jiannian; Zhong, Yu-Wu; Abruña, Héctor D

    2011-05-02

    The reaction of 2,3-di(2-pyridyl)-5,6-diphenylpyrazine (dpdpz) with K(2)PtCl(4) in a mixture of acetonitrile and water afforded mono-Pt complex (dpdpz)PtCl(2)4 in good yield, with two lateral pyridine nitrogen atoms binding to the metal center. Two types of Ru(II)-Pt(II) heterodimetallic complexes bridged by dpdpz, namely, [(bpy)(2)Ru(dpdpz)Pt(C≡CC(6)H(4)R)](2+) (7-9, R = H, NMe(2), or Cl, respectively) and [(tpy)Ru(dpdpz)Pt(C≡CPh)] (+) (12), were then designed and prepared, where bpy = 2,2'-bipyridine and tpy = 2,2';6',2''-terpyridine. In both cases, the platinum atom binds to dpdpz with a C(∧)N(∧)N tridentate mode. However, the coordination of the ruthenium atom with dpdpz could either be noncyclometalated (N(∧)N bidentate) or cyclometalated (C(∧)N(∧)N tridentate). The electronic properties of these complexes were subsequently studied and compared by spectroscopic and electrochemical analyses and theoretical calculations. These complexes exhibit substantial absorption in the visible to NIR (near-infrared) region because of mixed MLCT (metal-to-ligand-charge-tranfer) transitions from both the ruthenium and the platinum centers. Complexes 7 and 9 were found to emit NIR light with higher quantum yields than those of the mono-Ru complex [(bpy)(2)Ru(dpdpz)](2+) (5) and bis-Ru complex [(bpy)(2)Ru(dpdpz)Ru(bpy)(2)](4+) (13). However, no emission was detected from complex 8 or 12 at room temperature in acetonitrile.

  10. SUBARU MID-INFRARED IMAGING OF THE QUADRUPLE LENSES. II. UNVEILING LENS STRUCTURE OF MG0414+0534 AND Q2237+030

    SciTech Connect

    Minezaki, Takeo; Chiba, Masashi; Kashikawa, Nobunari; Inoue, Kaiki Taro; Kataza, Hirokazu E-mail: chiba@astr.tohoku.ac.jp E-mail: kinoue@phys.kindai.ac.jp

    2009-05-20

    We present mid-infrared imaging at 11.7 {mu}m for the quadruple lens systems, MG0414+0534 and Q2237+030, using the cooled mid-infrared camera and spectrometer attached on the Subaru telescope. MG0414+0534 is characterized by a bright pair of lensed images (A1, A2) and their optical flux ratio A2/A1 deviates significantly from the prediction of a smooth-lens model. Q2237+030 is 'the Einstein Cross' being comprised of four lensed images, which are significantly affected by microlensing in a foreground lensing galaxy. Our mid-infrared observations of these lensed images have revealed that the mid-infrared flux ratio for A2/A1 of MG0414+0534 is nearly unity (0.90 {+-} 0.04). We find that this flux ratio is systematically small, at 4-5{sigma} level, compared with the prediction of a best smooth-lens model (1.09) represented by a singular isothermal ellipsoid and external shear. The smooth-lens model, which also considers the additional lensing effect of the possible faint satellite, object X, still provides a large flux ratio of A2/A1=1.06, thereby suggesting the presence of more substructures that can explain our observational result. In contrast, for Q2237+030, our high signal-to-noise observation indicates that the mid-infrared flux ratios between all the four images of Q2237+030 are virtually consistent with the prediction of a smooth-lens model. Based on the size estimate of the dust torus surrounding the nuclei of these QSOs, we set limits on the mass of a substructure in these lens systems, which can cause anomalies in the flux ratios. For MG0414+0534, since the required mass of a substructure inside its Einstein radius is {approx}>360 M {sub sun}, millilensing by a cold dark matter substructure is most likely. If it is modeled as a singular isothermal sphere, the mass inside a radius of 100 pc is given as {approx}>1.0 x 10{sup 5} M {sub sun}. For Q2237+030, there is no significant evidence of millilensing, so the reported anomalous flux ratios in shorter

  11. a Faint and Lonely Brown Dwarf in the Solar Vicinity

    NASA Astrophysics Data System (ADS)

    1997-04-01

    La Silla, each covering a sky area of 5 o.5 x 5 o.5. When comparing plates of the same sky field obtained at time intervals of several years [1] , she was able to detect, among the hundreds of thousands of stellar images on the plates, a few faint ones whose positions had changed a little in the meantime. The search technique is based on the fact that such a shift is a good indicator of the object being relatively nearby. It must therefore also be intrinsically faint, i.e. a potential White Dwarf candidate. On every pair of plates, approximately twenty faint moving objects were detected with proper motions [2] of more than 0.25 arcsec per year. Indeed, follow-up spectroscopic observations showed that about 20 percent of these or about four per plate were White Dwarfs. Until now, a total of forty new White Dwarfs have been discovered during this very successful project, i.e. over ten times more than originally expected. And then - a Brown Dwarf! Caption to ESO PR Photo 11/97 [JPEG, 144k] ESO Press Photo 11/97 When checking two plates with a time inverval of 11 years, Maria Teresa Ruiz earlier this year discovered a very faint object in the southern constellation of Hydra (The Water-Snake), moving at 0.35 arcsec per year (cf. ESO Press Photo 11/97). In order to establish its true nature, she obtained its spectrum (in the visual to near-infrared region from wavelengths 450-1000 nm) on March 15 using the ESO 3.6-m telescope and the EFOSC1 spectrograph. Caption to ESO PR Photo 12/97 [GIF, 35k] ESO Press Photo 12/97 To her great surprise, the spectrum was of a type never seen before and certainly not that of a White Dwarf or any other easily identifiable type of star (cf. ESO Press Photo 12/97). In particular, there were no signs of spectral bands of titanium oxide (TiO) or vanadium oxide (VO) which are common in very cool stars, nor of the spectral lines seen in White Dwarfs. On the other hand, an absorption line of the short-lived element lithium was identified, as well

  12. Short wavelength infrared InAs/InSb/AlSb type-II superlattice photodetector

    NASA Astrophysics Data System (ADS)

    Cohen-Elias, D.; Uliel, Y.; Klin, O.; Snapi, N.; Weiss, E.; Shafir, I.; Westreich, O.; Katz, M.

    2017-08-01

    A photodetector based on InAs/InSb/AlSb type-II superlattice (T2SL) with thicknesses of 15, 1 and 4 monolayers respectively, was fabricated and characterized. The interface between InAs and AlAs of one InSb monolayer, increases the λcutoff to 3.3 μm, and improves the InAs/AlSb layer correlation and strain balancing. With a -0.5 V bias, the dark current at 300 and 200 K was 1.1 and 8.5 × 10-3 A/cm2 respectively, and the quantum efficiency at λ = 2.75 μm, for both 300 K and 200 K, was 34%. The detectivity was above 109 cm-Hz1/2/W for 300 K and above 1010 cm-Hz1/2/W for 200 K between 2.5 and 3 μm wavelength.

  13. Manufacturability of type-II InAs/GaSb superlattice detectors for infrared imaging

    NASA Astrophysics Data System (ADS)

    Höglund, L.; Asplund, C.; Marcks von Würtemberg, R.; Kataria, H.; Gamfeldt, A.; Smuk, S.; Martijn, H.; Costard, E.

    2017-08-01

    Type-II InAs/GaSb superlattice detectors and focal plane arrays (FPAs) with cut-off wavelength at 5.1 μm have been studied. For single pixel devices, dark current densities of 1 × 10-6 A/cm2 and quantum efficiencies of 53% were measured at 120 K. From statistics of manufactured FPAs, an average FPA operability of 99.87% was observed. Furthermore, average temporal and spatial noise equivalent temperature difference (NETD) values of 12 mK and 4 mK, respectively, were deduced. Excellent stability of FPAs after non-uniformity correction was observed with no deterioration of the ratio between spatial and temporal noise during a two hour long measurement. Also after several cooldowns the ratio between spatial and temporal NETD stayed below 0.6.

  14. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah; Manoj, P.; Sargent, Benjamin A.; Watson, Dan M.; Lisse, Carey M.

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  15. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    SciTech Connect

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-07-20

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 {mu}m detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 {mu}m imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L{sub IR} > 10{sup 11} L{sub sun} (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  16. COMPARATIVE STUDY OF ASYMMETRY ORIGIN OF GALAXIES IN DIFFERENT ENVIRONMENTS. II. NEAR-INFRARED OBSERVATIONS

    SciTech Connect

    Plauchu-Frayn, I.; Coziol, R. E-mail: rcoziol@astro.ugto.m

    2010-08-15

    In this second paper of two analyses, we present near-infrared (NIR) morphological and asymmetry studies performed in a sample of 92 galaxies found in different density environments: galaxies in compact groups (CGs; HCGs in the Hickson Catalog of Compact Groups of Galaxies), isolated pairs of galaxies (KPGs in Karachentsev's list of isolated pairs of galaxies), and isolated galaxies (KIGs in Karachentseva's Catalog of Isolated Galaxies). Both studies have proved useful for identifying the effect of interactions on galaxies. In the NIR, the properties of the galaxies in HCGs, KPGs, and KIGs are more similar than they are in the optical. This is because the NIR band traces the older stellar populations, which formed earlier and are more relaxed than the younger populations. However, we found asymmetries related to interactions in both KPG and HCG samples. In HCGs, the fraction of asymmetric galaxies is even higher than what we found in the optical. In the KPGs the interactions look like very recent events, while in the HCGs galaxies are more morphologically evolved and show properties suggesting they suffered more frequent interactions. The key difference seems to be the absence of star formation in the HCGs; while interactions produce intense star formation in the KPGs, we do not see this effect in the HCGs. This is consistent with the dry merger hypothesis; the interaction between galaxies in CGs is happening without the presence of gas. If the gas was spent in stellar formation (to build the bulge of the numerous early-type galaxies), then the HCGs possibly started interacting sometime before the KPGs. On the other hand, the dry interaction condition in CGs suggests that the galaxies are on merging orbits, and consequently such system cannot be that much older either. Cosmologically speaking, the difference in formation time between pairs of galaxies and CGs may be relatively small. The two phenomena are typical of the formation of structures in low

  17. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    SciTech Connect

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura; Shankar, Francesco

    2014-01-01

    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  18. Compression of infrared imagery sequences containing a slow-moving point target, part II.

    PubMed

    Huber-Shalem, Revital; Hadar, Ofer; Rotman, Stanley R; Huber-Lerner, Merav

    2013-03-10

    Infrared (IR) imagery sequences are commonly used for detecting moving targets in the presence of evolving cloud clutter or background noise. This research concentrates on slow-moving point targets that are less than one pixel in size, such as aircraft at long ranges from a sensor. Because transmitting IR imagery sequences to a base unit or storing them consumes considerable time and resources, a compression method that maintains the point-target detection capabilities is highly desirable. In our previous work, we introduced two temporal compression methods that preserve the temporal profile properties of the point target in the form of discrete cosine transform (DCT) quantization and parabola fit. In the present work, we extend the compression task method of DCT quantization by applying spatial compression over the temporally compressed coefficients, which is followed by bit encoding. We evaluate the proposed compression method using a signal-to-noise ratio (SNR)-based measure for point target detection and find that it yields better results than the compression standard H.264. Furthermore, we introduce an automatic detection algorithm that extracts the target location from the SNR scores image, which is acquired during the evaluation process and has a probability of detection and a probability of false alarm close to those of the original sequences. We previously determined that it is necessary to establish a minimal noise level in the SNR-based measure to compensate for smoothing that is induced by the compression. Here, the noise level calculation process is modified in order to allow detection of targets traversing all background types.

  19. Theoretical Design and Material Growth of Type-II Antimonide-based Superlattices for Infrared Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Binh-Minh

    The goal of this PhD thesis is to investigate quantum properties of the superlattice system, design appropriate device architectures and experimentally fabricate infrared detectors which can outperform currently existing devices. In parallel, efforts in material growth using molecular beam epitaxy (MBE) have resulted in higher material quality and vastly improved growth conditions of III-V compounds as compared to previous work. Superlattices as thick as 15mum were realized without growth defects or dislocations, narrow X-ray diffraction peaks and small surface roughness. Many ternary and quaternary layers such as InAsSb, AlAsSb, GaAlAsSb were routinely used in new design architectures to enhance the electrical performance of the devices. Advances in theoretical calculations and material growth have allowed this work to continue with comprehensive studies of photodetector device architectures. Fundamental parameters affecting the performance of infrared detectors were investigated. We have experimentally pointed out the difference in the collection of photocurrent generated in the n-type and p-type regions. By forcing the device's active region to have an appropriate p-doped concentration, and by assuring long diffusion carrier lengths with high material quality, the quantum efficiency of Type-II superlattice photodiodes have been demonstrated in excess 50% in front side illumination configuration and 75% in back side illumination configuration. In an attempt to optimize the electrical performance, basic mechanisms of the dark current have been thoroughly analyzed. By intentionally doping the active region, the diffusion and generation-recombination currents were reduced until they were overwhelmed by the tunneling current. The device performance was then further enhanced due to the suppression of the tunneling current using the hetero-design of the M-structure superlattice. This optimization scheme can be repeated iteratively to lower all bulk-components of the

  20. Faint CV Monitoring at CBA Pretoria

    NASA Astrophysics Data System (ADS)

    Monard, L. A. G. B.

    2006-05-01

    The regular monitoring of faint cataclysmic variables (CV) is one of five observing programs that are run at CBA Pretoria. It started off in 2002 with about 120 CVs and related objects in the program. The intention was to observe those targets as often as possible with unfiltered CCD. There were continuous additions of more CVs by digging deeper in the CV atlas, new finds, and reclassified stars while some were taken off the list. At the end of 2004 the number of CVs in the observing program exceeded 200. With only one telescope and one observer and so many other things to observe, the actual number of snapshot CV observations have been much less than hoped. Despite this, the program has shown to be very successful. Publications have been referring to reported findings from this program while even more publications resulted from observing campaigns (time resolved photometry) dedicated to CVs that were found in outburst by observations at CBA Pretoria. In most cases they were the first real-time outburst detection of that CV. The present paper will not deal with those published or alerted finds but will show observing results of other CVs from the list just to give an indication of the broader meaningfulness of such a program. A selection of fifteen light curves obtained after three years of monitoring will be shown and discussed. The choice of the 15 stars was based on their possible interest and the fact that they have been positively observed on most occasions, since they were mostly brighter than magnitude 18 CR (unfiltered with red zero-point).

  1. Faint solar radio structures from decametric observations

    NASA Astrophysics Data System (ADS)

    Briand, C.; Zaslavsky, A.; Maksimovic, M.; Zarka, P.; Lecacheux, A.; Rucker, H. O.; Konovalenko, A. A.; Abranin, E. P.; Dorovsky, V. V.; Stanislavsky, A. A.; Melnik, V. N.

    2008-10-01

    Aims: Decameter radio observations of the solar corona reveal the presence of numerous faint frequency drifting emissions, similar to “solar S bursts” which are reported in the literature. We present a statistical analysis of the characteristics of these emissions and propose a mechanism to excite the Langmuir waves thought to be at the origin of these emissions. Methods: The observations were performed between 1998 and 2002 with the Digital Spectro Polarimeter (DSP) receivers operated at the UTR-2 and Nançay decameter radio telescopes in the frequency range 15-30 MHz. Our theoretical explanation is based on Vlasov-Ampère simulations. Results: Based on the frequency drift rate, three populations of structures can be identified. The largest population presents an average negative frequency drift of -0.9 MHz s-1 and a lifetime up to 11 s (median value of 2.72 s). A second population shows a very small frequency drift of -0.1 MHz s-1 and a short lifetime of about 1 s. The third population presents an average positive frequency drift of +0.95 MHz s-1 and a lifetime of up to 3 s. Also, the frequency drift as a function of frequency is consistent with the former results, which present results in higher frequency range. No specific relationship was found between the occurrence of these emissions and the solar cycle or presence of flares. Assuming that these emissions are produced by “electron clouds” propagating the solar corona, we deduce electron velocities of about 3-5 times the electron thermal velocity. As previously shown, a localized, time-dependent modulation of the electron distribution function (heating) leads to low velocity electron clouds (consistent with observations), which, in turn, can generate Langmuir waves and electromagnetic signals by nonlinear processes.

  2. NASA Researches the 'FaINT' Side of Sonic Booms

    NASA Image and Video Library

    As the latest in a continuing progression of NASA supersonics research projects aimed at reducing or mitigating the effect of sonic booms, the Farfield Investigation of No Boom Threshold, or FaINT,...

  3. MODELING THE NUCLEAR INFRARED SPECTRAL ENERGY DISTRIBUTION OF TYPE II ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Lira, Paulina; Videla, Liza; Wu, Yanling; Alonso-Herrero, Almudena; Alexander, David M.; Ward, Martin

    2013-02-20

    We present results from model fitting to the spectral energy distribution (SED) of a homogeneous sample of Seyfert II galaxies drawn from the 12 {mu}m Galaxy Sample. Imaging and nuclear flux measurements are presented in an accompanying paper. Here we add Spitzer/IRS observations to further constrain the SEDs after careful subtraction of a starburst component. We use the library of CLUMPY torus models from Nenkova et al. and also test the two-phase models recently produced by Stalevski et al. We find that photometric and spectroscopic observations in the mid-IR ({lambda} {approx}> 5 {mu}m) are crucial to properly constrain the best-fit torus models. About half of our sources show clear near-IR excess of their SEDs above the best-fit models. This problem can be less severe when using the Stalevski et al. models. The nature of this emission is not clear since best-fitted blackbody temperatures are very high ({approx}1700-2500 K) and the Type II classification of our sources would correspond to a small probability to peer directly into the hottest regions of the torus. Crucially, the derived torus parameters are quite robust when using CLUMPY models, independently of whether or not the sources require an additional blackbody component. Our findings suggest that tori are characterized by N{sub 0}{approx}>5, {sigma} {approx}> 40, {tau} {approx}< 25, Angle i {approx}> 40 Degree-Sign , Y {approx}< 50, and A {sup los} {sub v} {approx} 100-300, where N{sub 0} is the number of clouds in the equatorial plane of the torus, {sigma} is the characteristic opening angle of the cloud distribution, {tau} is the opacity of a single cloud, Angle i is the line-of-sight orientation of the torus, Y is the ratio of the inner to the outer radii, and A {sup los} {sub v} is the total opacity along the line of sight. From these, we can determine typical torus sizes and masses of 0.1-5.0 pc and 10{sup 4}-10{sup 6} M {sub Sun }, respectively. We find tentative evidence that those nuclei with

  4. Infrared spectroscopy of acetone-water liquid mixtures. II. Molecular model

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2004-04-01

    In aqueous acetone solutions, the strong bathochromic shifts observed on the OH and CO stretch infrared (IR) bands are due to hydrogen bonds between these groups. These shifts were evaluated by factor analysis (FA) that separated the band components from which five water and five acetone principal factors were retrieved [J. Chem. Phys. 119, 5632 (2003)]. However, these factors were abstract making them difficult to interpret. To render them real an organization model of molecules is here developed whose abundances are compared to the experimental ones. The model considers that the molecules are randomly organized limited by the hydrogen bond network formed between the water hydrogen atoms and the acetone or water oxygen atoms, indifferently. Because the oxygen of water has two covalent hydrogen atoms which are hydrogen-bonded and may receive up to two hydrogen atoms from neighbor molecules hydrogen-bonded to it, three types of water molecules are found: OH2, OH3, and OH4 (covalent and hydrogen bonds). In the OH stretch region these molecules generate three absorption regimes composed of ν3, ν1, and their satellites. The strength of the H-bond given increases with the number of H-bonds accepted by the oxygen atom of the water H-bond donor, producing nine water situations. Since FA cannot separate those species that evolve concomitantly the nine water situations are regrouped into five factors, the abundance of which compared exactly to that retrieved by FA. From the factors' real spectra the OH stretch absorption are simulated to, respectively, give for the ν3 and ν1 components the mean values for OH2, 3608, 3508; OH3, 3473, 3282 and OH4, 3391, 3223 cm-1. The mean separations from the gas-phase position which are respectively about 150, 330, and 400 cm-1 are related to the vacancy of the oxygen electron doublets: two, one, and zero, respectively. No acetone hydrate that sequesters water molecules is formed. Similarly, acetone produces ten species, two of which

  5. Infrared spectroscopy of methanol-hexane liquid mixtures. II. The strength of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2009-03-01

    The study by Fourier transform infrared attenuated total reflectance spectroscopy at 27 °C of methanol (MeOH) and hexane mixtures is presented. In the 0-0.25 and 0.75-1.00 molar fractions, the mixtures form homogeneous solutions, whereas from 0.25 to 0.75, the mixtures are inhomogeneous forming two phases. These mixtures have the near 3300 cm-1 OH stretch band only slightly displaced throughout the whole concentration range indicating very little variation in the H-bonding condition. This result is very different from that of MeOH in CCl4 where the OH stretch bands are scattered in a wide frequency range. Factor analysis applied to the MeOH/hexane spectra gave seven principal factors (one hexane and six methanol factors) and retrieved their principal spectra and abundances. In the inhomogeneous region, the two phase volumes changed inversely with concentration, but their factor compositions are invariable at 1:3 and 3:1 molar ratios. Five of the six principal methanol factors have the O-H and the C-O stretch bands situated near, respectively, 3310 and 1025 cm-1 with little displacement in the whole concentration range. The sixth factor observed at 3654 cm-1 (full width at half height<40 cm-1) was assigned to free methanol OH by Max and Chapados [J. Chem. Phys. 128, 224512 (2008)]. This species concentration is very low but constant at around 0.01M in the methanol range of 0.5-2.5M. The main OH stretch bands (˜3300 cm-1) were simulated with six Gaussian components that were assigned to different hydrogen-bonding situations. These form reverse micelles at low methanol concentrations and micelles at high concentrations that persist in pure methanol. A very different state of affairs exists in MeOH in CCl4 where free OH groups are formed in almost all mixtures except in pure MeOH. Since hexane is a better model of a lipidic milieu than CCl4, the results for MeOH/hexane give a better representation of the fate of alcoholic OH groups in such a milieu.

  6. Type-II superlattice detector for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Fraenkel, A.; Glozman, A.; Hojman, E.; Ilan, E.; Kahanov, E.; Klin, O.; Langof, L.; Livneh, Y.; Lukomsky, I.; Nitzani, M.; Shkedy, L.; Shtrichman, I.; Snapi, N.; Talmor, R.; Tuito, A.; Vaserman, S.; Weiss, E.

    2015-06-01

    When incorporated into the active layer of a "XBp" detector structure, Type II InAs/GaSb superlattices (T2SLs) offer a high quantum efficiency (QE) and a low diffusion limited dark current, close to MCT Rule 07. Using a simulation tool that was developed to predict the QE as a function of the T2SL period dimensions and active layer stack thickness, we have designed and fabricated a new focal plane array (FPA) T2SL XBp detector. The detector goes by the name of "Pelican-D LW", and has a format of 640 ×512 pixels with a pitch of 15 μm. The FPA has a QE of 50% (one pass), a cut-off of ~9.5 μm, and operates at 77K with a high operability, background limited performance and good stability. It uses a new digital read-out integrated circuit, and the integrated detector cooler assembly (IDCA) closely follows the configuration of SCD's Pelican-D MWIR detector.

  7. Local Group ultra-faint dwarf galaxies in the reionization era

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Boylan-Kolchin, Michael

    2017-07-01

    Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; MV ˜ -2 or M⋆ ˜ 102 at z = 0) had ultraviolet (UV) luminosities of MUV ˜ -3 to -6 during reionization (z ˜ 6-10). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep (α ≲ -2) to MUV ˜ -3, then (i) the ancestors of UFDs produced >50 per cent of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are more than two times lower than currently adopted values; (iii) direct Hubble Space Telescope and James Webb Space Telescope observations may detect only ˜10-50 per cent of the UV light from galaxies; and (iv) the cosmic star formation history increases by ≳ 4-6 at z ≳ 6. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, is reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to MUV ˜ -3 during reionization.

  8. A HERSCHEL SURVEY OF THE [N II] 205 {mu}m LINE IN LOCAL LUMINOUS INFRARED GALAXIES: THE [N II] 205 {mu}m EMISSION AS A STAR FORMATION RATE INDICATOR

    SciTech Connect

    Zhao Yinghe; Gao Yu; Lu, Nanyao; Xu, C. Kevin; Lord, S.; Howell, J.; Appleton, P.; Mazzarella, J.; Schulz, B.; Isaak, K. G.; Charmandaris, V.; Diaz-Santos, T.; Surace, J.; Evans, A.; Iwasawa, K.; Leech, J.; Petric, A. O.; Sanders, D. B.; Van der Werf, P. P.

    2013-03-01

    We present, for the first time, a statistical study of [N II] 205 {mu}m line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. For our sample of galaxies, we investigate the correlation between the [N II] luminosity (L{sub [N{sub II]}}) and the total infrared luminosity (L{sub IR}), as well as the dependence of L{sub [N{sub II]}}/L{sub IR} ratio on L{sub IR}, far-infrared colors (IRAS f{sub 60}/f{sub 100}), and the [O III] 88 {mu}m to [N II] luminosity ratio. We find that L{sub [N{sub II]}} correlates almost linearly with L{sub IR} for non-active galactic nucleus galaxies (all having L{sub IR} < 10{sup 12} L{sub Sun }) in our sample, which implies that L{sub [N{sub II]}} can serve as a star formation rate tracer which is particularly useful for high-redshift galaxies that will be observed with forthcoming submillimeter spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean L{sub [N{sub II]}}-L{sub IR} relation correlates with tracers of the ionization parameter, which suggests that the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.

  9. 77 FR 21586 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, PA; Notice of Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... employment related to the production of infrared and CO 2 laser optics, and related materials. The initial... experienced a decline in the sales or production of infrared and CO 2 laser optics, and related materials... production of infrared and CO 2 laser optics, and related materials (or like or directly competitive...

  10. Star formation in infrared bright and infrared faint starburst interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.

    1990-01-01

    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.

  11. Star formation in the inner Galaxy - a far-infrared and radio study of two H II regions

    SciTech Connect

    Lester, D.F.; Dinerstein, H.L.; Harvey, P.M.; Evans, N.J. II; Werner, M.W.

    1985-09-01

    Far-infrared and radio continuum maps have been made of two inner-Galaxy H II region complexes, G30.8-0.0 and G25.4-0.2, along with radio and molecular line measurements at selected positions. The far-IR emission from each region is dominated by two sources. For both G25.4 and G30.8, the distribution of the emission is similar to that of the radio emission, indicating that OB stars provide most of the heating. There is evidence that extinction plays an important role in G30.8, even in the far-IR. A near-IR point source has been detected in G30.8 at the position of peak far-IR color temperature. This source may be the ionizing star for the core of G30.8. Measurement of forbidden S III 9532 A from G25.4SE indicates that the extinction toward this source is very low, which is difficult to reconcile with previously determined distance measurements to this source. 49 references.

  12. Structure of selected basic zinc/copper (II) phosphate minerals based upon near-infrared spectroscopy - Implications for hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Reddy, B. Jagannadha; Palmer, Sara J.; Keeffe, Eloise C.

    2011-03-01

    The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12,000-7600 cm -1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm -1. A broad spectral feature observed for ferrous ion in the 12,000-9000 cm -1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm -1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm -1 region resulting from the combinations of vibrational modes of (PO 4) 3- units.

  13. InGaAs/GaAsSb Type-II superlattice based photodiodes for short wave infrared detection

    NASA Astrophysics Data System (ADS)

    Uliel, Y.; Cohen-Elias, D.; Sicron, N.; Grimberg, I.; Snapi, N.; Paltiel, Y.; Katz, M.

    2017-08-01

    Short Wave Infra-Red (SWIR) photodetectors operating above the response cutoff of InGaAs- based detectors (1.7-2.5 μm) are required for both defense and civil applications. Type II Super-Lattices (T2SL) were recently proposed For near- room temperature SWIR detection as a possible system enabling bandgap adjustment in the required range. The work presented here focuses on a T2SL with alternating nano-layers of InGaAs and GaAsSb lattice-matched to an InP substrate. A near room temperature SWIR cutoff of 2.4 μm was measured. Electrical junctions were realized using Zn diffusion p-doping process. We realized and studied both mesa- and selective diffusion- based p-i-n photodiodes. Dark currents of mesa-based devices were 1.5 mA/cm2 and 32 μA/cm2 at 300 and 230 K respectively. Dark currents were reduced to 1.2 mA/cm2 and 12 μA/cm2 respectively by utilizing the selective diffusion process. The effect of operating voltage is discussed. At 300 K the quantum efficiency was up to 40% at 2.18 μm in mesa devices. D∗ was 1.7 ×1010cm ·√{Hz } /W at 2 μm.

  14. Quantum-engineered mid-infrared type-II InAs/GaSb superlattice photodetectors for high temperature operations

    NASA Astrophysics Data System (ADS)

    Tian, Z.-B.; Schuler-Sandy, T.; Godoy, S. E.; Kim, H. S.; Montoya, J.; Myers, S.; Klein, B.; Plis, E.; Krishna, S.

    2013-06-01

    Over the last several years, owing to the implementation of advanced device architectures, antimony-based type-II superlattice (T2-SL) infrared (IR) photodetectors and their focal plane arrays (FPAs) have achieved significant advancements. Here we present our recent effort towards the development of high operating temperature (HOT) mid-IR (MWIR) photodetectors, which utilizes an interband cascade scheme with discrete InAs/GaSb SL absorbers, sandwiched between electron and hole barriers. This low-noise device architecture has enabled background-limited operation above 150 K (300 K, 2π field-of-view), as well as above room temperature response in the mid-IR region. The detector yields a dark current density of 1.10×10-7 A/cm2 (1.44×10-3 A/cm2) at -5 mV, and a Johnson-limited D* of 2.22×1011 cmHz1/2/W (1.58×109 cmHz1/2/W) at 150 K (room temperature) and 3.6 μm, respectively. In this presentation, we will discuss the operation principles of the interband cascade design and our most recent progress in MWIR photodetectors toward high operating temperatures.

  15. HST observations of faint Cold Classical KBOs

    NASA Astrophysics Data System (ADS)

    Penteado, Paulo F.; Trilling, David E.; Grundy, Will

    2016-10-01

    The size distribution of the known Kuiper Belt Objects has been described by a double power law, with a break at R magnitude 25. There are two leading interpretations to this break: 1) It is the result of the collisional evolution, with the objects smaller than the break being the population most affected by collisional erosion. 2) The size distribution break is primordial, set during the Kuiper Belt formation.The low inclination KBOs, the Cold Classical population, is thought to have been dynamically isolated since the formation of the Solar System, and thus only collisions between Cold Classicals would have affected their size distribution. If the distribution is collisional, it probes parameters of the Kuiper Belt history: strengths of the bodies, impact energies and frequency, and the the number of objects. If the distribution is primordial, it reveals parameters of the Kuiper Belt accretion, as well as limits on its subsequent collisional history.We obtained HST observations of 16 faint Cold Classicals, which we combine with archival HST observations of 20 others, to examine the distribution of two properties of the smallest KBOs: colors and binary fraction. These properties can differentiate between a primordial and a collisional origin of the size distribution break. If the smaller bodies have been through extensive collisional evolution, they will have exposed materials from their interiors, which has not been exposed to weathering, and thus should be bluer than the old surfaces of the larger bodies. Another constraint can be derived from the fraction of binary objects: the angular momentum of the observed binaries is typically too high to result from collisions, thus a collisionally-evolved population would have a lower binary fraction, due to the easier separation of binaries, compared to the disruption of similar-sized bodies, and the easier disruption of the binary components, due to the smaller size.We present the constraints to the color and binary

  16. Low-temperature photochemistry in photosystem II from Thermosynechococcus elongatus induced by visible and near-infrared light.

    PubMed

    Boussac, Alain; Sugiura, Miwa; Lai, Thanh-Lan; Rutherford, A William

    2008-03-27

    The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.

  17. Low-temperature photochemistry in photosystem II from Thermosynechococcus elongatus induced by visible and near-infrared light

    PubMed Central

    Boussac, Alain; Sugiura, Miwa; Lai, Thanh-Lan; Rutherford, A. William

    2007-01-01

    The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ·, can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ·, S1TyrZ· and S2TyrZ·, respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD·, PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ· interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 Å units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry. PMID:17965006

  18. Is Solar Activity Once More Fainting?

    NASA Astrophysics Data System (ADS)

    Mares Aguilar, C. E.; Schröder, K.-P.; Song, G.

    2013-04-01

    After an anomalously long and deep minimum, will the Sun now once again reach a period of weaker activity cycles, which would affect northern hemisphere winter climate? We here discuss the current state and outlook of solar activity, and we propose to monitor the solar Ca II K line emission “as a star”, as part of the regular observing schedule of the Hamburg robotic telescope, which is bound to move to Guanajuato this year (2012). In fact, the chromospheric Ca II K line emission is a good proxy for the solar far-ultraviolet flux, as both are generated at about the same plasma temperatures (12-15,000 K) and both originate from the same active regions (plages). The solar ultraviolet flux, in turn, warms the stratosphere by photo dissociation of ozone and other molecules and, consequently, affects the strength of the North Atlantic Oscillation (NOA).

  19. Time series photometry of faint cataclysmic variables with a CCD

    NASA Astrophysics Data System (ADS)

    Abbott, Timothy Mark Cameron

    1992-08-01

    I describe a new hardware and software environment for the practice of time-series stellar photometry with the CCD systems available at McDonald Observatory. This instrument runs suitable CCD's in frame transfer mode and permits windowing on the CCD image to maximize the duty cycle of the photometer. Light curves may be extracted and analyzed in real time at the telescope and image data are stored for later, more thorough analysis. I describe a star tracking algorithm, which is optimized for a timeseries of images of the same stellar field. I explore the extraction of stellar brightness measures from these images using circular software apertures and develop a complete description of the noise properties of this technique. I show that scintillation and pixelization noise have a significant effect on high quality observations. I demonstrate that optimal sampling and profile fitting techniques are unnecessarily complex or detrimental methods of obtaining stellar brightness measures under conditions commonly encountered in timeseries CCD photometry. I compare CCD's and photomultiplier tubes as detectors for timeseries photometry using light curves of a variety of stars obtained simultaneously with both detectors and under equivalent conditions. A CCD can produce useful data under conditions when a photomultiplier tube cannot, and a CCD will often produce more reliable results even under photometric conditions. I prevent studies of the cataclysmic variables (CV's) AL Com, CP Eri, V Per, and DO Leo made using the time series CCD photometer. AL Com is a very faint CV at high Galactic latitude and a bona fide Population II CV. Some of the properties of AL Com are similar to the dwarf nova WZ Sge and others are similar to the intermediate polar EX Hya, but overall AL Com is unlike any other well-studied cataclysmic variable. CP Eri is shown to be the fifth known interacting binary white dwarf. V Per was the first CV found to have an orbital period near the middle of the

  20. FAINT SUBMILLIMETER GALAXY COUNTS AT 450 {mu}m

    SciTech Connect

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Casey, Caitlin M.; Lee, Nicholas; Sanders, David B.; Williams, Jonathan P.; Wang, Wei-Hao

    2013-01-10

    We present the results of SCUBA-2 observations at 450 {mu}m and 850 {mu}m of the field lensed by the massive cluster A370. With a total survey area >100 arcmin{sup 2} and 1{sigma} sensitivities of 3.92 and 0.82 mJy beam{sup -1} at 450 and 850 {mu}m, respectively, we find a secure sample of 20 sources at 450 {mu}m and 26 sources at 850 {mu}m with a signal-to-noise ratio (S/N) > 4. Using the latest lensing model of A370 and Monte Carlo simulations, we derive the number counts at both wavelengths. The 450 {mu}m number counts probe a factor of four deeper than the counts recently obtained from the Herschel Space Telescope at similar wavelengths, and we estimate that {approx}47%-61% of the 450 {mu}m extragalactic background light resolved into individual sources with 450 {mu}m fluxes greater than 4.5 mJy. The faint 450 {mu}m sources in the 4{sigma} sample have positional accuracies of 3 arcsec, while brighter sources (S/N >6{sigma}) are good to 1.4 arcsec. Using a deep radio map (1{sigma} {approx} 6 {mu}Jy) we find that the percentage of submillimeter sources having secure radio counterparts is 85% for 450 {mu}m sources with intrinsic fluxes >6 mJy and 67% for 850 {mu}m sources with intrinsic fluxes >4 mJy. We also find that 67% of the >4{sigma} 450 {mu}m sources are detected at 850 {mu}m, while the recovery rate at 450 {mu}m of >4{sigma} 850 {mu}m sources is 54%. Combined with the source redshifts estimated using millimetric flux ratios, the recovered rate is consistent with the scenario where both 450 {mu}m and 20 cm emission preferentially select lower redshift dusty sources, while 850 {mu}m emission traces a higher fraction of dusty sources at higher redshifts. We identify potential counterparts in various wavelengths from X-ray to mid-infrared and measure the multiwavelength photometry, which we then use to analyze the characteristics of the sources. We find three X-ray counterparts to our robust submillimeter sample (S/N > 5), giving an active galactic nucleus

  1. Enhanced faint companion photometry and astrometry using wavelength diversity.

    PubMed

    Burke, Daniel; Devaney, Nicholas

    2010-11-01

    In this paper we examine approaches to faint companion detection and estimation in multi-spectral images. We will employ the Hotelling observer, which is the optimal linear algorithm for signal detection. We have shown how to use this observer to estimate faint object position and brightness in the presence of residual speckle, which usually limits astrometric and photometric techniques. These speckles can be reduced by differential imaging techniques such as Angular Differential Imaging and Spectral Differential Imaging. Here we present results based on simulations of adaptive-optics-corrected images from an Extremely Large Telescope (ELT) that contain quasi-static speckle noise. The simulation includes Angular Differential Imaging and Spectral Differential Imaging to reduce the residual speckle and subsequent multi-wavelength processing. We examine the feasibility of this approach on simulated ELT observations of faint companions.

  2. The nature of faint emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Smetanka, John J.

    1993-01-01

    One of the results of faint galaxy redshift surveys is the increased fraction of galaxies which have strong emission-line spectra. These faint surveys find that roughly 50 percent of the galaxies have an equivalent width of (OII), W sub 3727, greater than 20 A while this fraction is less than 20 percent in the DARS survey. This has been interpreted as evidence for strong evolution in the galaxy population at redshifts less than 0.5. In order to further investigate the properties of the galaxies in faint redshift surveys, two important factors must be addressed. The first is the observed correlation between color, luminosity, and W sub 3727. There is a correlation between color and the strength of emission lines, bluer galaxies having stronger emission features, as evident for Markarian galaxies and for galaxies in Kennicutt's spectrophotometric atlas. This correlation also applies galaxies in faint redshift surveys. In addition, low luminosity galaxies have a larger average W sub 3727 (and bluer colors) than higher luminosity galaxies. This is illustrated for Kennicutt's low z late-type galaxies, for the Durham Faint Surveys, and for galaxies in SA68. The second factor which must be incorporated into any interpretation of the faint emission galaxies is the different luminosity functions for galaxies depending on color. This is usually modeled by varying M* for different color classes (or morphological types); however, the shape of the luminosity function is different for galaxies with different colors. Low luminosity, blue galaxies have a much larger number density than low luminosity, red galaxies. Furthermore, the low luminosity end of the blue galaxy luminosity function is not well fit by a Schechter function. These two factors have been included in a very simple, no-evolution, model for the galaxy population. This model uses the luminosity functions from Shanks (1990) and spectral energy distributions (SED's) from Bruzual (1988). W sub 3727 is predicted using

  3. The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41

    NASA Astrophysics Data System (ADS)

    Matute, I.; Masegosa, J.; Márquez, I.; Fernández-Soto, A.; Husillos, C.; del Olmo, A.; Perea, J.; Pović, M.; Ascaso, B.; Alfaro, E. J.; Moles, M.; Aguerri, J. A. L.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Infante, L.; González Delgado, R. M.; Martínez, V. J.; Molino, A.; Prada, F.; Quintana, J. M.

    2013-09-01

    Aims: We aim to illustrate the potentiality of the Advanced Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA) survey to investigate the high-redshift universe through the detection of quasi stellar objects (QSOs) at redshifts higher than 5. Methods: We searched for QSOs candidates at high redshift by fitting an extensive library of spectral energy distributions - including active and non-active galaxy templates, as well as stars - to the photometric database of the ALHAMBRA survey (composed of 20 optical medium-band plus the 3 broad-band JHKs near-infrared filters). Results: Our selection over ≈1 square degree of ALHAMBRA data (~1/4 of the total area covered by the survey), combined with GTC/OSIRIS spectroscopy, has yielded identification of an optically faint QSO at very high redshift (z = 5.41). The QSO has an absolute magnitude of ~-24 at the 1450 Å continuum, a bolometric luminosity of ≈2 × 1046 erg s-1, and an estimated black hole mass of ≈108 M⊙. This QSO adds itself to a reduced number of known UV faint sources at these redshifts. The preliminary derived space density is compatible with the most recent determinations of the high-z QSO luminosity functions. This new detection shows how ALHAMBRA, as well as forthcoming well-designed photometric surveys, can provide a wealth of information on the origin and early evolution of this kind of object.

  4. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    NASA Astrophysics Data System (ADS)

    Ishihara, Daisuke; Takeuchi, Nami; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2017-05-01

    Context. Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 au. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods: We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 μm detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks < 4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the φ1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is 8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusions: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model. The full version of Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A72

  5. Raman, infrared, photoluminescence and theoretical studies of the II-VI-VI ternary CdSeTe

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Becla, P.; Kim, L. S.; Perkowitz, S.; Feng, Y. P.; Poon, H. C.; Williams, K. P.; Pitt, G. D.

    1994-04-01

    We have examined Bridgman-grown zincblende CdSe xTe 1- x ( x < 0.36) by Raman scattering, Fourier transform infrared reflectivity, photoluminescence and theoretical analysis. The Raman data showed evidence of surface structural improvement by long-term room temperature annealing. The combined Raman and infrared data confirmed the interpretation that a third infrared mode besides the CdTe- and CdSe-like transverse optical phonon modes, arose from non-random atomic clustering. Room temperature photoluminescence spectra were obtained and compared with pseudopotential calculations.

  6. Interpretation of epsilon Aurigae. II - Infrared excess, secondary light variations, and plausible formation of a planetary system

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1974-01-01

    Infrared excess based on the disk model proposed in a previous paper was computed. It was found that the disk alone will emit infrared radiation below the margin of detection. However, if individual condensations are present, the combined result of the disk proper and the condensations yields results of infrared excesses that are consistent with observations. The presence of condensations also makes the secondary light variation understandable. An elementary theory is developed that analyzes such light variations. The result of the analysis yields the size of the orbit of the condensation around the secondary component.

  7. On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Meikle, W. P. S.; Fassia, A.; Geballe, T.; Lundqvist, P.; Chugai, N. N.; Sollerman, J.

    2004-08-01

    We present late-time near-infrared (NIR) and optical observations of the Type IIn SN 1998S. The NIR photometry spans 333-1242 d after explosion, while the NIR and optical spectra cover 333-1191 and 305-1093 d, respectively. The NIR photometry extends to the M' band (4.7 μm), making SN 1998S only the second ever supernova for which such a long IR wavelength has been detected. The shape and evolution of the Hα and HeI 1.083-μm line profiles indicate a powerful interaction with a progenitor wind, as well as providing evidence of dust condensation within the ejecta. The latest optical spectrum suggests that the wind had been flowing for at least 430 yr. The intensity and rise of the HK continuum towards longer wavelengths together with the relatively bright L' and M' magnitudes show that the NIR emission was due to hot dust newly formed in the ejecta and/or pre-existing dust in the progenitor circumstellar medium (CSM). The NIR spectral energy distribution (SED) at about 1 yr is well described by a single-temperature blackbody spectrum at about 1200 K. The temperature declines over subsequent epochs. After ~2 yr, the blackbody matches are less successful, probably indicating an increasing range of temperatures in the emission regions. Fits to the SEDs achieved with blackbodies weighted with λ-1 or λ-2 emissivity are almost always less successful. Possible origins for the NIR emission are considered. Significant radioactive heating of ejecta dust is ruled out, as is shock/X-ray-precursor heating of CSM dust. More plausible sources are (a) an IR echo from CSM dust driven by the ultraviolet/optical peak luminosity, and (b) emission from newly-condensed dust which formed within a cool, dense shell produced by the ejecta shock/CSM interaction. We argue that the evidence favours the condensing dust hypothesis, although an IR echo is not ruled out. Within the condensing-dust scenario, the IR luminosity indicates the presence of at least 10-3 Msolar of dust in the ejecta

  8. Modelling galaxy spectra in presence of interstellar dust - II. From the ultraviolet to the far-infrared

    NASA Astrophysics Data System (ADS)

    Piovan, Lorenzo; Tantalo, Rosaria; Chiosi, Cesare

    2006-08-01

    In this paper, we present spectrophotometric models for galaxies of different morphological type whose spectral energy distributions (SEDs) take into account the effect of dust in absorbing ultraviolet-optical (UV-optical) light and re-emitting it in the infrared. The models contain three main components: (i) the diffuse interstellar medium (ISM) composed of gas and dust, (ii) the large complexes of molecular clouds (MCs) in which new stars are formed and (iii) the stars of any age and chemical composition. The galaxy models stand on a robust model of chemical evolution that assuming a suitable prescription for gas infall, initial mass function, star formation rate and stellar ejecta provides the total amounts of gas and stars present at any age together with their chemical history. The chemical models are tailored in such a way to match the gross properties of galaxies of different morphological type. In order to describe the interaction between stars and ISM in building up the total SED of a galaxy, one has to know the spatial distribution of gas and stars. This is made adopting a simple geometrical model for each type of galaxy. The total gas and star mass provided by the chemical model are distributed over the whole volume by means of suitable density profiles, one for each component and depending on the galaxy type (spheroidal, disc and disc plus bulge). The galaxy is then split in suitable volume elements to each of which the appropriate amounts of stars, MCs and ISM are assigned. Each elemental volume bin is at the same time source of radiation from the stars inside and absorber and emitter of radiation from and to all other volume bins and the ISM in between. They are the elemental seeds to calculate the total SED. Using the results for the properties of the ISM and the single stellar populations presented by Piovan et al. we derive the SEDs of galaxies of different morphological type. First, the technical details of the method are described and the basic

  9. 1. Dyea Dock looking south. Note faint evenly spaced circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Dyea Dock looking south. Note faint evenly spaced circular dark pieces of grass up through the middle of the picture indicating posts making up the pier. Photograph made from park service cherry picker. - Dyea Dock & Association (Ruins), Skagway, Skagway, AK

  10. The CFHT (MOS/PUMA) faint quasar survey

    NASA Astrophysics Data System (ADS)

    Schade, David

    A multi-aperture spectroscopic survey for faint quasars has been carried out at Canada-France-Hawaii telescope. The survey is capable of reaching two magnitudes deeper into the luminosity function at redshifts greater than 3 than the deepest existing surveys. The technique is discussed and preliminary results are presented.

  11. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    SciTech Connect

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D. E-mail: bjacobs@ifa.hawaii.edu E-mail: ikar@luna.sao.ru

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  12. EXPLAINING THE [C II]157.7 {mu}m DEFICIT IN LUMINOUS INFRARED GALAXIES-FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE

    SciTech Connect

    Diaz-Santos, T.; Armus, L.; Howell, J. H.; Surace, J. A.; Charmandaris, V.; Murphy, E. J.; Haan, S.; Inami, H.; Malhotra, S.; Meijerink, R.; Stacey, G.; Petric, A. O.; Lu, N.; Veilleux, S.; Van der Werf, P. P.; Lord, S.; Appleton, P.; and others

    2013-09-01

    We present the first results of a survey of the [C II]157.7 {mu}m emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky LIRG Survey (GOALS) sample, obtained with the PACS instrument on board the Herschel Space Observatory. The [C II] luminosities, L{sub [C{sub II]}}, of the LIRGs in GOALS range from {approx}10{sup 7} to 2 Multiplication-Sign 10{sup 9} L{sub Sun }. We find that LIRGs show a tight correlation of [C II]/FIR with far-IR (FIR) flux density ratios, with a strong negative trend spanning from {approx}10{sup -2} to 10{sup -4}, as the average temperature of dust increases. We find correlations between the [C II]/FIR ratio and the strength of the 9.7 {mu}m silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region ({Sigma}{sub MIR}), suggesting that warmer, more compact starbursts have substantially smaller [C II]/FIR ratios. Pure star-forming LIRGs have a mean [C II]/FIR {approx} 4 Multiplication-Sign 10{sup -3}, while galaxies with low polycyclic aromatic hydrocarbon (PAH) equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGNs), span the full range in [C II]/FIR. However, we show that even when only pure star-forming galaxies are considered, the [C II]/FIR ratio still drops by an order of magnitude, from 10{sup -2} to 10{sup -3}, with {Sigma}{sub MIR} and {Sigma}{sub IR}, implying that the [C II]157.7 {mu}m luminosity is not a good indicator of the star formation rate (SFR) for most local LIRGs, for it does not scale linearly with the warm dust emission most likely associated to the youngest stars. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [C II]/FIR {>=} 10{sup -3} typical of high 6.2 {mu}m PAH EW sources, suggesting that most AGNs do not contribute significantly to the FIR emission. We provide an empirical relation between the [C II]/FIR and the specific SFR for star

  13. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; McCormick, M. P.; McMaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-03-01

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30°N and 50°S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30°N and 50°S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere.

  14. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  15. Recognition of Distant Supergiants among Faint Red Stars in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    MacConnell, Darrell J.; Wing, R. F.; Costa, E.

    2011-05-01

    Surveys along the Galactic plane at red and infrared wavelengths -- e.g. several objective-prism surveys in the photographic infrared, and the recent Spitzer/GLIMPSE survey in the 3-8μ region -- record large numbers of faint red stars. Some of these sources must be distant, heavily-reddened supergiants in remote spiral arms, and they would be valuable tracers if their distances could be estimated. Measurement of a TiO band and a color index -- show that the majority of the detected faint, red sources are stars of type M, reddened to different degrees. It is more difficult to distinguish bona fide supergiants from the more common giants (which are also likely to be reddened, but are not confined to spiral arms), and to obtain the luminosity classes needed for the determination of individual distances. We have developed two methods, one using slit spectroscopy and the other narrow-band photometry, for determining the luminosities of reddened M stars. Both methods depend primarily on the measurement of CN absorption in the 0.8μ region, often in the face of much stronger TiO bands. The spectroscopic method involves flattening the digital spectra and comparing program stars to standards of the same TiO strength to judge the amount of CN present. The narrow-band method involves fitting a blackbody curve to the calibrated photometry and defining a reddening-free CN index. This CN absorption is measurable in all giants and supergiants of types K and M and is stronger in supergiants. In fact, young, massive supergiants of classes Ia and Iab, which should be excellent spiral-arm tracers, can be distinguished from supergiants of class Ib, which may be older. We illustrate our procedures and apply them to a sample of GLIMPSE sources. We show that our methods give consistent results and can be used to identify distant supergiants among GLIMPSE sources.

  16. Theoretical design and material growth of Type-II Antimonide-based superlattices for multi-spectral infrared detection and imaging

    NASA Astrophysics Data System (ADS)

    Hoang, Anh Minh

    Infrared detectors find applications in many aspects of life, from night vision, target tracking for homeland security and defense, non-destructive failure detection in industry, chemical sensing in medicine, and free-space communication. Currently, the dominant technologies of photodetectors based upon HgCdTe and InSb are experiencing many limitations. Under this circumstance, the Type-II InAs/GaSb/AlSb superlattices which have been intensively studied recently appear to be an excellent candidate to give breakthroughs in the infrared technology. The Type-II SLs with theirs advantages such as great flexibility in bandgap engineering, high carrier effective mass, Auger recombination suppression and high uniformity have shown excellent device performance from MWIR to VLWIR. In the era of the third generation for infrared cameras, Type-II SLs are entering the new phase of development with high performance and multi-spectral detection. The goal of this work is to investigate quantum properties of the superlattice system, design appropriate device architectures and experimentally fabricate infrared detectors which can push further the limit of this material system and outperform existing competing technologies. The binary-binary InAs/GaSb superlattice has gone through much transformation over the years. Incorporating compounds lattice matched to the 6.1A family has invited more possibilities to band engineer the Type-II SLs. For the first time, by employing all three members of this material system, we have designed a new superlattice structure and demonstrated shortwavelength infrared (SWIR) photodiodes based on Type-II InAs/GaSb/AlSb with high electrical and optical performance. The photodiodes exhibited a quantum efficiency of 60% with very low dark current, can be operated at room temperature. In addition to the range of MWIR to VLWIR, a new channel of detection has been added to the GaSb based type-II SL material system. The new realization of SWIR photodiodes has

  17. Infrared observations of low-mass X-ray binaries. II - Discovery of a variable infrared counterpart to GX13 + 1

    NASA Astrophysics Data System (ADS)

    Charles, P. A.; Naylor, T.

    1992-03-01

    Using the IRCAM on UKIRT, it has been discovered that the bright (K = 11 mag) infrared source (NCL 101) at the precise radio position of the Galactic Bulge X-ray source, GX13 + 1, is variable, making it the first of the bright central sources to be so identified. The variability (about 1 mag) is on a time-scale of days or longer, the source remaining constant to within 0.05 mag (in K) during a single 5-hr monitoring run. If this variation is an orbital modulation, then the long period implies that the distinction between Z and Atoll sources is more complex than simply the orbital period. A deep INT Prime Focus image of the field reveals no visible counterpart to this object, with a limit of R greater than 22, indicating heavy obscuration that is consistent with the observed X-ray absorption.

  18. LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. II. A LARGE-SCALE STUDY OF THE GALACTIC INFRARED EXTINCTION LAW

    SciTech Connect

    Zasowski, G.; Majewski, S. R.; Indebetouw, R. E-mail: srm4n@virginia.ed

    2009-12-10

    We combine near-infrared (Two Micron All Sky Survey) and mid-infrared (Spitzer-IRAC) photometry to characterize the IR extinction law (1.2-8 mum) over nearly 150 deg. of contiguous Milky Way midplane longitude. The relative extinctions in five passbands across these wavelength and longitude ranges are derived by calculating color excess ratios for G and K giant red clump stars in contiguous midplane regions and deriving the wavelength dependence of extinction in each one. Strong, monotonic variations in the extinction law shape are found as a function of angle from the Galactic center, symmetric on either side of it. These longitudinal variations persist even when dense interstellar regions, known a priori to have a shallower extinction curve, are removed. The increasingly steep extinction curves toward the outer Galaxy indicate a steady decrease in the absolute-to-selective extinction ratio (R{sub V} ) and in the mean dust grain size at greater Galactocentric angles. We note an increasing strength of the 8 mum extinction inflection at high Galactocentric angles and, using theoretical dust models, show that this behavior is consistent with the trend in R{sub V} . Along several lines of sight where the solution is most feasible, A {sub l}ambda/A{sub K{sub s}} as a function of Galactic radius (R {sub GC}) is estimated and shown to have a Galactic radial dependence. Our analyses suggest that the observed relationship between extinction curve shape and Galactic longitude is due to an intrinsic dependence of the extinction law on Galactocentric radius.

  19. A Newly Developed Model for Fluorescence of C2H6 ν5 in Comets and Application to Infrared Spectra Acquired with NIRSPEC at Keck II

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, M. J.; Villanueva, G. L.; A'Hearn, M. F.

    2010-01-01

    Exploring the compositional diversity of cometary nuclei is key to understanding the formation and evolution of the Solar System, and the origin of water and prebiotic organics on the Earth. For most polyatomic gases, a production rate can be obtained from measured ro-vibrational intensities if an accurate rotational temperature is available, and the comparison of temperatures displayed by individual molecular species can reveal additional insights into physics in the cometary inner coma. Until now, accurate temperatures could be derived for HCN, CO, and H2O, but not for ethane (C2H6). As a symmetric hydrocarbon, C2H6 is uniquely sampled in the infrared, but the fine rotational structure of the ν7 Q-branches at 3.3 μm cannot be resolved by current infrared spectrometers, ultimately limiting the retrievals of rotational temperatures from these lines. However, the complex ro-vibrational structure (P- and R-branches) of the ν5 band at 3.5 μm is resolved by the Near Infrared Echelle Spectrograph on the Keck II telescope (NIRSPEC). We developed a fluorescence model for the infrared ν5 band of C2H6, and applied it to interpret high-resolution infrared spectra acquired with NIRSPEC. We present rotational temperatures and production rates for C2H6 in multiple comets. We compare the extracted rotational temperatures for ethane with those obtained from simultaneous measurements of other species (H2O and HCN). We also compare mixing ratios derived from the C2H6 ν5 band with those derived from the previously analyzed (by NASA GSFC team members) ν7 band. This work now establishes a robust method for quantifying additional physical parameters for ethane in comets.

  20. STELLAR ARCHEOLOGY IN THE GALACTIC HALO WITH ULTRA-FAINT DWARFS. VII. HERCULES

    SciTech Connect

    Musella, Ilaria; Ripepi, Vincenzo; Marconi, Marcella E-mail: ripepi@na.astro.it; and others

    2012-09-10

    We present the first time-series study of the ultra-faint dwarf galaxy Hercules. Using a variety of telescope/instrument facilities we secured about 50 V and 80 B epochs. These data allowed us to detect and characterize 10 pulsating variable stars in Hercules. Our final sample includes six fundamental-mode (ab-type) and three first-overtone (c-type) RR Lyrae stars, and one Anomalous Cepheid. The average period of the ab-type RR Lyrae stars, (P{sub ab}) = 0.68 days ({sigma} = 0.03 days), places Hercules in the Oosterhoff II group, as found for almost the totality of the ultra-faint dwarf galaxies investigated so far for variability. The RR Lyrae stars were used to obtain independent estimates of the metallicity, reddening, and distance to Hercules, for which we find [Fe/H] = -2.30 {+-} 0.15 dex, E(B - V) = 0.09 {+-} 0.02 mag, and (m - M){sub 0} = 20.6 {+-} 0.1 mag, in good agreement with the literature values. We have obtained a V, B - V color-magnitude diagram (CMD) of Hercules that reaches V {approx} 25 mag and extends beyond the galaxy's half-light radius over a total area of 40' Multiplication-Sign 36'. The CMD and the RR Lyrae stars indicate the presence of a population as old and metal-poor as (at least) the Galactic globular cluster M68.

  1. Secondary Structure and Pd(II) Coordination in S-Layer Proteins from Bacillus sphaericus Studied by Infrared and X-Ray Absorption Spectroscopy

    PubMed Central

    Fahmy, Karim; Merroun, Mohamed; Pollmann, Katrin; Raff, Johannes; Savchuk, Olesya; Hennig, Christoph; Selenska-Pobell, Sonja

    2006-01-01

    The S-layer of Bacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a high metal-binding capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides. This property has allowed the use of this and other S-layers as self-assembling organic templates for the synthesis of nanosized heavy metal cluster arrays. However, little is known about the molecular basis of the metal-protein interactions and their impact on secondary structure. We have studied the secondary structure, protein stability, and Pd(II) coordination in S-layers from the B. sphaericus strains JG-A12 and NCTC 9602 to elucidate the molecular basis of their biological function and of the metal nanocluster growth. Fourier transform infrared spectroscopy reveals similar secondary structures, containing ∼35% β-sheets and little helical structure. pH-induced infrared absorption changes of the side-chain carboxylates evidence a remarkably low pK < 3 in both strains and a structural stabilization when Pd(II) is bound. The COO−-stretching absorptions reveal a predominant Pd(II) coordination by chelation/bridging by Asp and Glu residues. This agrees with XANES and EXAFS data revealing oxygens as coordinating atoms to Pd(II). The additional participation of nitrogen is assigned to side chains rather than to the peptide backbone. The topology of nitrogen- and carboxyl-bearing side chains appears to mediate heavy metal binding to the large number of Asp and Glu in both S-layers at particularly low pH as an adaptation to the environment from which the strain JG-A12 has been isolated. These side chains are thus prime targets for the design of engineered S-layer-based nanoclusters. PMID:16698775

  2. The VISTA Carina Nebula Survey. II. Spatial distribution of the infrared-excess-selected young stellar population

    NASA Astrophysics Data System (ADS)

    Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2016-01-01

    We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a

  3. AN IN-DEPTH VIEW OF THE MID-INFRARED PROPERTIES OF POINT SOURCES AND THE DIFFUSE ISM IN THE SMC GIANT H II REGION, N66

    SciTech Connect

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Lebouteiller, Vianney; Bernard-Salas, Jeronimo; Brandl, Bernhard R. E-mail: kej7a@virginia.edu E-mail: vianney.lebouteiller@cea.fr E-mail: epeeters@uwo.ca E-mail: brandl@strw.leidenuniv.nl

    2013-07-01

    The focus of this work is to study mid-infrared point sources and the diffuse interstellar medium (ISM) in the low-metallicity ({approx}0.2 Z{sub Sun }) giant H II region N66 in order to determine properties that may shed light on star formation in these conditions. Using the Spitzer Space Telescope's Infrared Spectrograph, we study polycyclic aromatic hydrocarbon (PAH), dust continuum, silicate, and ionic line emission from 14 targeted infrared point sources as well as spectra of the diffuse ISM that is representative of both the photodissociation regions (PDRs) and the H II regions. Among the point source spectra, we spectroscopically confirm that the brightest mid-infrared point source is a massive embedded young stellar object, we detect silicates in emission associated with two young stellar clusters, and we see spectral features of a known B[e] star that are commonly associated with Herbig Be stars. In the diffuse ISM, we provide additional evidence that the very small grain population is being photodestroyed in the hard radiation field. The 11.3 {mu}m PAH complex emission exhibits an unexplained centroid shift in both the point source and ISM spectra that should be investigated at higher signal-to-noise and resolution. Unlike studies of other regions, the 6.2 {mu}m and 7.7 {mu}m band fluxes are decoupled; the data points cover a large range of I{sub 7.7}/I{sub 11.3} PAH ratio values within a narrow band of I{sub 6.2}/I{sub 11.3} ratio values. Furthermore, there is a spread in PAH ionization, being more neutral in the dense PDR where the radiation field is relatively soft, but ionized in the diffuse ISM/PDR. By contrast, the PAH size distribution appears to be independent of local ionization state. Important to unresolved studies of extragalactic low-metallicity star-forming regions, we find that emission from the infrared-bright point sources accounts for only 20%-35% of the PAH emission from the entire region. These results make a comparative data set to

  4. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    USDA-ARS?s Scientific Manuscript database

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  5. Room-temperature vibrational difference spectrum for S2QB-/S1QB of photosystem II determined by time-resolved Fourier transform infrared spectroscopy.

    PubMed

    Zhang, H; Fischer, G; Wydrzynski, T

    1998-04-21

    Time-resolved FTIR spectroscopy has been used to kinetically characterize the vibrational properties of intact photosystem II-enriched membrane samples undergoing the S1QB-to-S2QB- transition at room temperature. To optimize the experimental conditions for the FTIR measurements, oxygen polarographic and variable chlorophyll a fluorescence measurements were used to define the decay of S2 and QA-, respectively. The flash-induced S2QB-/S1QB difference spectra were measured at a temporal resolution of 4.44 s and a spectral resolution of 4 cm-1. An intense positive band is observed at 1480 cm-1 in the difference spectrum and shows a slow decay with a half time of approximately 13 s. Based on its decay kinetics and analogy to the infrared absorption of QA- of photosystem II and QB- in bacterial reaction centers, we conclude that the 1480 cm-1 band arises from QB- of PSII and tentatively assign it to the upsilon(CO) mode of the semiquinone anion QB-. The infrared spectral features attributed to the S1-to-S2 transition of the Mn cluster at room temperature show striking similarity to the S2/S1 difference spectrum measured at cryogenic temperatures (Noguchi, T., Ono, T.-A., and Inoue, Y. (1995) Biochim. Biophys. Acta 1228, 189-200).

  6. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  7. Theoretical investigation of InAs/GaSb type-II pin superlattice infrared detector in the mid wavelength infrared range

    NASA Astrophysics Data System (ADS)

    Kaya, U.; Hostut, M.; Kilic, A.; Sakiroglu, S.; Sokmen, I.; Ergun, Y.; Aydinli, A.

    2013-02-01

    In this study, we present the theoretical investigation of type-II InAs/GaSb superlattice p-i-n detector. Kronig-Penney and envelope function approximation is used to calculate band gap energy and superlattice minibands. Variational method is also used to calculate exciton binding energies. Our results show that carriers overlap increases at GaSb/InAs interface on the higher energy side while it decreases at InAs/GaSb interface on the lower energy side with increasing reverse bias due to shifting the hole wavefunction toward to the GaSb/InAs interface decisively. Binding energies increase with increasing electric field due to overall overlap of electron and hole wave functions at the both interfaces in contrast with type I superlattices. This predicts that optical absorption is enhanced with increasing electric field.

  8. Faint High Orbit Debris Observations with ISON Optical Network

    NASA Astrophysics Data System (ADS)

    Molotov, I.; Agapov, V.

    New cooperation for global monitoring of space objects at high orbits, International Scientific Optical Network (ISON), is appeared under auspices of the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences. ISON provides the observations of faint deep space debris in cooperation with team of the Astronomical Institute of the University of Bern (AIUB) since 2004. It is jointly discovered already about 500 faint space debris fragments at high orbits and almost 200 of them are continuously tracked with ISON. Presence of space debris clouds created in earlier suspected fragmentations of GEO objects is proved by long deterministic observations of individual members of the clouds. For the first time, a large amount of data on long time intervals is obtained for objects with high area-to-mass ratio (AMR). Till present, the uncatalogued faint deep debris are discovering mainly with Teide ESA OGS telescope and Crimean observatory in Nauchny, while object tracking is providing by cooperation of the 0.5-2.6-m class telescopes including Zimmerwald, Gissar, Mondy, Abastumany, Arkhyz, Mayaki, Andrushivka and Terskol. During 2009 it is planned to join several telescopes with large field of view (1.3 - 2.3 degree) in Ussuriysk, Krasnojarsk, Mondy, Nauchniy, Andrushivka, Abastumani, Mayaki and Kitab into semi-automatic network in order to try to establish the faint debris quasi continuous orbit maintenance. It is planned to use survey mode for this purpose as it is adjusted now for brighter GEO objects with ISON survey subsystem of 22-cm telescopes. Along with sensors development, it is elaborated and tested a few survey modes and algorithm permitting to find correlation between short arc tracks of non-correlated objects in order to discovery of new objects and to establish their orbits.

  9. The Faint Globular Cluster in the Dwarf Galaxy Andromeda I

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Strader, Jay; Sand, David J.; Willman, Beth; Seth, Anil C.

    2017-09-01

    Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (M V -3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.

  10. Polarization-modulated infrared spectroscopy and x-ray reflectivity of photosystem II core complex at the gas-water interface.

    PubMed Central

    Gallant, J; Desbat, B; Vaknin, D; Salesse, C

    1998-01-01

    The state of photosystem II core complex (PS II CC) in monolayer at the gas-water interface was investigated using in situ polarization-modulated infrared reflection absorption spectroscopy and x-ray reflectivity techniques. Two approaches for preparing and manipulating the monolayers were examined and compared. In the first, PS II CC was compressed immediately after spreading at an initial surface pressure of 5.7 mN/m, whereas in the second, the monolayer was incubated for 30 min at an initial surface pressure of 0.6 mN/m before compression. In the first approach, the protein complex maintained its native alpha-helical conformation upon compression, and the secondary structure of PS II CC was found to be stable for 2 h. The second approach resulted in films showing stable surface pressure below 30 mN/m and the presence of large amounts of beta-sheets, which indicated denaturation of PS II CC. Above 30 mN/m, those films suffered surface pressure instability, which had to be compensated by continuous compression. This instability was correlated with the formation of new alpha-helices in the film. Measurements at 4 degreesC strongly reduced denaturation of PS II CC. The x-ray reflectivity studies indicated that the spread film consists of a single protein layer at the gas-water interface. Altogether, this study provides direct structural and molecular information on membrane proteins when spread in monolayers at the gas-water interface. PMID:9826610

  11. The Orion HII Region and the Orion Bar in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Salgado, F.; Berné, O.; Adams, J. D.; Herter, T. L.; Keller, L. D.; Tielens, A. G. G. M.

    2016-10-01

    We present mid-infrared photometry of the Orion bar obtained with the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) on board SOFIA at 6.4, 6.6, 7.7, 19.7, 31.5, and 37.1 μm. By complementing this observation with archival FORCAST and Herschel/PACS images, we are able to construct a complete infrared spectral energy distribution of the Huygens region in the Orion nebula. Comparing the infrared images with gas tracers, we find that PACS maps trace the molecular cloud, while the FORCAST data trace the photodissociation region (PDR) and the H ii region. Analysis of the energetics of the region reveal that the PDR extends for 0.28 pc along the line of sight and that the bar is inclined at an angle of 4°. The infrared and submillimeter images reveal that the Orion bar represents a swept-up shell with a thickness of 0.1 pc. The mass of the shell implies a shock velocity of ≃3 km s-1 and an age of ≃105 years for the H ii region. Our analysis shows that the UV and infrared dust opacities in the H ii region and the PDR are a factor 5 to 10 lower than in the diffuse interstellar medium. In the ionized gas, Lyα photons are a major source of dust heating at distances larger than ≃0.06 pc from θ 1 Ori C. Dust temperatures can be explained if the size of the grains is between 0.1 and 1 μm. We derive the photoelectric heating efficiency of the atomic gas in the Orion bar. The results are in good qualitative agreement with models and the quantitative differences indicate a decreased polycyclic aromatic hydrocarbon abundance in this region.

  12. Particle-based ablation model for faint meteors

    NASA Astrophysics Data System (ADS)

    Stokan, E.; Campbell-Brown, M.

    2014-07-01

    Modeling the ablation of meteoroids as they enter the atmosphere is a way of determining their physical structure and elemental composition. This can provide insight into the structure of parent bodies when combined with an orbit computed from observations. The Canadian Automated Meteor Observatory (CAMO) is a source of new, high-resolution observations of faint meteors [1]. These faint objects tend to have pre-atmospheric masses around 10^{-5} kg, corresponding to a radius of 1 mm. A wide-field camera with a 28° field of view provides guidance to a high-resolution camera that tracks meteors in flight with 1.5° field of view. Meteors are recorded with a scale of 4 m per pixel at a range of 135 km, at 110 frames per second, allowing us to investigate detailed meteor morphology. This serves as an important new constraint for ablation models, in addition to meteor brightness (lightcurves) and meteoroid deceleration. High-resolution observations of faint meteors have revealed that contemporary ablation models are not able to predict meteor morphology, even while matching the observed lightcurve and meteoroid deceleration [2]. This implies that other physical processes, in addition to fragmentation, must be considered for faint meteor ablation. We present a new, particle-based approach to modeling the ablation of small meteoroids. In this model, we simulate the collisions between atmospheric particles and the meteoroid to determine the rate of evaporation and deceleration. Subsequent collisions simulated between evaporated meteoroid particles and ambient atmospheric particles then produce light that would be observed by high-resolution cameras. Preliminary results show simultaneous agreement with meteor morphology, lightcurves, and decelerations recorded with CAMO. A sample comparison of simulated and observed meteor morphology is given in the attached figure. Several meteoroids are well-represented as solid, stony bodies, but some require modeling as a dustball [3

  13. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    NASA Technical Reports Server (NTRS)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  14. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    SciTech Connect

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  15. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited "free" energy generation.

  16. The Gas-rich Circumbinary Disk of HR 4049. II. A Detailed Study of the Near-infrared Spectrum

    NASA Astrophysics Data System (ADS)

    Malek, S. E.; Cami, J.

    2014-10-01

    HR 4049 is a peculiar evolved binary surrounded by a circumbinary disk. Mid-infrared observations show that the disk is rich in molecular gas and radially extended. To study the properties of this disk, we re-analyzed a set of near-infrared observations at high spectral resolution obtained with Gemini-Phoenix. These data cover absorption lines originating from the first overtone of CO and from H2O in the 2.3 μm region as well as more complex emission-absorption profiles from H2O and the fundamental mode of CO near 4.6 μm. By using an excitation diagram and from modeling the spectrum, we find that most of the CO overtone and H2O absorption originates from hot gas (T ex ≈ 1000 K) with high column densities, consistent with the mid-infrared data. The strong emission in the wavelength range of the CO fundamental furthermore suggests that there is a significant quantity of gas in the inner cavity of the disk. In addition, there is a much colder component in the line of sight to the disk. A detailed analysis of the overtone line profiles reveals variations in the line widths that are consistent with a radially extended disk in Keplerian rotation with hotter gas closer to the central star. We estimate the mass of the primary to be ~0.34 M ⊙ and discuss the implications for its evolutionary status.

  17. Herschel Discovery of a New Class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroal, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J.-Ch.; Bayo, A.; Danchi, W.; del Burgo, C.; Ertel, S.; Fridlund, M.; Gonzalez-Garcia, B. M.; Heras, A. M.; Lebreton, J.; Liseau, R.; Maldonado, J.; Meeus, G.; Montes, D.; Pilbratt, G. L.; Roberge, A.; Sanz-Forcada, J.; Stapelfeldt, K.

    2011-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 m for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 m images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approx 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approx < 22 K, while the fractional luminosity of the cold dust is L(sub dust) / L(*) approx 10 (exp 6) close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  18. Herschel Discovery of a New class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J. -Ch.; Bayo, A.; hide

    2012-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron. while the 100 micron fluxes of a Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approximately 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approximately < 22 K, while the fractional luminosity of the cold dust is L(dust)/ L(star) approximates 10(exp -6), close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  19. Herschel discovery of a new class of cold, faint debris discs

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arévalo, M.; Augereau, J.-Ch.; Bayo, A.; Danchi, W.; Del Burgo, C.; Ertel, S.; Fridlund, M.; González-García, B. M.; Heras, A. M.; Lebreton, J.; Liseau, R.; Maldonado, J.; Meeus, G.; Montes, D.; Pilbratt, G. L.; Roberge, A.; Sanz-Forcada, J.; Stapelfeldt, K.; Thébault, P.; White, G. J.; Wolf, S.

    2011-12-01

    We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is Ldust/L ⋆ ~ 10-6, close to the luminosity of the solar-system's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking "classical" debris disc models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. Herschel Discovery of a New class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J. -Ch.; Bayo, A.; Danchi, W.; del Burgo, C.; Ertel, S.; Fridlund, M.; Gonzalez-Garcia, B. M.; Heras, A. M.; Lebreton, J.; Liseau, R.; Maldonado, J.; Meeus, G.; Montes, D.; Pilbratt, G. L.; Roberge, A.; Sanz-Forcada, J.; Stapelfeldt, K.

    2012-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron. while the 100 micron fluxes of a Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approximately 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approximately < 22 K, while the fractional luminosity of the cold dust is L(dust)/ L(star) approximates 10(exp -6), close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  1. Photometric and spectroscopic study of the ultra-faint Milky Way satellite Pegasus III

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon; Jerjen, Helmut; Geha, Marla C.; Chiti, Anirudh; Milone, Antonino; Da Costa, Gary S.; Mackey, Dougal; Frebel, Anna; Conn, Blair

    2017-01-01

    Pegasus III (Peg III) is one of the few known ultra-faint dwarf (UFD) satellite galaxies in the outer halo (R >150 kpc) of the Milky Way (MW). We present results from a recent study of Peg III using Magellan/IMACS and Keck/DEIMOS. Our newly-measured structural parameters confirm that Peg III is large (rh = 53±14pc), elongated (∈ = 0.38+0.22-0.38 ), and faint (MV=-3.4±0.4 mag) — indicative of its nature as a dwarf rather than a globular cluster. In the color-magnitude diagram, Peg III is well described by an old (>12Gyr) and metal-poor ([Fe/H]<-2.0 dex) stellar population at a heliocentric distance of 215±12 kpc. Using spectroscopic measurements of individual stars, we identify seven kinematic members of Peg III. The Ca II triplet lines of the brightest members verify that Peg III indeed contains stars with metallicity as low as [Fe/H]=-2.55±0.15 dex. The systemic velocity and velocity dispersion of Peg III are -222.9±2.6 km/s and 5.4+3.0-2.5 km/s, respectively. The inferred dynamical mass within the half-light radius of 1.4+3.0-1.1×106M⊙, and the mass-to-light ratio of M/LV = 1470+5660-1240M⊙/L⊙ provide further evidence that Peg III is a bona fide UFD. Peg III and another distant UFD Pisces II lie relatively close to each other (△dspatial=43±19 kpc) and share similar systemic radial velocities (△vGSR=12.3±3.7 km/s), which suggests that they may share a common origin.

  2. FAINT NEAR-ULTRAVIOLET/FAR-ULTRAVIOLET STANDARDS FROM SWIFT/UVOT, GALEX, AND SDSS PHOTOMETRY

    SciTech Connect

    Siegel, Michael H.; Hoversten, Erik A.; Roming, Peter W. A.; Brown, Peter E-mail: hoversten@astro.psu.ed E-mail: brown@astro.psu.ed

    2010-12-10

    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u {approx} 17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20, 000 < T{sub eff} < 50, 000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraints on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all 11 passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

  3. MEASURING STAR FORMATION RATES AND FAR-INFRARED COLORS OF HIGH-REDSHIFT GALAXIES USING THE CO(7–6) AND [N II] 205 μm LINES

    SciTech Connect

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin; Howell, Justin; Mazzarella, Joseph M.; Schulz, Bernhard; Gao, Yu; Liu, Lijie; Díaz-Santos, Tanio; Armus, Lee; Charmandaris, Vassilis; Inami, Hanae; Privon, George C.; Lord, Steven D.; Sanders, David B.; Van der Werf, Paul P.

    2015-03-20

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios of the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.

  4. A Wide Area Survey for High-Redshift Massive Galaxies. II. Near-Infrared Spectroscopy of BzK-Selected Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Onodera, Masato; Arimoto, Nobuo; Daddi, Emanuele; Renzini, Alvio; Kong, Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ~2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (sime100 Myr) and large initial gas mass appear to be required

  5. A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF BzK-SELECTED MASSIVE STAR-FORMING GALAXIES

    SciTech Connect

    Onodera, Masato; Daddi, Emanuele; Renzini, Alvio; Kong Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-20

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, H{alpha} emission was detected in 14 objects, and for 11 of them the [N II] {lambda}6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas H{alpha} and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from H{alpha} with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to {approx}2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation ({approx_equal}100 Myr) and large

  6. The gas-rich circumbinary disk of HR 4049. II. A detailed study of the near-infrared spectrum

    SciTech Connect

    Malek, S. E.; Cami, J. E-mail: jcami@uwo.ca

    2014-10-20

    HR 4049 is a peculiar evolved binary surrounded by a circumbinary disk. Mid-infrared observations show that the disk is rich in molecular gas and radially extended. To study the properties of this disk, we re-analyzed a set of near-infrared observations at high spectral resolution obtained with Gemini-Phoenix. These data cover absorption lines originating from the first overtone of CO and from H{sub 2}O in the 2.3 μm region as well as more complex emission-absorption profiles from H{sub 2}O and the fundamental mode of CO near 4.6 μm. By using an excitation diagram and from modeling the spectrum, we find that most of the CO overtone and H{sub 2}O absorption originates from hot gas (T {sub ex} ≈ 1000 K) with high column densities, consistent with the mid-infrared data. The strong emission in the wavelength range of the CO fundamental furthermore suggests that there is a significant quantity of gas in the inner cavity of the disk. In addition, there is a much colder component in the line of sight to the disk. A detailed analysis of the overtone line profiles reveals variations in the line widths that are consistent with a radially extended disk in Keplerian rotation with hotter gas closer to the central star. We estimate the mass of the primary to be ∼0.34 M {sub ☉} and discuss the implications for its evolutionary status.

  7. Determination of anesthetic molecule environments by infrared spectroscopy. II. Multiple sites for nitrous oxide in proteins, lipids, and brain tissue.

    PubMed

    Hazzard, J H; Gorga, J C; Caughey, W S

    1985-08-01

    The presence of molecules of the general anesthetic nitrous oxide (N2O) in oils, esters, proteins, red cells, cream, lipid vesicles, and brain tissue upon exposure to the gas was observed by infrared spectroscopy. Analysis of the N-N-O antisymmetric stretch band reveals a distribution of N2O molecules among several sites of differing polarity in these solutions and tissues. The sensitivity of the band intensity and frequency to the number and strength of the dipoles in the solvating molecules is demonstrated by the resolution of N2O-ester and N2O-alkane interactions in acetic acid ethyl ester and oleic acid methyl ester. In all aqueous solutions and in all tissues a population of N2O molecules in water is observed. At least two sites of N2O-protein interaction are observed in purified hemoglobin A and packed red cells; multiple N2O sites may also be present in bovine serum albumin. Two sites of N2O-lipid interaction are observed in whipping cream and in an aqueous suspension of phosphatidylcholine vesicles. The sites providing the least polar immediate environment to N2O in hemoglobin, cream, and vesicles give similar band frequencies to those found in pure alkane solvents. Infrared spectra of bovine brain tissue, upon exposure to N2O, show N2O molecules present in water and in two less-polar environments. Analysis of spectra of N2O in cerebellum tissue removed from a dog under halothane-N2O anesthesia reveals, in addition to N2O in water, a single population of N2O molecules in an alkane-like environment. Infrared spectroscopy provides a unique means of probing the structure of the environment of N2O and should prove useful in correlating anesthetic potency with anesthetic environment under physiological conditions.

  8. Infrared analysis of clustering in the II-VI-VI compound CdSexTe1-x

    NASA Astrophysics Data System (ADS)

    Perkowitz, S.; Kim, L. S.; Becla, P.

    1991-03-01

    Infrared reflectivity spectra at 82 K for Bridgman-grown CdSexTe1-x crystals (x=0.05-0.35) show the two expected transverse-optical phonon modes and an unexpected third mode. Analysis of the data, using the cluster model of Verleur and Barker, shows that these spectra represent substantial nonrandom clustering of the anions around the cations. The magnitude and x dependence of the clustering is similar to that seen in the related compound CdSexS1-x grown at the same temperature, although by a different growth method.

  9. Near-infrared spectral monitoring of Pluto's ices II: Recent decline of CO and N2 ice absorptions

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Olkin, C. B.; Young, L. A.; Holler, B. J.

    2014-06-01

    IRTF/SpeX observations of Pluto's near-infrared reflectance spectrum during 2013 show vibrational absorption features of CO and N2 ices at 1.58 and 2.15 μm, respectively, that are weaker than had been observed during the preceding decade. To reconcile declining volatile ice absorptions with a lack of decline in Pluto's atmospheric pressure, we suggest these ices could be getting harder to see because of increasing scattering by small CH4 crystals, rather than because they are disappearing from the observed hemisphere.

  10. The faint source population at 15.7 GHz - III. A high-frequency study of HERGs and LERGs

    NASA Astrophysics Data System (ADS)

    Whittam, I. H.; Riley, J. M.; Green, D. A.; Jarvis, M. J.

    2016-10-01

    A complete sample of 96 faint (S > 0.5 mJy) radio galaxies is selected from the Tenth Cambridge (10C) survey at 15.7 GHz. Optical spectra are used to classify 17 of the sources as high-excitation or low-excitation radio galaxies (HERGs and LERGs, respectively), for the remaining sources three other methods are used; these are optical compactness, X-ray observations and mid-infrared colour-colour diagrams. 32 sources are HERGs and 35 are LERGs while the remaining 29 sources could not be classified. We find that the 10C HERGs tend to have higher 15.7-GHz flux densities, flatter spectra, smaller linear sizes and be found at higher redshifts than the LERGs. This suggests that the 10C HERGs are more core dominated than the LERGs. Lower-frequency radio images, linear sizes and spectral indices are used to classify the sources according to their radio morphology; 18 are Fanaroff and Riley type I or II sources, a further 13 show some extended emission, and the remaining 65 sources are compact and are referred to as FR0 sources. The FR0 sources are sub-divided into compact, steep-spectrum sources (13 sources) or gigahertz-peaked spectrum sources (10 sources) with the remaining 42 in an unclassified class. FR0 sources are more dominant in the subset of sources with 15.7-GHz flux densities <1 mJy, consistent with the previous result that the fainter 10C sources have flatter radio spectra. The properties of the 10C sources are compared to the higher-flux density Australia Telescope 20 GHz (AT20G) survey. The 10C sources are found at similar redshifts to the AT20G sources but have lower luminosities. The nature of the high-frequency selected objects changes as flux density decreases; at high flux densities the objects are primarily quasars, while at low flux densities radio galaxies dominate.

  11. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  8. Distribution of Faint Atomic Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Borthakur, Sanchayeeta; Yun, Min Su; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Zhu, Guangtun; Braatz, James A.

    2015-10-01

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25‧ × 25‧ (140-650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast-southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  9. DISTRIBUTION OF FAINT ATOMIC GAS IN HICKSON COMPACT GROUPS

    SciTech Connect

    Borthakur, Sanchayeeta; Heckman, Timothy M.; Zhu, Guangtun; Yun, Min Su; Verdes-Montenegro, Lourdes; Braatz, James A.

    2015-10-10

    We present 21 cm H i observations of four Hickson Compact Groups (HCGs) with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H i emission in a region of 25′ × 25′ (140–650 kpc) surrounding each HCG, these observations provide better estimates of H i masses. In particular, we detected 65% more H i than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG 92. We also identify whether the diffuse gas has the same spatial distribution as the high surface brightness (HSB) H i features detected in the VLA maps of these groups by comparing the H i strengths between the observed and modeled masses based on VLA maps. We found that the H i observed with the GBT has a similar spatial distribution to the HSB structures in HCG 31 and HCG 68. Conversely, the observed H i distributions in HCG 44 and HCG 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG 44 lies to the northeast–southwest region and in HCG 92 lies in the northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB H i indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star-forming regions and stay primarily neutral for at least 500 Myr.

  10. Collision-induced infrared spectra of H2-He pairs at temperatures from 18 to 7000 K. II. Overtone and hot bands

    SciTech Connect

    Borysow, A.; Frommhold, L.; Texas Univ., Austin )

    1989-06-01

    The three lowest spectral moments of the collision induced absorption (CIA) spectra of H2-He pairs have been computed from first principles for temperatures T from 18 to 7000 K for a number of hydrogen overtone and hot bands involving vibrational quantum numbers nu = 0, 1, 2, 3 yields nu-prime = 0, 1, 2, 3. The data are given in a form suitable for the computation of CIA spectra of H2-He as function of frequency and temperature, using simple computer codes and model line shapes. The work is of interest for the spectroscopy of the atmospheres of the outer planets and of stars that contain neutral molecular hydrogen and helium (late stars, white dwarfs, and Population II stars) in the infrared and visible region of the spectrum. 13 refs.

  11. Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. II. Infrared analyses of H2, HD, and D2 in NaA

    NASA Astrophysics Data System (ADS)

    Stéphanie-Victoire, Françoise; de Lara, Evelyne Cohen

    1998-10-01

    The infrared analysis of the induced bands of molecular hydrogen isotopes, adsorbed in NaA zeolite, shows several features; (i) when the amount of adsorbed molecules increases, the bands become complex, showing three components, which can be related to different energetic situation of the molecules in the cavity; (ii) the band frequency is lower than the gas frequency; for each species the shifts are proportional to the inverse square root of the mass (same interaction with the crystal); (iii) the absolute intensity increases when the temperature decreases, this is due to the fact that the molecule remains longer in the vicinity of the adsorption site where the electric field is the highest. Its amplitude is deduced from the absolute intensities measured at the lowest temperature (˜1010 V/m, in agreement with other results).

  12. Background-limited long wavelength infrared InAs/InAs1- xSbx type-II superlattice-based photodetectors operating at 110 K

    NASA Astrophysics Data System (ADS)

    Haddadi, Abbas; Dehzangi, Arash; Adhikary, Sourav; Chevallier, Romain; Razeghi, Manijeh

    2017-03-01

    We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAs1- xSbx type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ˜10 μ m at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω . cm2 and a dark current density of 8 × 10-5 A/cm2, under -80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 cm.√{Hz }/W and a background-limited operating temperature of 110 K.

  13. Measurements of downwelling far-infrared radiance during the RHUBC-II campaign at Cerro Toco, Chile and comparisons with line-by-line radiative transfer calculations

    NASA Astrophysics Data System (ADS)

    Mast, Jeffrey C.; Mlynczak, Martin G.; Cageao, Richard P.; Kratz, David P.; Latvakoski, Harri; Johnson, David G.; Turner, David D.; Mlawer, Eli J.

    2017-09-01

    Downwelling radiances at the Earth's surface measured by the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument in an environment with integrated precipitable water (IPW) as low as 0.03 cm are compared with calculated spectra in the far-infrared and mid-infrared. FIRST (a Fourier transform spectrometer) was deployed from August through October 2009 at 5.38 km MSL on Cerro Toco, a mountain in the Atacama Desert of Chile. There FIRST took part in the Radiative Heating in Unexplored Bands Campaign Part 2 (RHUBC-II), the goal of which is the assessment of water vapor spectroscopy. Radiosonde water vapor and temperature vertical profiles are input into the Atmospheric and Environmental Research (AER) Line-by-Line Radiative Transfer Model (LBLRTM) to compute modeled radiances. The LBLRTM minus FIRST residual spectrum is calculated to assess agreement. Uncertainties (1-σ) in both the measured and modeled radiances are also determined. Measured and modeled radiances nearly all agree to within combined (total) uncertainties. Features exceeding uncertainties can be corrected into the combined uncertainty by increasing water vapor and model continuum absorption, however this may not be necessary due to 1-σ uncertainties (68% confidence). Furthermore, the uncertainty in the measurement-model residual is very large and no additional information on the adequacy of current water vapor spectral line or continuum absorption parameters may be derived. Similar future experiments in similarly cold and dry environments will require absolute accuracy of 0.1% of a 273 K blackbody in radiance and water vapor accuracy of ∼3% in the profile layers contributing to downwelling radiance at the surface.

  14. Application of Infrared Multiphoton Dissociation Spectroscopy for the Study of Chiral Recognition in the Protonated Serine Clusters: Part II

    NASA Astrophysics Data System (ADS)

    Sunahori, Fumie X.; Kitova, Elena N.; Klassen, John S.; Xu, Yunjie; Yang, Guochun

    2011-06-01

    Serine is an amino acid which has long been known to form the magic-number serine octamer [Ser_8 + H]^+. It has been shown that the serine octamer exhibits strong preference for homochirality. Although a few possible structures for the homochiral serine octamer have been proposed, no definite conclusion has so far been drawn. Last year at this conference, we reported on the study of the protonated serine octamer and dimer as well as the chiral recognition in these clusters using infrared multiphoton dissociation (IRMPD) spectroscopic technique coupled with a Fourier transform ion cyclotron (FTICR) mass spectrometer. Here we present our latest results on the search for the infrared signatures of chiral recognition in the serine octamer and the dimer using a mixture of the deuterated 2,3,3-d_3-L-serine and normal D-serine solution. Using the isotopic labeled species, we could isolate the heterochiral species and obtain their IRMPD spectra which can be directly compared with those of the homochiral species. As an aid to interpret the observed spectra, molecular structures and vibrational frequencies of both homochiral and heterochiral octamer and dimer have been predicted by ab initio calculations. New insights into the hitherto undetermined structure of the serine octamer will be discussed. S. C. Nanita and R. G. Cooks Angew. Chem. Int. Ed. 45, (554), 2006.

  15. Non-Gaussianity of the cosmic infrared background anisotropies - II. Predictions of the bispectrum and constraints forecast

    NASA Astrophysics Data System (ADS)

    Pénin, A.; Lacasa, F.; Aghanim, N.

    2014-03-01

    Using a full analytical computation of the bispectrum based on the halo model together with the halo occupation number, we derive the bispectrum of the cosmic infrared background (CIB) anisotropies that trace the clustering of dusty-star-forming galaxies. We focus our analysis on wavelengths in the far-infrared and the sub-millimeter typical of the Planck/HFI and Herschel/SPIRE instruments, 350, 550, 850 and 1380 μm. We explore the bispectrum behaviour as a function of several models of evolution of galaxies and show that it is strongly sensitive to that ingredient. Contrary to the power spectrum, the bispectrum, at the four wavelengths, seems dominated by low-redshift galaxies. Such a contribution can be hardly limited by applying low flux cuts. We also discuss the contributions of halo mass as a function of the redshift and the wavelength, recovering that each term is sensitive to a different mass range. Furthermore, we show that the CIB bispectrum is a strong contaminant of the cosmic microwave background bispectrum at 850 μm and higher. Finally, a Fisher analysis of the power spectrum, bispectrum alone and of the combination of both shows that degeneracies on the halo occupation distribution parameters are broken by including the bispectrum information, leading to tight constraints even when including foreground residuals.

  16. Mid-infrared observations of methanol maser sites and ultracompact H ii regions: signposts of high-mass star formation

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Bertoldi, F.; Burton, M. G.; Nikola, T.

    2001-09-01

    N-band (10.5μm) and/or Q-band (20.0μm) images taken with MANIAC on the ESO/MPI 2.2-m telescope are presented for 31 methanol maser sites and 19 ultracompact (UC) Hii regions. Most of the maser sites and UC Hii regions are coincident with mid-infrared (MIR) sources to within the positional uncertainties of ~3arcsec, consistent with the maser emission being powered by the MIR source. The IRAS source positions, however, do not always coincide with the MIR sources. Based on an average infrared spectral energy distribution, we deduce that the MIR objects are luminous enough that they should also produce a strong ionizing radiation. Some sources are consistent with stars of later spectral type, but not all can be. A number of maser sites show no detectable radio continuum emission associated with MIR emission, despite a powering source luminous enough potentially to produce an UC Hii region. Since no signs of an UC Hii region are detected here, these maser sites might be produced during a very early stage of stellar evolution. We present objects that show evidence of outflow activity stemming from a maser site, exhibiting CO and/or CS line profiles indicative of outflows coincident with the MIR source. These cases are promising examples of maser sites signposting the earliest stages of high-mass star formation.

  17. Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Young, L. A.; Stansberry, J. A.; Buie, M. W.; Olkin, C. B.; Young, E. F.

    2010-02-01

    This report arises from an ongoing program to monitor Neptune's largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton's surface as witnessed by changes in the infrared absorption bands of its surface ices N,CH,HO, CO, and CO. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton's Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton's N ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N ice, Triton's CH ice shows a very different longitudinal variation from the N ice, challenging assumptions of how the two ices behave. Unlike Triton's CH ice, the CO ice does exhibit longitudinal variation very similar to the N ice, implying that CO and N condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by HO and CO ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.

  18. Intermediate-band photometry of faint standard stars

    NASA Technical Reports Server (NTRS)

    Dawson, D. W.

    1976-01-01

    The David Dunlap Observatory system uses six intermediate-band filters whose central wavelengths were chosen to cover important features in the spectrum of a late-type star. Calibrations of the color indices with physical parameters, allow one to estimate T sub eff, log g, Fe/H, M sub v and reddening directly from the photometry. Although a number of standards lists exist, only a small fraction of the stars is fainter than V=6. It is desirable to add to the numbers of faint standards. Results are presented of photometry of sixteen stars obtained during a program of variable-star photometry at Blue Mesa Observatory.

  19. A survey for faint variable objects in SA 57

    SciTech Connect

    Trevese, D.; Pittella, G.; Kron, R.G.; Koo, D.C.; Bershady, M.; Roma, Osservatorio Astronomico; ESA, European Space Research Institute, Frascati; Yerkes Observatory, Williams Bay, WI; Space Telescope Science Institute, Baltimore, MD; Lick Observatory, Santa Cruz, CA; Chicago Univ., IL )

    1989-07-01

    Nine Mayall 4 m prime-focus Kodak IIIa-J plates spanning an 11-yr baseline are analyzed in a uniform manner for the detection of variable objects to B = 22.6 at the level of Sigma of about 0.1 mag. Techniques are developed that succeed in independently finding objects already known to be variable, namely a sample of QSOs. Few additional objects were identified as variables with high certainty. The principal result, therefore, is an upper limit both to variable QSOs not previously identified by other techniques, and an upper limit at faint magnitudes on other classes of variable objects. 21 refs.

  20. Fourier-transform infrared and Raman spectra of cysteine dichloride cadmium(II) anion DFT: B3LYP/3-21G(d) structural and vibrational calculations.

    PubMed

    Faget, Grisset; Felcman, Judith; Giannerini, Tiago; Téllez, Claudio A

    2005-07-01

    The cysteine dichloride cadmium(II) potassium was synthesized and the structural analysis was carried out through the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. Assuming Cd-S, Cd-O (O-carboxilate) and Cd-N bonds, several hypothetical structures were calculated by means DFT: B3LYP/3-21G(d) quantum mechanical method. The calculations shows that the Cd-S and Cd-N central bonds are favoured in the anion complex formation [Cd(Cys)Cl2]-, being the stabilization energy 55.52 kcal mol(-1) lower than isotopomers with Cd-S and Cd-O central bonds. Features of the infrared and Raman spectra confirm the theoretical structural prediction. Full assignment of the vibrational spectra is proposed based on the DFT procedure, and in order to confirm the C-H, N-H, C-C, C-N, Cd-N, Cd-S and Cd-Cl stretching and the HNH and HCH bending, a normal coordinate analysis based on local symmetry force field for -SC(H2)C-, -CdN(H2)C- and -SCd(Cl2)N- fragments was carried out.

  1. Direct measurement of excited-state intervalence transfer in [(tpy)Ru(III)(tppz(*-))Ru(II)(tpy)](4+) by time-resolved near-infrared spectroscopy.

    PubMed

    Dattelbaum, Dana M; Hartshorn, Chris M; Meyer, Thomas J

    2002-05-08

    Extension of time-resolved infrared (TRIR) measurements into the near-infrared region has allowed the first direct measurement of a mixed-valence band in the metal-to-ligand charge transfer (MLCT) excited state of a symmetrical ligand-bridged complex. Visible laser flash excitation of [(tpy)Ru(tppz)Ru(tpy)]4+ (tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine; tpy is 2,2':6',6' '-terpyridine) produces the mixed-valence, MLCT excited state [(tpy)RuIII(tppz*-)RuII(tpy)]4+* with the excited electron localized on the bridging tppz ligand. A mixed-valence band appears at numax = 6300 cm-1 with a bandwidth-at-half- maximum, Deltanu1/2 = 1070 cm-1. In the analogous ground-state complex, [(tpy)Ru(tppz)Ru(tpy)]5+, a mixed-valence band appears at numax = 6550 cm-1 with Deltanu1/2 = 970 cm-1 which allows a comparison to be made of electronic coupling across tppz0 and tppz*- as bridging ligands.

  2. Infrared Spectroscopy of SN 1987A

    NASA Astrophysics Data System (ADS)

    Polomski, Elisha; Gehrz, Robert; Sugerman, Ben; Wooden, Diane; Woodward, Charles

    2005-06-01

    We propose to conduct deep spectroscopic observations of SN 1987A with the IRS instrument on the Spitzer Space Telescope. Supernova 1987A in the Large Magellanic Cloud was the brightest and nearest supernova in almost 400 years and has been intensely scrutinized with both ground and space-based observatories (for a review see Arnett et al. 1989; Sugerman et al. 2005). Since its outburst the remnant has faded significantly and no infrared spectroscopy (with the exception of our Spitzer GTO observations), and only limited IR photometry has been possible since day 2000 (Bouchet et al. 2004; Wooden et al. 1993; Dwek et al. 1992). We will focus our study on determining the dust mass and mineralogy as well as the physical state and composition of the circumstellar material and the ejecta. These observations will provide insight into the abundances of heavy elements in Type II SN ejecta and the relative importance of SN for the production of dust. The spectral evolution of the SN 1987A was studied until 1990, when it became too faint for all IR instrumentation. Our observations will be an important contribution to nearly 20 years of temporal monitoring of this object.

  3. Herschel far-infrared observations of the Carina Nebula complex. II. The embedded young stellar and protostellar population

    NASA Astrophysics Data System (ADS)

    Gaczkowski, B.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Ohlendorf, H.; Zinnecker, H.

    2013-01-01

    Context. The Carina Nebula represents one of the largest and most active star forming regions known in our Galaxy. It contains numerous very massive (M ≳ 40 M⊙) stars that strongly affect the surrounding clouds by their ionizing radiation and stellar winds. Aims: Our recently obtained Herschel PACS and SPIRE far-infrared maps cover the full area (≈8.7 deg2) of the Carina Nebula complex (CNC) and reveal the population of deeply embedded young stellar objects (YSOs), most of which are not yet visible in the mid- or near-infrared. Methods: We study the properties of the 642 objects that are independently detected as point-like sources in at least two of the five Herschel bands. For those objects that can be identified with apparently single Spitzer counterparts, we use radiative transfer models to derive information about the basic stellar and circumstellar parameters. Results: We find that about 75% of the Herschel-detected YSOs are Class 0 protostars. The luminosities of the Herschel-detected YSOs with SED fits are restricted to values of ≤5400 L⊙, their masses (estimated from the radiative transfer modeling) range from ≈1 M⊙ to ≈10 M⊙. Taking the observational limits into account and extrapolating the observed number of Herschel-detected protostars over the stellar initial mass function suggest that the star formation rate of the CNC is ~0.017 M⊙/year. The spatial distribution of the Herschel YSO candidates is highly inhomogeneous and does not follow the distribution of cloud mass. Rather, most Herschel YSO candidates are found at the irradiated edges of clouds and pillars. The far-infrared fluxes of the famous object η Car are about a factor of two lower than expected from observations with the Infrared Space Observatory obtained 15 years ago; this difference may be a consequence of dynamical changes in the circumstellar dust in the Homunculus Nebula around η Car. Conclusions: The currently ongoing star formation process forms only low

  4. Infrared imaging systems: Design, analysis, modeling, and testing II; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    Topics addressed include MTF characteristics of a Scophony scene projector, design of an athermalized three-field-of-view infrared sensor, a 3D analysis framework and measurement methodology for imaging system noise, effects of phasing on MRT target visibility, a multisensor analysis tool, a computer simulation of stairing-array thermal imagers, and a validated CCD camera model. Also discussed are an end-to-end model for detection performance evaluation against scenario-specific targets, Wiener-matrix image restoration beyond tha sampling passband, thermal signature training for military observers, reporting data for arrays with many elements, determination of FLIR LOS stabilization errors, fixed-pattern-noise cancellation in linear pyro arrays, a SPRITE detector characterization through impulse response testing, sine wave measurements of SPRITE detector MTF.

  5. High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: II. C_5S and SC_5S

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Salomon, Thomas; Dudek, John B.

    2016-06-01

    Unbiased high-resolution infrared survey scans of the ablation products from carbon-sulfur targets in the 2100 to 2150 cm-1 regime reveal two bands previously not observed in the gas phase. On the basis of comparison against laboratory matrix-isolation work and new high-level quantum-chemical calculations these bands are attributed to the linear C_5S and SC_5S clusters. While polar C_5S was studied earlier using Fourier-transform microwave techniques, the present work marks the first gas-phase spectroscopic detection of SC_5S. H. Wang, J. Szczepanski, P. Brucat, and M. Vala 2005, Int. J. Quant. Chem. 102, 795 Y. Kasai, K. Obi, Y. Ohshima, Y. Hirahara, Y. Endo, K. Kawaguchi, and A. Murakami 1993, ApJ 410, L45 V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus 2001, ApJS 134, 311

  6. GROUND-BASED, NEAR-INFRARED EXOSPECTROSCOPY. II. TENTATIVE DETECTION OF EMISSION FROM THE EXTREMELY HOT JUPITER WASP-12b

    SciTech Connect

    Crossfield, Ian J. M.; Hansen, Brad M. S.; Barman, Travis

    2012-02-10

    We report the tentative detection of the near-infrared emission of the hot Jupiter WASP-12b with the low-resolution prism on Infrared Telescope Facility/SpeX. We find a K - H contrast color of 0.137% {+-} 0.054%, corresponding to a blackbody of temperature 2400{sup +1500}{sub -500} K and consistent with previous, photometric observations. We also revisit WASP-12b's energy budget on the basis of secondary eclipse observations: the dayside luminosity is a relatively poorly constrained (2.0-4.3) Multiplication-Sign 10{sup 30} erg s{sup -1}, but this still allows us to predict a day/night effective temperature contrast of 200-1000 K (assuming A{sub B} = 0). Thus, we conclude that WASP-12b probably does not have both a low albedo and low recirculation efficiency. Our results show the promise and pitfalls of using single-slit spectrographs for characterization of extrasolar planet atmospheres, and we suggest future observing techniques and instruments which could lead to further progress. Limiting systematic effects include the use of too narrow a slit on one night-which observers could avoid in the future-and chromatic slit losses (resulting from the variable size of the seeing disk) and variations in telluric transparency-which observers cannot control. Single-slit observations of the type we present remain the best option for obtaining {lambda} > 1.7 {mu}m spectra of transiting exoplanets in the brightest systems. Further and more precise spectroscopy is needed to better understand the atmospheric chemistry, structure, and energetics of this, and other, intensely irradiated planet.

  7. Detectability of Ultra Faint Dwarf Galaxies with Gaia

    NASA Astrophysics Data System (ADS)

    Mateu, C.; Antoja, T.; Aguilar, L.; Figueras, F.; Brown, A.; Antiche, E.; Hernández-Pérez, F.; Valenzuela, O.; Aparicio, A.; Hidalgo, S.; Velázquez, H.

    2014-07-01

    We present a technique to detect Ultra-Faint Dwarf Galaxies (UFDs) in the Galactic Halo, using sky and proper motion information.The method uses wavelet transforms to detect peaks in the sky and proper motion planes, and to evaluate the probability of these being stochastic fluctuations. We aim to map thoroughly the detection limits of this technique. For this, we have produced a library of 15,000 synthetic UFDs, embedded in the Gaia Universe Model Snapshot (GUMS) background (Robin et al. 2012), each at a different distance, different luminosity, half-light radius, velocity dispersion and center-of-mass velocity, varying in ranges that extend well beyond those spanned by known classical and ultra-faint dSphs. We use these synthetic UFDs as a benchmark to characterize the completeness and detection limits of our technique, and present our results as a function of different physical and observable parameters of the UFDs (see full poster for more details at https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_UFGX_Bcn_C_Mateu.pdf).

  8. A Tool for Optimizing Observation Planning for Faint Moving Objects

    NASA Astrophysics Data System (ADS)

    Arredondo, Anicia; Bosh, Amanda S.; Levine, Stephen

    2016-10-01

    Observations of small solar system bodies such as trans-Neptunian objects and Centaurs are vital for understanding the basic properties of these small members of our solar system. Because these objects are often very faint, large telescopes and long exposures may be necessary, which can result in crowded fields in which the target of interest may be blended with a field star. For accurate photometry and astrometry, observations must be planned to occur when the target is free of background stars; this restriction results in limited observing windows. We have created a tool that can be used to plan observations of faint moving objects. Features of the tool include estimates of best times to observe (when the object is not too near another object), a finder chart output, a list of possible astrometric and photometric reference stars, and an exposure time calculator. This work makes use of the USNOFS Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (S.E. Levine and D.G. Monet 2000), the JPL Horizons online ephemeris service (Giorgini et al. 1996), the Minor Planet Center's MPChecker (http://cgi.minorplanetcenter.net/cgi-bin/checkmp.cgi), and source extraction software SExtractor (Bertin & Arnouts 1996). Support for this work was provided by NASA SSO grant NNX15AJ82G.

  9. The faint radio AGN population in the spotlight

    NASA Astrophysics Data System (ADS)

    Herrera Ruiz, Noelia; Middelberg, Enno

    2016-08-01

    To determine the AGN component in the faint radio population is fundamental in galaxy evolution studies. A relatively easy and direct way to determine which galaxies do have a radio-active AGN is a detection using the Very Long Baseline Interferometry (VLBI) technique. The goal of this project is to study with statistically relevant numbers the faint radio source population using VLBI observations. To achieve this goal, the project is divided into two parts. In the first part, we have observed ~3000 radio sources in the COSMOS extragalactic field with the Very Long Baseline Array (VLBA) at 1.4GHz. We have detected 468 sources. In the second part, we have observed ~200 radio sources in the COSMOS field with extremely high sensitivity using the VLBA together with the Green Bank Telescope (GBT) at 1.4GHz, to explore an even fainter population in the flux density regime of tens of uJy. We are currently calibrating this data. In this overview I will present the survey design, observations, and calibration, along with some first results.

  10. [Water-filtered infrared-A-hyperthermia combined with radiotherapy in advanced and recurrent tumors. Initial results of a multicenter phase I-II study].

    PubMed

    Seegenschmiedt, M H; Klautke, G; Walther, E; Feldmann, H J; Katalinic, A; Stuschke, M; von Lieven, H; Vaupel, P

    1996-09-01

    Water-filtered infrared-A-radiation (IR/A-HT) can be used to heat superficial malignant tumors. A prospective multicenter phase I-II study was conducted to evaluate toxicity and efficacy of IR/A-HT combined with external beam radiotherapy (RT). From December 1991 to June 1994, a total of 53 patients with 58 malignant lesions were entered in the study. There were 14 primary, 36 recurrent and 8 metastatic tumors which were located in the head and neck region (14), chest wall (31), abdominal wall (2) and the extremities (11). The mean tumor volume was 100 cm3. IR/A-HT was applied 1 to 2 times per week with up to 3 IR/A-HT-radiators directly before or after external RT for 1 hour at 40.5 to 44 degrees C. Temperatures were controlled at various locations at the skin surface and invasively at depth. IR/A-HT was well tolerated: in 31 (53%) lesions acute (pain, pulse or blood pressure changes, increased skin reaction etc.) and in 25 (43%) chronic side-effects (atrophy, telangiectasis, fibrosis etc.) were noted; usually the toxicity was minor and temporary. At 3 months FU, 32 (55%) lesions achieved a local CR and 19 (35%) a PR; at 12 months FU, 25 (43%) had persistent CR; 16 patients (18 lesions) were deceased and 3 (4 lesions) not yet in FU. In univariate analysis the following prognostic factors for CR at 3 or 12 months FU were found: Karnofsky, metastatic status, tumor size, total RT-dose, thermal parameters T min(av) and T mean. For acute toxicity maximum temperature Tmax(av) was prognostically decisive. Significant differences were also found when considering the "quality of the HT-application". The microwave technique was superior to the infrared-A-HT-technique with regard to the penetration depth of energy deposition. Water-filtered infrared-A-radiation can be safely and effectively applied to heat localized superficial tumors (up to 1 cm depth). To increase the area of HT application multiple infrared-A-radiators have to be combined. A multi-element-system is in

  11. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  12. Interband absorption strength in long-wave infrared type-II superlattices with small and large superlattice periods compared to bulk materials

    SciTech Connect

    Vurgaftman, I.; Belenky, G. Lin, Y.; Donetsky, D.; Shterengas, L.; Kipshidze, G.; Sarney, W. L.; Svensson, S. P.

    2016-05-30

    The absorption spectra for the antimonide-based type-II superlattices (SLs) for detection in the long-wave infrared (LWIR) are calculated and compared to the measured data for SLs and bulk materials with the same energy gap (HgCdTe and InAsSb). We include the results for the metamorphic InAsSb{sub x}/InAsSb{sub y} SLs with small periods as well as the more conventional strain-balanced InAs/Ga(In)Sb and InAs/InAsSb SLs on GaSb substrates. The absorption strength in small-period metamorphic SLs is similar to the bulk materials, while the SLs with an average lattice constant matched to GaSb have significantly lower absorption. This is because the electron-hole overlap in the strain-balanced type-II LWIR SLs occurs primarily in the hole well, which constitutes a relatively small fraction of the total thickness.

  13. The Value of Cloud Top and Surface Temperature Observations from the 1966 Nimbus II High Resolution Infrared Radiometer Historical Data Record

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Bedet, J. P.

    2008-12-01

    NASA's Nimbus II High Resolution Infrared Radiometer measured radiance temperatures of cloud tops, sea and land surfaces while in a polar, sun-synchronous orbit from May through November 1966. The instrument operated in the 3.5-4.1 micron atmospheric window region. Most HRIR observations were collected at night to avoid reflected solar radiation contributing to the emission from blackbody surfaces. At least two forms of the original observations have been retained by NASA, one in the form of 70mm film strips and a second containing digitized data on magnetic tape. In 2007, we began efforts to recover the historical record from the original 7-track tapes. The results provided a basis for understanding the instrument data and metadata structures, assessing calibration and geolocation information, and the mission's geographic and temporal coverage. This paper will examine the completeness and utility of this Nimbus II HRIR data record for consideration in future Earth science research studies. We will highlight an approach for making decisions about future recovery efforts, adding value for long term archive and data access strategies. Principle recovery and access concepts are offered for guiding preservation of this and similar sets of observations brought to you by EOSDIS.

  14. [Faintness in emergency departments is frequent, benign but expensive: An epidemiologic study of hospitalization's risk factors to reduce overcrowdings of emergency departments].

    PubMed

    Gedda, E; Robbins, A; Hentzien, M; Giltat, A; Pinel-Petit, V; Souille, J; N'Guyen, Y

    2017-01-01

    We assessed (i) the frequency of consultations for faintness in the Emergency department (ED) of a University hospital centre (UHC), (ii) clinical epidemiology and (iii) cost of faintness, taking a particular interest into the determining risk factors for hospitalization. This epidemiological study has been conducted retrospectively, from data obtained for every patient having consulted for faintness in ED of Reims UHC (01/01/12-03/31/12). Every medical record was classified as syncope/lipothymia/brief consciousness loss on one hand and as syncope according to the definition of the French Health High Authority (FHHA). Three hundred and forty-one patients out of 5953 (5.7%) were referred for faintness during the study period. Medical records were analysed for 296 patients. Sixty-two point eight percent were women, with a median age of 43years. Physical examination was normal for 57% of patients. For 48% of cases, there was no complete consciousness loss thus corresponding to lipothymia, which is not taken into account by the FHHA definition. Median length of stay in the ED was 4hours and 67 patients (22.6%) were hospitalized. Minimal estimated cost was 280,000 euros. Risk factors independently associated with hospitalization were age≥60 and complete consciousness loss unlike predisposing circumstances to vagal hypertonia. Age≥60 and complete consciousness loss seemed to be associated with hospitalization. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  15. Novel Asymmetric III-V/II-VI Hybrid Heterostructures for High-Power Mid-Infrared Laser

    DTIC Science & Technology

    2007-11-02

    cladding materials forming a type II heterojunction. This approach allows reducing the carrier leakage from the active region of the laser structure...optimization (growth temperature, flux ratio, doping of the wide-gap claddings ) for the p- i-n AlGaSbAs/CdSe/CdMgSe laser structures grown on p- InAs substrates...fabrication, n the ability to make a set of lasers for different wavelengths using the same technology and varying the QW width only. To obtain laser

  16. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I + II + III supernatant in human albumin separation

    NASA Astrophysics Data System (ADS)

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-01

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  17. Near infrared spectroscopy combined with multivariate analysis for monitoring the ethanol precipitation process of fraction I+II+III supernatant in human albumin separation.

    PubMed

    Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian

    2017-03-15

    Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp(2)), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.

  18. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    SciTech Connect

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A. E-mail: mvalluri@umich.edu

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  19. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. II. CORRELATIONS AND LOCAL THERMAL EQUILIBRIUM MODELS

    SciTech Connect

    Salyk, C.; Pontoppidan, K. M.; Blake, G. A.; Najita, J. R.; Carr, J. S.

    2011-04-20

    We present an analysis of Spitzer Infrared Spectrograph observations of H{sub 2}O, OH, HCN, C{sub 2}H{sub 2}, and CO{sub 2} emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 {mu}m spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H{alpha} equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H{sub 2}O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L{sub *}. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H{sub 2}O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H{sub 2}O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near {approx}10{sup 18} cm{sup -2} and 450 K for all sources, suggesting a high abundance of H{sub 2}O in many planet-forming regions. Other molecules have a range of excitation temperatures from {approx}500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of {approx}10{sup -3} for all molecules, with the exception of CO, for which n(CO)/n(H{sub 2}O) {approx} 1. However, LTE

  20. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red.

    PubMed

    Pace, Ron J; Jin, Lu; Stranger, Rob

    2012-08-28

    Photosystem II (PS II), found in oxygenic photosynthetic organisms, catalyses the most energetically demanding reaction in nature, the oxidation of water to molecular oxygen and protons. The water oxidase in PS II contains a Mn(4)Ca cluster (oxygen evolving complex, OEC), whose catalytic mechanism has been extensively investigated but is still unresolved. In particular the precise Mn oxidation levels through which the cluster cycles during functional turnover are still contentious. In this, the first of several planned parts, we examine a broad range of published data relating to this question, while considering the recent atomic resolution PS II crystal structure of Umena et al. (Nature, 2011, 473, 55). Results from X-ray, UV-Vis and NIR spectroscopies are considered, using an approach that is mainly empirical, by comparison with published data from known model systems, but with some reliance on computational or other theoretical considerations. The intention is to survey the extent to which these data yield a consistent picture of the Mn oxidation states in functional PS II - in particular, to test their consistency with two current proposals for the mean redox levels of the OEC during turnover; the so called 'high' and 'low' oxidation state paradigms. These systematically differ by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S(0)···S(3)). In summary, we find that the data, in total, substantially favor the low oxidation proposal, particularly as a result of the new analyses we present. The low oxidation state scheme is able to resolve a number of previously 'anomalous' results in the observed UV-Visible S state turnover spectral differences and in the resonant inelastic X-ray spectroscopy (RIXS) of the Mn pre-edge region of the S(1) and S(2) states. Further, the low oxidation paradigm is able to provide a 'natural' explanation for the known sensitivity of the OEC Mn cluster to cryogenic near infra-red (NIR

  1. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  2. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.

    PubMed

    Tsuchikawa, Satoru; Siesler, H W

    2003-06-01

    Fourier transform near-infrared (FT-NIR) transmission spectroscopy was applied to monitor the diffusion process of deuterium-labeled molecules in hardwood (Beech). The results are compared with previous data obtained on softwood (Sitka spruce) in order to consistently understand the state of order in cellulose of wood. The saturation accessibility and diffusion rate varied characteristically with the OH groups in different states of order in the wood substance, the diffusants, and the wood species, respectively. The variation of saturation accessibility should be associated with the fundamental difference of the fine structure such as the microfibrils in the wood substance. The effect of the anatomical cellular structure on the accessibility was reflected in the variation of the diffusion rate with the wood species. The size effect of the diffusants also played an important role for the diffusion process in wood. Since the volumetric percentage of wood fibers and wood rays is relatively similar, the dichroic effects due to the anisotropy of the cellulose chains were apparently diminished. Finally, we proposed a new interpretation of the fine structure of the microfibrils in the cell wall by comparing a series of results from hardwood and softwood. Each elementary fibril in the hardwood has a more homogeneous arrangement in the microfibrils compared to that in the softwood.

  3. Near-infrared spectroscopy of 3:1 Kirkwood Gap asteroids II: Probable and plausible parent bodies; primitive and differentiated

    NASA Astrophysics Data System (ADS)

    Fieber-Beyer, Sherry K.; Gaffey, Michael J.

    2014-02-01

    The 3:1 Kirkwood Gap asteroids are a mineralogically diverse set of asteroids located in a region that delivers meteoroids into Earth-crossing orbits. Mineralogical characterizations of asteroids in/near the 3:1 Kirkwood Gap can be used as a tool to “map” conditions and processes in the early Solar System. The chronological studies of the meteorite types provide a “clock” for the relative timing of those events and processes. By identifying the source asteroids of particular meteorite types, the “map” and “clock” can be combined to provide a much more sophisticated understanding of the history and evolution of the late solar nebula and the early Solar System. A mineralogical assessment of twelve 3:1 Kirkwood Gap asteroids has been carried out using near-infrared spectral data obtained from 2010 to 2011 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Eight of these asteroids have surfaces with basaltic-type silicate assemblages, indicating at least partial melting within their parent bodies. Although HED-like mineralogies are present these objects exhibit subdued features indicating the presence of an additional phase (e.g., NiFe metal) or process (e.g., space weathering). Four of these asteroids appear to be ordinary chondrite assemblages. Three of these are plausibly linked to the probable H-chondrite parent body, (6) Hebe.

  4. Large Magellanic Cloud Near-infrared Synoptic Survey. II. The Wesenheit Relations and Their Application to the Distance Scale

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anupam; Kanbur, Shashi M.; Macri, Lucas M.; Singh, Harinder P.; Ngeow, Chow-Choong; Wagner-Kaiser, R.; Sarajedini, Ata

    2016-04-01

    We present new near-infrared (NIR) Cepheid period-Wesenheit (P-W) relations in the LMC using time-series observations from the Large Magellanic Cloud NIR Synoptic Survey. We also derive optical+NIR P-W relations using V and I magnitudes from the Optical Gravitational Lensing Experiment. We employ our new JHKs data to determine an independent distance to the LMC of {μ }{{LMC}}\\=\\18.47+/- 0.07(statistical) mag, using an absolute calibration of the Galactic relations based on several distance determination methods and accounting for the intrinsic scatter of each technique. We also derive new NIR period-luminosity and Wesenheit relations for Cepheids in M31 using observations from the Panchromatic Hubble Andromeda Treasury survey. We use the absolute calibrations of the Galactic and LMC {W}J,H relations to determine the distance modulus of M31, {μ }{{M31}}\\=\\24.46+/- 0.20 mag. We apply a simultaneous fit to Cepheids in several Local Group galaxies covering a range of metallicities (7.7\\lt 12+{log}[{{O}}/{{H}}]\\lt 8.6 dex) to determine a global slope of -3.244 ± 0.016 mag dex-1 for the {W}J,{Ks} relation and obtain robust distance estimates. Our distances are in good agreement with recent TRGB based distance estimates and we do not find any evidence for a metallicity dependence in the NIR P-W relations.

  5. Ultra-light dark matter in ultra-faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Calabrese, Erminia; Spergel, David N.

    2016-08-01

    Cold Dark Matter (CDM) models struggle to match the observations at galactic scales. The tension can be reduced either by dramatic baryonic feedback effects or by modifying the particle physics of CDM. Here, we consider an ultra-light scalar field DM particle manifesting a wave nature below a DM particle mass-dependent Jeans scale. For DM mass m ˜ 10-22 eV, this scenario delays galaxy formation and avoids cusps in the centre of the dark matter haloes. We use new measurements of half-light mass in ultra-faint dwarf galaxies Draco II and Triangulum II to estimate the mass of the DM particle in this model. We find that if the stellar populations are within the core of the density profile then the data are in agreement with a Wave Dark Matter model having a DM particle with m ˜ 3.7-5.6 × 10-22 eV. The presence of this extremely light particle will contribute to the formation of a central solitonic core replacing the cusp of a Navarro-Frenk-White profile and bringing predictions closer to observations of cored central density in dwarf galaxies.

  6. A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. II. THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Van Loon, Jacco Th.; Oliveira, Joana M.; Gordon, Karl D.; Sloan, G. C.; Engelbracht, C. W.

    2010-04-15

    We present far-infrared spectra, {lambda} = 52-93 {mu}m, obtained with the Spitzer Space Telescope in the spectral energy distribution mode of its Multiband Imaging Photometer for Spitzer instrument, of a selection of luminous compact far-infrared sources in the Small Magellanic Cloud (SMC). These comprise nine young stellar objects (YSOs), the compact H II region N 81 and a similar object within N 84, and two red supergiants (RSGs). We use the spectra to constrain the presence and temperature of cool dust and the excitation conditions within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding interstellar medium. We compare these results with those obtained in the Large Magellanic Cloud (LMC). The spectra of the sources in N 81 (of which we also show the Infrared Space Observatory-Long-wavelength Spectrograph spectrum between 50 and 170 {mu}m) and N 84 both display strong [O I] {lambda}63 {mu}m and [O III] {lambda}88 {mu}m fine-structure line emission. We attribute these lines to strong shocks and photo-ionized gas, respectively, in a 'champagne flow' scenario. The nitrogen content of these two H II regions is very low, definitely N(N)/N(O) < 0.04 but possibly as low as N(N)/N(O) < 0.01. Overall, the oxygen lines and dust continuum are weaker in star-forming objects in the SMC than in the LMC. We attribute this to the lower metallicity of the SMC compared to that of the LMC. While the dust mass differs in proportion to metallicity, the oxygen mass differs less; both observations can be reconciled with higher densities inside star-forming cloud cores in the SMC than in the LMC. The dust in the YSOs in the SMC is warmer (37-51 K) than in comparable objects in the LMC (32-44 K). We attribute this to the reduced shielding and reduced cooling at the low metallicity of the SMC. On the other hand, the efficiency of the photo-electric effect to heat the gas is found to be indistinguishable to that measured in the same manner

  7. Application of the transition semiconductor to semimetal in type II nanostructure superlattice for mid-infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Boutramine, Abderrazak; Nafidi, Abdelhakim; Barkissy, Driss; Hannour, Abdelkrim; Elanique, Abdellatif; Gouti, Thami El

    2016-04-01

    The present work is devoted to the study of band structure and band gap in symmetric InAs (d 1 = 25 Å)/GaSb (d 2 = 25 Å) type II superlattice. Our calculations were performed in the envelope function formalism with the valence band offset Λ = 570 meV. We discussed the semiconductor to semimetal transition and the evolutions of the fundamental band gap, E g (Γ), as a function of d 1, Λ and the temperature. This study suggests that a wide range of wavelength can be reached by adjusting d 1. In addition, E g (Γ, T) decreases from 288.7 to 230 meV in the range of 4.2-300 K, corresponding to the cutoff wavelength ranging from 4.3 to 5.4 µm. These latter results explain the recent experimental ones realized by C. Cervera et al. for our Λ = 588 meV.

  8. Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521-7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels.

  9. Effects of AlSb interfaces on InAs/InAsSb type-II infrared superlattice material properties

    NASA Astrophysics Data System (ADS)

    Steenbergen, Elizabeth H.; Lin, Zhiyuan; Elhamri, Said; Mitchel, William C.; Zhang, Yong-Hang; Kaspi, Ron

    2015-06-01

    Significant attention has recently been given to photoluminescence (PL) spectra and lifetime measurements on InAs/InAsSb superlattices, as high quality optical material with long carrier lifetimes are required for infrared detectors. The standard sample structure for PL measurements includes energy barriers to block photo-generated carriers from being lost through non-radiative recombination at interfaces between the superlattice and the surface or between the superlattice and the buffer/substrate. However, defect, surface, and/or interface states in AlSb, a commonly used barrier material, are known to contribute carriers to InAs quantum wells. Due to the similarity of the AlSb interface with the InAs/InAsSb superlattice, the effects of the barriers on the electrical and optical properties of the superlattice were investigated. Structures with AlSb barriers at the top and bottom of the superlattice, with no AlSb barriers, and with an AlSb barrier only at the top of the superlattice structure were studied. Hall Effect measurements revealed little change in the sheet carrier concentration at 10 K due to the barriers, but significant increases in low temperature mobility and a two-dimensional-like mobility temperature dependence were observed when barriers were present. Further high magnetic field measurements are necessary, however, to understand the transport properties of these samples due to the likelihood that multiple carriers are present. The photoluminescence (PL) spectra were almost identical regardless of the barriers, except for a 15% increase in intensity with the AlSb barrier between the buffer layer and the superlattice. The surface AlSb barrier had little effect on the intensity. The barriers are therefore recommended for PL measurements to increase the signal intensity; however, they complicate the analysis of single-field Hall Effect measurements.

  10. Investigating the Near-Infrared Properties of Planetary Nebulae II. Medium Resolution Spectra. 2; Medium Resolution Spectra

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.; Deutsch, Lynne K.

    1998-01-01

    We present medium-resolution (R approximately 700) near-infrared (lambda = 1 - 2.5 micrometers) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H1 emission line-dominated PNe, H1 and H2 emission line PNe, H2 emission line-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H2 and continuum emission groups. The categories also correlate with C/O ratio, with the O-rich objects falling into the first group and the C-rich objects in the groups. Other spectral features were observed in all catagories, such as continuum emission from the central star, and warm dust continuum emission towards the long wavelength end of the spectra. H2 was detected in four PNe in this survey for the first time. An analysis was performed using the H2 line ratios in all of the PN spectra in the survey where a sufficient number of lines were observed to determine the ortho-to-para ratio and the rotational and vibrational excitation temperatures of the H-2 in those objects. One unexpected result from this analysis is that the H-2 is excited by absorption of ultraviolet photons in most of the PNe, although there are several PNe in which collisional excitation plays an important role. The correlation between bipolar morphology and H2 emission has been strengthened with the new detections of H2 in this survey.

  11. Characterizing the Youngest Herschel-detected Protostars. II. Molecular Outflows from the Millimeter and the Far-infrared

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Stutz, Amelia M.; Manoj, P.; Megeath, S. Thomas; Karska, Agata; Nagy, Zsofia; Wyrowski, Friedrich; Fischer, William J.; Watson, Dan M.; Stanke, Thomas

    2016-11-01

    We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) CO (J=1\\to 0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS; Stutz et al.). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 to 200 μm. Outflows are detected in CO (J=1\\to 0) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies; some are spatially compact, <10,000 au in extent, while others extend beyond the primary beam. The outflow velocities and morphologies are consistent with being dominated by intermediate inclination angles (80° ≥ i ≥ 20°). This confirms the interpretation of the very red 24-70 μm colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J (J up > 13) CO lines and/or H2O lines from 5 of 8 PBRS and only for those with detected CO outflows. The far-infrared CO rotation temperatures of the detected PBRS are marginally colder (˜230 K) than those observed for most protostars (˜300 K), and only one of these five PBRS has detected [O i] 63 μm emission. The high envelope densities could be obscuring some [O i] emission and cause a ˜20 K reduction to the CO rotation temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. Near infrared imaging of the outer planets

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Soifer, B. T.

    1991-01-01

    In the last year we have continued our program of near infrared imaging of the outer planets of the solar system. Uranus is virtually invisible at 2.3 microns, showing that the methane is an effective absorber of the incident sunlight and that there is very little aerosol content in the upper atmosphere. On the other hand, Neptune shows a haze present over the entire Northern Hemisphere at 2.3 microns. This leads to the inference that there is an aerosol layer at a high altitude. We have recovered the Neptune satellite, 1989 N1, which was first discovered in Voyager images. The satellite is exceedingly faint in the near infrared, and was detectable only because the planet itself was comparatively faint at this wavelength. Observations of this satellite, coupled with the Voyager images, permit us to substantially refine the satellite's orbit, and hence carefully probe the gravitational field of Neptune.

  13. A Comprehensive Survey of Neptune's Small Moons and Faint Rings

    NASA Astrophysics Data System (ADS)

    Showalter, Mark

    2009-07-01

    We will use a subarray of the WFC3/UVIS to study the inner rings, arcs and moons of Neptune with a sensitivity that exceeds that achieved by any previous observations, including Voyager 2 during its 1989 flyby. Our study will reveal any inner moons down to V magnitude 25, corresponding to a radius 20 km {assuming 9% albedo}, to address a peculiar, apparent truncation in the size distribution of inner moons and to look for the "shepherds" and source bodies for Neptune's dusty rings. {For comparison, the radius of Neptune's smallest known regular moon, Naiad, is 33 km.} Monitoring of the arcs at fine resolution and sensitivity will reveal their ongoing evolution more clearly and will enable us to assess the role of Galatea, whose resonant perturbations are widely believed to confine the arcs. Our study will also reveal any broad, faint rings with optical depth 10^-6, comparable to those now known to encircle all of the other giant planets.

  14. A sample of Swift/SDSS faint blazars

    NASA Astrophysics Data System (ADS)

    Fraga, Bernardo; Giommi, Paolo; Turriziani, Sara

    2015-12-01

    We aim here to provide a complete sample of faint (fr ≳ 1 mJy, fx ≳ 10-15 erg cm-2 s-1) blazars and blazar candidates serendipitously discovered in deep Swift images centered on Gamma-ray bursts (GRBs). By stacking all available images, we obtain exposures ranging from 104 to more than a million seconds. Since GRBs are thought to explode randomly across the sky, this set of deep fields can be considered as an unbiased survey of ≈ 12 square degrees of extragalactic sky, with sensitivities reaching a few 10-15 erg cm-2 s-1 in the 0.5-2 keV band. We then derive the x-ray Log N Log S and show that, considering that our sample may be contaminated by sources other than blazars, we are in agreement with previous estimations based on data and simulations.

  15. Faint Object Camera observations of a globular cluster nova field

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Anderson, Scott F.; Downes, Ronald A.; Bohlin, Ralph C.; Jakobsen, Peter

    1991-01-01

    The Faint Object Camera onboard Hubble Space Telescope has obtained U and B images of the field of Nova Ophiuchi 1938 in the globular cluster M14 (NGC 6402). The candidate for the quiescent nova suggested by Shara et al. (1986) is clearly resolved into at least six separate images, probably all stellar, in a region of 0.5 arcsec. Although two of these objects are intriguing as they are somewhat ultraviolet, the actual nova counterpart remains ambiguous, as none of the images in the field has a marked UV excess. Many stars within the 1.4 arcsec (2 sigma) uncertainty of the nova outburst position are viable counterparts if only astrometric criteria are used for selection. The 11 x 11 arcsec frames easily resolve several hundred stars in modest exposures, implying that HST even in its current optical configuration will be unique for studies of very crowded fields at moderate (B = 22) limiting magnitudes.

  16. First results from the Faint Object Camera - SN 1987A

    NASA Technical Reports Server (NTRS)

    Jakobsen, P.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.

    1991-01-01

    The first images of SN 1987A taken on day 1278 after outburst with the Faint Object Camera on board the Hubble Space Telescope are presented. The supernova is well detected and resolved spatially in three broadband ultraviolet exposures spanning the 1500-3800 A range and in a narrow-band image centered on the forbidden O III 5007 line. Simple uniform disk fits to the profiles of SN 1987A yield an average angular diameter of 170 + or - 30 mas, corresponding to an average expansion velocity of 6000 km/s. The derived broadband ultraviolet fluxes, when corrected for interstellar absorption, indicate a blue ultraviolet spectrum corresponding to a color temperature near 13,000 K.

  17. Tomography of faint spinning objects: From molecules to viruses

    NASA Astrophysics Data System (ADS)

    Ourmazd, Abbas

    2010-03-01

    A new generation of powerful algorithms is poised to enable the determination of the three-dimensional structure of objects ranging from single molecules to beating hearts and breathing lungs. At one extreme, new algorithms are paving the way to atomic-level mapping of the conformations of biological molecules with femtosecond time resolution. At the other, they are driving ultra-low-dose tomography of non-stationary, faintly scattering macroscopic objects. These approaches combine concepts from information theory, graph theory, Riemannian geometry, and scattering physics to reconstruct objects at signal levels orders of magnitude below what was previously thought possible. We describe how data from a new generation of X-ray Free Electron Lasers or existing electron microscopes can be used to reconstruct the structure and conformational continuum of individual molecules, viruses, and potentially living cells.

  18. Clustering Effect on the Number Count of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Yamashita, K.

    1992-08-01

    We have tested the cosmological model of Ω0 = 1 and Λ = 0 against the faint galaxy number count taking the clustering effect of galaxies into account. The evolution of the large scale structure is simulated numerically by means of the particle mesh method in three dimensional space. We use 643 particles and the same number of mesh cells. We have found that the flat Friedmann-Robertson-Walker model without the cosmological constant does not explain the excess of the number count observed by Tyson even if the clustering effect is taken into account, provided the cluster size and the correlation length among clusters are less than the simulation box size of 128 h-1 Mpc. The clustering on scales larger than 128 h-1 Mpc is also considered.

  19. The faint young sun-climate paradox - Continental influences

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Schatten, K. H.

    1982-01-01

    We examine the various mechanisms which have been proposed to compensate for the climatic effects of a 30% increase in the solar luminosity over the past 4 1/2 billion years. Although atmospheric greenhouse effects have received most attention, other mechanisms may have played a role of comparable importance. In particular, we note that the development of continents during the past 2 1/2 billion years could have had a significant secular effect on the atmosphere-ocean heat transport system. As a result, past climates may have been less susceptible to complete freeze-over. A simple energy balance model is used to demonstrate the magnitude of this effect. Because the CO2 greenhouse effect is not the only means of compensating for solar evolution, the faint-young-sun problem should not be used to infer past levels of atmospheric CO2.

  20. Epidemic faintness and syncope in a school marching band.

    PubMed

    Levine, R J

    1977-11-28

    On Sept 21, 1973, during and following a football game at which they had participated, 57 members of an Alabama high school marching band (and one accompanying adult) experienced an illness characterized by headache, nausea, weakness, or dizziness. Six girls fainted. Thirty-six students were treated at a hospital emergency room. Those who had played wind instruments and had worn heavier uniforms including an impermeable plastic jacket overlay were affected earlier and more frequently than the others. Several organic causes were examined in an epidemiologic investigation and considered unlikely to explain the epidemic. Female preponderance, a bimodal epidemic curve, hyperventilation, relapses, and clinical features characterized by subjective complaints in the absence of physical findings suggested a syncopal reaction to heat exacerbated and propagated by mass hysteria.

  1. Faint UBVRI Standard Star Fields at +50° Declination

    NASA Astrophysics Data System (ADS)

    Clem, James L.; Landolt, Arlo U.

    2016-10-01

    Precise and accurate CCD-based UBVRI photometry is presented for ˜2000 stars distributed around the sky in a declination zone centered approximately at +50°. Their photometry has been calibrated to the standard Johnson UBV and Kron-Cousins RI systems through observations of the UBVRI standard stars presented in the various works of Landolt. The magnitude and color range for these stars are 12 ≲ V ≲ 22 and -0.3 ≲ (B - V) ≲ 1.8, respectively. Each star averages 13 measures in each UBVRI filter from data taken on 41 different photometric nights obtained over a 21 month period. Hence, there now exists a network of faint UBVRI photometric standard stars centered on the declination zones δ = -50°, 0°, and +50°.

  2. First results from the Faint Object Camera - SN 1987A

    SciTech Connect

    Jakobsen, P.; Albrecht, R.; Barbieri, C.; Blades, J.C.; Boksenberg, A. Space Telescope European Coordinating Facility, Garching Padova, Osservatorio Astronomico, Padua Space Telescope Science Institute, Baltimore, MD Royal Greenwich Observatory, Cambridge )

    1991-03-01

    The first images of SN 1987A taken on day 1278 after outburst with the Faint Object Camera on board the Hubble Space Telescope are presented. The supernova is well detected and resolved spatially in three broadband ultraviolet exposures spanning the 1500-3800 A range and in a narrow-band image centered on the forbidden O III 5007 line. Simple uniform disk fits to the profiles of SN 1987A yield an average angular diameter of 170 + or - 30 mas, corresponding to an average expansion velocity of 6000 km/s. The derived broadband ultraviolet fluxes, when corrected for interstellar absorption, indicate a blue ultraviolet spectrum corresponding to a color temperature near 13,000 K. 24 refs.

  3. Faint Object Camera observations of a globular cluster nova field

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Anderson, Scott F.; Downes, Ronald A.; Bohlin, Ralph C.; Jakobsen, Peter

    1991-01-01

    The Faint Object Camera onboard Hubble Space Telescope has obtained U and B images of the field of Nova Ophiuchi 1938 in the globular cluster M14 (NGC 6402). The candidate for the quiescent nova suggested by Shara et al. (1986) is clearly resolved into at least six separate images, probably all stellar, in a region of 0.5 arcsec. Although two of these objects are intriguing as they are somewhat ultraviolet, the actual nova counterpart remains ambiguous, as none of the images in the field has a marked UV excess. Many stars within the 1.4 arcsec (2 sigma) uncertainty of the nova outburst position are viable counterparts if only astrometric criteria are used for selection. The 11 x 11 arcsec frames easily resolve several hundred stars in modest exposures, implying that HST even in its current optical configuration will be unique for studies of very crowded fields at moderate (B = 22) limiting magnitudes.

  4. MEASURING SIZES OF ULTRA-FAINT DWARF GALAXIES

    SciTech Connect

    Munoz, Ricardo R.; Padmanabhan, Nikhil; Geha, Marla

    2012-02-01

    The discovery of ultra-faint dwarf (UFD) galaxies in the halo of the Milky Way extends the faint end of the galaxy luminosity function to a few hundred solar luminosities. This extremely low luminosity regime poses a significant challenge for the photometric characterization of these systems. We present a suite of simulations aimed at understanding how different observational choices related to the properties of a low-luminosity system impact our ability to determine its true structural parameters such as half-light radius and central surface brightness. We focus on estimating half-light radii (on which mass estimates depend linearly) and find that these numbers can have up to 100% uncertainties when relatively shallow photometric surveys, such as the Sloan Digital Sky Survey, are used. Our simulations suggest that to recover structural parameters within 10% or better of their true values: (1) the ratio of the field of view to the half-light radius of the satellite must be greater than three, (2) the total number of stars, including background objects should be larger than 1000, and (3) the central to background stellar density ratio must be higher than 20. If one or more of these criteria are not met, the accuracy of the resulting structural parameters can be significantly compromised. In the context of future surveys such as Large Synoptic Survey Telescope, the latter condition will be closely tied to our ability to remove unresolved background galaxies. Assessing the reliability of measured structural parameters will become increasingly critical as the next generation of deep wide-field surveys detects UFDs beyond the reach of current spectroscopic limits.

  5. Properties of galaxies at the faint end of the Hα luminosity function at z ~ 0.62

    NASA Astrophysics Data System (ADS)

    Gómez-Guijarro, Carlos; Gallego, Jesús; Villar, Víctor; Rodríguez-Muñoz, Lucía; Clément, Benjamin; Cuby, Jean-Gabriel

    2016-07-01

    Context. Studies measuring the star formation rate density, luminosity function, and properties of star-forming galaxies are numerous. However, it exists a gap at 0.5 < z < 0.8 in Hα-based studies. Aims: Our main goal is to study the properties of a sample of faint Hα emitters at z ~ 0.62. We focus on their contribution to the faint end of the luminosity function and derived star formation rate density, characterising their morphologies and basic photometric and spectroscopic properties. Methods: We use a narrow-band technique in the near-infrared, with a filter centred at 1.06 μm. The data come from ultra-deep VLT/HAWK-I observations in the GOODS-S field with a total of 31.9 h in the narrow-band filter. In addition to our survey, we mainly make use of ancillary data coming from the CANDELS and Rainbow Cosmological Surveys Database, from the 3D-HST for comparison, and also spectra from the literature. We perform a visual classification of the sample and study their morphologies from structural parameters available in CANDELS. In order to obtain the luminosity function, we apply a traditional V/Vmax method and perform individual extinction corrections for each object to accurately trace the shape of the function. Results: Our 28 Hα-selected sample of faint star-forming galaxies reveals a robust faint-end slope of the luminosity function α = - 1.46-0.08+0.16 . The derived star formation rate density at z ~ 0.62 is ρSFR = 0.036-0.008+0.012 M⊙ yr-1 Mpc-3 . The sample is mainly composed of disks, but an important contribution of compact galaxies with Sérsic indexes n ~ 2 display the highest specific star formation rates. Conclusions: The luminosity function at z ~ 0.62 from our ultra-deep data points towards a steeper α when an individual extinction correction for each object is applied. Compact galaxies are low-mass, low-luminosity, and starburst-dominated objects with a light profile in an intermediate stage from early to late types. Based on observations

  6. Transforming GSC-II Magnitudes into JWST/FGS Count Rates

    NASA Astrophysics Data System (ADS)

    Holfeltz, Sherie T.; Chayer, P.; Nelan, E. P.

    2010-01-01

    The JWST Fine Guidance Sensor (FGS) will provide the positions of guide stars to the spacecraft attitude control system to facilitate the fine pointing of the Observatory. The FGS is an infrared camera operating in an unfiltered passband from 0.6 to 5.3 microns. The ground system will select guide stars from the Guide Star Catalog II (GSC-II), which is an all-sky catalog with three optical passbands (BJ, RF, IN) derived from photographic plates, and from 2MASS. We present a method for predicting a guide star's FGS photon count rate, which is needed to operate the FGS. The method consists of first deriving equations for transforming the GSC-II optical passbands into J, H, and K for stars that are below the 2MASS faint limiting magnitude, based upon fitting the distribution of brighter stars in color-color diagrams using GSC-II and 2MASS photometry. Next, we convolve the BJ, RF, IN and predicted J, H, and K magnitudes (or 2MASS magnitudes if available) for a given star with the wavelength dependent throughput and sensitivity of the telescope and FGS. To estimate the accuracy of this method for stars that are too faint for 2MASS, we compare the predicted J, H, and K magnitudes for a large sample of stars to data from the United Kingdom Infrared Telescope (UKIRT) Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Using synthetic magnitudes computed from Kurucz models for stars of different spectral types, we show that the method should provide reliable FGS count rates.

  7. Spatial distribution of far-infrared emission in spiral galaxies. II. Heating sources and gas-to-dust ratio.

    NASA Astrophysics Data System (ADS)

    Mayya, Y. D.; Rengarajan, T. N.

    1997-09-01

    . The flattened radial profiles indicate a global gas-to-dust ratio of around 300, which is within a factor of two of the local galactic value. keywords: dust - extinction - infrared radiation - heating sources - gas-to-dust ratio

  8. Near-infrared spectroscopy of M dwarfs. II. H2O molecule as an abundance indicator of oxygen†

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Nakajima, Tadashi; Takeda, Yoichi

    2015-04-01

    Based on the near-infrared spectra (R ≈ 20000) of M dwarfs, oxygen abundances are determined from the rovibrational lines of H2O. Although H2O lines in M dwarfs are badly blended with each other and the continuum levels are depressed appreciably by the collective effect of the numerous H2O lines themselves, quantitative analysis of H2O lines has been carried out by referring to the pseudo-continua, consistently defined on the observed and theoretical spectra. For this purpose, the pseudo-continuum on the theoretical spectrum has been evaluated accurately by the use of the recent high-precision H2O line-list. Then, we propose a simple and flexible method of analyzing the equivalent widths (EWs) of blended features (i.e., not necessarily limited to single lines) by the use of a mini-curve-of-growth (CG), which is a small portion of the usual CG around the observed EW. The mini-CG is generated by using the theoretical EWs evaluated from the synthetic spectrum in exactly the same way as the EWs are measured from the observed spectrum. The observed EW is converted to the abundance by the use of the mini-CG, and the process is repeated for all the observed EWs line-by-line or blend-by-blend. In cool M dwarfs, almost all the oxygen atoms left after CO formation are in stable H2O molecules, which suffer little change for the uncertainties due to imperfect modelling of the photospheres. Thus the numerous H2O lines are excellent abundance indicators of oxygen. The oxygen abundances are determined to be log AO (AO = NO/NH) between -3.5 and -3.0 in 38 M dwarfs, but cannot be determined in four early M dwarfs in which H2O lines are detected only marginally. The resulting log AO/AC values plotted against log AC appear to be systematically smaller in the carbon-rich M dwarfs, showing the different formation histories of oxygen and carbon in the chemical evolution of the Galactic disk. Also, AO/AFe ratios in most M dwarfs are closer to the solar AO/AFe ratio, based on the

  9. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    PubMed

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  10. Freeze, flight, fight, fright, faint: adaptationist perspectives on the acute stress response spectrum.

    PubMed

    Bracha, H Stefan

    2004-09-01

    This article reviews the existing evolutionary perspectives on the acute stress response habitual faintness and blood-injection-injury type-specific phobia (BIITS phobia). In this article, an alternative evolutionary perspective, based on recent advances in evolutionary psychology, is proposed. Specifically, that fear-induced faintness (eg, fainting following the sight of a syringe, blood, or following a trivial skin injury) is a distinct Homo sapiens-specific extreme-stress survival response to an inescapable threat. The article suggests that faintness evolved in response to middle paleolithic intra-group and inter-group violence (of con-specifics) rather than as a pan-mammalian defense response, as is presently assumed. Based on recent literature, freeze, flight, fight, fright, faint provides a more complete description of the human acute stress response sequence than current descriptions. Faintness, one of three primary physiological reactions involved in BIITS phobia, is extremely rare in other phobias. Since heritability estimates are higher for faintness than for fears or phobias, the author suggests that trait-faintness may be a useful complement to trait-anxiety as an endophenotype in research on the human fear circuitry. Some implications for the forthcoming Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition as well as for clinical, health services, and transcriptomic research are briefly discussed.

  11. Faint 6.7 Micron Galaxies and Their Contributions to the Stellar Mass Density in the Universe

    NASA Astrophysics Data System (ADS)

    Sato, Yasunori; Cowie, Lennox L.; Kawara, Kimiaki; Matsuhara, Hideo; Okuda, Haruyuki; Sanders, David B.; Sofue, Yoshiaki; Taniguchi, Yoshiaki; Wakamatsu, Ken-ichi

    2004-03-01

    We discuss the nature of faint 6.7 μm galaxies detected with the mid-infrared camera ISOCAM on board the Infrared Space Observatory (ISO). The 23 hr integration on the Hawaii Deep Field SSA13 has provided a sample of 65 sources down to 6 μJy at 6.7 μm. For 57 sources, optical or near-infrared counterparts were found using a statistical method. All four Chandra sources, three SCUBA sources, and one VLA/FIRST source in this field were detected at 6.7 μm with high significance. Using their optical to mid-infrared colors, we divided the 6.7 μm sample into three categories: low-redshift galaxies with past histories of rapid star formation, high-redshift ancestors of these, and other star-forming galaxies. Rapidly star-forming systems at high redshifts dominate the faintest end. Spectroscopically calibrated photometric redshifts were derived from fits to a limited set of template spectral energy distributions (SEDs). They show a high-redshift tail in their distribution with faint (<30 μJy) galaxies at z>1. The 6.7 μm galaxies tend to have brighter K magnitudes and redder I-K colors than the blue dwarf population at intermediate redshifts. Stellar masses of the 6.7 μm galaxies were estimated from their rest-frame, near-infrared luminosities. Massive galaxies (Mstar~1011 Msolar) were found in the redshift range of z=0.2-3. Epoch-dependent stellar mass functions indicate a decline of massive galaxies' comoving space densities with redshift. Even with such a decrease, the contributions of the 6.7 μm galaxies to the stellar mass density in the universe are found to be comparable to those expected from UV bright galaxies detected in deep optical surveys. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  12. Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors

    PubMed Central

    2011-01-01

    We report our recent work on the growth and fabrication of InAs/GaSb type II superlattice photodiode detectors. The superlattice consists of 9 monolayer InAs/12 monolayer GaSb in each period. Lattice mismatch between the GaSb substrate and the superlattice is 1.5 × 10-4. The full width at half maximum of the first-order satellite peak from X-ray diffraction is 28 arc sec. The P-I-N photodiodes in which the absorption regions (I regions) have 600 periods of superlattice show a 50% cutoff wavelength of 4.3 μm. The current responsivity was measured at 0.48 A/W from blackbody radiation. The peak detectivity of 1.75 × 1011 cmHz1/2/W and the quantum efficiency of 41% at 3.6 μm were obtained. PACS: 85.60.-q; 85.60.Gz; 85.35.-Be. PMID:22192726

  13. Growth and fabrication of InAs/GaSb type II superlattice mid-wavelength infrared photodetectors.

    PubMed

    Chen, Jianxin; Xu, Qingqing; Zhou, Yi; Jin, Jupeng; Lin, Chun; He, Li

    2011-12-22

    We report our recent work on the growth and fabrication of InAs/GaSb type II superlattice photodiode detectors. The superlattice consists of 9 monolayer InAs/12 monolayer GaSb in each period. Lattice mismatch between the GaSb substrate and the superlattice is 1.5 × 10-4. The full width at half maximum of the first-order satellite peak from X-ray diffraction is 28 arc sec. The P-I-N photodiodes in which the absorption regions (I regions) have 600 periods of superlattice show a 50% cutoff wavelength of 4.3 μm. The current responsivity was measured at 0.48 A/W from blackbody radiation. The peak detectivity of 1.75 × 1011 cmHz1/2/W and the quantum efficiency of 41% at 3.6 μm were obtained.PACS: 85.60.-q; 85.60.Gz; 85.35.-Be.

  14. Investigation of Variability of Faint Galactic Early-Type Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.; Kostandyan, G. R.; Paronyan, G. M.

    2016-06-01

    In this poster, we discuss the nature of 66 faint carbon (C) stars which have been discovered by scrutinizing the plates of the First Byurakan Survey (FBS). These plates display low-resolution spectra of objects located at high Galactic latitudes and have a limiting magnitude of about V=16. Our sample of 66 confirmed spectroscopically to be C stars. These 66 objects are those which show early-type spectra. To better characterize these objects, medium-resolution CCD spectra were obtained and are exploited for them all, together with consideration of their 2MASS near-infrared (NIR) colors and their optical variability. We derive effective temperatures from photometry. Finally, the optical variability of our objects are studied by using the data of the Catalina Sky Survey (CSS). It is found that the vast majority does not display variability. However, for some of them, the phased light curve may indicate the presence of a secondary component.

  15. The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.

    2008-03-01

    We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  16. Dissymmetric Bis(dipyrrinato)zinc(II) Complexes: Rich Variety and Bright Red to Near-Infrared Luminescence with a Large Pseudo-Stokes Shift.

    PubMed

    Sakamoto, Ryota; Iwashima, Toshiki; Kögel, Julius F; Kusaka, Shinpei; Tsuchiya, Mizuho; Kitagawa, Yasutaka; Nishihara, Hiroshi

    2016-05-04

    Bis(dipyrrinato)metal(II) and tris(dipyrrinato)metal(III) complexes have been regarded as much less useful luminophores than their boron difluoride counterparts (4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes, BODIPYs), especially in polar solvent. We proposed previously that dissymmetry in such metal complexes (i.e., two different dipyrrinato ligands in one molecule) improves their fluorescence quantum efficiencies. In this work, we demonstrate the universality and utility of our methodology by synthesizing eight new dissymmetric bis(dipyrrinato)zinc(II) complexes and comparing them with corresponding symmetric complexes. Single-crystal X-ray diffraction analysis, (1)H and (13)C NMR spectroscopy, and high-resolution mass spectrometry confirm the retention of dissymmetry in both solution and solid states. The dissymmetric complexes all show greater photoluminescence (PL) quantum yields (ϕPL) than the corresponding symmetric complexes, allowing red to near-infrared emissions with large pseudo-Stokes shifts. The best performance achieves a maximum PL wavelength of 671 nm, a pseudo-Stokes shift of 5400 cm(-1), and ϕPL of 0.62-0.72 in toluene (dielectric constant εs = 2.4), dichloromethane (εs = 9.1), acetone (εs = 21.4), and ethanol (εs = 24.3). The large pseudo-Stokes shift is distinctive considering BODIPYs with small Stokes shifts (∼500 cm(-1)), and the ϕPL values are higher than or comparable to those of BODIPYs fluorescing at similar wavelengths. Electrochemistry and density functional theory calculations illustrate that frontier orbital ordering in the dissymmetric complexes meets the condition for efficient PL proposed in our theory.

  17. VizieR Online Data Catalog: YSOVAR: infrared photometry in Lynds 1688 (Gunther+, 2014)

    NASA Astrophysics Data System (ADS)

    Gunther, H. M.; Cody, A. M.; Covey, K. R.; Hillenbrand, L. A.; Plavchan, P.; Poppenhaeger, K.; Rebull, L. M.; Stauffer, J. R.; Wolk, S. J.; Allen, L.; Bayo, A.; Gutermuth, R. A.; Hora, J. L.; Meng, H. Y. A.; Morales-Calderon, M.; Parks, J. R.; Song, I.

    2014-11-01

    We present a Spitzer/IRAC monitoring campaign of the star-forming region L1688 in the mid-infrared. Lynds 1688 (L1688) is a subcloud of the {rho} Ophiuchus star-forming region. Three fields in L1688 were observed with Spitzer in four observing windows from 2010 April 12 to 2010 May 16 (visibility window 1), 2010 September 22 to 2010 October 27 (visibility window 2), 2011 April 20 to 2011 May 23 (visibility window 3), and 2011 October 1 to 2011 November 6 (visibility window 4). These windows are consecutive visibility periods dictated by the Spitzer orbit (Werner et al., 2004ApJS..154....1W). Table1 lists the time of each observation. They can be found under Program Identification number (PID) 61024 in the Spitzer Heritage Archive (http://sha.ipac.caltech.edu/applications/Spitzer/SHA). L1688 was observed by Chandra on 2000 April 13 for 100ks exposure time in the FAINT mode with the ACIS instrument (ObsID 635 in the Chandra Data Archive, http://cda.harvard.edu/chaser/). We found auxiliary data from the literature. L1688 was observed with Spitzer in the cryogenic mission phase with all four IRAC channels and the 24μm channel of the Multiband Imaging Photometer for Spitzer (MIPS). We augment our own Spitzer data reduction with values from the catalog published by the c2d project (c2d = "From Cores to Disks"; Evans et al. 2003, cat. II/332). Near-infrared data are taken from 2MASS (cat. II/246). Additionally, we take detections from the UKIRT Infrared Deep Sky Survey (UKIDSS; cat. II/319) Galactic cluster survey, data release 9. UKIDSS uses the United Kingdom Infrared Telescope (UKIRT) Wide Field Camera. The YSOVAR data is also cross-matched with data from the SIMBAD (http://simbad.u-strasbg.fr/simbad/) service to provide an identification with known objects from the literature. (4 data files).

  18. Initial phases of massive star formation in high infrared extinction clouds. II. Infall and onset of star formation

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Wyrowski, F.; Schuller, F.; Menten, K. M.

    2013-01-01

    Context. The onset of massive star formation is not well understood because of observational and theoretical difficulties. To find the dense and cold clumps where massive star formation can take place, we compiled a sample of high infrared extinction clouds. We observed the clumps in these high extinction clouds in the 1.2 mm continuum emission and ammonia with the goals of deriving the masses, densities, temperatures, and kinematic distances. Aims: We try to understand the star-formation stages of the high extinction clumps by studying their infall and outflow properties, the presence of a young stellar object (YSO), and the level of the CO depletion. Are the physical parameters, density, mass, temperature, and column density correlated with the star-forming properties? Does the cloud morphology, quantified through the column density contrast between the clump and the clouds, have an impact on the evolution of star formation occurring inside it? Methods: Star-formation properties, such as infall, outflow, CO depletion, and the presence of YSOs, were derived from a molecular line survey performed with the IRAM 30 m and the APEX 12 m telescopes. Results: We find that the HCO+(1-0) transition is the most sensitive for detecting infalling motions. SiO, an outflow tracer, was mostly detected toward sources with infall, indicating that infall is accompanied by collimated outflows. We calculated infall velocities from the line profiles and found them to be of the order of 0.3-7 km s-1. The presence of YSOs within a clump depends mostly on the clump column density; no indication of YSOs were found below 4 × 1022 cm-2. Conclusions: Star formation is on the verge of beginning in clouds that have a low column density contrast; the infall is not yet present in the majority of the clumps. The first signs of ongoing star formation are broadly observed in clouds where the column density contrast between the clump and the cloud is higher than two; most clumps show infall and

  19. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury

    PubMed Central

    Plomgaard, Anne M.; van Oeveren, Wim; Petersen, Tue H.; Alderliesten, Thomas; Austin, Topun; van Bel, Frank; Benders, Manon; Claris, Olivier; Dempsey, Eugene; Franz, Axel; Fumagalli, Monica; Gluud, Christian; Hagmann, Cornelia; Hyttel-Sorensen, Simon; Lemmers, Petra; Pellicer, Adelina; Pichler, Gerhard; Winkel, Per; Greisen, Gorm

    2016-01-01

    Background: The SafeBoosC phase II multicentre randomized clinical trial investigated the benefits and harms of monitoring cerebral oxygenation by near-infrared spectroscopy (NIRS) combined with an evidence-based treatment guideline vs. no NIRS data and treatment as usual in the control group during the first 72 h of life. The trial demonstrated a significant reduction in the burden of cerebral hypoxia in the experimental group. We now report the blindly assessed and analyzed treatment effects on electroencephalographic (EEG) outcomes (burst rate and spectral edge frequency 95% (SEF95)) and blood biomarkers of brain injury (S100β, brain fatty acid-binding protein, and neuroketal). Methods: One hundred and sixty-six extremely preterm infants were randomized to either experimental or control group. EEG was recorded at 64 h of age and blood samples were collected at 6 and 64 h of age. Results: One hundred and thirty-three EEGs were evaluated. The two groups did not differ regarding burst rates (experimental 7.2 vs. control 7.7 burst/min) or SEF95 (experimental 18.1 vs. control 18.0 Hz). The two groups did not differ regarding blood S100β, brain fatty acid-binding protein, and neuroketal concentrations at 6 and 64 h (n = 123 participants). Conclusion: Treatment guided by NIRS reduced the cerebral burden of hypoxia without affecting EEG or the selected blood biomarkers. PMID:26679155

  20. Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices

    NASA Astrophysics Data System (ADS)

    Chevallier, Romain; Haddadi, Abbas; Razeghi, Manijeh

    2017-10-01

    In this study, we demonstrate 12 × 12 μm2 high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 μm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10-4 A/cm2 for the longer (red) and 1.3 × 10-4 A/cm2 for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 μm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz1/2/W and 1.3 × 1011 cm·Hz1/2/W at 77 K.

  1. 320 × 256 Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice

    NASA Astrophysics Data System (ADS)

    Sun, Yaoyao; Han, Xi; Hao, Hongyue; Jiang, Dongwei; Guo, Chunyan; Jiang, Zhi; Lv, Yuexi; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan

    2017-05-01

    Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice are demonstrated on GaSb substrate. The material is grown with 50% cut-off wavelength of 2.9 μm and 5.1 μm for the blue channel and red channel, separately at 77 K. 320 × 256 focal plane arrays fabricated in this wafer is characterized. The peak quantum efficiency without antireflective coating is 37% at 1.7 μm under no bias voltage and 28% at 3.2 μm under bias voltage of 130 mV. The peak specific detectivity are 1.51 × 1012 cm·Hz1/2/W at 2.5 μm and 6.11x1011 cm·Hz1/2/W at 3.2 μm. At 77 K, the noise equivalent difference temperature presents average values of 107 mK and 487 mK for the blue channel and red channel separately.

  2. Structure of selected basic zinc/copper (II) phosphate minerals based upon near-infrared spectroscopy--implications for hydrogen bonding.